1 /*
2 * Copyright (c) 2017 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <zephyr/kernel.h>
8 #include <zephyr/ztest.h>
9 #include <zephyr/irq.h>
10 #include <zephyr/irq_multilevel.h>
11 #include <zephyr/tc_util.h>
12 #include <zephyr/sw_isr_table.h>
13 #include <zephyr/interrupt_util.h>
14 #include <zephyr/sys/barrier.h>
15
16 extern uint32_t _irq_vector_table[];
17
18 #if defined(ARCH_IRQ_DIRECT_CONNECT) && defined(CONFIG_GEN_IRQ_VECTOR_TABLE)
19 #define HAS_DIRECT_IRQS
20 #endif
21
22 #if defined(CONFIG_RISCV)
23 #if defined(CONFIG_NRFX_CLIC)
24 #define ISR1_OFFSET 15
25 #define ISR3_OFFSET 16
26 #define ISR5_OFFSET 17
27 #define TRIG_CHECK_SIZE 18
28 #elif defined(CONFIG_RISCV_HAS_CLIC)
29 #define ISR1_OFFSET 3
30 #define ISR3_OFFSET 17
31 #define ISR5_OFFSET 18
32 #define TRIG_CHECK_SIZE 19
33 #else
34
35 /* RISC-V has very few IRQ lines which can be triggered from software */
36 #define ISR3_OFFSET 1
37
38 /* Since we have so few lines we have to share the same line for two different
39 * tests
40 */
41 #ifdef HAS_DIRECT_IRQS
42 #define ISR1_OFFSET 5
43 #else
44 #define ISR5_OFFSET 5
45 #endif
46 #define TRIG_CHECK_SIZE 6
47 #endif
48
49 #define IRQ_LINE(offset) offset
50 #if defined(CONFIG_RISCV_RESERVED_IRQ_ISR_TABLES_OFFSET)
51 #define TABLE_INDEX(offset) offset + CONFIG_RISCV_RESERVED_IRQ_ISR_TABLES_OFFSET
52 #else
53 #define TABLE_INDEX(offset) offset
54 #endif
55
56 #else
57 #define ISR1_OFFSET 0
58 #define ISR2_OFFSET 1
59 #define ISR3_OFFSET 2
60 #define ISR4_OFFSET 3
61 #define ISR5_OFFSET 4
62 #define ISR6_OFFSET 5
63
64 #if defined(CONFIG_SOC_ARC_EMSDP)
65 /* ARC EMSDP' console will use irq 108 / irq 107, will conflict
66 * with isr used here, so add a workaround
67 */
68 #define TEST_NUM_IRQS 105
69 #elif defined(CONFIG_SOC_NRF5340_CPUAPP) || defined(CONFIG_SOC_NRF9160)
70 /* In nRF9160 and application core in nRF5340, not all interrupts with highest
71 * numbers are implemented. Thus, limit the number of interrupts reported to
72 * the test, so that it does not try to use some unavailable ones.
73 */
74 #define TEST_NUM_IRQS 33
75 #elif defined(CONFIG_SOC_STM32G071XX)
76 /* In STM32G071XX limit the number of interrupts reported to
77 * the test, so that it does not try to use some of the IRQs
78 * at the end of the vector table that are already used by
79 * the board.
80 */
81 #define TEST_NUM_IRQS 26
82 #elif defined(CONFIG_SOC_SERIES_NPCX7) || defined(CONFIG_SOC_SERIES_NPCX9)
83 /* Both NPCX7 and NPCX9 series use the IRQs at the end of the vector table, for
84 * example, the IRQ 60 and 61 used for Multi-Input Wake-Up Unit (MIWU) devices
85 * by default, and conflicts with ISR used for testing. Move IRQs for this
86 * test suite to solve the issue.
87 */
88 #define TEST_NUM_IRQS 44
89 #elif defined(CONFIG_SOC_LPC55S16)
90 /* IRQ 57 is reserved in the NXP LPC55S16 SoC. Thus, limit the number
91 * of interrupts reported to the test, so that it does not try to use
92 * it.
