1 /*
2 * Copyright (c) 2016-2021 Nordic Semiconductor ASA
3 * Copyright (c) 2018 Intel Corporation
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #include <zephyr/init.h>
9 #include <soc.h>
10 #include <zephyr/drivers/clock_control.h>
11 #include <zephyr/drivers/clock_control/nrf_clock_control.h>
12 #include <zephyr/drivers/timer/system_timer.h>
13 #include <zephyr/drivers/timer/nrf_rtc_timer.h>
14 #include <zephyr/sys/util.h>
15 #include <zephyr/sys_clock.h>
16 #include <zephyr/sys/barrier.h>
17 #include <haly/nrfy_rtc.h>
18 #include <zephyr/irq.h>
19
20 #define RTC_PRETICK (IS_ENABLED(CONFIG_SOC_NRF53_RTC_PRETICK) && \
21 IS_ENABLED(CONFIG_SOC_NRF5340_CPUNET))
22
23 #define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT
24 #define CHAN_COUNT (EXT_CHAN_COUNT + 1)
25
26 #define RTC NRF_RTC1
27 #define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
28 #define RTC_LABEL rtc1
29 #define CHAN_COUNT_MAX (RTC1_CC_NUM - (RTC_PRETICK ? 1 : 0))
30
31 BUILD_ASSERT(CHAN_COUNT <= CHAN_COUNT_MAX, "Not enough compare channels");
32 /* Ensure that counter driver for RTC1 is not enabled. */
33 BUILD_ASSERT(DT_NODE_HAS_STATUS(DT_NODELABEL(RTC_LABEL), disabled),
34 "Counter for RTC1 must be disabled");
35
36 #define COUNTER_BIT_WIDTH 24U
37 #define COUNTER_SPAN BIT(COUNTER_BIT_WIDTH)
38 #define COUNTER_MAX (COUNTER_SPAN - 1U)
39 #define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
40 #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
41 / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
42 #define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
43 #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
44
45 #define OVERFLOW_RISK_RANGE_END (COUNTER_SPAN / 16)
46 #define ANCHOR_RANGE_START (COUNTER_SPAN / 8)
47 #define ANCHOR_RANGE_END (7 * COUNTER_SPAN / 8)
48 #define TARGET_TIME_INVALID (UINT64_MAX)
49
50 extern void rtc_pretick_rtc1_isr_hook(void);
51
52 static volatile uint32_t overflow_cnt;
53 static volatile uint64_t anchor;
54 static uint64_t last_count;
55 static bool sys_busy;
56
57 struct z_nrf_rtc_timer_chan_data {
58 z_nrf_rtc_timer_compare_handler_t callback;
59 void *user_context;
60 volatile uint64_t target_time;
61 };
62
63 static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT];
64 static atomic_t int_mask;
65 static atomic_t alloc_mask;
66 static atomic_t force_isr_mask;
67
counter_sub(uint32_t a,uint32_t b)68 static uint32_t counter_sub(uint32_t a, uint32_t b)
69 {
70 return (a - b) & COUNTER_MAX;
71 }
72
set_comparator(int32_t chan,uint32_t cyc)73 static void set_comparator(int32_t chan, uint32_t cyc)
74 {
75 nrfy_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX);
76 }
77
event_check(int32_t chan)78 static bool event_check(int32_t chan)
79 {
80 return nrfy_rtc_event_check(RTC, NRF_RTC_CHANNEL_EVENT_ADDR(chan));
81 }
82
event_clear(int32_t chan)83 static void event_clear(int32_t chan)
84 {
85 nrfy_rtc_event_clear(RTC, NRF_RTC_CHANNEL_EVENT_ADDR(chan));
86 }
87
event_enable(int32_t chan)88 static void event_enable(int32_t chan)
89 {
90 nrfy_rtc_event_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
91 }
92
event_disable(int32_t chan)93 static void event_disable(int32_t chan)
94 {
95 nrfy_rtc_event_disable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
96 }
97
counter(void)98 static uint32_t counter(void)
99 {
100 return nrfy_rtc_counter_get(RTC);
