1 /*
2 * Copyright (c) 2021, Pete Johanson
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <soc.h>
8 #include <string.h>
9 #include <hardware/regs/usb.h>
10 #include <hardware/structs/usb.h>
11 #include <hardware/resets.h>
12 #include <pico/platform.h>
13
14 #include <zephyr/init.h>
15 #include <zephyr/kernel.h>
16 #include <zephyr/usb/usb_device.h>
17 #include <zephyr/sys/util.h>
18 #include <zephyr/logging/log.h>
19 #include <zephyr/irq.h>
20 #include <zephyr/drivers/clock_control.h>
21
22 LOG_MODULE_REGISTER(udc_rpi, CONFIG_USB_DRIVER_LOG_LEVEL);
23
24 #define DT_DRV_COMPAT raspberrypi_pico_usbd
25
26 #define USB_BASE_ADDRESS DT_INST_REG_ADDR(0)
27 #define USB_IRQ DT_INST_IRQ_BY_NAME(0, usbctrl, irq)
28 #define USB_IRQ_PRI DT_INST_IRQ_BY_NAME(0, usbctrl, priority)
29 #define USB_NUM_BIDIR_ENDPOINTS DT_INST_PROP(0, num_bidir_endpoints)
30 #define CLK_DRV DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(0))
31 #define CLK_ID (clock_control_subsys_t)DT_INST_PHA_BY_IDX(0, clocks, 0, clk_id)
32
33 #define DATA_BUFFER_SIZE 64U
34
35 /* Needed for pico-sdk */
36 #ifndef typeof
37 #define typeof __typeof__
38 #endif
39
40 struct udc_rpi_ep_state {
41 uint16_t mps;
42 enum usb_dc_ep_transfer_type type;
43 uint8_t halted;
44 usb_dc_ep_callback cb;
45 uint32_t read_offset;
46 struct k_sem write_sem;
47 io_rw_32 *ep_ctl;
48 io_rw_32 *buf_ctl;
49 uint8_t *buf;
50 uint8_t next_pid;
51 };
52
53 #define USBD_THREAD_STACK_SIZE 1024
54
55 K_THREAD_STACK_DEFINE(thread_stack, USBD_THREAD_STACK_SIZE);
56 static struct k_thread thread;
57
58 struct udc_rpi_state {
59 usb_dc_status_callback status_cb;
60 struct udc_rpi_ep_state out_ep_state[USB_NUM_BIDIR_ENDPOINTS];
61 struct udc_rpi_ep_state in_ep_state[USB_NUM_BIDIR_ENDPOINTS];
62 bool abort_control_writes;
63 bool setup_available;
64 bool should_set_address;
65 uint16_t control_out_ep_rcvd;
66 uint8_t addr;
67 bool rwu_pending;
68 };
69
70 static struct udc_rpi_state state;
71
72 struct cb_msg {
73 bool ep_event;
74 uint32_t type;
75 uint8_t ep;
76 };
77
78 K_MSGQ_DEFINE(usb_dc_msgq, sizeof(struct cb_msg), 10, 4);
79
udc_rpi_get_ep_state(uint8_t ep)80 static struct udc_rpi_ep_state *udc_rpi_get_ep_state(uint8_t ep)
81 {
82 struct udc_rpi_ep_state *ep_state_base;
83
84 if (USB_EP_GET_IDX(ep) >= USB_NUM_BIDIR_ENDPOINTS) {
85 return NULL;
86 }
87
88 if (USB_EP_DIR_IS_OUT(ep)) {
89 ep_state_base = state.out_ep_state;
90 } else {
91 ep_state_base = state.in_ep_state;
92 }
93
94 return ep_state_base + USB_EP_GET_IDX(ep);
95 }
96
udc_rpi_start_xfer(uint8_t ep,const void * data,const size_t len)97 static int udc_rpi_start_xfer(uint8_t ep, const void *data, const size_t len)
98 {
99 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
100 uint32_t val = len;
101
102 if (*ep_state->buf_ctl & USB_BUF_CTRL_AVAIL) {
103 LOG_WRN("ep 0x%02x was already armed", ep);
104 }
105
106 if (USB_EP_DIR_IS_IN(ep)) {
107 if (len > DATA_BUFFER_SIZE) {
108 return -ENOMEM;
109 }
110
111 val |= USB_BUF_CTRL_FULL;
112 if (data) {
113 memcpy(ep_state->buf, data, len);
114 }
115 } else {
116 ep_state->read_offset = 0;
117 }
118
119 LOG_DBG("xfer ep %d len %d pid: %d", ep, len, ep_state->next_pid);
120 val |= ep_state->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID;
121
122 ep_state->next_pid ^= 1u;
123 *ep_state->buf_ctl = val;
124 /*
125 * By default, clk_sys runs at 125MHz, wait 3 nop instructions before
126 * setting the AVAILABLE bit. See 4.1.2.5.1. Concurrent access.