93 */
94 #define TEST_NUM_IRQS 57
95 #else
96 #define TEST_NUM_IRQS CONFIG_NUM_IRQS
97 #endif
98
99 #define TEST_IRQ_TABLE_SIZE (IRQ_TABLE_SIZE - \
100 (CONFIG_NUM_IRQS - TEST_NUM_IRQS))
101 #define IRQ_LINE(offset) (TEST_NUM_IRQS - ((offset) + 1))
102 #define TABLE_INDEX(offset) (TEST_IRQ_TABLE_SIZE - ((offset) + 1))
103 #define TRIG_CHECK_SIZE 6
104 #endif
105
106 #define ISR3_ARG 0xb01dface
107 #define ISR4_ARG 0xca55e77e
108 #define ISR5_ARG 0xf0ccac1a
109 #define ISR6_ARG 0xba5eba11
110
111 #if defined(CONFIG_RISCV_HAS_CLIC)
112 #define IRQ_FLAGS 1 /* rising edge */
113 #else
114 #define IRQ_FLAGS 0
115 #endif
116
117 static volatile int trigger_check[TRIG_CHECK_SIZE];
118
119 #ifdef HAS_DIRECT_IRQS
120 #ifdef ISR1_OFFSET
ISR_DIRECT_DECLARE(isr1)121 ISR_DIRECT_DECLARE(isr1)
122 {
123 printk("isr1 ran\n");
124 trigger_check[ISR1_OFFSET]++;
125 return 0;
126 }
127 #endif
128
129 #ifdef ISR2_OFFSET
ISR_DIRECT_DECLARE(isr2)130 ISR_DIRECT_DECLARE(isr2)
131 {
132 printk("isr2 ran\n");
133 trigger_check[ISR2_OFFSET]++;
134 return 1;
135 }
136 #endif
137 #endif
138
139 #ifdef ISR3_OFFSET
isr3(const void * param)140 void isr3(const void *param)
141 {
142 printk("%s ran with parameter %p\n", __func__, param);
143 trigger_check[ISR3_OFFSET]++;
144 }
145 #endif
146
147 #ifdef ISR4_OFFSET
isr4(const void * param)148 void isr4(const void *param)
149 {
150 printk("%s ran with parameter %p\n", __func__, param);
151 trigger_check[ISR4_OFFSET]++;
152 }
153 #endif
154
155 #ifdef ISR5_OFFSET
isr5(const void * param)156 void isr5(const void *param)
157 {
158 printk("%s ran with parameter %p\n", __func__, param);
159 trigger_check[ISR5_OFFSET]++;
160 }
161 #endif
162
163 #ifdef ISR6_OFFSET
isr6(const void * param)164 void isr6(const void *param)
165 {
166 printk("%s ran with parameter %p\n", __func__, param);
167 trigger_check[ISR6_OFFSET]++;
168 }
169 #endif
170
171 #ifndef CONFIG_CPU_CORTEX_M
172 /* Need to turn optimization off. Otherwise compiler may generate incorrect
173 * code, not knowing that trigger_irq() affects the value of trigger_check,
174 * even if declared volatile.
175 *
176 * A memory barrier does not help, we need an 'instruction barrier' but GCC
177 * doesn't support this; we need to tell the compiler not to reorder memory
178 * accesses to trigger_check around calls to trigger_irq.
179 */
180 __no_optimization
181 #endif
test_irq(int offset)182 int test_irq(int offset)
183 {
184 #ifndef NO_TRIGGER_FROM_SW
185 TC_PRINT("triggering irq %d\n", IRQ_LINE(offset));
186 trigger_irq(IRQ_LINE(offset));
187 #ifdef CONFIG_CPU_CORTEX_M
188 barrier_dsync_fence_full();
189 barrier_isync_fence_full();
190 #endif
191 if (trigger_check[offset] != 1) {
192 TC_PRINT("interrupt %d didn't run once, ran %d times\n",
193 IRQ_LINE(offset),
194 trigger_check[offset]);
195 return -1;
196 }
197 #else
198 /* This arch doesn't support triggering interrupts from software */
199 ARG_UNUSED(offset);
200 #endif
201 return 0;
202 }
203
204
205
206 #ifdef HAS_DIRECT_IRQS
check_vector(void * isr,int offset)207 static int check_vector(void *isr, int offset)
208 {
209 /*
210 * The problem with an IRQ table where the entries are jump opcodes is that it
211 * the destination address is encoded in the opcode and strictly depending on
212 * the address of the instruction itself (and very much architecture
213 * dependent). For the sake of simplicity just skip the checks.
