1 /*
2 * Copyright (c) 2022 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /**
8 * @file
9 * @brief Real-Time IO device API for moving bytes with low effort
10 *
11 * RTIO is a context for asynchronous batch operations using a submission and completion queue.
12 *
13 * Asynchronous I/O operation are setup in a submission queue. Each entry in the queue describes
14 * the operation it wishes to perform with some understood semantics.
15 *
16 * These operations may be chained in a such a way that only when the current
17 * operation is complete the next will be executed. If the current operation fails
18 * all chained operations will also fail.
19 *
20 * Operations may also be submitted as a transaction where a set of operations are considered
21 * to be one operation.
22 *
23 * The completion of these operations typically provide one or more completion queue events.
24 */
25
26 #ifndef ZEPHYR_INCLUDE_RTIO_RTIO_H_
27 #define ZEPHYR_INCLUDE_RTIO_RTIO_H_
28
29 #include <string.h>
30
31 #include <zephyr/app_memory/app_memdomain.h>
32 #include <zephyr/device.h>
33 #include <zephyr/kernel.h>
34 #include <zephyr/sys/__assert.h>
35 #include <zephyr/sys/atomic.h>
36 #include <zephyr/sys/mem_blocks.h>
37 #include <zephyr/sys/util.h>
38 #include <zephyr/sys/iterable_sections.h>
39 #include <zephyr/sys/mpsc_lockfree.h>
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45
46 /**
47 * @brief RTIO
48 * @defgroup rtio RTIO
49 * @since 3.2
50 * @version 0.1.0
51 * @ingroup os_services
52 * @{
53 */
54
55 /**
56 * @brief RTIO Predefined Priorities
57 * @defgroup rtio_sqe_prio RTIO Priorities
58 * @ingroup rtio
59 * @{
60 */
61
62 /**
63 * @brief Low priority
64 */
65 #define RTIO_PRIO_LOW 0U
66
67 /**
68 * @brief Normal priority
69 */
70 #define RTIO_PRIO_NORM 127U
71
72 /**
73 * @brief High priority
74 */
75 #define RTIO_PRIO_HIGH 255U
76
77 /**
78 * @}
79 */
80
81
82 /**
83 * @brief RTIO SQE Flags
84 * @defgroup rtio_sqe_flags RTIO SQE Flags
85 * @ingroup rtio
86 * @{
87 */
88
89 /**
90 * @brief The next request in the queue should wait on this one.
91 *
92 * Chained SQEs are individual units of work describing patterns of
93 * ordering and failure cascading. A chained SQE must be started only
94 * after the one before it. They are given to the iodevs one after another.
95 */
96 #define RTIO_SQE_CHAINED BIT(0)
97
98 /**
99 * @brief The next request in the queue is part of a transaction.
100 *
101 * Transactional SQEs are sequential parts of a unit of work.
102 * Only the first transactional SQE is submitted to an iodev, the
103 * remaining SQEs are never individually submitted but instead considered
104 * to be part of the transaction to the single iodev. The first sqe in the
105 * sequence holds the iodev that will be used and the last holds the userdata
106 * that will be returned in a single completion on failure/success.
107 */
108 #define RTIO_SQE_TRANSACTION BIT(1)
109
110
111 /**
112 * @brief The buffer should be allocated by the RTIO mempool
113 *
114 * This flag can only exist if the CONFIG_RTIO_SYS_MEM_BLOCKS Kconfig was
115 * enabled and the RTIO context was created via the RTIO_DEFINE_WITH_MEMPOOL()
116 * macro. If set, the buffer associated with the entry was allocated by the
117 * internal memory pool and should be released as soon as it is no longer
118 * needed via a call to rtio_release_mempool().
119 */
120 #define RTIO_SQE_MEMPOOL_BUFFER BIT(2)
121
122 /**
123 * @brief The SQE should not execute if possible
124 *
125 * If possible (not yet executed), the SQE should be canceled by flagging it as failed and returning
126 * -ECANCELED as the result.
127 */
128 #define RTIO_SQE_CANCELED BIT(3)
129
130 /**
131 * @brief The SQE should continue producing CQEs until canceled
132 *
133 * This flag must exist along @ref RTIO_SQE_MEMPOOL_BUFFER and signals that when a read is
134 * complete. It should be placed back in queue until canceled.
135 */
136 #define RTIO_SQE_MULTISHOT BIT(4)
137
138 /**
139 * @brief The SQE does not produce a CQE.
140 */
141 #define RTIO_SQE_NO_RESPONSE BIT(5)
142
143 /**
144 * @}
145 */
146
147 /**
148 * @brief RTIO CQE Flags
149 * @defgroup rtio_cqe_flags RTIO CQE Flags
150 * @ingroup rtio
151 * @{
152 */
153
154 /**
155 * @brief The entry's buffer was allocated from the RTIO's mempool
156 *
157 * If this bit is set, the buffer was allocated from the memory pool and should be recycled as
158 * soon as the application is done with it.
159 */
160 #define RTIO_CQE_FLAG_MEMPOOL_BUFFER BIT(0)
161
162 #define RTIO_CQE_FLAG_GET(flags) FIELD_GET(GENMASK(7, 0), (flags))
163
164 /**
165 * @brief Get the block index of a mempool flags
166 *
167 * @param flags The CQE flags value
168 * @return The block index portion of the flags field.
169 */
170 #define RTIO_CQE_FLAG_MEMPOOL_GET_BLK_IDX(flags) FIELD_GET(GENMASK(19, 8), (flags))
171
172 /**
173 * @brief Get the block count of a mempool flags
174 *
175 * @param flags The CQE flags value
176 * @return The block count portion of the flags field.
177 */
178 #define RTIO_CQE_FLAG_MEMPOOL_GET_BLK_CNT(flags) FIELD_GET(GENMASK(31, 20), (flags))
179
180 /**
181 * @brief Prepare CQE flags for a mempool read.
182 *
183 * @param blk_idx The mempool block index
184 * @param blk_cnt The mempool block count
185 * @return A shifted and masked value that can be added to the flags field with an OR operator.