101 }
102
absolute_time_to_cc(uint64_t absolute_time)103 static uint32_t absolute_time_to_cc(uint64_t absolute_time)
104 {
105 /* 24 least significant bits represent target CC value */
106 return absolute_time & COUNTER_MAX;
107 }
108
full_int_lock(void)109 static uint32_t full_int_lock(void)
110 {
111 uint32_t mcu_critical_state;
112
113 if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
114 mcu_critical_state = __get_PRIMASK();
115 __disable_irq();
116 } else {
117 mcu_critical_state = irq_lock();
118 }
119
120 return mcu_critical_state;
121 }
122
full_int_unlock(uint32_t mcu_critical_state)123 static void full_int_unlock(uint32_t mcu_critical_state)
124 {
125 if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
126 __set_PRIMASK(mcu_critical_state);
127 } else {
128 irq_unlock(mcu_critical_state);
129 }
130 }
131
z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)132 uint32_t z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)
133 {
134 __ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
135 return nrfy_rtc_event_address_get(RTC, nrfy_rtc_compare_event_get(chan));
136 }
137
z_nrf_rtc_timer_capture_task_address_get(int32_t chan)138 uint32_t z_nrf_rtc_timer_capture_task_address_get(int32_t chan)
139 {
140 #if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk)
141 __ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
142 if (chan == 0) {
143 return 0;
144 }
145
146 return nrfy_rtc_task_address_get(RTC, nrfy_rtc_capture_task_get(chan));
147 #else
148 ARG_UNUSED(chan);
149 return 0;
150 #endif
151 }
152
compare_int_lock(int32_t chan)153 static bool compare_int_lock(int32_t chan)
154 {
155 atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan));
156
157 nrfy_rtc_int_disable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
158
159 barrier_dmem_fence_full();
160 barrier_isync_fence_full();
161
162 return prev & BIT(chan);
163 }
164
165
z_nrf_rtc_timer_compare_int_lock(int32_t chan)166 bool z_nrf_rtc_timer_compare_int_lock(int32_t chan)
167 {
168 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
169
170 return compare_int_lock(chan);
171 }
172
compare_int_unlock(int32_t chan,bool key)173 static void compare_int_unlock(int32_t chan, bool key)
174 {
175 if (key) {
176 atomic_or(&int_mask, BIT(chan));
177 nrfy_rtc_int_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
178 if (atomic_get(&force_isr_mask) & BIT(chan)) {
179 NVIC_SetPendingIRQ(RTC_IRQn);
180 }
181 }
182 }
183
z_nrf_rtc_timer_compare_int_unlock(int32_t chan,bool key)184 void z_nrf_rtc_timer_compare_int_unlock(int32_t chan, bool key)
185 {
186 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
187
188 compare_int_unlock(chan, key);
189 }
190
z_nrf_rtc_timer_compare_read(int32_t chan)191 uint32_t z_nrf_rtc_timer_compare_read(int32_t chan)
192 {
193 __ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
194
195 return nrfy_rtc_cc_get(RTC, chan);
196 }
197
z_nrf_rtc_timer_get_ticks(k_timeout_t t)198 uint64_t z_nrf_rtc_timer_get_ticks(k_timeout_t t)
199 {
200 uint64_t curr_time;
201 int64_t curr_tick;
202 int64_t result;
203 int64_t abs_ticks;
204
205 do {
206 curr_time = z_nrf_rtc_timer_read();
207 curr_tick = sys_clock_tick_get();
208 } while (curr_time != z_nrf_rtc_timer_read());
209
210 abs_ticks = Z_TICK_ABS(t.ticks);
211 if (abs_ticks < 0) {
212 /* relative timeout */
213 return (t.ticks > COUNTER_SPAN) ?