214 */
215 #ifndef CONFIG_IRQ_VECTOR_TABLE_JUMP_BY_CODE
216 TC_PRINT("Checking _irq_vector_table entry %d for irq %d\n",
217 TABLE_INDEX(offset), IRQ_LINE(offset));
218
219 if (_irq_vector_table[TABLE_INDEX(offset)] != (uint32_t)isr) {
220 TC_PRINT("bad entry %d in vector table\n", TABLE_INDEX(offset));
221 return -1;
222 }
223 #endif /* !CONFIG_IRQ_VECTOR_TABLE_JUMP_BY_CODE */
224
225 if (test_irq(offset)) {
226 return -1;
227 }
228
229 return 0;
230 }
231 #endif
232
233 #ifdef CONFIG_GEN_SW_ISR_TABLE
check_sw_isr(void * isr,uintptr_t arg,int offset)234 static int check_sw_isr(void *isr, uintptr_t arg, int offset)
235 {
236 struct _isr_table_entry *e = &_sw_isr_table[TABLE_INDEX(offset)];
237
238 TC_PRINT("Checking _sw_isr_table entry %d for irq %d\n",
239 TABLE_INDEX(offset), IRQ_LINE(offset));
240
241 if (e->arg != (void *)arg) {
242 TC_PRINT("bad argument in SW isr table\n");
243 TC_PRINT("expected %p got %p\n", (void *)arg, e->arg);
244 return -1;
245 }
246 if (e->isr != isr) {
247 TC_PRINT("Bad ISR in SW isr table\n");
248 TC_PRINT("expected %p got %p\n", (void *)isr, e->isr);
249 return -1;
250 }
251 #if defined(CONFIG_GEN_IRQ_VECTOR_TABLE) && !defined(CONFIG_IRQ_VECTOR_TABLE_JUMP_BY_CODE)
252 void *v = (void *)_irq_vector_table[TABLE_INDEX(offset)];
253 if (v != _isr_wrapper) {
254 TC_PRINT("Vector does not point to _isr_wrapper\n");
255 TC_PRINT("expected %p got %p\n", _isr_wrapper, v);
256 return -1;
257 }
258 #endif /* CONFIG_GEN_IRQ_VECTOR_TABLE && !CONFIG_IRQ_VECTOR_TABLE_JUMP_BY_CODE */
259
260 if (test_irq(offset)) {
261 return -1;
262 }
263 return 0;
264 }
265 #endif
266
267 /**
268 * @ingroup kernel_interrupt_tests
269 * @brief test to validate direct interrupt
270 *
271 * @details initialize two direct interrupt handler using IRQ_DIRECT_CONNECT
272 * api at build time. For ‘direct’ interrupts, address of handler function will
273 * be placed in the irq vector table. And each entry contains the pointer to
274 * isr and the corresponding parameters.
275 *
276 * At the end according to architecture, we manually trigger the interrupt.
277 * And all irq handler should get called.
