1 /*
2 * Copyright (c) 2023 Intel Corporation.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #define DT_DRV_COMPAT snps_designware_dma_axi
8
9 #include <zephyr/device.h>
10 #include <zephyr/drivers/dma.h>
11 #include <zephyr/logging/log.h>
12 #include <zephyr/drivers/reset.h>
13 #include <zephyr/cache.h>
14
15 LOG_MODULE_REGISTER(dma_designware_axi, CONFIG_DMA_LOG_LEVEL);
16
17 #define DEV_CFG(_dev) ((const struct dma_dw_axi_dev_cfg *)(_dev)->config)
18 #define DEV_DATA(_dev) ((struct dma_dw_axi_dev_data *const)(_dev)->data)
19
20 /* mask for block transfer size */
21 #define BLOCK_TS_MASK GENMASK(21, 0)
22
23 /* blen : number of data units
24 * blen will always be in power of two
25 *
26 * when blen is 1 then set msize to zero otherwise find most significant bit set
27 * and subtract two (as IP doesn't support number of data items 2)
28 */
29 #define DMA_DW_AXI_GET_MSIZE(blen) ((blen == 1) ? (0U) : (find_msb_set(blen) - 2U))
30
31 /* Common_Registers_Address_Block */
32 #define DMA_DW_AXI_IDREG 0x0
33 #define DMA_DW_AXI_COMPVERREG 0x08
34 #define DMA_DW_AXI_CFGREG 0x10
35 #define DMA_DW_AXI_CHENREG 0x18
36 #define DMA_DW_AXI_INTSTATUSREG 0x30
37 #define DMA_DW_AXI_COMMONREG_INTCLEARREG 0x38
38 #define DMA_DW_AXI_COMMONREG_INTSTATUS_ENABLEREG 0x40
39 #define DMA_DW_AXI_COMMONREG_INTSIGNAL_ENABLEREG 0x48
40 #define DMA_DW_AXI_COMMONREG_INTSTATUSREG 0x50
41 #define DMA_DW_AXI_RESETREG 0x58
42 #define DMA_DW_AXI_LOWPOWER_CFGREG 0x60
43
44 /* Channel enable by setting ch_en and ch_en_we */
45 #define CH_EN(chan) (BIT64(8 + chan) | BIT64(chan))
46 /* Channel enable by setting ch_susp and ch_susp_we */
47 #define CH_SUSP(chan) (BIT64(24 + chan) | BIT64(16 + chan))
48 /* Channel enable by setting ch_abort and ch_abort_we */
49 #define CH_ABORT(chan) (BIT64(40 + chan) | BIT64(32 + chan))
50
51 /* channel susp/resume write enable pos */
52 #define CH_RESUME_WE(chan) (BIT64(24 + chan))
53 /* channel resume bit pos */
54 #define CH_RESUME(chan) (BIT64(16 + chan))
55
56 #define DMA_DW_AXI_CHAN_OFFSET(chan) (0x100 * chan)
57
58 /* source address register for a channel */
59 #define DMA_DW_AXI_CH_SAR(chan) (0x100 + DMA_DW_AXI_CHAN_OFFSET(chan))
60 /* destination address register for a channel */
61 #define DMA_DW_AXI_CH_DAR(chan) (0x108 + DMA_DW_AXI_CHAN_OFFSET(chan))
62 /* block transfer size register for a channel */
63 #define DMA_DW_AXI_CH_BLOCK_TS(chan) (0x110 + DMA_DW_AXI_CHAN_OFFSET(chan))
64 /* channel control register */
65 #define DMA_DW_AXI_CH_CTL(chan) (0x118 + DMA_DW_AXI_CHAN_OFFSET(chan))
66 /* channel configuration register */
67 #define DMA_DW_AXI_CH_CFG(chan) (0x120 + DMA_DW_AXI_CHAN_OFFSET(chan))
68 /* linked list pointer register */
69 #define DMA_DW_AXI_CH_LLP(chan) (0x128 + DMA_DW_AXI_CHAN_OFFSET(chan))
70 /* channel status register */
71 #define DMA_DW_AXI_CH_STATUSREG(chan) (0x130 + DMA_DW_AXI_CHAN_OFFSET(chan))
72 /* channel software handshake source register */
73 #define DMA_DW_AXI_CH_SWHSSRCREG(chan) (0x138 + DMA_DW_AXI_CHAN_OFFSET(chan))
74 /* channel software handshake destination register */
75 #define DMA_DW_AXI_CH_SWHSDSTREG(chan) (0x140 + DMA_DW_AXI_CHAN_OFFSET(chan))
76 /* channel block transfer resume request register */
77 #define DMA_DW_AXI_CH_BLK_TFR_RESUMEREQREG(chan) (0x148 + DMA_DW_AXI_CHAN_OFFSET(chan))
78 /* channel AXI ID rester */
79 #define DMA_DW_AXI_CH_AXI_IDREG(chan) (0x150 + DMA_DW_AXI_CHAN_OFFSET(chan))
80 /* channel AXI QOS register */
81 #define DMA_DW_AXI_CH_AXI_QOSREG(chan) (0x158 + DMA_DW_AXI_CHAN_OFFSET(chan))
82 /* channel interrupt status enable register */
83 #define DMA_DW_AXI_CH_INTSTATUS_ENABLEREG(chan) (0x180 + DMA_DW_AXI_CHAN_OFFSET(chan))
84 /* channel interrupt status register */
85 #define DMA_DW_AXI_CH_INTSTATUS(chan) (0x188 + DMA_DW_AXI_CHAN_OFFSET(chan))
86 /* channel interrupt signal enable register */
87 #define DMA_DW_AXI_CH_INTSIGNAL_ENABLEREG(chan) (0x190 + DMA_DW_AXI_CHAN_OFFSET(chan))
88 /* channel interrupt clear register */
89 #define DMA_DW_AXI_CH_INTCLEARREG(chan) (0x198 + DMA_DW_AXI_CHAN_OFFSET(chan))