214 -EINVAL : (curr_time + t.ticks);
215 }
216
217 /* absolute timeout */
218 result = abs_ticks - curr_tick;
219
220 if (result > COUNTER_SPAN) {
221 return -EINVAL;
222 }
223
224 return curr_time + result;
225 }
226
227 /** @brief Function safely sets an alarm.
228 *
229 * It assumes that provided value is at most COUNTER_HALF_SPAN cycles from now
230 * (other values are considered to be from the past). It detects late setting
231 * and properly adjusts CC values that are too near in the future to guarantee
232 * triggering a COMPARE event soon, not after 512 seconds when the RTC wraps
233 * around first.
234 *
235 * @param[in] chan A channel for which a new CC value is to be set.
236 *
237 * @param[in] req_cc Requested CC register value to be set.
238 *
239 * @param[in] exact Use @c false to allow CC adjustment if @c req_cc value is
240 * close to the current value of the timer.
241 * Use @c true to disallow CC adjustment. The function can
242 * fail with -EINVAL result if @p req_cc is too close to the
243 * current value.
244 *
245 * @retval 0 The requested CC has been set successfully.
246 * @retval -EINVAL The requested CC value could not be reliably set.
247 */
set_alarm(int32_t chan,uint32_t req_cc,bool exact)248 static int set_alarm(int32_t chan, uint32_t req_cc, bool exact)
249 {
250 int ret = 0;
251
252 /* Ensure that the value exposed in this driver API is consistent with
253 * assumptions of this function.
254 */
255 BUILD_ASSERT(NRF_RTC_TIMER_MAX_SCHEDULE_SPAN <= COUNTER_HALF_SPAN);
256
257 /* According to product specifications, when the current counter value
258 * is N, a value of N+2 written to the CC register is guaranteed to
259 * trigger a COMPARE event at N+2, but tests show that this compare
260 * value can be missed when the previous CC value is N+1 and the write
261 * occurs in the second half of the RTC clock cycle (such situation can
262 * be provoked by test_next_cycle_timeouts in the nrf_rtc_timer suite).
263 * This never happens when the written value is N+3. Use 3 cycles as
264 * the nearest possible scheduling then.
265 */
266 enum { MIN_CYCLES_FROM_NOW = 3 };
267 uint32_t cc_val = req_cc;
268 uint32_t cc_inc = MIN_CYCLES_FROM_NOW;
269
270 /* Disable event routing for the channel to avoid getting a COMPARE
271 * event for the previous CC value before the new one takes effect
272 * (however, even if such spurious event was generated, it would be
273 * properly filtered out in process_channel(), where the target time
274 * is checked).
275 * Clear also the event as it may already be generated at this point.
276 */
277 event_disable(chan);
278 event_clear(chan);
279
280 for (;;) {
281 uint32_t now;
282
283 set_comparator(chan, cc_val);
284 /* Enable event routing after the required CC value was set.
285 * Even though the above operation may get repeated (see below),
286 * there is no need to disable event routing in every iteration
287 * of the loop, as the COMPARE event resulting from any attempt
288 * of setting the CC register is acceptable (as mentioned above,
289 * process_channel() does the proper filtering).
290 */
291 event_enable(chan);
292
293 now = counter();
294
295 /* Check if the CC register was successfully set to a value
296 * that will for sure trigger a COMPARE event as expected.
297 * If not, try again, adjusting the CC value accordingly.
298 * Increase the CC value by a larger number of cycles in each
299 * trial to avoid spending too much time in this loop if it
300 * continuously gets interrupted and delayed by something.
301 */
302 if (counter_sub(cc_val, now + MIN_CYCLES_FROM_NOW) >
303 (COUNTER_HALF_SPAN - MIN_CYCLES_FROM_NOW)) {
304 /* If the COMPARE event turns out to be already
305 * generated, check if the loop can be finished.