127 */
128 arch_nop();
129 arch_nop();
130 arch_nop();
131 *ep_state->buf_ctl = val | USB_BUF_CTRL_AVAIL;
132
133 return 0;
134 }
135
136 /*
137 * This function converts a zephyr endpoint address into a
138 * bit mask that can be used with registers:
139 * - BUFF_STATUS
140 * - BUFF_CPU_SHOULD_HANDLE
141 * - EP_ABOR
142 * - EP_ABORT_DONE
143 * - EP_STATUS_STALL_NAK
144 */
udc_rpi_endpoint_mask(const uint8_t ep)145 static inline uint32_t udc_rpi_endpoint_mask(const uint8_t ep)
146 {
147 const int bit_index = (USB_EP_GET_IDX(ep) << 1) | !!USB_EP_DIR_IS_OUT(ep);
148
149 return BIT(bit_index);
150 }
151
udc_rpi_cancel_endpoint(const uint8_t ep)152 static void udc_rpi_cancel_endpoint(const uint8_t ep)
153 {
154 struct udc_rpi_ep_state *const ep_state = udc_rpi_get_ep_state(ep);
155
156 if (*ep_state->buf_ctl & USB_BUF_CTRL_AVAIL) {
157 const uint32_t mask = udc_rpi_endpoint_mask(ep);
158 bool abort_handshake_supported = rp2040_chip_version() >= 2;
159
160 if (abort_handshake_supported) {
161 hw_set_alias(usb_hw)->abort = mask;
162 while ((usb_hw->abort_done & mask) != mask) {
163 }
164 }
165
166 *ep_state->buf_ctl &= ~USB_BUF_CTRL_AVAIL;
167
168 if (abort_handshake_supported) {
169 hw_clear_alias(usb_hw)->abort = mask;
170 }
171
172 if (USB_EP_DIR_IS_IN(ep)) {
173 k_sem_give(&ep_state->write_sem);
174 }
175 }
176 }
177
udc_rpi_handle_setup(void)178 static void udc_rpi_handle_setup(void)
179 {
180 const struct udc_rpi_ep_state *const ep_state = udc_rpi_get_ep_state(USB_CONTROL_EP_OUT);
181 struct cb_msg msg;
182
183 /* Normally all control transfers should complete before a new setup
184 * transaction is sent, however in some rare cases from the perspective
185 * of the device, a new setup transaction could arrive prematurely, in
186 * which case the previous control transfer should be aborted, and for
187 * this reason we're canceling both control IN and control OUT
188 * endpoints. See section 5.5.5 of the Universal Serial Bus
189 * Specification, version 2.0.
190 */
191
192 udc_rpi_cancel_endpoint(USB_CONTROL_EP_IN);
193
194 if (*ep_state->buf_ctl & USB_BUF_CTRL_AVAIL) {
195 udc_rpi_cancel_endpoint(USB_CONTROL_EP_OUT);
196
197 /* This warning could be triggered by the rare event described
198 * above, but it could also be a sign of a software bug, that
199 * can expose us to race conditions when the system is slowed
200 * down, because it becomes impossible to determine in what
201 * order did setup/data transactions arrive.
202 */
203
204 LOG_WRN("EP0_OUT was armed while setup stage arrived.");
205 }
206
207 state.abort_control_writes = true;
208
209 /* Set DATA1 PID for the next (data or status) stage */
210 udc_rpi_get_ep_state(USB_CONTROL_EP_IN)->next_pid = 1;
211 udc_rpi_get_ep_state(USB_CONTROL_EP_OUT)->next_pid = 1;
212
213 msg.ep = USB_CONTROL_EP_OUT;
214 msg.type = USB_DC_EP_SETUP;
215 msg.ep_event = true;
216
217 k_msgq_put(&usb_dc_msgq, &msg, K_NO_WAIT);
218 }
219
udc_rpi_handle_buff_status(void)220 static void udc_rpi_handle_buff_status(void)
221 {
222 struct udc_rpi_ep_state *ep_state;
223 enum usb_dc_ep_cb_status_code status_code;
224 uint32_t status = usb_hw->buf_status;
225 unsigned int bit = 1U;
226 struct cb_msg msg;
227
228 LOG_DBG("status: %d", status);
229
230 for (int i = 0; status && i < USB_NUM_BIDIR_ENDPOINTS * 2; i++) {
231 if (status & bit) {
232 hw_clear_alias(usb_hw)->buf_status = bit;
