1 /*
2 * Copyright (c) 2018 Intel Corporation.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <zephyr/tc_util.h>
8 #include <zephyr/ztest.h>
9 #include <zephyr/kernel.h>
10 #include <ksched.h>
11 #include <zephyr/kernel_structs.h>
12
13 #if CONFIG_MP_MAX_NUM_CPUS < 2
14 #error SMP test requires at least two CPUs!
15 #endif
16
17 #define RUN_FACTOR (CONFIG_SMP_TEST_RUN_FACTOR / 100.0)
18
19 #define T2_STACK_SIZE (2048 + CONFIG_TEST_EXTRA_STACK_SIZE)
20 #define STACK_SIZE (384 + CONFIG_TEST_EXTRA_STACK_SIZE)
21 #define DELAY_US 50000
22 #define TIMEOUT 1000
23 #define EQUAL_PRIORITY 1
24 #define TIME_SLICE_MS 500
25 #define THREAD_DELAY 1
26 #define SLEEP_MS_LONG ((int)(15000 * RUN_FACTOR))
27
28 struct k_thread t2;
29 K_THREAD_STACK_DEFINE(t2_stack, T2_STACK_SIZE);
30
31 volatile int t2_count;
32 volatile int sync_count = -1;
33
34 static int main_thread_id;
35 static int child_thread_id;
36 volatile int rv;
37
38 K_SEM_DEFINE(cpuid_sema, 0, 1);
39 K_SEM_DEFINE(sema, 0, 1);
40 static struct k_mutex smutex;
41 static struct k_sem smp_sem;
42
43 #define MAX_NUM_THREADS CONFIG_MP_MAX_NUM_CPUS
44
45 struct thread_info {
46 k_tid_t tid;
47 int executed;
48 int priority;
49 int cpu_id;
50 };
51 static ZTEST_BMEM volatile struct thread_info tinfo[MAX_NUM_THREADS];
52 static struct k_thread tthread[MAX_NUM_THREADS];
53 static K_THREAD_STACK_ARRAY_DEFINE(tstack, MAX_NUM_THREADS, STACK_SIZE);
54
55 static volatile int thread_started[MAX_NUM_THREADS - 1];
56
57 static struct k_poll_signal tsignal[MAX_NUM_THREADS];
58 static struct k_poll_event tevent[MAX_NUM_THREADS];
59
curr_cpu(void)60 static int curr_cpu(void)
61 {
62 unsigned int k = arch_irq_lock();
63 int ret = arch_curr_cpu()->id;
64
65 arch_irq_unlock(k);
66 return ret;
67 }
68
69 /**
70 * @brief SMP
71 * @defgroup kernel_smp_tests SMP Tests
72 * @ingroup all_tests
73 * @{
74 * @}
75 */
76
77 /**
78 * @defgroup kernel_smp_integration_tests SMP Integration Tests
79 * @ingroup kernel_smp_tests
80 * @{
81 * @}
82 */
83
84 /**
85 * @defgroup kernel_smp_module_tests SMP Module Tests
86 * @ingroup kernel_smp_tests
87 * @{
88 * @}
89 */
90
t2_fn(void * a,void * b,void * c)91 static void t2_fn(void *a, void *b, void *c)
92 {
93 ARG_UNUSED(a);
94 ARG_UNUSED(b);
95 ARG_UNUSED(c);
96
97 t2_count = 0;
98
99 /* This thread simply increments a counter while spinning on
100 * the CPU. The idea is that it will always be iterating
101 * faster than the other thread so long as it is fairly
102 * scheduled (and it's designed to NOT be fairly schedulable
103 * without a separate CPU!), so the main thread can always
104 * check its progress.
105 */
106 while (1) {
107 k_busy_wait(DELAY_US);
108 t2_count++;
109 }
110 }
111
112 /**
113 * @brief Verify SMP with 2 cooperative threads
114 *
115 * @ingroup kernel_smp_tests
116 *
117 * @details Multi processing is verified by checking whether
118 * 2 cooperative threads run simultaneously at different cores
119 */
ZTEST(smp,test_smp_coop_threads)120 ZTEST(smp, test_smp_coop_threads)
121 {
122 int i, ok = 1;
123
124 if (!IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) {
125 /* The spawned thread enters an infinite loop, so it can't be
126 * successfully aborted via an IPI. Just skip in that
127 * configuration.
128 */
129 ztest_test_skip();
130 }
131
132 k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, t2_fn,
133 NULL, NULL, NULL,
134 K_PRIO_COOP(2), 0, K_NO_WAIT);
135
136 /* Wait for the other thread (on a separate CPU) to actually
137 * start running. We want synchrony to be as perfect as
138 * possible.