278 *
279 * @see IRQ_DIRECT_CONNECT(), irq_enable()
280 *
281 */
ZTEST(gen_isr_table,test_build_time_direct_interrupt)282 ZTEST(gen_isr_table, test_build_time_direct_interrupt)
283 {
284 #ifndef HAS_DIRECT_IRQS
285 ztest_test_skip();
286 #else
287
288 #ifdef ISR1_OFFSET
289 IRQ_DIRECT_CONNECT(IRQ_LINE(ISR1_OFFSET), 0, isr1, IRQ_FLAGS);
290 irq_enable(IRQ_LINE(ISR1_OFFSET));
291 TC_PRINT("isr1 isr=%p irq=%d\n", isr1, IRQ_LINE(ISR1_OFFSET));
292 zassert_ok(check_vector(isr1, ISR1_OFFSET),
293 "check direct interrpt isr1 failed");
294 #endif
295
296 #ifdef ISR2_OFFSET
297 IRQ_DIRECT_CONNECT(IRQ_LINE(ISR2_OFFSET), 0, isr2, IRQ_FLAGS);
298 irq_enable(IRQ_LINE(ISR2_OFFSET));
299 TC_PRINT("isr2 isr=%p irq=%d\n", isr2, IRQ_LINE(ISR2_OFFSET));
300
301
302 zassert_ok(check_vector(isr2, ISR2_OFFSET),
303 "check direct interrpt isr2 failed");
304 #endif
305 #endif
306 }
307
308 /**
309 * @ingroup kernel_interrupt_tests
310 * @brief test to validate gen_isr_table and interrupt
311 *
312 * @details initialize two normal interrupt handler using IRQ_CONNECT api at
313 * build time. For 'regular' interrupts, the address of the common software isr
314 * table is placed in the irq vector table, and software ISR table is an array
315 * of struct _isr_table_entry. And each entry contains the pointer to isr and
316 * the corresponding parameters.
317 *
318 * At the end according to architecture, we manually trigger the interrupt.
319 * And all irq handler should get called.
320 *
321 * @see IRQ_CONNECT(), irq_enable()
322 *
323 */
ZTEST(gen_isr_table,test_build_time_interrupt)324 ZTEST(gen_isr_table, test_build_time_interrupt)
325 {
326 #ifndef CONFIG_GEN_SW_ISR_TABLE
327 ztest_test_skip();
328 #else
329 TC_PRINT("_sw_isr_table at location %p\n", _sw_isr_table);
330
331 #ifdef ISR3_OFFSET
332 IRQ_CONNECT(IRQ_LINE(ISR3_OFFSET), 1, isr3, ISR3_ARG, IRQ_FLAGS);
333 irq_enable(IRQ_LINE(ISR3_OFFSET));
334 TC_PRINT("isr3 isr=%p irq=%d param=%p\n", isr3, IRQ_LINE(ISR3_OFFSET),
335 (void *)ISR3_ARG);
336
337 zassert_ok(check_sw_isr(isr3, ISR3_ARG, ISR3_OFFSET),
338 "check interrupt isr3 failed");
339 #endif
340
341 #ifdef ISR4_OFFSET
342 IRQ_CONNECT(IRQ_LINE(ISR4_OFFSET), 1, isr4, ISR4_ARG, IRQ_FLAGS);
343 irq_enable(IRQ_LINE(ISR4_OFFSET));
344 TC_PRINT("isr4 isr=%p irq=%d param=%p\n", isr4, IRQ_LINE(ISR4_OFFSET),
345 (void *)ISR4_ARG);
346
347 zassert_ok(check_sw_isr(isr4, ISR4_ARG, ISR4_OFFSET),
348 "check interrupt isr4 failed");
349 #endif
350 #endif
351 }
352
353 /**
354 * @ingroup kernel_interrupt_tests
355 * @brief test to validate gen_isr_table and dynamic interrupt
356 *
357 * @details initialize two dynamic interrupt handler using irq_connect_dynamic
358 * api at run time. For dynamic interrupts, the address of the common software
359 * isr table is also placed in the irq vector table. Software ISR table is an
360 * array of struct _isr_table_entry. And each entry contains the pointer to isr
361 * and the corresponding parameters.
362 *
363 * At the end according to architecture, we manually trigger the interrupt.
364 * And all irq handler should get called.