306 */
307 if (event_check(chan)) {
308 /* If the current counter value has not yet
309 * reached the requested CC value, the event
310 * must come from the previously set CC value
311 * (the alarm is apparently rescheduled).
312 * The event needs to be cleared then and the
313 * loop needs to be continued.
314 */
315 now = counter();
316 if (counter_sub(now, req_cc) > COUNTER_HALF_SPAN) {
317 event_clear(chan);
318 if (exact) {
319 ret = -EINVAL;
320 break;
321 }
322 } else {
323 break;
324 }
325 } else if (exact) {
326 ret = -EINVAL;
327 break;
328 }
329
330 cc_val = now + cc_inc;
331 cc_inc++;
332 } else {
333 break;
334 }
335 }
336
337 return ret;
338 }
339
compare_set_nolocks(int32_t chan,uint64_t target_time,z_nrf_rtc_timer_compare_handler_t handler,void * user_data,bool exact)340 static int compare_set_nolocks(int32_t chan, uint64_t target_time,
341 z_nrf_rtc_timer_compare_handler_t handler,
342 void *user_data, bool exact)
343 {
344 int ret = 0;
345 uint32_t cc_value = absolute_time_to_cc(target_time);
346 uint64_t curr_time = z_nrf_rtc_timer_read();
347
348 if (curr_time < target_time) {
349 if (target_time - curr_time > COUNTER_HALF_SPAN) {
350 /* Target time is too distant. */
351 return -EINVAL;
352 }
353
354 if (target_time != cc_data[chan].target_time) {
355 /* Target time is valid and is different than currently set.
356 * Set CC value.
357 */
358 ret = set_alarm(chan, cc_value, exact);
359 }
360 } else if (!exact) {
361 /* Force ISR handling when exiting from critical section. */
362 atomic_or(&force_isr_mask, BIT(chan));
363 } else {
364 ret = -EINVAL;
365 }
366
367 if (ret == 0) {
368 cc_data[chan].target_time = target_time;
369 cc_data[chan].callback = handler;
370 cc_data[chan].user_context = user_data;
371 }
372
373 return ret;
374 }
375
compare_set(int32_t chan,uint64_t target_time,z_nrf_rtc_timer_compare_handler_t handler,void * user_data,bool exact)376 static int compare_set(int32_t chan, uint64_t target_time,
377 z_nrf_rtc_timer_compare_handler_t handler,
378 void *user_data, bool exact)
379 {
380 bool key;
381
382 key = compare_int_lock(chan);
383
384 int ret = compare_set_nolocks(chan, target_time, handler, user_data, exact);
385
386 compare_int_unlock(chan, key);
387
388 return ret;
389 }
390
z_nrf_rtc_timer_set(int32_t chan,uint64_t target_time,z_nrf_rtc_timer_compare_handler_t handler,void * user_data)391 int z_nrf_rtc_timer_set(int32_t chan, uint64_t target_time,
392 z_nrf_rtc_timer_compare_handler_t handler,
393 void *user_data)
394 {
395 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
396
397 return compare_set(chan, target_time, handler, user_data, false);
398 }
399
z_nrf_rtc_timer_exact_set(int32_t chan,uint64_t target_time,z_nrf_rtc_timer_compare_handler_t handler,void * user_data)400 int z_nrf_rtc_timer_exact_set(int32_t chan, uint64_t target_time,
401 z_nrf_rtc_timer_compare_handler_t handler,
402 void *user_data)
403 {
404 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
405
406 return compare_set(chan, target_time, handler, user_data, true);
407 }
408
z_nrf_rtc_timer_abort(int32_t chan)409 void z_nrf_rtc_timer_abort(int32_t chan)
410 {
411 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
412
413 bool key = compare_int_lock(chan);
414
415 cc_data[chan].target_time = TARGET_TIME_INVALID;
416 event_clear(chan);
417 event_disable(chan);
418 (void)atomic_and(&force_isr_mask, ~BIT(chan));
419
420 compare_int_unlock(chan, key);
421 }
422
z_nrf_rtc_timer_read(void)423 uint64_t z_nrf_rtc_timer_read(void)
424 {
425 uint64_t val = ((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH;
426
427 barrier_dmem_fence_full();
428
429 uint32_t cntr = counter();
430
431 val += cntr;
432
433 if (cntr < OVERFLOW_RISK_RANGE_END) {
434 /* `overflow_cnt` can have incorrect value due to still unhandled overflow or
435 * due to possibility that this code preempted overflow interrupt before final write
436 * of `overflow_cnt`. Update of `anchor` occurs far in time from this moment, so
437 * `anchor` is considered valid and stable. Because of this timing there is no risk
438 * of incorrect `anchor` value caused by non-atomic read of 64-bit `anchor`.