139 */
140 t2_count = -1;
141 while (t2_count == -1) {
142 }
143
144 for (i = 0; i < 10; i++) {
145 /* Wait slightly longer than the other thread so our
146 * count will always be lower
147 */
148 k_busy_wait(DELAY_US + (DELAY_US / 8));
149
150 if (t2_count <= i) {
151 ok = 0;
152 break;
153 }
154 }
155
156 k_thread_abort(tid);
157 k_thread_join(tid, K_FOREVER);
158 zassert_true(ok, "SMP test failed");
159 }
160
child_fn(void * p1,void * p2,void * p3)161 static void child_fn(void *p1, void *p2, void *p3)
162 {
163 ARG_UNUSED(p2);
164 ARG_UNUSED(p3);
165 int parent_cpu_id = POINTER_TO_INT(p1);
166
167 zassert_true(parent_cpu_id != curr_cpu(),
168 "Parent isn't on other core");
169
170 sync_count++;
171 k_sem_give(&cpuid_sema);
172 }
173
174 /**
175 * @brief Verify CPU IDs of threads in SMP
176 *
177 * @ingroup kernel_smp_tests
178 *
179 * @details Verify whether thread running on other core is
180 * parent thread from child thread
181 */
ZTEST(smp,test_cpu_id_threads)182 ZTEST(smp, test_cpu_id_threads)
183 {
184 /* Make sure idle thread runs on each core */
185 k_sleep(K_MSEC(1000));
186
187 int parent_cpu_id = curr_cpu();
188
189 k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, child_fn,
190 INT_TO_POINTER(parent_cpu_id), NULL,
191 NULL, K_PRIO_PREEMPT(2), 0, K_NO_WAIT);
192
193 while (sync_count == -1) {
194 }
195 k_sem_take(&cpuid_sema, K_FOREVER);
196
197 k_thread_abort(tid);
198 k_thread_join(tid, K_FOREVER);
199 }
200
thread_entry_fn(void * p1,void * p2,void * p3)201 static void thread_entry_fn(void *p1, void *p2, void *p3)
202 {
203 ARG_UNUSED(p2);
204 ARG_UNUSED(p3);
205 int thread_num = POINTER_TO_INT(p1);
206 int count = 0;
207
208 tinfo[thread_num].executed = 1;
209 tinfo[thread_num].cpu_id = curr_cpu();
210
211 while (count++ < 5) {
212 k_busy_wait(DELAY_US);
213 }
214 }
215
spin_for_threads_exit(void)216 static void spin_for_threads_exit(void)
217 {
218 unsigned int num_threads = arch_num_cpus();
219
220 for (int i = 0; i < num_threads - 1; i++) {
221 volatile uint8_t *p = &tinfo[i].tid->base.thread_state;
222
223 while (!(*p & _THREAD_DEAD)) {
224 }
225 }
226 k_busy_wait(DELAY_US);
227 }
228
spawn_threads(int prio,int thread_num,int equal_prio,k_thread_entry_t thread_entry,int delay)229 static void spawn_threads(int prio, int thread_num, int equal_prio,
230 k_thread_entry_t thread_entry, int delay)
231 {
232 int i;
233
234 /* Spawn threads of priority higher than
235 * the previously created thread
236 */
237 for (i = 0; i < thread_num; i++) {
238 if (equal_prio) {
239 tinfo[i].priority = prio;
240 } else {
241 /* Increase priority for each thread */
242 tinfo[i].priority = prio - 1;
243 prio = tinfo[i].priority;
244 }
245 tinfo[i].tid = k_thread_create(&tthread[i], tstack[i],
246 STACK_SIZE, thread_entry,
247 INT_TO_POINTER(i), NULL, NULL,
248 tinfo[i].priority, 0,
249 K_MSEC(delay));
250 if (delay) {
251 /* Increase delay for each thread */
252 delay = delay + 10;
253 }
254 }
255 }
256
abort_threads(int num)257 static void abort_threads(int num)
258 {
259 for (int i = 0; i < num; i++) {
260 k_thread_abort(tinfo[i].tid);
261 }
262
263 for (int i = 0; i < num; i++) {
264 k_thread_join(tinfo[i].tid, K_FOREVER);
265 }
266 }
267
cleanup_resources(void)268 static void cleanup_resources(void)
269 {
270 unsigned int num_threads = arch_num_cpus();
271
272 for (int i = 0; i < num_threads; i++) {
273 tinfo[i].tid = 0;
274 tinfo[i].executed = 0;
275 tinfo[i].priority = 0;
276 }
277 }
278
thread_ab_entry(void * p1,void * p2,void * p3)279 static void __no_optimization thread_ab_entry(void *p1, void *p2, void *p3)
280 {
281 ARG_UNUSED(p1);
282 ARG_UNUSED(p2);
283 ARG_UNUSED(p3);
284
285 while (true) {
286 }
287 }
288
289 #define SPAWN_AB_PRIO K_PRIO_COOP(10)
290
291 /**
292 * @brief Verify the code path when we do context switch in k_thread_abort on SMP system
293 *
294 * @ingroup kernel_smp_tests
295 *
296 * @details test logic:
297 * - The ztest thread has cooperative priority.
298 * - From ztest thread we spawn N number of cooperative threads, where N = number of CPUs.
299 * - The spawned cooperative are executing infinite loop (so they occupy CPU core until they are
300 * aborted).
301 * - We have (number of CPUs - 1) spawned threads run and executing infinite loop, as current CPU
302 * is occupied by ztest cooperative thread. Due to that the last of spawned threads is ready but
303 * not executing.
304 * - We abort spawned threads one-by-one from the ztest thread.
305 * - At the first k_thread_abort call the ztest thread will be preempted by the remaining spawned
306 * thread which has higher priority than ztest thread.
307 * But... k_thread_abort call should has destroyed one of the spawned threads, so ztest thread
308 * should have a CPU available to run on.
309 * - We expect that all spawned threads will be aborted successfully.
310 *
311 * This was the test case for zephyrproject-rtos/zephyr#58040 issue where this test caused system
312 * hang.