90
91 /* bitfield configuration for multi-block transfer */
92 #define DMA_DW_AXI_CFG_SRC_MULTBLK_TYPE(x) FIELD_PREP(GENMASK64(1, 0), x)
93 #define DMA_DW_AXI_CFG_DST_MULTBLK_TYPE(x) FIELD_PREP(GENMASK64(3, 2), x)
94
95 /* bitfield configuration to assign handshaking interface to source and destination */
96 #define DMA_DW_AXI_CFG_SRC_PER(x) FIELD_PREP(GENMASK64(9, 4), x)
97 #define DMA_DW_AXI_CFG_DST_PER(x) FIELD_PREP(GENMASK64(16, 11), x)
98
99 /* bitfield configuration for transfer type and flow controller */
100 #define DMA_DW_AXI_CFG_TT_FC(x) FIELD_PREP(GENMASK64(34, 32), x)
101
102 #define DMA_DW_AXI_CFG_HW_HS_SRC_BIT_POS 35
103 #define DMA_DW_AXI_CFG_HW_HS_DST_BIT_POS 36
104
105 #define DMA_DW_AXI_CFG_PRIORITY(x) FIELD_PREP(GENMASK64(51, 47), x)
106
107 /* descriptor valid or not */
108 #define DMA_DW_AXI_CTL_LLI_VALID BIT64(63)
109 /* descriptor is last or not in a link */
110 #define DMA_DW_AXI_CTL_LLI_LAST BIT64(62)
111 /* interrupt on completion of block transfer */
112 #define DMA_DW_AXI_CTL_IOC_BLK_TFR BIT64(58)
113 /* source status enable bit */
114 #define DMA_DW_AXI_CTL_SRC_STAT_EN BIT64(56)
115 /* destination status enable bit */
116 #define DMA_DW_AXI_CTL_DST_STAT_EN BIT64(57)
117 /* source burst length enable */
118 #define DMA_DW_AXI_CTL_ARLEN_EN BIT64(38)
119 /* source burst length(considered when corresponding enable bit is set) */
120 #define DMA_DW_AXI_CTL_ARLEN(x) FIELD_PREP(GENMASK64(46, 39), x)
121 /* destination burst length enable */
122 #define DMA_DW_AXI_CTL_AWLEN_EN BIT64(47)
123 /* destination burst length(considered when corresponding enable bit is set) */
124 #define DMA_DW_AXI_CTL_AWLEN(x) FIELD_PREP(GENMASK64(55, 48), x)
125
126 /* source burst transaction length */
127 #define DMA_DW_AXI_CTL_SRC_MSIZE(x) FIELD_PREP(GENMASK64(17, 14), x)
128 /* destination burst transaction length */
129 #define DMA_DW_AXI_CTL_DST_MSIZE(x) FIELD_PREP(GENMASK64(21, 18), x)
130 /* source transfer width */
131 #define DMA_DW_AXI_CTL_SRC_WIDTH(x) FIELD_PREP(GENMASK64(10, 8), x)
132 /* destination transfer width */
133 #define DMA_DW_AXI_CTL_DST_WIDTH(x) FIELD_PREP(GENMASK64(13, 11), x)
134
135 /* mask all the interrupts */
136 #define DMA_DW_AXI_IRQ_NONE 0
137 /* enable block completion transfer interrupt */
138 #define DMA_DW_AXI_IRQ_BLOCK_TFR BIT64(0)
139 /* enable transfer completion interrupt */
140 #define DMA_DW_AXI_IRQ_DMA_TFR BIT64(1)
141 /* enable interrupts on any dma transfer error */
142 #define DMA_DW_AXI_IRQ_ALL_ERR (GENMASK64(14, 5) | GENMASK64(21, 16))
143
144 /* global enable bit for dma controller */
145 #define DMA_DW_AXI_CFG_EN BIT64(0)
146 /* global enable bit for interrupt */
147 #define DMA_DW_AXI_CFG_INT_EN BIT64(1)
148
149 /* descriptor used by dw axi dma controller*/
150 struct dma_lli {
151 uint64_t sar;
152 uint64_t dar;
153 uint32_t block_ts_lo;
154 uint32_t reserved;
155 uint64_t llp;
156 uint64_t ctl;
157 uint32_t sstat;
158 uint32_t dstat;
159 uint64_t llp_status;
160 uint64_t reserved1;
161 } __aligned(64);
162
163 /* status of the channel */
164 enum dma_dw_axi_ch_state {
165 DMA_DW_AXI_CH_IDLE,
166 DMA_DW_AXI_CH_SUSPENDED,
167 DMA_DW_AXI_CH_ACTIVE,
168 DMA_DW_AXI_CH_PREPARED,
169 };
170
171 /* source and destination transfer width */
172 enum dma_dw_axi_ch_width {
173 BITS_8,
174 BITS_16,
175 BITS_32,
176 BITS_64,
177 BITS_128,
178 BITS_256,
179 BITS_512,
180 };
181
182 /* transfer direction and flow controller */
183 enum dma_dw_axi_tt_fc {
184 M2M_DMAC,
185 M2P_DMAC,
186 P2M_DMAC,
187 P2P_DMAC,
188 P2M_SRC,
189 P2P_SRC,
190 M2P_DST,
191 P2P_DST,
192 };
193
194 /* type of multi-block transfer */
195 enum dma_dw_axi_multi_blk_type {
196 MULTI_BLK_CONTIGUOUS,
197 MULTI_BLK_RELOAD,
198 MULTI_BLK_SHADOW_REG,
199 MULTI_BLK_LLI,
200 };
201
202 /* dma driver channel specific information */
203 struct dma_dw_axi_ch_data {
204 /* lli descriptor base */
205 struct dma_lli *lli_desc_base;
206 /* lli current descriptor */
207 struct dma_lli *lli_desc_current;