439 */
440 if (val < anchor) {
441 /* Unhandled overflow, detected, let's add correction */
442 val += COUNTER_SPAN;
443 }
444 } else {
445 /* `overflow_cnt` is considered valid and stable in this range, no need to
446 * check validity using `anchor`
447 */
448 }
449
450 return val;
451 }
452
in_anchor_range(uint32_t cc_value)453 static inline bool in_anchor_range(uint32_t cc_value)
454 {
455 return (cc_value >= ANCHOR_RANGE_START) && (cc_value < ANCHOR_RANGE_END);
456 }
457
anchor_update(uint32_t cc_value)458 static inline void anchor_update(uint32_t cc_value)
459 {
460 /* Update anchor when far from overflow */
461 if (in_anchor_range(cc_value)) {
462 /* In this range `overflow_cnt` is considered valid and stable.
463 * Write of 64-bit `anchor` is non atomic. However it happens
464 * far in time from the moment the `anchor` is read in
465 * `z_nrf_rtc_timer_read`.
466 */
467 anchor = (((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH) + cc_value;
468 }
469 }
470
sys_clock_timeout_handler(int32_t chan,uint64_t expire_time,void * user_data)471 static void sys_clock_timeout_handler(int32_t chan,
472 uint64_t expire_time,
473 void *user_data)
474 {
475 uint32_t cc_value = absolute_time_to_cc(expire_time);
476 uint32_t dticks = (uint32_t)(expire_time - last_count) / CYC_PER_TICK;
477
478 last_count += dticks * CYC_PER_TICK;
479
480 anchor_update(cc_value);
481
482 if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
483 /* protection is not needed because we are in the RTC interrupt
484 * so it won't get preempted by the interrupt.
485 */
486 compare_set(chan, last_count + CYC_PER_TICK,
487 sys_clock_timeout_handler, NULL, false);
488 }
489
490 sys_clock_announce(dticks);
491 }
492
channel_processing_check_and_clear(int32_t chan)493 static bool channel_processing_check_and_clear(int32_t chan)
494 {
495 if (nrfy_rtc_int_enable_check(RTC, NRF_RTC_CHANNEL_INT_MASK(chan))) {
496 /* The processing of channel can be caused by CC match
497 * or be forced.
498 */
499 if ((atomic_and(&force_isr_mask, ~BIT(chan)) & BIT(chan)) ||
500 event_check(chan)) {
501 event_clear(chan);
502 return true;
503 }
504 }
505
506 return false;
507 }
508
process_channel(int32_t chan)509 static void process_channel(int32_t chan)
510 {
511 if (channel_processing_check_and_clear(chan)) {
512 void *user_context;
513 uint32_t mcu_critical_state;
514 uint64_t curr_time;
515 uint64_t expire_time;
516 z_nrf_rtc_timer_compare_handler_t handler = NULL;
517
518 curr_time = z_nrf_rtc_timer_read();
519
520 /* This critical section is used to provide atomic access to
521 * cc_data structure and prevent higher priority contexts
522 * (including ZLIs) from overwriting it.