313 */
314
ZTEST(smp,test_coop_switch_in_abort)315 ZTEST(smp, test_coop_switch_in_abort)
316 {
317 k_tid_t tid[MAX_NUM_THREADS];
318 unsigned int num_threads = arch_num_cpus();
319 unsigned int i;
320
321 zassert_true(_current->base.prio < 0, "test case relies on ztest thread be cooperative");
322 zassert_true(_current->base.prio > SPAWN_AB_PRIO,
323 "spawn test need to have higher priority than ztest thread");
324
325 /* Spawn N number of cooperative threads, where N = number of CPUs */
326 for (i = 0; i < num_threads; i++) {
327 tid[i] = k_thread_create(&tthread[i], tstack[i],
328 STACK_SIZE, thread_ab_entry,
329 NULL, NULL, NULL,
330 SPAWN_AB_PRIO, 0, K_NO_WAIT);
331 }
332
333 /* Wait for some time to let spawned threads on other cores run and start executing infinite
334 * loop.
335 */
336 k_busy_wait(DELAY_US * 4);
337
338 /* At this time we have (number of CPUs - 1) spawned threads run and executing infinite loop
339 * on other CPU cores, as current CPU is occupied by this ztest cooperative thread.
340 * Due to that the last of spawned threads is ready but not executing.
341 */
342
343 /* Abort all spawned threads one-by-one. At the first k_thread_abort call the context
344 * switch will happen and the last 'spawned' thread will start.
345 * We should successfully abort all threads.
346 */
347 for (i = 0; i < num_threads; i++) {
348 k_thread_abort(tid[i]);
349 }
350
351 /* Cleanup */
352 for (i = 0; i < num_threads; i++) {
353 zassert_equal(k_thread_join(tid[i], K_FOREVER), 0);
354 }
355 }
356
357 /**
358 * @brief Test cooperative threads non-preemption
359 *
360 * @ingroup kernel_smp_tests
361 *
362 * @details Spawn cooperative threads equal to number of cores
363 * supported. Main thread will already be running on 1 core.
364 * Check if the last thread created preempts any threads
365 * already running.
366 */
ZTEST(smp,test_coop_resched_threads)367 ZTEST(smp, test_coop_resched_threads)
368 {
369 unsigned int num_threads = arch_num_cpus();
370
371 /* Spawn threads equal to number of cores,
372 * since we don't give up current CPU, last thread
373 * will not get scheduled
374 */
375 spawn_threads(K_PRIO_COOP(10), num_threads, !EQUAL_PRIORITY,
376 &thread_entry_fn, THREAD_DELAY);
377
378 /* Wait for some time to let other core's thread run */
379 k_busy_wait(DELAY_US);
380
381
382 /* Reassure that cooperative thread's are not preempted
383 * by checking last thread's execution
384 * status. We know that all threads got rescheduled on
385 * other cores except the last one
386 */
387 for (int i = 0; i < num_threads - 1; i++) {
388 zassert_true(tinfo[i].executed == 1,
389 "cooperative thread %d didn't run", i);
390 }
391 zassert_true(tinfo[num_threads - 1].executed == 0,
392 "cooperative thread is preempted");
393
394 /* Abort threads created */
395 abort_threads(num_threads);
396 cleanup_resources();
397 }
398
399 /**
400 * @brief Test preemptness of preemptive thread
401 *
402 * @ingroup kernel_smp_tests
403 *
404 * @details Create preemptive thread and let it run
405 * on another core and verify if it gets preempted
406 * if another thread of higher priority is spawned
407 */
ZTEST(smp,test_preempt_resched_threads)408 ZTEST(smp, test_preempt_resched_threads)
409 {
410 unsigned int num_threads = arch_num_cpus();
411
412 /* Spawn threads equal to number of cores,
413 * lower priority thread should
414 * be preempted by higher ones
415 */
416 spawn_threads(K_PRIO_PREEMPT(10), num_threads, !EQUAL_PRIORITY,
417 &thread_entry_fn, THREAD_DELAY);
418
419 spin_for_threads_exit();
420
421 for (int i = 0; i < num_threads; i++) {
422 zassert_true(tinfo[i].executed == 1,
423 "preemptive thread %d didn't run", i);
424 }
425
426 /* Abort threads created */
427 abort_threads(num_threads);
428 cleanup_resources();
429 }
430
431 /**
432 * @brief Validate behavior of thread when it yields
433 *
434 * @ingroup kernel_smp_tests
435 *
436 * @details Spawn cooperative threads equal to number
437 * of cores, so last thread would be pending, call
438 * yield() from main thread. Now, all threads must be
439 * executed
440 */
ZTEST(smp,test_yield_threads)441 ZTEST(smp, test_yield_threads)
442 {
443 unsigned int num_threads = arch_num_cpus();
444
445 /* Spawn threads equal to the number
446 * of cores, so the last thread would be
447 * pending.
448 */
449 spawn_threads(K_PRIO_COOP(10), num_threads, !EQUAL_PRIORITY,
450 &thread_entry_fn, !THREAD_DELAY);
451
452 k_yield();
453 k_busy_wait(DELAY_US);
454
455 for (int i = 0; i < num_threads; i++) {
456 zassert_true(tinfo[i].executed == 1,
457 "thread %d did not execute", i);
458
459 }
460
461 abort_threads(num_threads);
462 cleanup_resources();
463 }
464
465 /**
466 * @brief Test behavior of thread when it sleeps
467 *
468 * @ingroup kernel_smp_tests
469 *
470 * @details Spawn cooperative thread and call
471 * sleep() from main thread. After timeout, all
472 * threads has to be scheduled.