208 /* dma channel state */
209 enum dma_dw_axi_ch_state ch_state;
210 /* direction of transfer */
211 uint32_t direction;
212 /* number of descriptors */
213 uint32_t lli_desc_count;
214 /* cfg register configuration for dma transfer */
215 uint64_t cfg;
216 /* mask and unmask interrupts */
217 uint64_t irq_unmask;
218 /* user call back for dma transfer completion */
219 dma_callback_t dma_xfer_callback;
220 /* user data for dma callback for dma transfer completion */
221 void *priv_data_xfer;
222 /* user call back for dma block transfer completion */
223 dma_callback_t dma_blk_xfer_callback;
224 /* user data for dma callback for dma block transfer completion */
225 void *priv_data_blk_tfr;
226 };
227
228 /* dma controller driver data structure */
229 struct dma_dw_axi_dev_data {
230 /* dma context */
231 struct dma_context dma_ctx;
232
233 /* mmio address mapping info for dma controller */
234 DEVICE_MMIO_NAMED_RAM(dma_mmio);
235 /* pointer to store channel specific info */
236 struct dma_dw_axi_ch_data *chan;
237 /* pointer to hold descriptor base address */
238 struct dma_lli *dma_desc_pool;
239 };
240
241 /* Device constant configuration parameters */
242 struct dma_dw_axi_dev_cfg {
243 /* dma address space to map */
244 DEVICE_MMIO_NAMED_ROM(dma_mmio);
245
246 #if DT_ANY_INST_HAS_PROP_STATUS_OKAY(resets)
247 /* Reset controller device configurations */
248 const struct reset_dt_spec reset;
249 #endif
250 /* dma controller interrupt configuration function pointer */
251 void (*irq_config)(void);
252 };
253
254 /**
255 * @brief get current status of the channel
256 *
257 * @param dev Pointer to the device structure for the driver instance
258 * @param channel channel number
259 *
260 * @retval status of the channel
261 */
dma_dw_axi_get_ch_status(const struct device * dev,uint32_t ch)262 static enum dma_dw_axi_ch_state dma_dw_axi_get_ch_status(const struct device *dev, uint32_t ch)
263 {
264 uint32_t bit_status;
265 uint64_t ch_status;
266 uintptr_t reg_base = DEVICE_MMIO_NAMED_GET(dev, dma_mmio);
267
268 ch_status = sys_read64(reg_base + DMA_DW_AXI_CHENREG);
269
270 /* channel is active/busy in the dma transfer */
271 bit_status = ((ch_status >> ch) & 1);
272 if (bit_status) {
273 return DMA_DW_AXI_CH_ACTIVE;
274 }
275
276 /* channel is currently suspended */
277 bit_status = ((ch_status >> (16 + ch)) & 1);
278 if (bit_status) {
279 return DMA_DW_AXI_CH_SUSPENDED;
280 }
281
282 /* channel is idle */
283 return DMA_DW_AXI_CH_IDLE;
284 }
285
dma_dw_axi_isr(const struct device * dev)286 static void dma_dw_axi_isr(const struct device *dev)
287 {
288 unsigned int channel;
289 uint64_t status, ch_status;
290 int ret_status = 0;
291 struct dma_dw_axi_ch_data *chan_data;
292 uintptr_t reg_base = DEVICE_MMIO_NAMED_GET(dev, dma_mmio);
293 struct dma_dw_axi_dev_data *const dw_dev_data = DEV_DATA(dev);
294
295 /* read interrupt status register to find interrupt is for which channel */
296 status = sys_read64(reg_base + DMA_DW_AXI_INTSTATUSREG);
297 channel = find_lsb_set(status) - 1;
298 if (channel < 0) {
299 LOG_ERR("Spurious interrupt received channel:%u\n", channel);
300 return;
301 }
302
303 if (channel > (dw_dev_data->dma_ctx.dma_channels - 1)) {
304 LOG_ERR("Interrupt received on invalid channel:%d\n", channel);
305 return;
306 }
307
308 /* retrieve channel specific data pointer for a channel */
309 chan_data = &dw_dev_data->chan[channel];
310
311 /* get dma transfer status */
312 ch_status = sys_read64(reg_base + DMA_DW_AXI_CH_INTSTATUS(channel));
313 if (!ch_status) {
314 LOG_ERR("Spurious interrupt received ch_status:0x%llx\n", ch_status);
315 return;
316 }
317
318 /* handle dma transfer errors if any */
319 if (ch_status & DMA_DW_AXI_IRQ_ALL_ERR) {
320 sys_write64(DMA_DW_AXI_IRQ_ALL_ERR,
321 reg_base + DMA_DW_AXI_CH_INTCLEARREG(channel));
322 LOG_ERR("DMA Error: Channel:%d Channel interrupt status:0x%llx\n",
323 channel, ch_status);
324 ret_status = -(ch_status & DMA_DW_AXI_IRQ_ALL_ERR);
325 }
326
327 /* handle block transfer completion */