365 *
366 * @see irq_connect_dynamic(), irq_enable()
367 *
368 */
ZTEST(gen_isr_table,test_run_time_interrupt)369 ZTEST(gen_isr_table, test_run_time_interrupt)
370 {
371
372 #ifndef CONFIG_GEN_SW_ISR_TABLE
373 ztest_test_skip();
374 #else
375
376 #ifdef ISR5_OFFSET
377 irq_connect_dynamic(IRQ_LINE(ISR5_OFFSET), 1, isr5,
378 (const void *)ISR5_ARG, IRQ_FLAGS);
379 irq_enable(IRQ_LINE(ISR5_OFFSET));
380 TC_PRINT("isr5 isr=%p irq=%d param=%p\n", isr5, IRQ_LINE(ISR5_OFFSET),
381 (void *)ISR5_ARG);
382 zassert_ok(check_sw_isr(isr5, ISR5_ARG, ISR5_OFFSET),
383 "test dynamic interrupt isr5 failed");
384 #endif
385
386 #ifdef ISR6_OFFSET
387 irq_connect_dynamic(IRQ_LINE(ISR6_OFFSET), 1, isr6,
388 (const void *)ISR6_ARG, IRQ_FLAGS);
389 irq_enable(IRQ_LINE(ISR6_OFFSET));
390 TC_PRINT("isr6 isr=%p irq=%d param=%p\n", isr6, IRQ_LINE(ISR6_OFFSET),
391 (void *)ISR6_ARG);
392
393 zassert_ok(check_sw_isr(isr6, ISR6_ARG, ISR6_OFFSET),
394 "check dynamic interrupt isr6 failed");
395 #endif
396 #endif
397 }
398
gen_isr_table_setup(void)399 static void *gen_isr_table_setup(void)
400 {
401 TC_PRINT("IRQ configuration (total lines %d):\n", CONFIG_NUM_IRQS);
402
403 #pragma GCC diagnostic push
404 #pragma GCC diagnostic ignored "-Wunused-label"
405
406 return NULL;
407 }
408
409 #ifdef CONFIG_MULTI_LEVEL_INTERRUPTS
test_multi_level_bit_masks_fn(uint32_t irq1,uint32_t irq2,uint32_t irq3)410 static void test_multi_level_bit_masks_fn(uint32_t irq1, uint32_t irq2, uint32_t irq3)
411 {
412 const uint32_t l2_shift = CONFIG_1ST_LEVEL_INTERRUPT_BITS;
413 const uint32_t l3_shift = CONFIG_1ST_LEVEL_INTERRUPT_BITS + CONFIG_2ND_LEVEL_INTERRUPT_BITS;
414 const uint32_t hwirq1 = irq1;
415 const uint32_t hwirq2 = irq2 - 1;
416 const uint32_t hwirq3 = irq3 - 1;
417 const bool has_l3 = irq3 > 0;
418 const bool has_l2 = irq2 > 0;
419 const uint32_t level = has_l3 ? 3 : has_l2 ? 2 : 1;
420 const uint32_t irqn_l1 = irq1;
421 const uint32_t irqn_l2 = (irq2 << l2_shift) | irqn_l1;
422 const uint32_t irqn = (irq3 << l3_shift) | irqn_l2;
423
424 zassert_equal(level, irq_get_level(irqn));
425
426 if (has_l2) {
427 zassert_equal(hwirq2, irq_from_level_2(irqn));
428 zassert_equal(hwirq2, irq_from_level(irqn, 2));
429 zassert_equal((hwirq2 + 1) << l2_shift, irq_to_level_2(hwirq2));
430 zassert_equal((hwirq2 + 1) << l2_shift, irq_to_level(hwirq2, 2));
431 zassert_equal(hwirq1, irq_parent_level_2(irqn));
432 zassert_equal(hwirq1, irq_parent_level(irqn, 2));
433 }
434
435 if (has_l3) {
436 zassert_equal(hwirq3, irq_from_level_3(irqn));
437 zassert_equal(hwirq3, irq_from_level(irqn, 3));
438 zassert_equal((hwirq3 + 1) << l3_shift, irq_to_level_3(hwirq3));
439 zassert_equal((hwirq3 + 1) << l3_shift, irq_to_level(hwirq3, 3));
440 zassert_equal(hwirq2 + 1, irq_parent_level_3(irqn));