473 */
ZTEST(smp,test_sleep_threads)474 ZTEST(smp, test_sleep_threads)
475 {
476 unsigned int num_threads = arch_num_cpus();
477
478 spawn_threads(K_PRIO_COOP(10), num_threads, !EQUAL_PRIORITY,
479 &thread_entry_fn, !THREAD_DELAY);
480
481 k_msleep(TIMEOUT);
482
483 for (int i = 0; i < num_threads; i++) {
484 zassert_true(tinfo[i].executed == 1,
485 "thread %d did not execute", i);
486 }
487
488 abort_threads(num_threads);
489 cleanup_resources();
490 }
491
thread_wakeup_entry(void * p1,void * p2,void * p3)492 static void thread_wakeup_entry(void *p1, void *p2, void *p3)
493 {
494 ARG_UNUSED(p2);
495 ARG_UNUSED(p3);
496 int thread_num = POINTER_TO_INT(p1);
497
498 thread_started[thread_num] = 1;
499
500 k_msleep(DELAY_US * 1000);
501
502 tinfo[thread_num].executed = 1;
503 }
504
wakeup_on_start_thread(int tnum)505 static void wakeup_on_start_thread(int tnum)
506 {
507 int threads_started = 0, i;
508
509 /* For each thread, spin waiting for it to first flag that
510 * it's going to sleep, and then that it's actually blocked
511 */
512 for (i = 0; i < tnum; i++) {
513 while (thread_started[i] == 0) {
514 }
515 while (!z_is_thread_prevented_from_running(tinfo[i].tid)) {
516 }
517 }
518
519 for (i = 0; i < tnum; i++) {
520 if (thread_started[i] == 1 && threads_started <= tnum) {
521 threads_started++;
522 k_wakeup(tinfo[i].tid);
523 }
524 }
525 zassert_equal(threads_started, tnum,
526 "All threads haven't started");
527 }
528
check_wokeup_threads(int tnum)529 static void check_wokeup_threads(int tnum)
530 {
531 int threads_woke_up = 0, i;
532
533 /* k_wakeup() isn't synchronous, give the other CPU time to
534 * schedule them
535 */
536 k_busy_wait(200000);
537
538 for (i = 0; i < tnum; i++) {
539 if (tinfo[i].executed == 1 && threads_woke_up <= tnum) {
540 threads_woke_up++;
541 }
542 }
543 zassert_equal(threads_woke_up, tnum, "Threads did not wakeup");
544 }
545
546 /**
547 * @brief Test behavior of wakeup() in SMP case
548 *
549 * @ingroup kernel_smp_tests
550 *
551 * @details Spawn number of threads equal to number of
552 * remaining cores and let them sleep for a while. Call
553 * wakeup() of those threads from parent thread and check
554 * if they are all running
555 */
ZTEST(smp,test_wakeup_threads)556 ZTEST(smp, test_wakeup_threads)
557 {
558 unsigned int num_threads = arch_num_cpus();
559
560 /* Spawn threads to run on all remaining cores */
561 spawn_threads(K_PRIO_COOP(10), num_threads - 1, !EQUAL_PRIORITY,
562 &thread_wakeup_entry, !THREAD_DELAY);
563
564 /* Check if all the threads have started, then call wakeup */
565 wakeup_on_start_thread(num_threads - 1);
566
567 /* Count threads which are woken up */
568 check_wokeup_threads(num_threads - 1);
569
570 /* Abort all threads and cleanup */
571 abort_threads(num_threads - 1);
572 cleanup_resources();
573 }
574
575 /* a thread for testing get current cpu */
thread_get_cpu_entry(void * p1,void * p2,void * p3)576 static void thread_get_cpu_entry(void *p1, void *p2, void *p3)
577 {
578 ARG_UNUSED(p1);
579 ARG_UNUSED(p2);
580 ARG_UNUSED(p3);
581
582 int bsp_id = *(int *)p1;
583 int cpu_id = -1;
584
585 /* get current cpu number for running thread */
586 _cpu_t *curr_cpu = arch_curr_cpu();
587
588 /**TESTPOINT: call arch_curr_cpu() to get cpu struct */
589 zassert_true(curr_cpu != NULL,
590 "test failed to get current cpu.");
591
592 cpu_id = curr_cpu->id;
593
594 zassert_true(bsp_id != cpu_id,
595 "should not be the same with our BSP");
596
597 /* loop forever to ensure running on this CPU */
598 while (1) {
599 k_busy_wait(DELAY_US);
600 }
601 }
602
603 /**
604 * @brief Test get a pointer of CPU
605 *
606 * @ingroup kernel_smp_module_tests
607 *
608 * @details
609 * Test Objective:
610 * - To verify architecture layer provides a mechanism to return a pointer to the
611 * current kernel CPU record of the running CPU.
612 * We call arch_curr_cpu() and get its member, both in main and spawned thread
613 * separately, and compare them. They shall be different in SMP environment.
614 *
615 * Testing techniques:
616 * - Interface testing, function and block box testing,
617 * dynamic analysis and testing,
618 *
619 * Prerequisite Conditions:
620 * - CONFIG_SMP=y, and the HW platform must support SMP.
621 *
622 * Input Specifications:
623 * - N/A
624 *
625 * Test Procedure:
626 * -# In main thread, call arch_curr_cpu() to get it's member "id",then store it
627 * into a variable thread_id.
628 * -# Spawn a thread t2, and pass the stored thread_id to it, then call
629 * k_busy_wait() 50us to wait for thread run and won't be swapped out.
630 * -# In thread t2, call arch_curr_cpu() to get pointer of current cpu data. Then
631 * check if it not NULL.
632 * -# Store the member id via accessing pointer of current cpu data to var cpu_id.
633 * -# Check if cpu_id is not equaled to bsp_id that we pass into thread.