186 */
187 #define RTIO_CQE_FLAG_PREP_MEMPOOL(blk_idx, blk_cnt) \
188 (FIELD_PREP(GENMASK(7, 0), RTIO_CQE_FLAG_MEMPOOL_BUFFER) | \
189 FIELD_PREP(GENMASK(19, 8), blk_idx) | FIELD_PREP(GENMASK(31, 20), blk_cnt))
190
191 /**
192 * @}
193 */
194
195 /**
196 * @brief Equivalent to the I2C_MSG_STOP flag
197 */
198 #define RTIO_IODEV_I2C_STOP BIT(1)
199
200 /**
201 * @brief Equivalent to the I2C_MSG_RESTART flag
202 */
203 #define RTIO_IODEV_I2C_RESTART BIT(2)
204
205 /**
206 * @brief Equivalent to the I2C_MSG_ADDR_10_BITS
207 */
208 #define RTIO_IODEV_I2C_10_BITS BIT(3)
209
210 /**
211 * @brief Equivalent to the I3C_MSG_STOP flag
212 */
213 #define RTIO_IODEV_I3C_STOP BIT(1)
214
215 /**
216 * @brief Equivalent to the I3C_MSG_RESTART flag
217 */
218 #define RTIO_IODEV_I3C_RESTART BIT(2)
219
220 /**
221 * @brief Equivalent to the I3C_MSG_HDR
222 */
223 #define RTIO_IODEV_I3C_HDR BIT(3)
224
225 /**
226 * @brief Equivalent to the I3C_MSG_NBCH
227 */
228 #define RTIO_IODEV_I3C_NBCH BIT(4)
229
230 /**
231 * @brief I3C HDR Mode Mask
232 */
233 #define RTIO_IODEV_I3C_HDR_MODE_MASK GENMASK(15, 8)
234
235 /**
236 * @brief I3C HDR Mode Mask
237 */
238 #define RTIO_IODEV_I3C_HDR_MODE_SET(flags) \
239 FIELD_PREP(RTIO_IODEV_I3C_HDR_MODE_MASK, flags)
240
241 /**
242 * @brief I3C HDR Mode Mask
243 */
244 #define RTIO_IODEV_I3C_HDR_MODE_GET(flags) \
245 FIELD_GET(RTIO_IODEV_I3C_HDR_MODE_MASK, flags)
246
247 /**
248 * @brief I3C HDR 7b Command Code
249 */
250 #define RTIO_IODEV_I3C_HDR_CMD_CODE_MASK GENMASK(22, 16)
251
252 /**
253 * @brief I3C HDR 7b Command Code
254 */
255 #define RTIO_IODEV_I3C_HDR_CMD_CODE_SET(flags) \
256 FIELD_PREP(RTIO_IODEV_I3C_HDR_CMD_CODE_MASK, flags)
257
258 /**
259 * @brief I3C HDR 7b Command Code
260 */
261 #define RTIO_IODEV_I3C_HDR_CMD_CODE_GET(flags) \
262 FIELD_GET(RTIO_IODEV_I3C_HDR_CMD_CODE_MASK, flags)
263
264 /** @cond ignore */
265 struct rtio;
266 struct rtio_cqe;
267 struct rtio_sqe;
268 struct rtio_sqe_pool;
269 struct rtio_cqe_pool;
270 struct rtio_iodev;
271 struct rtio_iodev_sqe;
272 /** @endcond */
273
274 /**
275 * @typedef rtio_callback_t
276 * @brief Callback signature for RTIO_OP_CALLBACK
277 * @param r RTIO context being used with the callback
278 * @param sqe Submission for the callback op
279 * @param arg0 Argument option as part of the sqe
280 */
281 typedef void (*rtio_callback_t)(struct rtio *r, const struct rtio_sqe *sqe, void *arg0);
282
283 /**
284 * @brief A submission queue event
285 */
286 struct rtio_sqe {
287 uint8_t op; /**< Op code */
288
289 uint8_t prio; /**< Op priority */
290
291 uint16_t flags; /**< Op Flags */
292
293 uint32_t iodev_flags; /**< Op iodev flags */
294
295 const struct rtio_iodev *iodev; /**< Device to operation on */
296
297 /**
298 * User provided data which is returned upon operation completion. Could be a pointer or
299 * integer.
300 *
301 * If unique identification of completions is desired this should be
302 * unique as well.
303 */
304 void *userdata;
305
306 union {
307
308 /** OP_TX */
309 struct {
310 uint32_t buf_len; /**< Length of buffer */
311 const uint8_t *buf; /**< Buffer to write from */
312 } tx;
313
314 /** OP_RX */
315 struct {
316 uint32_t buf_len; /**< Length of buffer */
317 uint8_t *buf; /**< Buffer to read into */
318 } rx;
319
320 /** OP_TINY_TX */
321 struct {
322 uint8_t buf_len; /**< Length of tiny buffer */
323 uint8_t buf[7]; /**< Tiny buffer */
324 } tiny_tx;
325
326 /** OP_CALLBACK */
327 struct {
328 rtio_callback_t callback;
329 void *arg0; /**< Last argument given to callback */
330 } callback;
331
332 /** OP_TXRX */
333 struct {
334 uint32_t buf_len; /**< Length of tx and rx buffers */
335 const uint8_t *tx_buf; /**< Buffer to write from */
336 uint8_t *rx_buf; /**< Buffer to read into */
337 } txrx;
338
339 /** OP_I2C_CONFIGURE */
340 uint32_t i2c_config;
341
342 /** OP_I3C_CONFIGURE */
343 struct {
344 /* enum i3c_config_type type; */
345 int type;
346 void *config;
347 } i3c_config;
348
349 /** OP_I3C_CCC */
350 /* struct i3c_ccc_payload *ccc_payload; */
351 void *ccc_payload;
352 };
353 };
354
355 /** @cond ignore */
356 /* Ensure the rtio_sqe never grows beyond a common cacheline size of 64 bytes */
357 BUILD_ASSERT(sizeof(struct rtio_sqe) <= 64);
358 /** @endcond */
359
360 /**
361 * @brief A completion queue event
362 */
363 struct rtio_cqe {
364 struct mpsc_node q;
365
366 int32_t result; /**< Result from operation */
367 void *userdata; /**< Associated userdata with operation */
368 uint32_t flags; /**< Flags associated with the operation */
369 };
370
371 struct rtio_sqe_pool {
372 struct mpsc free_q;
373 const uint16_t pool_size;
374 uint16_t pool_free;
375 struct rtio_iodev_sqe *pool;
376 };
377
378 struct rtio_cqe_pool {
379 struct mpsc free_q;
380 const uint16_t pool_size;
381 uint16_t pool_free;
382 struct rtio_cqe *pool;
383 };
384
385 /**
386 * @brief An RTIO context containing what can be viewed as a pair of queues.
387 *
388 * A queue for submissions (available and in queue to be produced) as well as a queue
389 * of completions (available and ready to be consumed).
390 *
391 * The rtio executor along with any objects implementing the rtio_iodev interface are
392 * the consumers of submissions and producers of completions.
393 *
394 * No work is started until rtio_submit() is called.
395 */
396 struct rtio {
397 #ifdef CONFIG_RTIO_SUBMIT_SEM
398 /* A wait semaphore which may suspend the calling thread
399 * to wait for some number of completions when calling submit
400 */
401 struct k_sem *submit_sem;
402
403 uint32_t submit_count;
404 #endif
405
406 #ifdef CONFIG_RTIO_CONSUME_SEM
407 /* A wait semaphore which may suspend the calling thread
408 * to wait for some number of completions while consuming
409 * them from the completion queue
410 */
411 struct k_sem *consume_sem;
412 #endif
413
414 /* Total number of completions */
415 atomic_t cq_count;
416
417 /* Number of completions that were unable to be submitted with results
418 * due to the cq spsc being full
419 */
420 atomic_t xcqcnt;
421
422 /* Submission queue object pool with free list */
423 struct rtio_sqe_pool *sqe_pool;
424
425 /* Complete queue object pool with free list */
426 struct rtio_cqe_pool *cqe_pool;
427
428 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
429 /* Mem block pool */
430 struct sys_mem_blocks *block_pool;
431 #endif
432
433 /* Submission queue */
434 struct mpsc sq;
435
436 /* Completion queue */
437 struct mpsc cq;
438 };
439
440 /** The memory partition associated with all RTIO context information */
441 extern struct k_mem_partition rtio_partition;
442
443 /**
444 * @brief Get the mempool block size of the RTIO context
445 *
446 * @param[in] r The RTIO context
447 * @return The size of each block in the context's mempool
448 * @return 0 if the context doesn't have a mempool
449 */
rtio_mempool_block_size(const struct rtio * r)450 static inline size_t rtio_mempool_block_size(const struct rtio *r)
451 {
452 #ifndef CONFIG_RTIO_SYS_MEM_BLOCKS
453 ARG_UNUSED(r);
454 return 0;
455 #else
456 if (r == NULL || r->block_pool == NULL) {
457 return 0;
458 }
459 return BIT(r->block_pool->info.blk_sz_shift);
460 #endif
461 }
462
463 /**
464 * @brief Compute the mempool block index for a given pointer
465 *
466 * @param[in] r RTIO context
467 * @param[in] ptr Memory pointer in the mempool
468 * @return Index of the mempool block associated with the pointer. Or UINT16_MAX if invalid.