328 if (ch_status & DMA_DW_AXI_IRQ_BLOCK_TFR) {
329 sys_write64(DMA_DW_AXI_IRQ_ALL_ERR | DMA_DW_AXI_IRQ_BLOCK_TFR,
330 reg_base + DMA_DW_AXI_CH_INTCLEARREG(channel));
331
332 if (chan_data->dma_blk_xfer_callback) {
333 chan_data->dma_blk_xfer_callback(dev,
334 chan_data->priv_data_blk_tfr, channel, ret_status);
335 }
336 }
337
338 /* handle dma transfer completion */
339 if (ch_status & DMA_DW_AXI_IRQ_DMA_TFR) {
340 sys_write64(DMA_DW_AXI_IRQ_ALL_ERR | DMA_DW_AXI_IRQ_DMA_TFR,
341 reg_base + DMA_DW_AXI_CH_INTCLEARREG(channel));
342
343 if (chan_data->dma_xfer_callback) {
344 chan_data->dma_xfer_callback(dev, chan_data->priv_data_xfer,
345 channel, ret_status);
346 chan_data->ch_state = dma_dw_axi_get_ch_status(dev, channel);
347 }
348 }
349 }
350
351 /**
352 * @brief set data source and destination data width
353 *
354 * @param lli_desc Pointer to the descriptor
355 * @param src_data_width source data width
356 * @param dest_data_width destination data width
357 *
358 * @retval 0 on success, -ENOTSUP if the data width is not supported
359 */
dma_dw_axi_set_data_width(struct dma_lli * lli_desc,uint32_t src_data_width,uint32_t dest_data_width)360 static int dma_dw_axi_set_data_width(struct dma_lli *lli_desc,
361 uint32_t src_data_width, uint32_t dest_data_width)
362 {
363 if (src_data_width > CONFIG_DMA_DW_AXI_DATA_WIDTH ||
364 dest_data_width > CONFIG_DMA_DW_AXI_DATA_WIDTH) {
365 LOG_ERR("transfer width more than %u not supported", CONFIG_DMA_DW_AXI_DATA_WIDTH);
366 return -ENOTSUP;
367 }
368
369 switch (src_data_width) {
370 case 1:
371 /* one byte transfer */
372 lli_desc->ctl |= DMA_DW_AXI_CTL_SRC_WIDTH(BITS_8);
373 break;
374 case 2:
375 /* 2-bytes transfer width */
376 lli_desc->ctl |= DMA_DW_AXI_CTL_SRC_WIDTH(BITS_16);
377 break;
378 case 4:
379 /* 4-bytes transfer width */
380 lli_desc->ctl |= DMA_DW_AXI_CTL_SRC_WIDTH(BITS_32);
381 break;
382 case 8:
383 /* 8-bytes transfer width */
384 lli_desc->ctl |= DMA_DW_AXI_CTL_SRC_WIDTH(BITS_64);
385 break;
386 case 16:
387 /* 16-bytes transfer width */
388 lli_desc->ctl |= DMA_DW_AXI_CTL_SRC_WIDTH(BITS_128);
389 break;
390 case 32:
391 /* 32-bytes transfer width */
392 lli_desc->ctl |= DMA_DW_AXI_CTL_SRC_WIDTH(BITS_256);
393 break;
394 case 64:
395 /* 64-bytes transfer width */
396 lli_desc->ctl |= DMA_DW_AXI_CTL_SRC_WIDTH(BITS_512);
397 break;
398 default:
399 LOG_ERR("Source transfer width not supported");
400 return -ENOTSUP;
401 }
402
403 switch (dest_data_width) {
404 case 1:
405 /* one byte transfer */
406 lli_desc->ctl |= DMA_DW_AXI_CTL_DST_WIDTH(BITS_8);
407 break;
408 case 2:
409 /* 2-bytes transfer width */
410 lli_desc->ctl |= DMA_DW_AXI_CTL_DST_WIDTH(BITS_16);
411 break;
412 case 4:
413 /* 4-bytes transfer width */
414 lli_desc->ctl |= DMA_DW_AXI_CTL_DST_WIDTH(BITS_32);
415 break;
416 case 8:
417 /* 8-bytes transfer width */
418 lli_desc->ctl |= DMA_DW_AXI_CTL_DST_WIDTH(BITS_64);
419 break;
420 case 16:
421 /* 16-bytes transfer width */
422 lli_desc->ctl |= DMA_DW_AXI_CTL_DST_WIDTH(BITS_128);
423 break;
424 case 32:
425 /* 32-bytes transfer width */
426 lli_desc->ctl |= DMA_DW_AXI_CTL_DST_WIDTH(BITS_256);
427 break;
428 case 64:
429 /* 64-bytes transfer width */
430 lli_desc->ctl |= DMA_DW_AXI_CTL_DST_WIDTH(BITS_512);
431 break;
432 default:
433 LOG_ERR("Destination transfer width not supported");
434 return -ENOTSUP;
435 }
436
437 return 0;
438 }
439
dma_dw_axi_config(const struct device * dev,uint32_t channel,struct dma_config * cfg)440 static int dma_dw_axi_config(const struct device *dev, uint32_t channel,
441 struct dma_config *cfg)
442 {
443 int ret;
444 uint32_t msize_src, msize_dst, i, ch_state;
445 struct dma_dw_axi_ch_data *chan_data;
446 struct dma_block_config *blk_cfg;
447 struct dma_lli *lli_desc;
448 struct dma_dw_axi_dev_data *const dw_dev_data = DEV_DATA(dev);
449
450 /* check for invalid parameters before dereferencing them. */
451 if (cfg == NULL) {
452 LOG_ERR("invalid dma config :%p", cfg);
453 return -ENODATA;
454 }
455
456 /* check if the channel is valid */