634 * -# Call k_busy_wait() and loop forever.
635 * -# In main thread, terminate the thread t2 before exit.
636 *
637 * Expected Test Result:
638 * - The pointer of current cpu data that we got from function call is correct.
639 *
640 * Pass/Fail Criteria:
641 * - Successful if the check of step 3,5 are all passed.
642 * - Failure if one of the check of step 3,5 is failed.
643 *
644 * Assumptions and Constraints:
645 * - This test using for the platform that support SMP, in our current scenario
646 * , only x86_64, arc and xtensa supported.
647 *
648 * @see arch_curr_cpu()
649 */
650 static int _cpu_id;
ZTEST(smp,test_get_cpu)651 ZTEST(smp, test_get_cpu)
652 {
653 k_tid_t thread_id;
654
655 if (!IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) {
656 /* The spawned thread enters an infinite loop, so it can't be
657 * successfully aborted via an IPI. Just skip in that
658 * configuration.
659 */
660 ztest_test_skip();
661 }
662
663 /* get current cpu number */
664 _cpu_id = arch_curr_cpu()->id;
665
666 thread_id = k_thread_create(&t2, t2_stack, T2_STACK_SIZE,
667 thread_get_cpu_entry,
668 &_cpu_id, NULL, NULL,
669 K_PRIO_COOP(2),
670 K_INHERIT_PERMS, K_NO_WAIT);
671
672 k_busy_wait(DELAY_US);
673
674 k_thread_abort(thread_id);
675 k_thread_join(thread_id, K_FOREVER);
676 }
677
678 #ifdef CONFIG_TRACE_SCHED_IPI
679 /* global variable for testing send IPI */
680 static volatile int sched_ipi_has_called;
681
z_trace_sched_ipi(void)682 void z_trace_sched_ipi(void)
683 {
684 sched_ipi_has_called++;
685 }
686 #endif
687
688 /**
689 * @brief Test interprocessor interrupt
690 *
691 * @ingroup kernel_smp_integration_tests
692 *
693 * @details
694 * Test Objective:
695 * - To verify architecture layer provides a mechanism to issue an interprocessor
696 * interrupt to all other CPUs in the system that calls the scheduler IPI.
697 * We simply add a hook in z_sched_ipi(), in order to check if it has been
698 * called once in another CPU except the caller, when arch_sched_broadcast_ipi()
699 * is called.
700 *
701 * Testing techniques:
702 * - Interface testing, function and block box testing,
703 * dynamic analysis and testing
704 *
705 * Prerequisite Conditions:
706 * - CONFIG_SMP=y, and the HW platform must support SMP.
707 * - CONFIG_TRACE_SCHED_IPI=y was set.
708 *
709 * Input Specifications:
710 * - N/A
711 *
712 * Test Procedure:
713 * -# In main thread, given a global variable sched_ipi_has_called equaled zero.
714 * -# Call arch_sched_broadcast_ipi() then sleep for 100ms.
715 * -# In z_sched_ipi() handler, increment the sched_ipi_has_called.
716 * -# In main thread, check the sched_ipi_has_called is not equaled to zero.
717 * -# Repeat step 1 to 4 for 3 times.
718 *
719 * Expected Test Result:
720 * - The pointer of current cpu data that we got from function call is correct.
721 *
722 * Pass/Fail Criteria:
723 * - Successful if the check of step 4 are all passed.
724 * - Failure if one of the check of step 4 is failed.
725 *
726 * Assumptions and Constraints:
727 * - This test using for the platform that support SMP, in our current scenario
728 * , only x86_64 and arc supported.
729 *
730 * @see arch_sched_broadcast_ipi()
731 */
732 #ifdef CONFIG_SCHED_IPI_SUPPORTED
ZTEST(smp,test_smp_ipi)733 ZTEST(smp, test_smp_ipi)
734 {
735 #ifndef CONFIG_TRACE_SCHED_IPI
736 ztest_test_skip();
737 #endif
738
739 TC_PRINT("cpu num=%d", arch_num_cpus());
740
741 for (int i = 0; i < 3 ; i++) {
742 /* issue a sched ipi to tell other CPU to run thread */
743 sched_ipi_has_called = 0;
744 arch_sched_broadcast_ipi();
745
746 /* Need to wait longer than we think, loaded CI
747 * systems need to wait for host scheduling to run the
748 * other CPU's thread.
749 */
750 k_msleep(100);
751
752 /**TESTPOINT: check if enter our IPI interrupt handler */
753 zassert_true(sched_ipi_has_called != 0,
754 "did not receive IPI.(%d)",
755 sched_ipi_has_called);
756 }
757 }
758 #endif
759
k_sys_fatal_error_handler(unsigned int reason,const struct arch_esf * esf)760 void k_sys_fatal_error_handler(unsigned int reason, const struct arch_esf *esf)
761 {
762 static int trigger;
763
764 if (reason != K_ERR_KERNEL_OOPS) {
765 printk("wrong error reason\n");
766 TC_END_REPORT(TC_FAIL);
767 k_fatal_halt(reason);
768 }
769
770 if (trigger == 0) {
771 child_thread_id = curr_cpu();
772 trigger++;
773 } else {
774 main_thread_id = curr_cpu();
775
776 /* Verify the fatal was happened on different core */
777 zassert_true(main_thread_id != child_thread_id,
778 "fatal on the same core");
779 }
780 }
781
entry_oops(void * p1,void * p2,void * p3)782 void entry_oops(void *p1, void *p2, void *p3)
783 {
784 k_oops();
785 TC_ERROR("SHOULD NEVER SEE THIS\n");
786 }
787
788 /**
789 * @brief Test fatal error can be triggered on different core
790
791 * @details When CONFIG_SMP is enabled, on some multiprocessor
792 * platforms, exception can be triggered on different core at
793 * the same time.