469 */
470 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
__rtio_compute_mempool_block_index(const struct rtio * r,const void * ptr)471 static inline uint16_t __rtio_compute_mempool_block_index(const struct rtio *r, const void *ptr)
472 {
473 uintptr_t addr = (uintptr_t)ptr;
474 struct sys_mem_blocks *mem_pool = r->block_pool;
475 uint32_t block_size = rtio_mempool_block_size(r);
476
477 uintptr_t buff = (uintptr_t)mem_pool->buffer;
478 uint32_t buff_size = mem_pool->info.num_blocks * block_size;
479
480 if (addr < buff || addr >= buff + buff_size) {
481 return UINT16_MAX;
482 }
483 return (addr - buff) / block_size;
484 }
485 #endif
486
487 /**
488 * @brief IO device submission queue entry
489 *
490 * May be cast safely to and from a rtio_sqe as they occupy the same memory provided by the pool
491 */
492 struct rtio_iodev_sqe {
493 struct rtio_sqe sqe;
494 struct mpsc_node q;
495 struct rtio_iodev_sqe *next;
496 struct rtio *r;
497 };
498
499 /**
500 * @brief API that an RTIO IO device should implement
501 */
502 struct rtio_iodev_api {
503 /**
504 * @brief Submit to the iodev an entry to work on
505 *
506 * This call should be short in duration and most likely
507 * either enqueue or kick off an entry with the hardware.
508 *
509 * @param iodev_sqe Submission queue entry
510 */
511 void (*submit)(struct rtio_iodev_sqe *iodev_sqe);
512 };
513
514 /**
515 * @brief An IO device with a function table for submitting requests
516 */
517 struct rtio_iodev {
518 /* Function pointer table */
519 const struct rtio_iodev_api *api;
520
521 /* Data associated with this iodev */
522 void *data;
523 };
524
525 /** An operation that does nothing and will complete immediately */
526 #define RTIO_OP_NOP 0
527
528 /** An operation that receives (reads) */
529 #define RTIO_OP_RX (RTIO_OP_NOP+1)
530
531 /** An operation that transmits (writes) */
532 #define RTIO_OP_TX (RTIO_OP_RX+1)
533
534 /** An operation that transmits tiny writes by copying the data to write */
535 #define RTIO_OP_TINY_TX (RTIO_OP_TX+1)
536
537 /** An operation that calls a given function (callback) */
538 #define RTIO_OP_CALLBACK (RTIO_OP_TINY_TX+1)
539
540 /** An operation that transceives (reads and writes simultaneously) */
541 #define RTIO_OP_TXRX (RTIO_OP_CALLBACK+1)
542
543 /** An operation to recover I2C buses */
544 #define RTIO_OP_I2C_RECOVER (RTIO_OP_TXRX+1)
545
546 /** An operation to configure I2C buses */
547 #define RTIO_OP_I2C_CONFIGURE (RTIO_OP_I2C_RECOVER+1)
548
549 /** An operation to recover I3C buses */
550 #define RTIO_OP_I3C_RECOVER (RTIO_OP_I2C_CONFIGURE+1)
551
552 /** An operation to configure I3C buses */
553 #define RTIO_OP_I3C_CONFIGURE (RTIO_OP_I3C_RECOVER+1)
554
555 /** An operation to sends I3C CCC */
556 #define RTIO_OP_I3C_CCC (RTIO_OP_I3C_CONFIGURE+1)
557
558 /**
559 * @brief Prepare a nop (no op) submission
560 */
rtio_sqe_prep_nop(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,void * userdata)561 static inline void rtio_sqe_prep_nop(struct rtio_sqe *sqe,
562 const struct rtio_iodev *iodev,
563 void *userdata)
564 {
565 memset(sqe, 0, sizeof(struct rtio_sqe));
566 sqe->op = RTIO_OP_NOP;
567 sqe->iodev = iodev;
568 sqe->userdata = userdata;
569 }
570
571 /**
572 * @brief Prepare a read op submission
573 */
rtio_sqe_prep_read(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,uint8_t * buf,uint32_t len,void * userdata)574 static inline void rtio_sqe_prep_read(struct rtio_sqe *sqe,
575 const struct rtio_iodev *iodev,
576 int8_t prio,
577 uint8_t *buf,
578 uint32_t len,
579 void *userdata)
580 {
581 memset(sqe, 0, sizeof(struct rtio_sqe));
582 sqe->op = RTIO_OP_RX;
583 sqe->prio = prio;
584 sqe->iodev = iodev;
585 sqe->rx.buf_len = len;
586 sqe->rx.buf = buf;
587 sqe->userdata = userdata;
588 }
589
590 /**
591 * @brief Prepare a read op submission with context's mempool
592 *
593 * @see rtio_sqe_prep_read()
594 */
rtio_sqe_prep_read_with_pool(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,void * userdata)595 static inline void rtio_sqe_prep_read_with_pool(struct rtio_sqe *sqe,
596 const struct rtio_iodev *iodev, int8_t prio,
597 void *userdata)
598 {
599 rtio_sqe_prep_read(sqe, iodev, prio, NULL, 0, userdata);
600 sqe->flags = RTIO_SQE_MEMPOOL_BUFFER;
601 }
602
rtio_sqe_prep_read_multishot(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,void * userdata)603 static inline void rtio_sqe_prep_read_multishot(struct rtio_sqe *sqe,
604 const struct rtio_iodev *iodev, int8_t prio,
605 void *userdata)
606 {
607 rtio_sqe_prep_read_with_pool(sqe, iodev, prio, userdata);
608 sqe->flags |= RTIO_SQE_MULTISHOT;
609 }
610
611 /**
612 * @brief Prepare a write op submission
613 */
rtio_sqe_prep_write(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,const uint8_t * buf,uint32_t len,void * userdata)614 static inline void rtio_sqe_prep_write(struct rtio_sqe *sqe,
615 const struct rtio_iodev *iodev,
616 int8_t prio,
617 const uint8_t *buf,
618 uint32_t len,
619 void *userdata)
620 {
621 memset(sqe, 0, sizeof(struct rtio_sqe));
622 sqe->op = RTIO_OP_TX;
623 sqe->prio = prio;
624 sqe->iodev = iodev;
625 sqe->tx.buf_len = len;
626 sqe->tx.buf = buf;
627 sqe->userdata = userdata;
628 }
629
630 /**
631 * @brief Prepare a tiny write op submission
632 *
633 * Unlike the normal write operation where the source buffer must outlive the call
634 * the tiny write data in this case is copied to the sqe. It must be tiny to fit
635 * within the specified size of a rtio_sqe.
636 *
637 * This is useful in many scenarios with RTL logic where a write of the register to
638 * subsequently read must be done.
639 */
rtio_sqe_prep_tiny_write(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,const uint8_t * tiny_write_data,uint8_t tiny_write_len,void * userdata)640 static inline void rtio_sqe_prep_tiny_write(struct rtio_sqe *sqe,
641 const struct rtio_iodev *iodev,
642 int8_t prio,
643 const uint8_t *tiny_write_data,
644 uint8_t tiny_write_len,
645 void *userdata)
646 {
647 __ASSERT_NO_MSG(tiny_write_len <= sizeof(sqe->tiny_tx.buf));
648
649 memset(sqe, 0, sizeof(struct rtio_sqe));
650 sqe->op = RTIO_OP_TINY_TX;
651 sqe->prio = prio;
652 sqe->iodev = iodev;
653 sqe->tiny_tx.buf_len = tiny_write_len;
654 memcpy(sqe->tiny_tx.buf, tiny_write_data, tiny_write_len);
655 sqe->userdata = userdata;
656 }
657
658 /**
659 * @brief Prepare a callback op submission
660 *
661 * A somewhat special operation in that it may only be done in kernel mode.
662 *
663 * Used where general purpose logic is required in a queue of io operations to do
664 * transforms or logic.