233 bool in = !(i & 1U);
234 uint8_t ep = (i >> 1U) | (in ? USB_EP_DIR_IN : USB_EP_DIR_OUT);
235
236 ep_state = udc_rpi_get_ep_state(ep);
237 status_code = in ? USB_DC_EP_DATA_IN : USB_DC_EP_DATA_OUT;
238
239 LOG_DBG("buff ep %i in? %i", (i >> 1), in);
240
241 if (i == 0 && in && state.should_set_address) {
242 state.should_set_address = false;
243 usb_hw->dev_addr_ctrl = state.addr;
244 }
245
246 if (in) {
247 k_sem_give(&ep_state->write_sem);
248 }
249
250 msg.ep = ep;
251 msg.ep_event = true;
252 msg.type = status_code;
253
254 k_msgq_put(&usb_dc_msgq, &msg, K_NO_WAIT);
255
256 status &= ~bit;
257 }
258
259 bit <<= 1U;
260 }
261 }
262
udc_rpi_handle_resume(void)263 static void udc_rpi_handle_resume(void)
264 {
265 struct cb_msg msg = {
266 .ep = 0U,
267 .type = USB_DC_RESUME,
268 .ep_event = false,
269 };
270
271 LOG_DBG("Resume");
272 k_msgq_put(&usb_dc_msgq, &msg, K_NO_WAIT);
273 state.rwu_pending = false;
274 }
275
udc_rpi_handle_suspended(void)276 static void udc_rpi_handle_suspended(void)
277 {
278 struct cb_msg msg = {
279 .ep = 0U,
280 .type = USB_DC_SUSPEND,
281 .ep_event = false,
282 };
283
284 LOG_DBG("Suspended");
285 k_msgq_put(&usb_dc_msgq, &msg, K_NO_WAIT);
286 }
287
udc_rpi_isr(const void * arg)288 static void udc_rpi_isr(const void *arg)
289 {
290 uint32_t status = usb_hw->ints;
291 uint32_t handled = 0;
292 struct cb_msg msg;
293
294 if ((status & (USB_INTS_BUFF_STATUS_BITS | USB_INTS_SETUP_REQ_BITS)) &&
295 state.rwu_pending) {
296 /* The rpi pico USB device does not appear to be sending
297 * USB_INTR_DEV_RESUME_FROM_HOST interrupts when the resume is
298 * a result of a remote wakeup request sent by us.
299 * This will simulate a resume event if bus activity is observed
300 */
301
302 udc_rpi_handle_resume();
303 }
304
305 if (status & USB_INTS_BUFF_STATUS_BITS) {
306 /* Note: we should check buffer interrupts before setup interrupts.
307 * this may seem a little counter-intuitive, because setup irqs
308 * sound more urgent, however in case we see an EP0_OUT buffer irq
309 * at the same time as a setup irq, then we know the buffer irq
310 * belongs to the previous control transfer, so we want to handle
311 * that first.
312 */
313
314 handled |= USB_INTS_BUFF_STATUS_BITS;
315 udc_rpi_handle_buff_status();
316 }
317
318 if (status & USB_INTS_SETUP_REQ_BITS) {
319 handled |= USB_INTS_SETUP_REQ_BITS;
320 hw_clear_alias(usb_hw)->sie_status = USB_SIE_STATUS_SETUP_REC_BITS;
321 udc_rpi_handle_setup();
322 }
323
324 if (status & USB_INTS_DEV_CONN_DIS_BITS) {
325 LOG_DBG("buf %u ep %u", *udc_rpi_get_ep_state(0x81)->buf_ctl,
326 *udc_rpi_get_ep_state(0x81)->ep_ctl);
327 handled |= USB_INTS_DEV_CONN_DIS_BITS;
328 hw_clear_alias(usb_hw)->sie_status = USB_SIE_STATUS_CONNECTED_BITS;
329
330 msg.ep = 0U;
331 msg.ep_event = false;
332 msg.type = usb_hw->sie_status & USB_SIE_STATUS_CONNECTED_BITS ?
333 USB_DC_DISCONNECTED :
334 USB_DC_CONNECTED;
335
336 k_msgq_put(&usb_dc_msgq, &msg, K_NO_WAIT);
337 }
338
339 if (status & USB_INTS_BUS_RESET_BITS) {
340 LOG_WRN("BUS RESET");
341 handled |= USB_INTS_BUS_RESET_BITS;
342 hw_clear_alias(usb_hw)->sie_status = USB_SIE_STATUS_BUS_RESET_BITS;
343 usb_hw->dev_addr_ctrl = 0;
344
345 /* The DataInCallback will never be called at this point for any pending
346 * transactions. Reset the IN semaphores to prevent perpetual locked state.