794 *
795 * @ingroup kernel_common_tests
796 */
ZTEST(smp,test_fatal_on_smp)797 ZTEST(smp, test_fatal_on_smp)
798 {
799 /* Creat a child thread and trigger a crash */
800 k_thread_create(&t2, t2_stack, T2_STACK_SIZE, entry_oops,
801 NULL, NULL, NULL,
802 K_PRIO_PREEMPT(2), 0, K_NO_WAIT);
803
804 /* hold cpu and wait for thread trigger exception and being terminated */
805 k_busy_wait(5 * DELAY_US);
806
807 /* Verify that child thread is no longer running. We can't simply use k_thread_join here
808 * as we don't want to introduce reschedule point here.
809 */
810 zassert_true(z_is_thread_state_set(&t2, _THREAD_DEAD));
811
812 /* Manually trigger the crash in mainthread */
813 entry_oops(NULL, NULL, NULL);
814
815 /* should not be here */
816 ztest_test_fail();
817 }
818
workq_handler(struct k_work * work)819 static void workq_handler(struct k_work *work)
820 {
821 child_thread_id = curr_cpu();
822 }
823
824 /**
825 * @brief Test system workq run on different core
826
827 * @details When macro CONFIG_SMP is enabled, workq can be run
828 * on different core.
829 *
830 * @ingroup kernel_common_tests
831 */
ZTEST(smp,test_workq_on_smp)832 ZTEST(smp, test_workq_on_smp)
833 {
834 static struct k_work work;
835
836 k_work_init(&work, workq_handler);
837
838 /* submit work item on system workq */
839 k_work_submit(&work);
840
841 /* Wait for some time to let other core's thread run */
842 k_busy_wait(DELAY_US);
843
844 /* check work have finished */
845 zassert_equal(k_work_busy_get(&work), 0);
846
847 main_thread_id = curr_cpu();
848
849 /* Verify the ztest thread and system workq run on different core */
850 zassert_true(main_thread_id != child_thread_id,
851 "system workq run on the same core");
852 }
853
t1_mutex_lock(void * p1,void * p2,void * p3)854 static void t1_mutex_lock(void *p1, void *p2, void *p3)
855 {
856 ARG_UNUSED(p2);
857 ARG_UNUSED(p3);
858
859 /* t1 will get mutex first */
860 k_mutex_lock((struct k_mutex *)p1, K_FOREVER);
861
862 k_msleep(2);
863
864 k_mutex_unlock((struct k_mutex *)p1);
865 }
866
t2_mutex_lock(void * p1,void * p2,void * p3)867 static void t2_mutex_lock(void *p1, void *p2, void *p3)
868 {
869 ARG_UNUSED(p2);
870 ARG_UNUSED(p3);
871
872 zassert_equal(_current->base.global_lock_count, 0,
873 "thread global lock cnt %d is incorrect",
874 _current->base.global_lock_count);
875
876 k_mutex_lock((struct k_mutex *)p1, K_FOREVER);
877
878 zassert_equal(_current->base.global_lock_count, 0,
879 "thread global lock cnt %d is incorrect",
880 _current->base.global_lock_count);
881
882 k_mutex_unlock((struct k_mutex *)p1);
883
884 /**TESTPOINT: z_smp_release_global_lock() has been call during
885 * context switch but global_lock_cnt has not been decrease
886 * because no irq_lock() was called.
887 */
888 zassert_equal(_current->base.global_lock_count, 0,
889 "thread global lock cnt %d is incorrect",
890 _current->base.global_lock_count);
891 }
892
893 /**
894 * @brief Test scenario that a thread release the global lock
895 *
896 * @ingroup kernel_smp_tests
897 *
898 * @details Validate the scenario that make the internal APIs of SMP
899 * z_smp_release_global_lock() to be called.
900 */
ZTEST(smp,test_smp_release_global_lock)901 ZTEST(smp, test_smp_release_global_lock)
902 {
903 k_mutex_init(&smutex);
904
905 tinfo[0].tid =
906 k_thread_create(&tthread[0], tstack[0], STACK_SIZE,
907 t1_mutex_lock,
908 &smutex, NULL, NULL,
909 K_PRIO_PREEMPT(5),
910 K_INHERIT_PERMS, K_NO_WAIT);
911
912 tinfo[1].tid =
913 k_thread_create(&tthread[1], tstack[1], STACK_SIZE,
914 t2_mutex_lock,
915 &smutex, NULL, NULL,
916 K_PRIO_PREEMPT(3),
917 K_INHERIT_PERMS, K_MSEC(1));
918
919 /* Hold one of the cpu to ensure context switch as we wanted
920 * can happen in another cpu.