457 if (channel > (dw_dev_data->dma_ctx.dma_channels - 1)) {
458 LOG_ERR("invalid dma channel %d", channel);
459 return -EINVAL;
460 }
461
462 /* return if the channel is not idle */
463 ch_state = dma_dw_axi_get_ch_status(dev, channel);
464 if (ch_state != DMA_DW_AXI_CH_IDLE) {
465 LOG_ERR("DMA channel:%d is not idle(status:%d)", channel, ch_state);
466 return -EBUSY;
467 }
468
469 if (!cfg->block_count) {
470 LOG_ERR("no blocks to transfer");
471 return -EINVAL;
472 }
473
474 /* descriptor should be less than max configured descriptor */
475 if (cfg->block_count > CONFIG_DMA_DW_AXI_MAX_DESC) {
476 LOG_ERR("dma:%s channel %d descriptor block count: %d larger than"
477 " max descriptors in pool: %d", dev->name, channel,
478 cfg->block_count, CONFIG_DMA_DW_AXI_MAX_DESC);
479 return -EINVAL;
480 }
481
482 if (cfg->source_burst_length > CONFIG_DMA_DW_AXI_MAX_BURST_TXN_LEN ||
483 cfg->dest_burst_length > CONFIG_DMA_DW_AXI_MAX_BURST_TXN_LEN ||
484 cfg->source_burst_length == 0 || cfg->dest_burst_length == 0) {
485 LOG_ERR("dma:%s burst length not supported", dev->name);
486 return -ENOTSUP;
487 }
488
489 /* get channel specific data pointer */
490 chan_data = &dw_dev_data->chan[channel];
491
492 /* check if the channel is currently idle */
493 if (chan_data->ch_state != DMA_DW_AXI_CH_IDLE) {
494 LOG_ERR("DMA channel:%d is busy", channel);
495 return -EBUSY;
496 }
497
498 /* burst transaction length for source and destination */
499 msize_src = DMA_DW_AXI_GET_MSIZE(cfg->source_burst_length);
500 msize_dst = DMA_DW_AXI_GET_MSIZE(cfg->dest_burst_length);
501
502 chan_data->cfg = 0;
503 chan_data->irq_unmask = 0;
504
505 chan_data->direction = cfg->channel_direction;
506
507 chan_data->lli_desc_base =
508 &dw_dev_data->dma_desc_pool[channel * CONFIG_DMA_DW_AXI_MAX_DESC];
509 chan_data->lli_desc_count = cfg->block_count;
510 memset(chan_data->lli_desc_base, 0,
511 sizeof(struct dma_lli) * chan_data->lli_desc_count);
512
513 lli_desc = chan_data->lli_desc_base;
514 blk_cfg = cfg->head_block;
515
516 /* max channel priority can be MAX_CHANNEL - 1 */
517 if (cfg->channel_priority < dw_dev_data->dma_ctx.dma_channels) {
518 chan_data->cfg |= DMA_DW_AXI_CFG_PRIORITY(cfg->channel_priority);
519 }
520
521 /* configure all the descriptors in a loop */
522 for (i = 0; i < cfg->block_count; i++) {
523
524 ret = dma_dw_axi_set_data_width(lli_desc, cfg->source_data_size,
525 cfg->dest_data_size);
526 if (ret) {
527 return ret;
528 }
529
530 lli_desc->ctl |= DMA_DW_AXI_CTL_SRC_STAT_EN |
531 DMA_DW_AXI_CTL_DST_STAT_EN | DMA_DW_AXI_CTL_IOC_BLK_TFR;
532
533 lli_desc->sar = blk_cfg->source_address;
534 lli_desc->dar = blk_cfg->dest_address;
535
536 /* set block transfer size*/
537 lli_desc->block_ts_lo = (blk_cfg->block_size / cfg->source_data_size) - 1;
538 if (lli_desc->block_ts_lo > CONFIG_DMA_DW_AXI_MAX_BLOCK_TS) {
539 LOG_ERR("block transfer size more than %u not supported",
540 CONFIG_DMA_DW_AXI_MAX_BLOCK_TS);
541 return -ENOTSUP;
542 }
543
544 /* configuration based on channel direction */
545 if (cfg->channel_direction == MEMORY_TO_MEMORY) {
546 chan_data->cfg |= DMA_DW_AXI_CFG_TT_FC(M2M_DMAC);
547
548 lli_desc->ctl |= DMA_DW_AXI_CTL_SRC_MSIZE(msize_src) |
549 DMA_DW_AXI_CTL_DST_MSIZE(msize_dst);
550
551 } else if (cfg->channel_direction == MEMORY_TO_PERIPHERAL) {
552
553 chan_data->cfg |= DMA_DW_AXI_CFG_TT_FC(M2P_DMAC);
554 lli_desc->ctl |= DMA_DW_AXI_CTL_SRC_MSIZE(msize_src) |
555 DMA_DW_AXI_CTL_DST_MSIZE(msize_dst);
556 WRITE_BIT(chan_data->cfg, DMA_DW_AXI_CFG_HW_HS_DST_BIT_POS, 0);
557
558 /* assign a hardware handshake interface */
559 chan_data->cfg |= DMA_DW_AXI_CFG_DST_PER(cfg->dma_slot);
560
561 } else if (cfg->channel_direction == PERIPHERAL_TO_MEMORY) {
562 lli_desc->ctl |= DMA_DW_AXI_CTL_SRC_MSIZE(msize_src) |
563 DMA_DW_AXI_CTL_DST_MSIZE(msize_dst);
564 chan_data->cfg |= DMA_DW_AXI_CFG_TT_FC(P2M_DMAC);
565 WRITE_BIT(chan_data->cfg, DMA_DW_AXI_CFG_HW_HS_SRC_BIT_POS, 0);
566
567 /* assign a hardware handshake interface */
568 chan_data->cfg |= DMA_DW_AXI_CFG_SRC_PER(cfg->dma_slot);