347 */
348
349 for (int i = 0; i < USB_NUM_BIDIR_ENDPOINTS; i++) {
350 k_sem_give(&state.in_ep_state[i].write_sem);
351 }
352
353 msg.ep = 0U;
354 msg.type = USB_DC_RESET;
355 msg.ep_event = false;
356
357 k_msgq_put(&usb_dc_msgq, &msg, K_NO_WAIT);
358 }
359
360 if (status & USB_INTS_DEV_SUSPEND_BITS) {
361 handled |= USB_INTS_DEV_SUSPEND_BITS;
362 hw_clear_alias(usb_hw)->sie_status = USB_SIE_STATUS_SUSPENDED_BITS;
363 udc_rpi_handle_suspended();
364 }
365
366 if (status & USB_INTR_DEV_RESUME_FROM_HOST_BITS) {
367 handled |= USB_INTR_DEV_RESUME_FROM_HOST_BITS;
368 hw_clear_alias(usb_hw)->sie_status = USB_SIE_STATUS_RESUME_BITS;
369 udc_rpi_handle_resume();
370 }
371
372 if (status & USB_INTS_ERROR_DATA_SEQ_BITS) {
373 LOG_WRN("data seq");
374 hw_clear_alias(usb_hw)->sie_status = USB_SIE_STATUS_DATA_SEQ_ERROR_BITS;
375 handled |= USB_INTS_ERROR_DATA_SEQ_BITS;
376 }
377
378 if (status & USB_INTS_ERROR_RX_TIMEOUT_BITS) {
379 LOG_WRN("rx timeout");
380 hw_clear_alias(usb_hw)->sie_status = USB_SIE_STATUS_RX_TIMEOUT_BITS;
381 handled |= USB_INTS_ERROR_RX_TIMEOUT_BITS;
382 }
383
384 if (status & USB_INTS_ERROR_RX_OVERFLOW_BITS) {
385 LOG_WRN("rx overflow");
386 hw_clear_alias(usb_hw)->sie_status = USB_SIE_STATUS_RX_OVERFLOW_BITS;
387 handled |= USB_INTS_ERROR_RX_OVERFLOW_BITS;
388 }
389
390 if (status & USB_INTS_ERROR_BIT_STUFF_BITS) {
391 LOG_WRN("bit stuff error");
392 hw_clear_alias(usb_hw)->sie_status = USB_SIE_STATUS_BIT_STUFF_ERROR_BITS;
393 handled |= USB_INTS_ERROR_BIT_STUFF_BITS;
394 }
395
396 if (status & USB_INTS_ERROR_CRC_BITS) {
397 LOG_ERR("crc error");
398 hw_clear_alias(usb_hw)->sie_status = USB_SIE_STATUS_CRC_ERROR_BITS;
399 handled |= USB_INTS_ERROR_CRC_BITS;
400 }
401
402 if (status ^ handled) {
403 LOG_ERR("unhandled IRQ: 0x%x", (uint)(status ^ handled));
404 }
405 }
406
udc_rpi_init_endpoint(const uint8_t i)407 static void udc_rpi_init_endpoint(const uint8_t i)
408 {
409 state.out_ep_state[i].buf_ctl = &usb_dpram->ep_buf_ctrl[i].out;
410 state.in_ep_state[i].buf_ctl = &usb_dpram->ep_buf_ctrl[i].in;
411
412 if (i != 0) {
413 state.out_ep_state[i].ep_ctl = &usb_dpram->ep_ctrl[i - 1].out;
414 state.in_ep_state[i].ep_ctl = &usb_dpram->ep_ctrl[i - 1].in;
415
416 state.out_ep_state[i].buf =
417 &usb_dpram->epx_data[((i - 1) * 2 + 1) * DATA_BUFFER_SIZE];
418 state.in_ep_state[i].buf = &usb_dpram->epx_data[((i - 1) * 2) * DATA_BUFFER_SIZE];
419 } else {
420 state.out_ep_state[i].buf = &usb_dpram->ep0_buf_a[0];
421 state.in_ep_state[i].buf = &usb_dpram->ep0_buf_a[0];
422 }
423
424 k_sem_init(&state.in_ep_state[i].write_sem, 1, 1);
425 }
426
udc_rpi_init(void)427 static int udc_rpi_init(void)
428 {
429 /* Reset usb controller */
430 reset_block(RESETS_RESET_USBCTRL_BITS);
431 unreset_block_wait(RESETS_RESET_USBCTRL_BITS);
432
433 /* Clear any previous state in dpram/hw just in case */
434 memset(usb_hw, 0, sizeof(*usb_hw));
435 memset(usb_dpram, 0, sizeof(*usb_dpram));
436
437 /* Mux the controller to the onboard usb phy */
438 usb_hw->muxing = USB_USB_MUXING_TO_PHY_BITS | USB_USB_MUXING_SOFTCON_BITS;
439
440 /* Force VBUS detect so the device thinks it is plugged into a host */
441 usb_hw->pwr = USB_USB_PWR_VBUS_DETECT_BITS | USB_USB_PWR_VBUS_DETECT_OVERRIDE_EN_BITS;
442
443 /* Enable the USB controller in device mode. */
444 usb_hw->main_ctrl = USB_MAIN_CTRL_CONTROLLER_EN_BITS;
445
446 /* Enable an interrupt per EP0 transaction */
447 usb_hw->sie_ctrl = USB_SIE_CTRL_EP0_INT_1BUF_BITS;
448
449 /* Enable interrupts for when a buffer is done, when the bus is reset,
450 * and when a setup packet is received, and device connection status