441 zassert_equal(hwirq2 + 1, irq_parent_level(irqn, 3));
442 }
443
444 if (has_l3) {
445 zassert_equal(irqn_l2, irq_get_intc_irq(irqn));
446 } else if (has_l2) {
447 zassert_equal(irqn_l1, irq_get_intc_irq(irqn));
448 } else {
449 /* degenerate cases */
450 if (false) {
451 zassert_equal(irqn, irq_get_intc_irq(irqn));
452 }
453 }
454 }
455
ZTEST(gen_isr_table,test_multi_level_bit_masks_l1)456 ZTEST(gen_isr_table, test_multi_level_bit_masks_l1)
457 {
458 uint32_t irq1;
459
460 /* First IRQ of level 1 */
461 irq1 = 0;
462 test_multi_level_bit_masks_fn(irq1, 0, 0);
463
464 /* Somewhere in-between */
465 irq1 = BIT_MASK(CONFIG_1ST_LEVEL_INTERRUPT_BITS) >> 1;
466 test_multi_level_bit_masks_fn(irq1, 0, 0);
467
468 /* Last IRQ of level 1 */
469 irq1 = BIT_MASK(CONFIG_1ST_LEVEL_INTERRUPT_BITS);
470 test_multi_level_bit_masks_fn(irq1, 0, 0);
471 }
472
ZTEST(gen_isr_table,test_multi_level_bit_masks_l2)473 ZTEST(gen_isr_table, test_multi_level_bit_masks_l2)
474 {
475 if (!IS_ENABLED(CONFIG_2ND_LEVEL_INTERRUPTS)) {
476 ztest_test_skip();
477 }
478
479 uint32_t irq1, irq2;
480
481 /* First IRQ of level 2 */
482 irq1 = 0;
483 /* First irq of level 2 and onwards is 1, as 0 means that the irq is not present */
484 irq2 = 1;
485 test_multi_level_bit_masks_fn(irq1, irq2, 0);
486
487 /* Somewhere in-between */
488 irq1 = BIT_MASK(CONFIG_1ST_LEVEL_INTERRUPT_BITS) >> 1;
489 irq2 = BIT_MASK(CONFIG_2ND_LEVEL_INTERRUPT_BITS) >> 1;
490 test_multi_level_bit_masks_fn(irq1, irq2, 0);
491
492 /* Last IRQ of level 2 */
493 irq1 = BIT_MASK(CONFIG_1ST_LEVEL_INTERRUPT_BITS);
494 irq2 = BIT_MASK(CONFIG_2ND_LEVEL_INTERRUPT_BITS);
495 test_multi_level_bit_masks_fn(irq1, irq2, 0);
496 }
497
ZTEST(gen_isr_table,test_multi_level_bit_masks_l3)498 ZTEST(gen_isr_table, test_multi_level_bit_masks_l3)
499 {
500 if (!IS_ENABLED(CONFIG_3RD_LEVEL_INTERRUPTS)) {
501 ztest_test_skip();
502 }
503
504 uint32_t irq1, irq2, irq3;
505
506 /* First IRQ of level 3 */
507 irq1 = 0;
508 /* First irq of level 2 and onwards is 1, as 0 means that the irq is not present */
509 irq2 = 1;
510 irq3 = 1;
511 test_multi_level_bit_masks_fn(irq1, irq2, irq3);
512
513 /* Somewhere in-between */
514 irq1 = BIT_MASK(CONFIG_1ST_LEVEL_INTERRUPT_BITS) >> 1;
515 irq2 = BIT_MASK(CONFIG_2ND_LEVEL_INTERRUPT_BITS) >> 1;
516 irq3 = BIT_MASK(CONFIG_3RD_LEVEL_INTERRUPT_BITS) >> 1;
517 test_multi_level_bit_masks_fn(irq1, irq2, irq3);
518
519 /* Last IRQ of level 3 */
520 irq1 = BIT_MASK(CONFIG_1ST_LEVEL_INTERRUPT_BITS);
521 irq2 = BIT_MASK(CONFIG_2ND_LEVEL_INTERRUPT_BITS);
522 irq3 = BIT_MASK(CONFIG_3RD_LEVEL_INTERRUPT_BITS);
523 test_multi_level_bit_masks_fn(irq1, irq2, irq3);
524 }
525
526 #endif /* CONFIG_MULTI_LEVEL_INTERRUPTS */
527
528 ZTEST_SUITE(gen_isr_table, NULL, gen_isr_table_setup, NULL, NULL, NULL);
529