569
570 } else {
571 LOG_ERR("%s: dma %s channel %d invalid direction %d",
572 __func__, dev->name, channel, cfg->channel_direction);
573
574 return -EINVAL;
575 }
576
577 /* set pointer to the next descriptor */
578 lli_desc->llp = ((uint64_t)(lli_desc + 1));
579
580 #if defined(CONFIG_DMA_DW_AXI_LLI_SUPPORT)
581 /* configure multi block transfer size as linked list */
582 chan_data->cfg |= DMA_DW_AXI_CFG_SRC_MULTBLK_TYPE(MULTI_BLK_LLI) |
583 DMA_DW_AXI_CFG_DST_MULTBLK_TYPE(MULTI_BLK_LLI);
584
585 lli_desc->ctl |= DMA_DW_AXI_CTL_LLI_VALID;
586 /* last descriptor*/
587 if ((i + 1) == chan_data->lli_desc_count) {
588 lli_desc->ctl |= DMA_DW_AXI_CTL_LLI_LAST | DMA_DW_AXI_CTL_LLI_VALID;
589 lli_desc->llp = 0;
590 }
591 #else
592 /* configure multi-block transfer as contiguous mode */
593 chan_data->cfg |= DMA_DW_AXI_CFG_SRC_MULTBLK_TYPE(MULTI_BLK_CONTIGUOUS) |
594 DMA_DW_AXI_CFG_DST_MULTBLK_TYPE(MULTI_BLK_CONTIGUOUS);
595 #endif
596
597 /* next descriptor to configure*/
598 lli_desc++;
599 blk_cfg = blk_cfg->next_block;
600 }
601
602 arch_dcache_flush_range((void *)chan_data->lli_desc_base,
603 sizeof(struct dma_lli) * cfg->block_count);
604
605 chan_data->lli_desc_current = chan_data->lli_desc_base;
606
607 /* enable an interrupt depending on whether the callback is requested after dma transfer
608 * completion or dma block transfer completion
609 *
610 * disable an interrupt if callback is not requested
611 */
612 if (cfg->dma_callback && cfg->complete_callback_en) {
613 chan_data->dma_blk_xfer_callback = cfg->dma_callback;
614 chan_data->priv_data_blk_tfr = cfg->user_data;
615
616 chan_data->irq_unmask = DMA_DW_AXI_IRQ_BLOCK_TFR | DMA_DW_AXI_IRQ_DMA_TFR;
617 } else if (cfg->dma_callback && !cfg->complete_callback_en) {
618 chan_data->dma_xfer_callback = cfg->dma_callback;
619 chan_data->priv_data_xfer = cfg->user_data;
620
621 chan_data->irq_unmask = DMA_DW_AXI_IRQ_DMA_TFR;
622 } else {
623 chan_data->irq_unmask = DMA_DW_AXI_IRQ_NONE;
624 }
625
626 /* unmask error interrupts when error_callback_dis is 0 */
627 if (!cfg->error_callback_dis) {
628 chan_data->irq_unmask |= DMA_DW_AXI_IRQ_ALL_ERR;
629 }
630
631 /* dma descriptors are configured, ready to start dma transfer */
632 chan_data->ch_state = DMA_DW_AXI_CH_PREPARED;
633
634 return 0;
635 }
636
dma_dw_axi_start(const struct device * dev,uint32_t channel)637 static int dma_dw_axi_start(const struct device *dev, uint32_t channel)
638 {
639 uint32_t ch_state;
640 struct dma_dw_axi_ch_data *chan_data;
641 struct dma_lli *lli_desc;
642 struct dma_dw_axi_dev_data *const dw_dev_data = DEV_DATA(dev);
643 uintptr_t reg_base = DEVICE_MMIO_NAMED_GET(dev, dma_mmio);
644
645 /* validate channel number */
646 if (channel > (dw_dev_data->dma_ctx.dma_channels - 1)) {
647 LOG_ERR("invalid dma channel %d", channel);
648 return -EINVAL;
649 }
650
651 /* check whether channel is idle before initiating DMA transfer */
652 ch_state = dma_dw_axi_get_ch_status(dev, channel);
653 if (ch_state != DMA_DW_AXI_CH_IDLE) {
654 LOG_ERR("DMA channel:%d is not idle", channel);
655 return -EBUSY;
656 }
657
658 /* get channel specific data pointer */
659 chan_data = &dw_dev_data->chan[channel];
660
661 if (chan_data->ch_state != DMA_DW_AXI_CH_PREPARED) {
662 LOG_ERR("DMA descriptors not configured");
663 return -EINVAL;
664 }
665
666 /* enable dma controller and global interrupt bit */
667 sys_write64(DMA_DW_AXI_CFG_INT_EN | DMA_DW_AXI_CFG_EN, reg_base + DMA_DW_AXI_CFGREG);
668
669 sys_write64(chan_data->cfg, reg_base + DMA_DW_AXI_CH_CFG(channel));
670
671 sys_write64(chan_data->irq_unmask,
672 reg_base + DMA_DW_AXI_CH_INTSTATUS_ENABLEREG(channel));
673 sys_write64(chan_data->irq_unmask,
674 reg_base + DMA_DW_AXI_CH_INTSIGNAL_ENABLEREG(channel));
675
676 lli_desc = chan_data->lli_desc_current;
677
678 #if defined(CONFIG_DMA_DW_AXI_LLI_SUPPORT)
679 sys_write64(((uint64_t)lli_desc), reg_base + DMA_DW_AXI_CH_LLP(channel));
680 #else
681 /* Program Source and Destination addresses */