665 */
rtio_sqe_prep_callback(struct rtio_sqe * sqe,rtio_callback_t callback,void * arg0,void * userdata)666 static inline void rtio_sqe_prep_callback(struct rtio_sqe *sqe,
667 rtio_callback_t callback,
668 void *arg0,
669 void *userdata)
670 {
671 memset(sqe, 0, sizeof(struct rtio_sqe));
672 sqe->op = RTIO_OP_CALLBACK;
673 sqe->prio = 0;
674 sqe->iodev = NULL;
675 sqe->callback.callback = callback;
676 sqe->callback.arg0 = arg0;
677 sqe->userdata = userdata;
678 }
679
680 /**
681 * @brief Prepare a callback op submission that does not create a CQE
682 *
683 * Similar to @ref rtio_sqe_prep_callback, but the @ref RTIO_SQE_NO_RESPONSE
684 * flag is set on the SQE to prevent the generation of a CQE upon completion.
685 *
686 * This can be useful when the callback is the last operation in a sequence
687 * whose job is to clean up all the previous CQE's. Without @ref RTIO_SQE_NO_RESPONSE
688 * the completion itself will result in a CQE that cannot be consumed in the callback.
689 */
rtio_sqe_prep_callback_no_cqe(struct rtio_sqe * sqe,rtio_callback_t callback,void * arg0,void * userdata)690 static inline void rtio_sqe_prep_callback_no_cqe(struct rtio_sqe *sqe,
691 rtio_callback_t callback,
692 void *arg0,
693 void *userdata)
694 {
695 rtio_sqe_prep_callback(sqe, callback, arg0, userdata);
696 sqe->flags |= RTIO_SQE_NO_RESPONSE;
697 }
698
699 /**
700 * @brief Prepare a transceive op submission
701 */
rtio_sqe_prep_transceive(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,const uint8_t * tx_buf,uint8_t * rx_buf,uint32_t buf_len,void * userdata)702 static inline void rtio_sqe_prep_transceive(struct rtio_sqe *sqe,
703 const struct rtio_iodev *iodev,
704 int8_t prio,
705 const uint8_t *tx_buf,
706 uint8_t *rx_buf,
707 uint32_t buf_len,
708 void *userdata)
709 {
710 memset(sqe, 0, sizeof(struct rtio_sqe));
711 sqe->op = RTIO_OP_TXRX;
712 sqe->prio = prio;
713 sqe->iodev = iodev;
714 sqe->txrx.buf_len = buf_len;
715 sqe->txrx.tx_buf = tx_buf;
716 sqe->txrx.rx_buf = rx_buf;
717 sqe->userdata = userdata;
718 }
719
rtio_sqe_pool_alloc(struct rtio_sqe_pool * pool)720 static inline struct rtio_iodev_sqe *rtio_sqe_pool_alloc(struct rtio_sqe_pool *pool)
721 {
722 struct mpsc_node *node = mpsc_pop(&pool->free_q);
723
724 if (node == NULL) {
725 return NULL;
726 }
727
728 struct rtio_iodev_sqe *iodev_sqe = CONTAINER_OF(node, struct rtio_iodev_sqe, q);
729
730 pool->pool_free--;
731
732 return iodev_sqe;
733 }
734
rtio_sqe_pool_free(struct rtio_sqe_pool * pool,struct rtio_iodev_sqe * iodev_sqe)735 static inline void rtio_sqe_pool_free(struct rtio_sqe_pool *pool, struct rtio_iodev_sqe *iodev_sqe)
736 {
737 mpsc_push(&pool->free_q, &iodev_sqe->q);
738
739 pool->pool_free++;
740 }
741
rtio_cqe_pool_alloc(struct rtio_cqe_pool * pool)742 static inline struct rtio_cqe *rtio_cqe_pool_alloc(struct rtio_cqe_pool *pool)
743 {
744 struct mpsc_node *node = mpsc_pop(&pool->free_q);
745
746 if (node == NULL) {
747 return NULL;
748 }
749
750 struct rtio_cqe *cqe = CONTAINER_OF(node, struct rtio_cqe, q);
751
752 memset(cqe, 0, sizeof(struct rtio_cqe));
753
754 pool->pool_free--;
755
756 return cqe;
757 }
758
rtio_cqe_pool_free(struct rtio_cqe_pool * pool,struct rtio_cqe * cqe)759 static inline void rtio_cqe_pool_free(struct rtio_cqe_pool *pool, struct rtio_cqe *cqe)
760 {
761 mpsc_push(&pool->free_q, &cqe->q);
762
763 pool->pool_free++;
764 }
765
rtio_block_pool_alloc(struct rtio * r,size_t min_sz,size_t max_sz,uint8_t ** buf,uint32_t * buf_len)766 static inline int rtio_block_pool_alloc(struct rtio *r, size_t min_sz,
767 size_t max_sz, uint8_t **buf, uint32_t *buf_len)
768 {
769 #ifndef CONFIG_RTIO_SYS_MEM_BLOCKS
770 ARG_UNUSED(r);
771 ARG_UNUSED(min_sz);
772 ARG_UNUSED(max_sz);
773 ARG_UNUSED(buf);
774 ARG_UNUSED(buf_len);
775 return -ENOTSUP;
776 #else
777 const uint32_t block_size = rtio_mempool_block_size(r);
778 uint32_t bytes = max_sz;
779
780 /* Not every context has a block pool and the block size may return 0 in
781 * that case
782 */
783 if (block_size == 0) {
784 return -ENOMEM;
785 }
786
787 do {
788 size_t num_blks = DIV_ROUND_UP(bytes, block_size);
789 int rc = sys_mem_blocks_alloc_contiguous(r->block_pool, num_blks, (void **)buf);
790
791 if (rc == 0) {
792 *buf_len = num_blks * block_size;
793 return 0;
794 }
795
796 if (bytes <= block_size) {
797 break;
798 }
799
800 bytes -= block_size;
801 } while (bytes >= min_sz);
802
803 return -ENOMEM;
804 #endif
805 }
806
rtio_block_pool_free(struct rtio * r,void * buf,uint32_t buf_len)807 static inline void rtio_block_pool_free(struct rtio *r, void *buf, uint32_t buf_len)
808 {
809 #ifndef CONFIG_RTIO_SYS_MEM_BLOCKS
810 ARG_UNUSED(r);
811 ARG_UNUSED(buf);
812 ARG_UNUSED(buf_len);
813 #else
814 size_t num_blks = buf_len >> r->block_pool->info.blk_sz_shift;
815
816 sys_mem_blocks_free_contiguous(r->block_pool, buf, num_blks);
817 #endif
818 }
819
820 /* Do not try and reformat the macros */
821 /* clang-format off */
822
823 /**
824 * @brief Statically define and initialize an RTIO IODev
825 *
826 * @param name Name of the iodev
827 * @param iodev_api Pointer to struct rtio_iodev_api
828 * @param iodev_data Data pointer
829 */
830 #define RTIO_IODEV_DEFINE(name, iodev_api, iodev_data) \
831 STRUCT_SECTION_ITERABLE(rtio_iodev, name) = { \
832 .api = (iodev_api), \
833 .data = (iodev_data), \
834 }
835
836 #define Z_RTIO_SQE_POOL_DEFINE(name, sz) \
837 static struct rtio_iodev_sqe CONCAT(_sqe_pool_, name)[sz]; \
838 STRUCT_SECTION_ITERABLE(rtio_sqe_pool, name) = { \
839 .free_q = MPSC_INIT((name.free_q)), \
840 .pool_size = sz, \
841 .pool_free = sz, \
842 .pool = CONCAT(_sqe_pool_, name), \
843 }
844
845
846 #define Z_RTIO_CQE_POOL_DEFINE(name, sz) \
847 static struct rtio_cqe CONCAT(_cqe_pool_, name)[sz]; \
848 STRUCT_SECTION_ITERABLE(rtio_cqe_pool, name) = { \
849 .free_q = MPSC_INIT((name.free_q)), \
850 .pool_size = sz, \
851 .pool_free = sz, \
852 .pool = CONCAT(_cqe_pool_, name), \
853 }
854
855 /**
856 * @brief Allocate to bss if available
857 *
858 * If CONFIG_USERSPACE is selected, allocate to the rtio_partition bss. Maps to:
859 * K_APP_BMEM(rtio_partition) static
860 *
861 * If CONFIG_USERSPACE is disabled, allocate as plain static:
862 * static
863 */
864 #define RTIO_BMEM COND_CODE_1(CONFIG_USERSPACE, (K_APP_BMEM(rtio_partition) static), (static))
865
866 /**
867 * @brief Allocate as initialized memory if available
868 *
869 * If CONFIG_USERSPACE is selected, allocate to the rtio_partition init. Maps to:
870 * K_APP_DMEM(rtio_partition) static
871 *
872 * If CONFIG_USERSPACE is disabled, allocate as plain static:
873 * static
874 */
875 #define RTIO_DMEM COND_CODE_1(CONFIG_USERSPACE, (K_APP_DMEM(rtio_partition) static), (static))
876
877 #define Z_RTIO_BLOCK_POOL_DEFINE(name, blk_sz, blk_cnt, blk_align) \
878 RTIO_BMEM uint8_t __aligned(WB_UP(blk_align)) \
879 CONCAT(_block_pool_, name)[blk_cnt*WB_UP(blk_sz)]; \
880 _SYS_MEM_BLOCKS_DEFINE_WITH_EXT_BUF(name, WB_UP(blk_sz), blk_cnt, \
881 CONCAT(_block_pool_, name), RTIO_DMEM)
882
883 #define Z_RTIO_DEFINE(name, _sqe_pool, _cqe_pool, _block_pool) \
884 IF_ENABLED(CONFIG_RTIO_SUBMIT_SEM, \
885 (static K_SEM_DEFINE(CONCAT(_submit_sem_, name), 0, K_SEM_MAX_LIMIT))) \
886 IF_ENABLED(CONFIG_RTIO_CONSUME_SEM, \
887 (static K_SEM_DEFINE(CONCAT(_consume_sem_, name), 0, K_SEM_MAX_LIMIT))) \
888 STRUCT_SECTION_ITERABLE(rtio, name) = { \
889 IF_ENABLED(CONFIG_RTIO_SUBMIT_SEM, (.submit_sem = &CONCAT(_submit_sem_, name),)) \
890 IF_ENABLED(CONFIG_RTIO_SUBMIT_SEM, (.submit_count = 0,)) \
891 IF_ENABLED(CONFIG_RTIO_CONSUME_SEM, (.consume_sem = &CONCAT(_consume_sem_, name),))\
892 .cq_count = ATOMIC_INIT(0), \
893 .xcqcnt = ATOMIC_INIT(0), \
894 .sqe_pool = _sqe_pool, \
895 .cqe_pool = _cqe_pool, \
896 IF_ENABLED(CONFIG_RTIO_SYS_MEM_BLOCKS, (.block_pool = _block_pool,)) \
897 .sq = MPSC_INIT((name.sq)), \
898 .cq = MPSC_INIT((name.cq)), \
899 }
900
901 /**
902 * @brief Statically define and initialize an RTIO context
903 *
904 * @param name Name of the RTIO
905 * @param sq_sz Size of the submission queue entry pool
906 * @param cq_sz Size of the completion queue entry pool
907 */
908 #define RTIO_DEFINE(name, sq_sz, cq_sz) \
909 Z_RTIO_SQE_POOL_DEFINE(CONCAT(name, _sqe_pool), sq_sz); \
910 Z_RTIO_CQE_POOL_DEFINE(CONCAT(name, _cqe_pool), cq_sz); \
911 Z_RTIO_DEFINE(name, &CONCAT(name, _sqe_pool), \
912 &CONCAT(name, _cqe_pool), NULL)
913
914 /* clang-format on */
915
916 /**
917 * @brief Statically define and initialize an RTIO context
918 *
919 * @param name Name of the RTIO
920 * @param sq_sz Size of the submission queue, must be power of 2
921 * @param cq_sz Size of the completion queue, must be power of 2
922 * @param num_blks Number of blocks in the memory pool
923 * @param blk_size The number of bytes in each block
924 * @param balign The block alignment
925 */
926 #define RTIO_DEFINE_WITH_MEMPOOL(name, sq_sz, cq_sz, num_blks, blk_size, balign) \
927 Z_RTIO_SQE_POOL_DEFINE(name##_sqe_pool, sq_sz); \
928 Z_RTIO_CQE_POOL_DEFINE(name##_cqe_pool, cq_sz); \
929 Z_RTIO_BLOCK_POOL_DEFINE(name##_block_pool, blk_size, num_blks, balign); \
930 Z_RTIO_DEFINE(name, &name##_sqe_pool, &name##_cqe_pool, &name##_block_pool)
931
932 /* clang-format on */
933
934 /**
935 * @brief Count of acquirable submission queue events
936 *
937 * @param r RTIO context
938 *
939 * @return Count of acquirable submission queue events
940 */
rtio_sqe_acquirable(struct rtio * r)941 static inline uint32_t rtio_sqe_acquirable(struct rtio *r)
942 {
943 return r->sqe_pool->pool_free;
944 }
945
946 /**
947 * @brief Get the next sqe in the transaction
948 *
949 * @param iodev_sqe Submission queue entry
950 *
951 * @retval NULL if current sqe is last in transaction
952 * @retval struct rtio_sqe * if available
953 */
rtio_txn_next(const struct rtio_iodev_sqe * iodev_sqe)954 static inline struct rtio_iodev_sqe *rtio_txn_next(const struct rtio_iodev_sqe *iodev_sqe)
955 {
956 if (iodev_sqe->sqe.flags & RTIO_SQE_TRANSACTION) {
957 return iodev_sqe->next;
958 } else {
959 return NULL;
960 }
961 }
962
963
964 /**
965 * @brief Get the next sqe in the chain
966 *
967 * @param iodev_sqe Submission queue entry
968 *
969 * @retval NULL if current sqe is last in chain
970 * @retval struct rtio_sqe * if available
971 */
rtio_chain_next(const struct rtio_iodev_sqe * iodev_sqe)972 static inline struct rtio_iodev_sqe *rtio_chain_next(const struct rtio_iodev_sqe *iodev_sqe)
973 {
974 if (iodev_sqe->sqe.flags & RTIO_SQE_CHAINED) {
975 return iodev_sqe->next;
976 } else {
977 return NULL;
978 }
979 }
980
981 /**
982 * @brief Get the next sqe in the chain or transaction
983 *
984 * @param iodev_sqe Submission queue entry
985 *
986 * @retval NULL if current sqe is last in chain
987 * @retval struct rtio_iodev_sqe * if available
988 */
rtio_iodev_sqe_next(const struct rtio_iodev_sqe * iodev_sqe)989 static inline struct rtio_iodev_sqe *rtio_iodev_sqe_next(const struct rtio_iodev_sqe *iodev_sqe)
990 {
991 return iodev_sqe->next;
992 }
993
994 /**
995 * @brief Acquire a single submission queue event if available
996 *
997 * @param r RTIO context
998 *
999 * @retval sqe A valid submission queue event acquired from the submission queue
1000 * @retval NULL No subsmission queue event available
1001 */
rtio_sqe_acquire(struct rtio * r)1002 static inline struct rtio_sqe *rtio_sqe_acquire(struct rtio *r)
1003 {
1004 struct rtio_iodev_sqe *iodev_sqe = rtio_sqe_pool_alloc(r->sqe_pool);
1005
1006 if (iodev_sqe == NULL) {
1007 return NULL;
1008 }
1009
1010 mpsc_push(&r->sq, &iodev_sqe->q);
1011
1012 return &iodev_sqe->sqe;
1013 }
1014
1015 /**
1016 * @brief Drop all previously acquired sqe
1017 *
1018 * @param r RTIO context
1019 */
rtio_sqe_drop_all(struct rtio * r)1020 static inline void rtio_sqe_drop_all(struct rtio *r)
1021 {
1022 struct rtio_iodev_sqe *iodev_sqe;
1023 struct mpsc_node *node = mpsc_pop(&r->sq);
1024
1025 while (node != NULL) {
1026 iodev_sqe = CONTAINER_OF(node, struct rtio_iodev_sqe, q);
1027 rtio_sqe_pool_free(r->sqe_pool, iodev_sqe);
1028 node = mpsc_pop(&r->sq);
1029 }
1030 }
1031
1032 /**
1033 * @brief Acquire a complete queue event if available
1034 */
rtio_cqe_acquire(struct rtio * r)1035 static inline struct rtio_cqe *rtio_cqe_acquire(struct rtio *r)
1036 {
1037 struct rtio_cqe *cqe = rtio_cqe_pool_alloc(r->cqe_pool);
1038
1039 if (cqe == NULL) {
1040 return NULL;
1041 }
1042
1043 memset(cqe, 0, sizeof(struct rtio_cqe));
1044
1045 return cqe;
1046 }
1047
1048 /**
1049 * @brief Produce a complete queue event if available
1050 */
rtio_cqe_produce(struct rtio * r,struct rtio_cqe * cqe)1051 static inline void rtio_cqe_produce(struct rtio *r, struct rtio_cqe *cqe)
1052 {
1053 mpsc_push(&r->cq, &cqe->q);
1054 }
1055
1056 /**
1057 * @brief Consume a single completion queue event if available
1058 *
1059 * If a completion queue event is returned rtio_cq_release(r) must be called
1060 * at some point to release the cqe spot for the cqe producer.