451 */
452 usb_hw->inte = USB_INTS_BUFF_STATUS_BITS | USB_INTS_BUS_RESET_BITS |
453 USB_INTS_DEV_CONN_DIS_BITS |
454 USB_INTS_SETUP_REQ_BITS | /*USB_INTS_EP_STALL_NAK_BITS |*/
455 USB_INTS_ERROR_BIT_STUFF_BITS | USB_INTS_ERROR_CRC_BITS |
456 USB_INTS_ERROR_DATA_SEQ_BITS | USB_INTS_ERROR_RX_OVERFLOW_BITS |
457 USB_INTS_ERROR_RX_TIMEOUT_BITS | USB_INTS_DEV_SUSPEND_BITS |
458 USB_INTR_DEV_RESUME_FROM_HOST_BITS;
459
460 /* Set up endpoints (endpoint control registers)
461 * described by device configuration
462 * usb_setup_endpoints();
463 */
464 for (int i = 0; i < USB_NUM_BIDIR_ENDPOINTS; i++) {
465 udc_rpi_init_endpoint(i);
466 }
467
468 /* Present full speed device by enabling pull up on DP */
469 hw_set_alias(usb_hw)->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS;
470
471 return 0;
472 }
473
474 /* Zephyr USB device controller API implementation */
475
usb_dc_attach(void)476 int usb_dc_attach(void)
477 {
478 return udc_rpi_init();
479 }
480
usb_dc_ep_set_callback(const uint8_t ep,const usb_dc_ep_callback cb)481 int usb_dc_ep_set_callback(const uint8_t ep, const usb_dc_ep_callback cb)
482 {
483 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
484
485 LOG_DBG("ep 0x%02x", ep);
486
487 if (!ep_state) {
488 return -EINVAL;
489 }
490
491 ep_state->cb = cb;
492
493 return 0;
494 }
495
usb_dc_set_status_callback(const usb_dc_status_callback cb)496 void usb_dc_set_status_callback(const usb_dc_status_callback cb)
497 {
498 state.status_cb = cb;
499 }
500
usb_dc_set_address(const uint8_t addr)501 int usb_dc_set_address(const uint8_t addr)
502 {
503 LOG_DBG("addr %u (0x%02x)", addr, addr);
504
505 state.should_set_address = true;
506 state.addr = addr;
507
508 return 0;
509 }
510
usb_dc_ep_start_read(uint8_t ep,size_t len)511 int usb_dc_ep_start_read(uint8_t ep, size_t len)
512 {
513 int ret;
514
515 LOG_DBG("ep 0x%02x len %d", ep, len);
516
517 if (!USB_EP_DIR_IS_OUT(ep)) {
518 LOG_ERR("invalid ep 0x%02x", ep);
519 return -EINVAL;
520 }
521
522 if (len > DATA_BUFFER_SIZE) {
523 len = DATA_BUFFER_SIZE;
524 }
525
526 ret = udc_rpi_start_xfer(ep, NULL, len);
527
528 return ret;
529 }
530
usb_dc_ep_check_cap(const struct usb_dc_ep_cfg_data * const cfg)531 int usb_dc_ep_check_cap(const struct usb_dc_ep_cfg_data *const cfg)
532 {
533 uint8_t ep_idx = USB_EP_GET_IDX(cfg->ep_addr);
534
535 LOG_DBG("ep %x, mps %d, type %d",
536 cfg->ep_addr, cfg->ep_mps, cfg->ep_type);
537
538 if ((cfg->ep_type == USB_DC_EP_CONTROL) && ep_idx) {
539 LOG_ERR("invalid endpoint configuration");
540 return -1;
541 }
542
543 if (ep_idx > (USB_NUM_BIDIR_ENDPOINTS - 1)) {
544 LOG_ERR("endpoint index/address out of range");
545 return -1;
546 }
547
548 return 0;
549 }
550
usb_dc_ep_configure(const struct usb_dc_ep_cfg_data * const ep_cfg)551 int usb_dc_ep_configure(const struct usb_dc_ep_cfg_data *const ep_cfg)
552 {
553 uint8_t ep = ep_cfg->ep_addr;
554 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
555
556 if (!ep_state) {
557 return -EINVAL;
558 }
559
560 LOG_DBG("ep 0x%02x, previous mps %u, mps %u, type %u",
561 ep_cfg->ep_addr, ep_state->mps,
562 ep_cfg->ep_mps, ep_cfg->ep_type);
563
564 ep_state->mps = ep_cfg->ep_mps;
565 ep_state->type = ep_cfg->ep_type;
566
567 return 0;
568 }
569
usb_dc_ep_set_stall(const uint8_t ep)570 int usb_dc_ep_set_stall(const uint8_t ep)
571 {
572 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
573
574 LOG_DBG("ep 0x%02x", ep);
575
576 if (!ep_state) {
577 return -EINVAL;
578 }
579 if (USB_EP_GET_IDX(ep) == 0) {
580 hw_set_alias(usb_hw)->ep_stall_arm = USB_EP_DIR_IS_OUT(ep) ?