682 sys_write64(lli_desc->sar, reg_base + DMA_DW_AXI_CH_SAR(channel));
683 sys_write64(lli_desc->dar, reg_base + DMA_DW_AXI_CH_DAR(channel));
684
685 sys_write64(lli_desc->block_ts_lo & BLOCK_TS_MASK,
686 reg_base + DMA_DW_AXI_CH_BLOCK_TS(channel));
687
688 /* Program CH.CTL register */
689 sys_write64(lli_desc->ctl, reg_base + DMA_DW_AXI_CH_CTL(channel));
690 #endif
691
692 /* Enable the channel which will initiate DMA transfer */
693 sys_write64(CH_EN(channel), reg_base + DMA_DW_AXI_CHENREG);
694
695 chan_data->ch_state = dma_dw_axi_get_ch_status(dev, channel);
696
697 return 0;
698 }
699
dma_dw_axi_stop(const struct device * dev,uint32_t channel)700 static int dma_dw_axi_stop(const struct device *dev, uint32_t channel)
701 {
702 bool is_channel_busy;
703 uint32_t ch_state;
704 struct dma_dw_axi_dev_data *const dw_dev_data = DEV_DATA(dev);
705 uintptr_t reg_base = DEVICE_MMIO_NAMED_GET(dev, dma_mmio);
706
707 /* channel should be valid */
708 if (channel > (dw_dev_data->dma_ctx.dma_channels - 1)) {
709 LOG_ERR("invalid dma channel %d", channel);
710 return -EINVAL;
711 }
712
713 /* return if the channel is idle as there is nothing to stop */
714 ch_state = dma_dw_axi_get_ch_status(dev, channel);
715 if (ch_state == DMA_DW_AXI_CH_IDLE) {
716 /* channel is already idle */
717 return 0;
718 }
719
720 /* To stop transfer or abort the channel in case of abnormal state:
721 * 1. To disable channel, first suspend channel and drain the FIFO
722 * 2. Disable the channel. Channel may get hung and can't be disabled
723 * if there is no response from peripheral
724 * 3. If channel is not disabled, Abort the channel. Aborting channel will
725 * Flush out FIFO and data will be lost. Then corresponding interrupt will
726 * be raised for abort and CH_EN bit will be cleared from CHENREG register
727 */
728 sys_write64(CH_SUSP(channel), reg_base + DMA_DW_AXI_CHENREG);
729
730 /* Try to disable the channel */
731 sys_clear_bit(reg_base + DMA_DW_AXI_CHENREG, channel);
732
733 is_channel_busy = WAIT_FOR((sys_read64(reg_base + DMA_DW_AXI_CHENREG)) & (BIT(channel)),
734 CONFIG_DMA_CHANNEL_STATUS_TIMEOUT, k_busy_wait(10));
735 if (is_channel_busy) {
736 LOG_WRN("No response from handshaking interface... Aborting a channel...");
737 sys_write64(CH_ABORT(channel), reg_base + DMA_DW_AXI_CHENREG);
738
739 is_channel_busy = WAIT_FOR((sys_read64(reg_base + DMA_DW_AXI_CHENREG)) &
740 (BIT(channel)), CONFIG_DMA_CHANNEL_STATUS_TIMEOUT,
741 k_busy_wait(10));
742 if (is_channel_busy) {
743 LOG_ERR("Channel abort failed");
744 return -EBUSY;
745 }
746 }
747
748 return 0;
749 }
750
dma_dw_axi_resume(const struct device * dev,uint32_t channel)751 static int dma_dw_axi_resume(const struct device *dev, uint32_t channel)
752 {
753 uint32_t reg;
754 uintptr_t reg_base = DEVICE_MMIO_NAMED_GET(dev, dma_mmio);
755 struct dma_dw_axi_dev_data *const dw_dev_data = DEV_DATA(dev);
756 uint32_t ch_state;
757
758 /* channel should be valid */
759 if (channel > (dw_dev_data->dma_ctx.dma_channels - 1)) {
760 LOG_ERR("invalid dma channel %d", channel);
761 return -EINVAL;
762 }
763
764 ch_state = dma_dw_axi_get_ch_status(dev, channel);
765 if (ch_state != DMA_DW_AXI_CH_SUSPENDED) {
766 LOG_INF("channel %u is not in suspended state so cannot resume channel", channel);
767 return 0;
768 }
769
770 reg = sys_read64(reg_base + DMA_DW_AXI_CHENREG);
771 /* channel susp write enable bit has to be asserted */
772 WRITE_BIT(reg, CH_RESUME_WE(channel), 1);
773 /* channel susp bit must be cleared to resume a channel*/
774 WRITE_BIT(reg, CH_RESUME(channel), 0);
775 /* resume a channel by writing 0: ch_susp and 1: ch_susp_we */
776 sys_write64(reg, reg_base + DMA_DW_AXI_CHENREG);
777
778 return 0;
779 }
780
781 /* suspend a dma channel */
dma_dw_axi_suspend(const struct device * dev,uint32_t channel)782 static int dma_dw_axi_suspend(const struct device *dev, uint32_t channel)
783 {
784 int ret;
785 uintptr_t reg_base = DEVICE_MMIO_NAMED_GET(dev, dma_mmio);
786 struct dma_dw_axi_dev_data *const dw_dev_data = DEV_DATA(dev);
787 uint32_t ch_state;