1061 *
1062 * @param r RTIO context
1063 *
1064 * @retval cqe A valid completion queue event consumed from the completion queue
1065 * @retval NULL No completion queue event available
1066 */
rtio_cqe_consume(struct rtio * r)1067 static inline struct rtio_cqe *rtio_cqe_consume(struct rtio *r)
1068 {
1069 struct mpsc_node *node;
1070 struct rtio_cqe *cqe = NULL;
1071
1072 #ifdef CONFIG_RTIO_CONSUME_SEM
1073 if (k_sem_take(r->consume_sem, K_NO_WAIT) != 0) {
1074 return NULL;
1075 }
1076 #endif
1077
1078 node = mpsc_pop(&r->cq);
1079 if (node == NULL) {
1080 return NULL;
1081 }
1082 cqe = CONTAINER_OF(node, struct rtio_cqe, q);
1083
1084 return cqe;
1085 }
1086
1087 /**
1088 * @brief Wait for and consume a single completion queue event
1089 *
1090 * If a completion queue event is returned rtio_cq_release(r) must be called
1091 * at some point to release the cqe spot for the cqe producer.
1092 *
1093 * @param r RTIO context
1094 *
1095 * @retval cqe A valid completion queue event consumed from the completion queue
1096 */
rtio_cqe_consume_block(struct rtio * r)1097 static inline struct rtio_cqe *rtio_cqe_consume_block(struct rtio *r)
1098 {
1099 struct mpsc_node *node;
1100 struct rtio_cqe *cqe;
1101
1102 #ifdef CONFIG_RTIO_CONSUME_SEM
1103 k_sem_take(r->consume_sem, K_FOREVER);
1104 #endif
1105 node = mpsc_pop(&r->cq);
1106 while (node == NULL) {
1107 Z_SPIN_DELAY(1);
1108 node = mpsc_pop(&r->cq);
1109 }
1110 cqe = CONTAINER_OF(node, struct rtio_cqe, q);
1111
1112 return cqe;
1113 }
1114
1115 /**
1116 * @brief Release consumed completion queue event
1117 *
1118 * @param r RTIO context
1119 * @param cqe Completion queue entry
1120 */
rtio_cqe_release(struct rtio * r,struct rtio_cqe * cqe)1121 static inline void rtio_cqe_release(struct rtio *r, struct rtio_cqe *cqe)
1122 {
1123 rtio_cqe_pool_free(r->cqe_pool, cqe);
1124 }
1125
1126 /**
1127 * @brief Compute the CQE flags from the rtio_iodev_sqe entry
1128 *
1129 * @param iodev_sqe The SQE entry in question.
1130 * @return The value that should be set for the CQE's flags field.
1131 */
rtio_cqe_compute_flags(struct rtio_iodev_sqe * iodev_sqe)1132 static inline uint32_t rtio_cqe_compute_flags(struct rtio_iodev_sqe *iodev_sqe)
1133 {
1134 uint32_t flags = 0;
1135
1136 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
1137 if (iodev_sqe->sqe.op == RTIO_OP_RX && iodev_sqe->sqe.flags & RTIO_SQE_MEMPOOL_BUFFER) {
1138 struct rtio *r = iodev_sqe->r;
1139 struct sys_mem_blocks *mem_pool = r->block_pool;
1140 int blk_index = (iodev_sqe->sqe.rx.buf - mem_pool->buffer) >>
1141 mem_pool->info.blk_sz_shift;
1142 int blk_count = iodev_sqe->sqe.rx.buf_len >> mem_pool->info.blk_sz_shift;
1143
1144 flags = RTIO_CQE_FLAG_PREP_MEMPOOL(blk_index, blk_count);
1145 }
1146 #else
1147 ARG_UNUSED(iodev_sqe);
1148 #endif
1149
1150 return flags;
1151 }
1152
1153 /**
1154 * @brief Retrieve the mempool buffer that was allocated for the CQE.
1155 *
1156 * If the RTIO context contains a memory pool, and the SQE was created by calling
1157 * rtio_sqe_read_with_pool(), this function can be used to retrieve the memory associated with the
1158 * read. Once processing is done, it should be released by calling rtio_release_buffer().
1159 *
1160 * @param[in] r RTIO context
1161 * @param[in] cqe The CQE handling the event.
1162 * @param[out] buff Pointer to the mempool buffer
1163 * @param[out] buff_len Length of the allocated buffer
1164 * @return 0 on success
1165 * @return -EINVAL if the buffer wasn't allocated for this cqe
1166 * @return -ENOTSUP if memory blocks are disabled
1167 */
1168 __syscall int rtio_cqe_get_mempool_buffer(const struct rtio *r, struct rtio_cqe *cqe,
1169 uint8_t **buff, uint32_t *buff_len);
1170
z_impl_rtio_cqe_get_mempool_buffer(const struct rtio * r,struct rtio_cqe * cqe,uint8_t ** buff,uint32_t * buff_len)1171 static inline int z_impl_rtio_cqe_get_mempool_buffer(const struct rtio *r, struct rtio_cqe *cqe,
1172 uint8_t **buff, uint32_t *buff_len)
1173 {
1174 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
1175 if (RTIO_CQE_FLAG_GET(cqe->flags) == RTIO_CQE_FLAG_MEMPOOL_BUFFER) {
1176 int blk_idx = RTIO_CQE_FLAG_MEMPOOL_GET_BLK_IDX(cqe->flags);
1177 int blk_count = RTIO_CQE_FLAG_MEMPOOL_GET_BLK_CNT(cqe->flags);
1178 uint32_t blk_size = rtio_mempool_block_size(r);
1179
1180 *buff = r->block_pool->buffer + blk_idx * blk_size;
1181 *buff_len = blk_count * blk_size;
1182 __ASSERT_NO_MSG(*buff >= r->block_pool->buffer);
1183 __ASSERT_NO_MSG(*buff <
1184 r->block_pool->buffer + blk_size * r->block_pool->info.num_blocks);
1185 return 0;
1186 }
1187 return -EINVAL;
1188 #else
1189 ARG_UNUSED(r);
1190 ARG_UNUSED(cqe);
1191 ARG_UNUSED(buff);
1192 ARG_UNUSED(buff_len);
1193
1194 return -ENOTSUP;
1195 #endif
1196 }
1197
1198 void rtio_executor_submit(struct rtio *r);
1199 void rtio_executor_ok(struct rtio_iodev_sqe *iodev_sqe, int result);
1200 void rtio_executor_err(struct rtio_iodev_sqe *iodev_sqe, int result);
1201
1202 /**
1203 * @brief Inform the executor of a submission completion with success
1204 *
1205 * This may start the next asynchronous request if one is available.