581 USB_EP_STALL_ARM_EP0_OUT_BITS :
582 USB_EP_STALL_ARM_EP0_IN_BITS;
583 }
584
585 *ep_state->buf_ctl = USB_BUF_CTRL_STALL;
586 if (ep == USB_CONTROL_EP_IN) {
587 /* Un-arm EP0_OUT endpoint, to make sure next setup packet starts clean */
588 udc_rpi_cancel_endpoint(USB_CONTROL_EP_OUT);
589 }
590
591 ep_state->halted = 1U;
592
593 return 0;
594 }
595
usb_dc_ep_clear_stall(const uint8_t ep)596 int usb_dc_ep_clear_stall(const uint8_t ep)
597 {
598 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
599 uint8_t val;
600
601 LOG_DBG("ep 0x%02x", ep);
602
603 if (!ep_state) {
604 return -EINVAL;
605 }
606
607 if (USB_EP_GET_IDX(ep) > 0) {
608 val = *ep_state->buf_ctl;
609 val &= ~USB_BUF_CTRL_STALL;
610
611 *ep_state->buf_ctl = val;
612
613 ep_state->halted = 0U;
614 ep_state->read_offset = 0U;
615 }
616
617 return 0;
618 }
619
usb_dc_ep_is_stalled(const uint8_t ep,uint8_t * const stalled)620 int usb_dc_ep_is_stalled(const uint8_t ep, uint8_t *const stalled)
621 {
622 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
623
624 LOG_DBG("ep 0x%02x", ep);
625
626 if (!ep_state || !stalled) {
627 return -EINVAL;
628 }
629
630 *stalled = ep_state->halted;
631
632 return 0;
633 }
634
usb_dc_ep_rpi_pico_buffer_offset(volatile uint8_t * buf)635 static inline uint32_t usb_dc_ep_rpi_pico_buffer_offset(volatile uint8_t *buf)
636 {
637 /* TODO: Bits 0-5 are ignored by the controller so make sure these are 0 */
638 return (uint32_t)buf ^ (uint32_t)usb_dpram;
639 }
640
usb_dc_ep_enable(const uint8_t ep)641 int usb_dc_ep_enable(const uint8_t ep)
642 {
643 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
644
645 if (!ep_state) {
646 return -EINVAL;
647 }
648
649 LOG_DBG("ep 0x%02x (id: %d) -> type %d", ep, USB_EP_GET_IDX(ep), ep_state->type);
650
651 /* clear buffer state */
652 *ep_state->buf_ctl = USB_BUF_CTRL_DATA0_PID;
653 ep_state->next_pid = 0;
654
655 /* EP0 doesn't have an ep_ctl */
656 if (ep_state->ep_ctl) {
657 uint32_t val =
658 EP_CTRL_ENABLE_BITS |
659 EP_CTRL_INTERRUPT_PER_BUFFER |
660 (ep_state->type << EP_CTRL_BUFFER_TYPE_LSB) |
661 usb_dc_ep_rpi_pico_buffer_offset(ep_state->buf);
662
663 *ep_state->ep_ctl = val;
664 }
665
666 if (USB_EP_DIR_IS_OUT(ep) && ep != USB_CONTROL_EP_OUT) {
667 return usb_dc_ep_start_read(ep, DATA_BUFFER_SIZE);
668 }
669
670 return 0;
671 }
672
usb_dc_ep_disable(const uint8_t ep)673 int usb_dc_ep_disable(const uint8_t ep)
674 {
675 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
676
677 LOG_DBG("ep 0x%02x", ep);
678
679 if (!ep_state) {
680 return -EINVAL;
681 }
682
683 /* EP0 doesn't have an ep_ctl */
684 if (!ep_state->ep_ctl) {
685 return 0;
686 }
687
688 /* If this endpoint has previously been used and e.g. the host application
689 * crashed, the endpoint may remain locked even after reconfiguration
690 * because the write semaphore is never given back.
691 * udc_rpi_cancel_endpoint() handles this so the endpoint can be written again.
692 */
693 udc_rpi_cancel_endpoint(ep);
694
695 uint8_t val = *ep_state->ep_ctl & ~EP_CTRL_ENABLE_BITS;
696
697 *ep_state->ep_ctl = val;
698
699 return 0;
700 }
701
usb_dc_ep_write(const uint8_t ep,const uint8_t * const data,const uint32_t data_len,uint32_t * const ret_bytes)702 int usb_dc_ep_write(const uint8_t ep, const uint8_t *const data,
703 const uint32_t data_len, uint32_t *const ret_bytes)
704 {
705 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
706 uint32_t len = data_len;
707 int ret = 0;
708
709 LOG_DBG("ep 0x%02x, len %u", ep, data_len);
710
711 if (!ep_state || !USB_EP_DIR_IS_IN(ep)) {
712 LOG_ERR("invalid ep 0x%02x", ep);
713 return -EINVAL;
714 }
715
716 if (ep == USB_CONTROL_EP_IN && state.abort_control_writes) {
717 /* If abort_control_writes is high, it means the setup packet has not
718 * yet been consumed by the thread, which means that this write
719 * is part of a previous control transfer, which now must be
720 * aborted.