788
789 /* channel should be valid */
790 if (channel > (dw_dev_data->dma_ctx.dma_channels - 1)) {
791 LOG_ERR("invalid dma channel %u", channel);
792 return -EINVAL;
793 }
794
795 ch_state = dma_dw_axi_get_ch_status(dev, channel);
796 if (ch_state != DMA_DW_AXI_CH_ACTIVE) {
797 LOG_INF("nothing to suspend as dma channel %u is not busy", channel);
798 return 0;
799 }
800
801 /* suspend dma transfer */
802 sys_write64(CH_SUSP(channel), reg_base + DMA_DW_AXI_CHENREG);
803
804 ret = WAIT_FOR(dma_dw_axi_get_ch_status(dev, channel) &
805 DMA_DW_AXI_CH_SUSPENDED, CONFIG_DMA_CHANNEL_STATUS_TIMEOUT,
806 k_busy_wait(10));
807 if (ret == 0) {
808 LOG_ERR("channel suspend failed");
809 return ret;
810 }
811
812 return 0;
813 }
814
dma_dw_axi_init(const struct device * dev)815 static int dma_dw_axi_init(const struct device *dev)
816 {
817 DEVICE_MMIO_NAMED_MAP(dev, dma_mmio, K_MEM_CACHE_NONE);
818 int i, ret;
819 struct dma_dw_axi_ch_data *chan_data;
820 const struct dma_dw_axi_dev_cfg *dw_dma_config = DEV_CFG(dev);
821 struct dma_dw_axi_dev_data *const dw_dev_data = DEV_DATA(dev);
822
823 #if DT_ANY_INST_HAS_PROP_STATUS_OKAY(resets)
824
825 if (dw_dma_config->reset.dev != NULL) {
826 /* check if reset manager is in ready state */
827 if (!device_is_ready(dw_dma_config->reset.dev)) {
828 LOG_ERR("reset controller device not found");
829 return -ENODEV;
830 }
831
832 /* assert and de-assert dma controller */
833 ret = reset_line_toggle(dw_dma_config->reset.dev, dw_dma_config->reset.id);
834 if (ret != 0) {
835 LOG_ERR("failed to reset dma controller");
836 return ret;
837 }
838 }
839 #endif
840
841 /* initialize channel state variable */
842 for (i = 0; i < dw_dev_data->dma_ctx.dma_channels; i++) {
843 chan_data = &dw_dev_data->chan[i];
844 /* initialize channel state */
845 chan_data->ch_state = DMA_DW_AXI_CH_IDLE;
846 }
847
848 /* configure and enable interrupt lines */
849 dw_dma_config->irq_config();
850
851 return 0;
852 }
853
854 static DEVICE_API(dma, dma_dw_axi_driver_api) = {
855 .config = dma_dw_axi_config,
856 .start = dma_dw_axi_start,
857 .stop = dma_dw_axi_stop,
858 .suspend = dma_dw_axi_suspend,
859 .resume = dma_dw_axi_resume,
860 };
861
862 /* enable irq lines */
863 #define CONFIGURE_DMA_IRQ(idx, inst) \
864 IF_ENABLED(DT_INST_IRQ_HAS_IDX(inst, idx), ( \
865 IRQ_CONNECT(DT_INST_IRQ_BY_IDX(inst, idx, irq), \
866 DT_INST_IRQ_BY_IDX(inst, idx, priority), \
867 dma_dw_axi_isr, \
868 DEVICE_DT_INST_GET(inst), 0); \
869 irq_enable(DT_INST_IRQ_BY_IDX(inst, idx, irq)); \
870 ))
871
872 #define DW_AXI_DMA_RESET_SPEC_INIT(inst) \
873 .reset = RESET_DT_SPEC_INST_GET(inst), \
874
875 #define DW_AXI_DMAC_INIT(inst) \
876 static struct dma_dw_axi_ch_data chan_##inst[DT_INST_PROP(inst, dma_channels)]; \
877 static struct dma_lli \
878 dma_desc_pool_##inst[DT_INST_PROP(inst, dma_channels) * \
879 CONFIG_DMA_DW_AXI_MAX_DESC]; \
880 ATOMIC_DEFINE(dma_dw_axi_atomic##inst, \
881 DT_INST_PROP(inst, dma_channels)); \
882 static struct dma_dw_axi_dev_data dma_dw_axi_data_##inst = { \
883 .dma_ctx = { \
884 .magic = DMA_MAGIC, \
885 .atomic = dma_dw_axi_atomic##inst, \
886 .dma_channels = DT_INST_PROP(inst, dma_channels), \
887 }, \
888 .chan = chan_##inst, \
889 .dma_desc_pool = dma_desc_pool_##inst, \
890 }; \
891 static void dw_dma_irq_config_##inst(void); \
892 static const struct dma_dw_axi_dev_cfg dma_dw_axi_config_##inst = { \
893 DEVICE_MMIO_NAMED_ROM_INIT(dma_mmio, DT_DRV_INST(inst)), \
894 IF_ENABLED(DT_INST_NODE_HAS_PROP(inst, resets), \
895 (DW_AXI_DMA_RESET_SPEC_INIT(inst))) \
896 .irq_config = dw_dma_irq_config_##inst, \
897 }; \
898 \
899 DEVICE_DT_INST_DEFINE(inst, \
900 &dma_dw_axi_init, \
901 NULL, \
902 &dma_dw_axi_data_##inst, \
903 &dma_dw_axi_config_##inst, POST_KERNEL, \
904 CONFIG_DMA_INIT_PRIORITY, \
905 &dma_dw_axi_driver_api); \
906 \
907 static void dw_dma_irq_config_##inst(void) \
908 { \
909 LISTIFY(DT_NUM_IRQS(DT_DRV_INST(inst)), CONFIGURE_DMA_IRQ, (), inst) \
910 }
911
912 DT_INST_FOREACH_STATUS_OKAY(DW_AXI_DMAC_INIT)
913