1206 *
1207 * @param iodev_sqe IODev Submission that has succeeded
1208 * @param result Result of the request
1209 */
rtio_iodev_sqe_ok(struct rtio_iodev_sqe * iodev_sqe,int result)1210 static inline void rtio_iodev_sqe_ok(struct rtio_iodev_sqe *iodev_sqe, int result)
1211 {
1212 rtio_executor_ok(iodev_sqe, result);
1213 }
1214
1215 /**
1216 * @brief Inform the executor of a submissions completion with error
1217 *
1218 * This SHALL fail the remaining submissions in the chain.
1219 *
1220 * @param iodev_sqe Submission that has failed
1221 * @param result Result of the request
1222 */
rtio_iodev_sqe_err(struct rtio_iodev_sqe * iodev_sqe,int result)1223 static inline void rtio_iodev_sqe_err(struct rtio_iodev_sqe *iodev_sqe, int result)
1224 {
1225 rtio_executor_err(iodev_sqe, result);
1226 }
1227
1228 /**
1229 * Submit a completion queue event with a given result and userdata
1230 *
1231 * Called by the executor to produce a completion queue event, no inherent
1232 * locking is performed and this is not safe to do from multiple callers.
1233 *
1234 * @param r RTIO context
1235 * @param result Integer result code (could be -errno)
1236 * @param userdata Userdata to pass along to completion
1237 * @param flags Flags to use for the CEQ see RTIO_CQE_FLAG_*
1238 */
rtio_cqe_submit(struct rtio * r,int result,void * userdata,uint32_t flags)1239 static inline void rtio_cqe_submit(struct rtio *r, int result, void *userdata, uint32_t flags)
1240 {
1241 struct rtio_cqe *cqe = rtio_cqe_acquire(r);
1242
1243 if (cqe == NULL) {
1244 atomic_inc(&r->xcqcnt);
1245 } else {
1246 cqe->result = result;
1247 cqe->userdata = userdata;
1248 cqe->flags = flags;
1249 rtio_cqe_produce(r, cqe);
1250 }
1251
1252 atomic_inc(&r->cq_count);
1253 #ifdef CONFIG_RTIO_SUBMIT_SEM
1254 if (r->submit_count > 0) {
1255 r->submit_count--;
1256 if (r->submit_count == 0) {
1257 k_sem_give(r->submit_sem);
1258 }
1259 }
1260 #endif
1261 #ifdef CONFIG_RTIO_CONSUME_SEM
1262 k_sem_give(r->consume_sem);
1263 #endif
1264 }
1265
1266 #define __RTIO_MEMPOOL_GET_NUM_BLKS(num_bytes, blk_size) (((num_bytes) + (blk_size)-1) / (blk_size))
1267
1268 /**
1269 * @brief Get the buffer associate with the RX submission
1270 *
1271 * @param[in] iodev_sqe The submission to probe
1272 * @param[in] min_buf_len The minimum number of bytes needed for the operation
1273 * @param[in] max_buf_len The maximum number of bytes needed for the operation
1274 * @param[out] buf Where to store the pointer to the buffer
1275 * @param[out] buf_len Where to store the size of the buffer
1276 *
1277 * @return 0 if @p buf and @p buf_len were successfully filled
1278 * @return -ENOMEM Not enough memory for @p min_buf_len
1279 */
rtio_sqe_rx_buf(const struct rtio_iodev_sqe * iodev_sqe,uint32_t min_buf_len,uint32_t max_buf_len,uint8_t ** buf,uint32_t * buf_len)1280 static inline int rtio_sqe_rx_buf(const struct rtio_iodev_sqe *iodev_sqe, uint32_t min_buf_len,
1281 uint32_t max_buf_len, uint8_t **buf, uint32_t *buf_len)
1282 {
1283 struct rtio_sqe *sqe = (struct rtio_sqe *)&iodev_sqe->sqe;
1284
1285 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
1286 if (sqe->op == RTIO_OP_RX && sqe->flags & RTIO_SQE_MEMPOOL_BUFFER) {
1287 struct rtio *r = iodev_sqe->r;
1288
1289 if (sqe->rx.buf != NULL) {
1290 if (sqe->rx.buf_len < min_buf_len) {
1291 return -ENOMEM;
1292 }
1293 *buf = sqe->rx.buf;
1294 *buf_len = sqe->rx.buf_len;
1295 return 0;
1296 }
1297
1298 int rc = rtio_block_pool_alloc(r, min_buf_len, max_buf_len, buf, buf_len);
1299 if (rc == 0) {
1300 sqe->rx.buf = *buf;
1301 sqe->rx.buf_len = *buf_len;
1302 return 0;
1303 }
1304
1305 return -ENOMEM;
1306 }
1307 #else
1308 ARG_UNUSED(max_buf_len);
1309 #endif
1310
1311 if (sqe->rx.buf_len < min_buf_len) {
1312 return -ENOMEM;
1313 }
1314
1315 *buf = sqe->rx.buf;
1316 *buf_len = sqe->rx.buf_len;
1317 return 0;
1318 }
1319
1320 /**
1321 * @brief Release memory that was allocated by the RTIO's memory pool
1322 *
1323 * If the RTIO context was created by a call to RTIO_DEFINE_WITH_MEMPOOL(), then the cqe data might
1324 * contain a buffer that's owned by the RTIO context. In those cases (if the read request was
1325 * configured via rtio_sqe_read_with_pool()) the buffer must be returned back to the pool.
1326 *
1327 * Call this function when processing is complete. This function will validate that the memory
1328 * actually belongs to the RTIO context and will ignore invalid arguments.
1329 *
1330 * @param r RTIO context
1331 * @param buff Pointer to the buffer to be released.
1332 * @param buff_len Number of bytes to free (will be rounded up to nearest memory block).
1333 */
1334 __syscall void rtio_release_buffer(struct rtio *r, void *buff, uint32_t buff_len);
1335
z_impl_rtio_release_buffer(struct rtio * r,void * buff,uint32_t buff_len)1336 static inline void z_impl_rtio_release_buffer(struct rtio *r, void *buff, uint32_t buff_len)
1337 {
1338 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
1339 if (r == NULL || buff == NULL || r->block_pool == NULL || buff_len == 0) {
1340 return;
1341 }
1342
1343 rtio_block_pool_free(r, buff, buff_len);
1344 #else
1345 ARG_UNUSED(r);
1346 ARG_UNUSED(buff);
1347 ARG_UNUSED(buff_len);
1348 #endif
1349 }
1350
1351 /**
1352 * Grant access to an RTIO context to a user thread
1353 */
rtio_access_grant(struct rtio * r,struct k_thread * t)1354 static inline void rtio_access_grant(struct rtio *r, struct k_thread *t)
1355 {
1356 k_object_access_grant(r, t);
1357
1358 #ifdef CONFIG_RTIO_SUBMIT_SEM
1359 k_object_access_grant(r->submit_sem, t);
1360 #endif
1361
1362 #ifdef CONFIG_RTIO_CONSUME_SEM
1363 k_object_access_grant(r->consume_sem, t);
1364 #endif
1365 }
1366
1367 /**
1368 * @brief Attempt to cancel an SQE
1369 *
1370 * If possible (not currently executing), cancel an SQE and generate a failure with -ECANCELED
1371 * result.