721 */
722
723 if (ret_bytes != NULL) {
724 *ret_bytes = len;
725 }
726
727 return 0;
728 }
729
730 if (ep == USB_CONTROL_EP_IN && len > USB_MAX_CTRL_MPS) {
731 len = USB_MAX_CTRL_MPS;
732 } else if (len > ep_state->mps) {
733 len = ep_state->mps;
734 }
735
736 ret = k_sem_take(&ep_state->write_sem, K_NO_WAIT);
737 if (ret) {
738 return -EAGAIN;
739 }
740
741 if (!k_is_in_isr()) {
742 irq_disable(USB_IRQ);
743 }
744
745 ret = udc_rpi_start_xfer(ep, data, len);
746
747 if (ret < 0) {
748 k_sem_give(&ep_state->write_sem);
749 ret = -EIO;
750 }
751
752 if (!k_is_in_isr()) {
753 irq_enable(USB_IRQ);
754 }
755
756 if (ret >= 0 && ret_bytes != NULL) {
757 *ret_bytes = len;
758 }
759
760 return ret;
761 }
762
udc_rpi_get_ep_buffer_len(const uint8_t ep)763 uint32_t udc_rpi_get_ep_buffer_len(const uint8_t ep)
764 {
765 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
766 uint32_t buf_ctl = *ep_state->buf_ctl;
767
768 return buf_ctl & USB_BUF_CTRL_LEN_MASK;
769 }
770
usb_dc_ep_read_wait(uint8_t ep,uint8_t * data,uint32_t max_data_len,uint32_t * read_bytes)771 int usb_dc_ep_read_wait(uint8_t ep, uint8_t *data,
772 uint32_t max_data_len, uint32_t *read_bytes)
773 {
774 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
775 uint32_t read_count;
776
777 if (!ep_state) {
778 LOG_ERR("Invalid Endpoint %x", ep);
779 return -EINVAL;
780 }
781
782 if (!USB_EP_DIR_IS_OUT(ep)) {
783 LOG_ERR("Wrong endpoint direction: 0x%02x", ep);
784 return -EINVAL;
785 }
786
787 if (ep == USB_CONTROL_EP_OUT && state.setup_available) {
788 read_count = sizeof(struct usb_setup_packet);
789 if (read_count != max_data_len) {
790 LOG_WRN("Attempting to read setup packet with the wrong length"
791 " (expected: %d, read: %d)", read_count, max_data_len);
792 }
793 } else {
794 read_count = udc_rpi_get_ep_buffer_len(ep) - ep_state->read_offset;
795 }
796
797 LOG_DBG("ep 0x%02x, %u bytes, %u+%u, %p", ep, max_data_len, ep_state->read_offset,
798 read_count, (void *)data);
799
800 if (data) {
801 read_count = MIN(read_count, max_data_len);
802
803 if (ep == USB_CONTROL_EP_OUT && state.setup_available) {
804 memcpy(data, (const void *)&usb_dpram->setup_packet, read_count);
805 } else {
806 memcpy(data, ep_state->buf + ep_state->read_offset, read_count);
807 }
808
809 ep_state->read_offset += read_count;
810 } else if (max_data_len) {
811 LOG_ERR("Wrong arguments");
812 }
813
814 if (read_bytes) {
815 *read_bytes = read_count;
816 }
817
818 return 0;
819 }
820
usb_dc_control_ep_read_continue(const struct udc_rpi_ep_state * const ep_state,bool * const arm_out_endpoint)821 static int usb_dc_control_ep_read_continue(const struct udc_rpi_ep_state *const ep_state,
822 bool *const arm_out_endpoint)
823 {
824 const struct usb_setup_packet *const setup = (const void *)&usb_dpram->setup_packet;
825
826 if (state.setup_available) {
827 LOG_DBG("EP0 setup (wLength=%d, is_to_device=%d)",
828 setup->wLength, usb_reqtype_is_to_device(setup));
829 if (setup->wLength != 0U) {
830 /* In the case of a control transfer, we want to prime the OUT endpoint
831 * exactly once, to either:
832 * 1) in the to_device case, to receive the data (only if wLength is not 0)
833 * 2) in the to_host case, to receive a 0-length status stage transfer
834 * (only valid if wLength is not 0)
835 * Note that when wLength = 0, the status stage transfer is always an IN
836 * type so we don't need to consider that case.
837 */
838 *arm_out_endpoint = true;
839 state.control_out_ep_rcvd = 0;
840 }
841
842 state.setup_available = false;
843 } else {
844 const size_t len = udc_rpi_get_ep_buffer_len(USB_CONTROL_EP_OUT);
845
846 LOG_DBG("Control OUT received %u offset: %u",
847 len, ep_state->read_offset);
848 if (usb_reqtype_is_to_device(setup)) {
849 if (state.control_out_ep_rcvd + ep_state->read_offset < setup->wLength) {
850 /* If no more data in the buffer, but we're still waiting
851 * for more, start a new read transaction.