921 */
922 k_busy_wait(20000);
923
924 k_thread_join(tinfo[1].tid, K_FOREVER);
925 k_thread_join(tinfo[0].tid, K_FOREVER);
926 cleanup_resources();
927 }
928
929 #define LOOP_COUNT ((int)(20000 * RUN_FACTOR))
930
931 enum sync_t {
932 LOCK_IRQ,
933 LOCK_SEM,
934 LOCK_MUTEX
935 };
936
937 static int global_cnt;
938 static struct k_mutex smp_mutex;
939
940 static void (*sync_lock)(void *);
941 static void (*sync_unlock)(void *);
942
sync_lock_dummy(void * k)943 static void sync_lock_dummy(void *k)
944 {
945 /* no sync lock used */
946 }
947
sync_lock_irq(void * k)948 static void sync_lock_irq(void *k)
949 {
950 *((unsigned int *)k) = irq_lock();
951 }
952
sync_unlock_irq(void * k)953 static void sync_unlock_irq(void *k)
954 {
955 irq_unlock(*(unsigned int *)k);
956 }
957
sync_lock_sem(void * k)958 static void sync_lock_sem(void *k)
959 {
960 k_sem_take(&smp_sem, K_FOREVER);
961 }
962
sync_unlock_sem(void * k)963 static void sync_unlock_sem(void *k)
964 {
965 k_sem_give(&smp_sem);
966 }
967
sync_lock_mutex(void * k)968 static void sync_lock_mutex(void *k)
969 {
970 k_mutex_lock(&smp_mutex, K_FOREVER);
971 }
972
sync_unlock_mutex(void * k)973 static void sync_unlock_mutex(void *k)
974 {
975 k_mutex_unlock(&smp_mutex);
976 }
977
sync_init(int lock_type)978 static void sync_init(int lock_type)
979 {
980 switch (lock_type) {
981 case LOCK_IRQ:
982 sync_lock = sync_lock_irq;
983 sync_unlock = sync_unlock_irq;
984 break;
985 case LOCK_SEM:
986 sync_lock = sync_lock_sem;
987 sync_unlock = sync_unlock_sem;
988 k_sem_init(&smp_sem, 1, 3);
989 break;
990 case LOCK_MUTEX:
991 sync_lock = sync_lock_mutex;
992 sync_unlock = sync_unlock_mutex;
993 k_mutex_init(&smp_mutex);
994 break;
995
996 default:
997 sync_lock = sync_unlock = sync_lock_dummy;
998 }
999 }
1000
inc_global_cnt(void * a,void * b,void * c)1001 static void inc_global_cnt(void *a, void *b, void *c)
1002 {
1003 int key;
1004
1005 for (int i = 0; i < LOOP_COUNT; i++) {
1006
1007 sync_lock(&key);
1008
1009 global_cnt++;
1010 global_cnt--;
1011 global_cnt++;
1012
1013 sync_unlock(&key);
1014 }
1015 }
1016
run_concurrency(void * p1,void * p2,void * p3)1017 static int run_concurrency(void *p1, void *p2, void *p3)
1018 {
1019 ARG_UNUSED(p3);
1020
1021 int type = POINTER_TO_INT(p1);
1022 k_thread_entry_t func = p2;
1023 uint32_t start_t, end_t;
1024
1025 sync_init(type);
1026 global_cnt = 0;
1027 start_t = k_cycle_get_32();
1028
1029 tinfo[0].tid =
1030 k_thread_create(&tthread[0], tstack[0], STACK_SIZE,
1031 func,
1032 NULL, NULL, NULL,
1033 K_PRIO_PREEMPT(1),
1034 K_INHERIT_PERMS, K_NO_WAIT);
1035
1036 tinfo[1].tid =
1037 k_thread_create(&tthread[1], tstack[1], STACK_SIZE,
1038 func,
1039 NULL, NULL, NULL,
1040 K_PRIO_PREEMPT(1),
1041 K_INHERIT_PERMS, K_NO_WAIT);
1042
1043 k_tid_t tid =
1044 k_thread_create(&t2, t2_stack, T2_STACK_SIZE,
1045 func,
1046 NULL, NULL, NULL,
1047 K_PRIO_PREEMPT(1),
1048 K_INHERIT_PERMS, K_NO_WAIT);
1049
1050 k_thread_join(tinfo[0].tid, K_FOREVER);
1051 k_thread_join(tinfo[1].tid, K_FOREVER);
1052 k_thread_join(tid, K_FOREVER);
1053 cleanup_resources();
1054
1055 end_t = k_cycle_get_32();
1056
1057 printk("type %d: cnt %d, spend %u ms\n", type, global_cnt,
1058 k_cyc_to_ms_ceil32(end_t - start_t));
1059
1060 return global_cnt == (LOOP_COUNT * 3);
1061 }
1062
1063 /**
1064 * @brief Test if the concurrency of SMP works or not
1065 *
1066 * @ingroup kernel_smp_tests
1067 *
1068 * @details Validate the global lock and unlock API of SMP are thread-safe.
1069 * We make 3 thread to increase the global count in different cpu and
1070 * they both do locking then unlocking for LOOP_COUNT times. It shall be no
1071 * deadlock happened and total global count shall be 3 * LOOP COUNT.
1072 *
1073 * We show the 4 kinds of scenario:
1074 * - No any lock used
1075 * - Use global irq lock
1076 * - Use semaphore
1077 * - Use mutex
1078 */
ZTEST(smp,test_inc_concurrency)1079 ZTEST(smp, test_inc_concurrency)
1080 {
1081 /* increasing global var with irq lock */
1082 zassert_true(run_concurrency(INT_TO_POINTER(LOCK_IRQ), inc_global_cnt, NULL),
1083 "total count %d is wrong(i)", global_cnt);
1084
1085 /* increasing global var with irq lock */
1086 zassert_true(run_concurrency(INT_TO_POINTER(LOCK_SEM), inc_global_cnt, NULL),
1087 "total count %d is wrong(s)", global_cnt);
1088
1089 /* increasing global var with irq lock */
1090 zassert_true(run_concurrency(INT_TO_POINTER(LOCK_MUTEX), inc_global_cnt, NULL),
1091 "total count %d is wrong(M)", global_cnt);
1092 }
1093
1094 /**
1095 * @brief Torture test for context switching code
1096 *
1097 * @ingroup kernel_smp_tests
1098 *
1099 * @details Leverage the polling API to stress test the context switching code.