1372 *
1373 * @param[in] sqe The SQE to cancel
1374 * @return 0 if the SQE was flagged for cancellation
1375 * @return <0 on error
1376 */
1377 __syscall int rtio_sqe_cancel(struct rtio_sqe *sqe);
1378
z_impl_rtio_sqe_cancel(struct rtio_sqe * sqe)1379 static inline int z_impl_rtio_sqe_cancel(struct rtio_sqe *sqe)
1380 {
1381 struct rtio_iodev_sqe *iodev_sqe = CONTAINER_OF(sqe, struct rtio_iodev_sqe, sqe);
1382
1383 do {
1384 iodev_sqe->sqe.flags |= RTIO_SQE_CANCELED;
1385 iodev_sqe = rtio_iodev_sqe_next(iodev_sqe);
1386 } while (iodev_sqe != NULL);
1387
1388 return 0;
1389 }
1390
1391 /**
1392 * @brief Copy an array of SQEs into the queue and get resulting handles back
1393 *
1394 * Copies one or more SQEs into the RTIO context and optionally returns their generated SQE handles.
1395 * Handles can be used to cancel events via the rtio_sqe_cancel() call.
1396 *
1397 * @param[in] r RTIO context
1398 * @param[in] sqes Pointer to an array of SQEs
1399 * @param[out] handle Optional pointer to @ref rtio_sqe pointer to store the handle of the
1400 * first generated SQE. Use NULL to ignore.
1401 * @param[in] sqe_count Count of sqes in array
1402 *
1403 * @retval 0 success
1404 * @retval -ENOMEM not enough room in the queue
1405 */
1406 __syscall int rtio_sqe_copy_in_get_handles(struct rtio *r, const struct rtio_sqe *sqes,
1407 struct rtio_sqe **handle, size_t sqe_count);
1408
z_impl_rtio_sqe_copy_in_get_handles(struct rtio * r,const struct rtio_sqe * sqes,struct rtio_sqe ** handle,size_t sqe_count)1409 static inline int z_impl_rtio_sqe_copy_in_get_handles(struct rtio *r, const struct rtio_sqe *sqes,
1410 struct rtio_sqe **handle,
1411 size_t sqe_count)
1412 {
1413 struct rtio_sqe *sqe;
1414 uint32_t acquirable = rtio_sqe_acquirable(r);
1415
1416 if (acquirable < sqe_count) {
1417 return -ENOMEM;
1418 }
1419
1420 for (unsigned long i = 0; i < sqe_count; i++) {
1421 sqe = rtio_sqe_acquire(r);
1422 __ASSERT_NO_MSG(sqe != NULL);
1423 if (handle != NULL && i == 0) {
1424 *handle = sqe;
1425 }
1426 *sqe = sqes[i];
1427 }
1428
1429 return 0;
1430 }
1431
1432 /**
1433 * @brief Copy an array of SQEs into the queue
1434 *
1435 * Useful if a batch of submissions is stored in ROM or
1436 * RTIO is used from user mode where a copy must be made.
1437 *
1438 * Partial copying is not done as chained SQEs need to be submitted
1439 * as a whole set.
1440 *
1441 * @param r RTIO context
1442 * @param sqes Pointer to an array of SQEs
1443 * @param sqe_count Count of sqes in array
1444 *
1445 * @retval 0 success
1446 * @retval -ENOMEM not enough room in the queue
1447 */
rtio_sqe_copy_in(struct rtio * r,const struct rtio_sqe * sqes,size_t sqe_count)1448 static inline int rtio_sqe_copy_in(struct rtio *r, const struct rtio_sqe *sqes, size_t sqe_count)
1449 {
1450 return rtio_sqe_copy_in_get_handles(r, sqes, NULL, sqe_count);
1451 }
1452
1453 /**
1454 * @brief Copy an array of CQEs from the queue
1455 *
1456 * Copies from the RTIO context and its queue completion queue
1457 * events, waiting for the given time period to gather the number
1458 * of completions requested.
1459 *
1460 * @param r RTIO context
1461 * @param cqes Pointer to an array of SQEs
1462 * @param cqe_count Count of sqes in array
1463 * @param timeout Timeout to wait for each completion event. Total wait time is
1464 * potentially timeout*cqe_count at maximum.
1465 *
1466 * @retval copy_count Count of copied CQEs (0 to cqe_count)
1467 */
1468 __syscall int rtio_cqe_copy_out(struct rtio *r,
1469 struct rtio_cqe *cqes,
1470 size_t cqe_count,
1471 k_timeout_t timeout);
z_impl_rtio_cqe_copy_out(struct rtio * r,struct rtio_cqe * cqes,size_t cqe_count,k_timeout_t timeout)1472 static inline int z_impl_rtio_cqe_copy_out(struct rtio *r,
1473 struct rtio_cqe *cqes,
1474 size_t cqe_count,
1475 k_timeout_t timeout)
1476 {
1477 size_t copied = 0;
1478 struct rtio_cqe *cqe;
1479 k_timepoint_t end = sys_timepoint_calc(timeout);
1480
1481 do {
1482 cqe = K_TIMEOUT_EQ(timeout, K_FOREVER) ? rtio_cqe_consume_block(r)
1483 : rtio_cqe_consume(r);
1484 if (cqe == NULL) {
1485 Z_SPIN_DELAY(25);
1486 continue;
1487 }
1488 cqes[copied++] = *cqe;
1489 rtio_cqe_release(r, cqe);
1490 } while (copied < cqe_count && !sys_timepoint_expired(end));
1491
1492 return copied;
1493 }
1494
1495 /**
1496 * @brief Submit I/O requests to the underlying executor
1497 *
1498 * Submits the queue of submission queue events to the executor.
1499 * The executor will do the work of managing tasks representing each
1500 * submission chain, freeing submission queue events when done, and
1501 * producing completion queue events as submissions are completed.
1502 *
1503 * @param r RTIO context
1504 * @param wait_count Number of submissions to wait for completion of.
1505 *
1506 * @retval 0 On success
1507 */
1508 __syscall int rtio_submit(struct rtio *r, uint32_t wait_count);
1509
z_impl_rtio_submit(struct rtio * r,uint32_t wait_count)1510 static inline int z_impl_rtio_submit(struct rtio *r, uint32_t wait_count)
1511 {
1512 int res = 0;
1513
1514 #ifdef CONFIG_RTIO_SUBMIT_SEM
1515 /* TODO undefined behavior if another thread calls submit of course
1516 */
1517 if (wait_count > 0) {
1518 __ASSERT(!k_is_in_isr(),
1519 "expected rtio submit with wait count to be called from a thread");
1520
1521 k_sem_reset(r->submit_sem);
1522 r->submit_count = wait_count;
1523 }
1524 #else
1525 uintptr_t cq_count = (uintptr_t)atomic_get(&r->cq_count) + wait_count;
1526 #endif
1527
1528 /* Submit the queue to the executor which consumes submissions
1529 * and produces completions through ISR chains or other means.
1530 */
1531 rtio_executor_submit(r);
1532
1533
1534 /* TODO could be nicer if we could suspend the thread and not
1535 * wake up on each completion here.
1536 */
1537 #ifdef CONFIG_RTIO_SUBMIT_SEM
1538
1539 if (wait_count > 0) {
1540 res = k_sem_take(r->submit_sem, K_FOREVER);
1541 __ASSERT(res == 0,
1542 "semaphore was reset or timed out while waiting on completions!");
1543 }
1544 #else
1545 while ((uintptr_t)atomic_get(&r->cq_count) < cq_count) {
1546 Z_SPIN_DELAY(10);
1547 k_yield();
1548 }
1549 #endif
1550
1551 return res;
1552 }
1553
1554 /**
1555 * @}
1556 */
1557
1558 #ifdef __cplusplus
1559 }
1560 #endif
1561
1562 #include <zephyr/syscalls/rtio.h>
1563
1564 #endif /* ZEPHYR_INCLUDE_RTIO_RTIO_H_ */
1565