852 */
853 if (len == ep_state->read_offset) {
854 state.control_out_ep_rcvd += ep_state->read_offset;
855 *arm_out_endpoint = true;
856 }
857 }
858 }
859 }
860 return 0;
861 }
862
usb_dc_ep_read_continue(const uint8_t ep)863 int usb_dc_ep_read_continue(const uint8_t ep)
864 {
865 const struct udc_rpi_ep_state *const ep_state = udc_rpi_get_ep_state(ep);
866 bool arm_out_endpoint = false;
867
868 if (!ep_state || !USB_EP_DIR_IS_OUT(ep)) {
869 LOG_ERR("Not valid endpoint: %02x", ep);
870 return -EINVAL;
871 }
872 if (ep == USB_CONTROL_EP_OUT) {
873 int ret = usb_dc_control_ep_read_continue(ep_state, &arm_out_endpoint);
874
875 if (ret != 0) {
876 return ret;
877 }
878 } else {
879 const size_t len = udc_rpi_get_ep_buffer_len(ep);
880
881 LOG_DBG("Endpoint 0x%02x received %u offset: %u",
882 ep, len, ep_state->read_offset);
883 /* If no more data in the buffer, start a new read transaction. */
884 if (len == ep_state->read_offset) {
885 arm_out_endpoint = true;
886 }
887 }
888
889 if (arm_out_endpoint) {
890 LOG_DBG("Arming endpoint 0x%02x", ep);
891 return usb_dc_ep_start_read(ep, DATA_BUFFER_SIZE);
892 } else {
893 LOG_DBG("Not arming endpoint 0x%02x", ep);
894 }
895
896 return 0;
897 }
898
usb_dc_ep_read(const uint8_t ep,uint8_t * const data,const uint32_t max_data_len,uint32_t * const read_bytes)899 int usb_dc_ep_read(const uint8_t ep, uint8_t *const data,
900 const uint32_t max_data_len, uint32_t *const read_bytes)
901 {
902 if (usb_dc_ep_read_wait(ep, data, max_data_len, read_bytes) != 0) {
903 return -EINVAL;
904 }
905
906 if (!max_data_len) {
907 return 0;
908 }
909
910 if (usb_dc_ep_read_continue(ep) != 0) {
911 return -EINVAL;
912 }
913
914 return 0;
915 }
916
usb_dc_ep_halt(const uint8_t ep)917 int usb_dc_ep_halt(const uint8_t ep)
918 {
919 return usb_dc_ep_set_stall(ep);
920 }
921
usb_dc_ep_flush(const uint8_t ep)922 int usb_dc_ep_flush(const uint8_t ep)
923 {
924 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
925
926 if (!ep_state) {
927 return -EINVAL;
928 }
929
930 LOG_ERR("Not implemented");
931
932 return 0;
933 }
934
usb_dc_ep_mps(const uint8_t ep)935 int usb_dc_ep_mps(const uint8_t ep)
936 {
937 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(ep);
938
939 if (!ep_state) {
940 return -EINVAL;
941 }
942
943 return ep_state->mps;
944 }
945
usb_dc_detach(void)946 int usb_dc_detach(void)
947 {
948 LOG_ERR("Not implemented");
949
950 return 0;
951 }
952
usb_dc_reset(void)953 int usb_dc_reset(void)
954 {
955 LOG_ERR("Not implemented");
956
957 return 0;
958 }
959
usb_dc_wakeup_request(void)960 int usb_dc_wakeup_request(void)
961 {
962 LOG_DBG("Remote Wakeup");
963 state.rwu_pending = true;
964 hw_set_alias(usb_hw)->sie_ctrl = USB_SIE_CTRL_RESUME_BITS;
965
966 return 0;
967 }
968
969 /*
970 * This thread is only used to not run the USB device stack and endpoint
971 * callbacks in the ISR context, which happens when an callback function
972 * is called. TODO: something similar should be implemented in the USB
973 * device stack so that it can be used by all drivers.
974 */
udc_rpi_thread_main(void * arg1,void * unused1,void * unused2)975 static void udc_rpi_thread_main(void *arg1, void *unused1, void *unused2)
976 {
977 ARG_UNUSED(arg1);
978 ARG_UNUSED(unused1);
979 ARG_UNUSED(unused2);
980 struct cb_msg msg;
981
982 while (true) {
983 k_msgq_get(&usb_dc_msgq, &msg, K_FOREVER);
984
985 if (msg.ep_event) {
986 struct udc_rpi_ep_state *ep_state = udc_rpi_get_ep_state(msg.ep);
987
988 if (msg.type == USB_DC_EP_SETUP) {
989 state.abort_control_writes = false;
990 state.setup_available = true;
991 }
992
993 if (ep_state->cb) {
994 ep_state->cb(msg.ep, msg.type);
995 }
996 } else {
997 if (state.status_cb) {
998 state.status_cb(msg.type, NULL);
999 }
1000 }
1001 }
1002 }
1003
usb_rpi_init(void)1004 static int usb_rpi_init(void)
1005 {
1006 int ret;
1007
1008 k_thread_create(&thread, thread_stack,
1009 USBD_THREAD_STACK_SIZE,
1010 udc_rpi_thread_main, NULL, NULL, NULL,
1011 K_PRIO_COOP(2), 0, K_NO_WAIT);
1012 k_thread_name_set(&thread, "usb_rpi");
1013
1014 ret = clock_control_on(CLK_DRV, CLK_ID);
1015 if (ret < 0) {
1016 return ret;
1017 }
1018
1019 IRQ_CONNECT(USB_IRQ, USB_IRQ_PRI, udc_rpi_isr, 0, 0);
1020 irq_enable(USB_IRQ);
1021
1022 return 0;
1023 }
1024
1025 SYS_INIT(usb_rpi_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
1026