1100 * This test will hammer all the CPUs with thread swapping requests.
1101 */
process_events(void * arg0,void * arg1,void * arg2)1102 static void process_events(void *arg0, void *arg1, void *arg2)
1103 {
1104 ARG_UNUSED(arg1);
1105 ARG_UNUSED(arg2);
1106
1107 uintptr_t id = (uintptr_t) arg0;
1108
1109 while (1) {
1110 k_poll(&tevent[id], 1, K_FOREVER);
1111
1112 if (tevent[id].signal->result != 0x55) {
1113 ztest_test_fail();
1114 }
1115
1116 tevent[id].signal->signaled = 0;
1117 tevent[id].state = K_POLL_STATE_NOT_READY;
1118
1119 k_poll_signal_reset(&tsignal[id]);
1120 }
1121 }
1122
signal_raise(void * arg0,void * arg1,void * arg2)1123 static void signal_raise(void *arg0, void *arg1, void *arg2)
1124 {
1125 unsigned int num_threads = arch_num_cpus();
1126
1127 while (1) {
1128 for (uintptr_t i = 0; i < num_threads; i++) {
1129 k_poll_signal_raise(&tsignal[i], 0x55);
1130 }
1131 }
1132 }
1133
ZTEST(smp,test_smp_switch_torture)1134 ZTEST(smp, test_smp_switch_torture)
1135 {
1136 unsigned int num_threads = arch_num_cpus();
1137
1138 if (CONFIG_SMP_TEST_RUN_FACTOR == 0) {
1139 /* If CONFIG_SMP_TEST_RUN_FACTOR is zero,
1140 * the switch torture test is effectively
1141 * not doing anything as the k_sleep()
1142 * below is not going to sleep at all,
1143 * and all created threads are being
1144 * terminated (almost) immediately after
1145 * creation. So if run factor is zero,
1146 * mark the test as skipped.
1147 */
1148 ztest_test_skip();
1149 }
1150
1151 for (uintptr_t i = 0; i < num_threads; i++) {
1152 k_poll_signal_init(&tsignal[i]);
1153 k_poll_event_init(&tevent[i], K_POLL_TYPE_SIGNAL,
1154 K_POLL_MODE_NOTIFY_ONLY, &tsignal[i]);
1155
1156 k_thread_create(&tthread[i], tstack[i], STACK_SIZE,
1157 process_events,
1158 (void *) i, NULL, NULL, K_PRIO_PREEMPT(i + 1),
1159 K_INHERIT_PERMS, K_NO_WAIT);
1160 }
1161
1162 k_thread_create(&t2, t2_stack, T2_STACK_SIZE, signal_raise,
1163 NULL, NULL, NULL, K_PRIO_COOP(2), 0, K_NO_WAIT);
1164
1165 k_sleep(K_MSEC(SLEEP_MS_LONG));
1166
1167 k_thread_abort(&t2);
1168 k_thread_join(&t2, K_FOREVER);
1169 for (uintptr_t i = 0; i < num_threads; i++) {
1170 k_thread_abort(&tthread[i]);
1171 k_thread_join(&tthread[i], K_FOREVER);
1172 }
1173 }
1174
1175 /**
1176 * @brief Torture test for cpu affinity code
1177 *
1178 * @ingroup kernel_smp_tests
1179 *
1180 * @details Pin thread to a specific cpu. Once thread gets cpu, check
1181 * the cpu id is correct and then thread will give up cpu.
1182 */
1183 #ifdef CONFIG_SCHED_CPU_MASK
check_affinity(void * arg0,void * arg1,void * arg2)1184 static void check_affinity(void *arg0, void *arg1, void *arg2)
1185 {
1186 ARG_UNUSED(arg1);
1187 ARG_UNUSED(arg2);
1188
1189 int affinity = POINTER_TO_INT(arg0);
1190 int counter = 30;
1191
1192 while (counter != 0) {
1193 zassert_equal(affinity, curr_cpu(), "Affinity test failed.");
1194 counter--;
1195 k_yield();
1196 }
1197 }
1198
ZTEST(smp,test_smp_affinity)1199 ZTEST(smp, test_smp_affinity)
1200 {
1201 int num_threads = arch_num_cpus();
1202
1203 for (int i = 0; i < num_threads; ++i) {
1204 k_thread_create(&tthread[i], tstack[i],
1205 STACK_SIZE, check_affinity,
1206 INT_TO_POINTER(i), NULL, NULL,
1207 0, 0, K_FOREVER);
1208
1209 k_thread_cpu_pin(&tthread[i], i);
1210 k_thread_start(&tthread[i]);
1211 }
1212
1213 for (int i = 0; i < num_threads; i++) {
1214 k_thread_join(&tthread[i], K_FOREVER);
1215 }
1216 }
1217 #endif
1218
smp_tests_setup(void)1219 static void *smp_tests_setup(void)
1220 {
1221 /* Sleep a bit to guarantee that both CPUs enter an idle
1222 * thread from which they can exit correctly to run the main
1223 * test.
1224 */
1225 k_sleep(K_MSEC(10));
1226
1227 return NULL;
1228 }
1229
1230 ZTEST_SUITE(smp, NULL, smp_tests_setup, NULL, NULL, NULL);
1231