523 */
524 mcu_critical_state = full_int_lock();
525
526 /* If target_time is in the past or is equal to current time
527 * value, execute the handler.
528 */
529 expire_time = cc_data[chan].target_time;
530 if (curr_time >= expire_time) {
531 handler = cc_data[chan].callback;
532 user_context = cc_data[chan].user_context;
533 cc_data[chan].callback = NULL;
534 cc_data[chan].target_time = TARGET_TIME_INVALID;
535 event_disable(chan);
536 /* Because of the way set_alarm() sets the CC register,
537 * it may turn out that another COMPARE event has been
538 * generated for the same alarm. Make sure the event
539 * is cleared, so that the ISR is not executed again
540 * unnecessarily.
541 */
542 event_clear(chan);
543 }
544
545 full_int_unlock(mcu_critical_state);
546
547 if (handler) {
548 handler(chan, expire_time, user_context);
549 }
550 }
551 }
552
553 /* Note: this function has public linkage, and MUST have this
554 * particular name. The platform architecture itself doesn't care,
555 * but there is a test (tests/arch/arm_irq_vector_table) that needs
556 * to find it to it can set it in a custom vector table. Should
557 * probably better abstract that at some point (e.g. query and reset
558 * it by pointer at runtime, maybe?) so we don't have this leaky
559 * symbol.
560 */
rtc_nrf_isr(const void * arg)561 void rtc_nrf_isr(const void *arg)
562 {
563 ARG_UNUSED(arg);
564
565 if (RTC_PRETICK) {
566 rtc_pretick_rtc1_isr_hook();
567 }
568
569 if (nrfy_rtc_int_enable_check(RTC, NRF_RTC_INT_OVERFLOW_MASK) &&
570 nrfy_rtc_events_process(RTC, NRF_RTC_INT_OVERFLOW_MASK)) {
571 overflow_cnt++;
572 }
573
574 for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
575 process_channel(chan);
576 }
577 }
578
z_nrf_rtc_timer_chan_alloc(void)579 int32_t z_nrf_rtc_timer_chan_alloc(void)
580 {
581 int32_t chan;
582 atomic_val_t prev;
583 do {
584 chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1;
585 if (chan < 0) {
586 return -ENOMEM;
587 }
588 prev = atomic_and(&alloc_mask, ~BIT(chan));
589 } while (!(prev & BIT(chan)));
590
591 return chan;
592 }
593
z_nrf_rtc_timer_chan_free(int32_t chan)594 void z_nrf_rtc_timer_chan_free(int32_t chan)
595 {
596 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
597
598 atomic_or(&alloc_mask, BIT(chan));
599 }
600
601
z_nrf_rtc_timer_trigger_overflow(void)602 int z_nrf_rtc_timer_trigger_overflow(void)
603 {
604 uint32_t mcu_critical_state;
605 int err = 0;
606
607 if (!IS_ENABLED(CONFIG_NRF_RTC_TIMER_TRIGGER_OVERFLOW) ||
608 (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT > 0)) {
609 return -ENOTSUP;
610 }
611
612 mcu_critical_state = full_int_lock();
613 if (sys_busy) {
614 err = -EBUSY;
615 goto bail;
616 }
617
618 if (counter() >= (COUNTER_SPAN - 100)) {
619 err = -EAGAIN;
620 goto bail;
621 }
622
623 nrfy_rtc_task_trigger(RTC, NRF_RTC_TASK_TRIGGER_OVERFLOW);
624 k_busy_wait(80);
625
626 uint64_t now = z_nrf_rtc_timer_read();
627
628 if (err == 0) {
629 sys_clock_timeout_handler(0, now, NULL);
630 }
631 bail:
632 full_int_unlock(mcu_critical_state);
633
634 return err;
635 }
636
sys_clock_set_timeout(int32_t ticks,bool idle)637 void sys_clock_set_timeout(int32_t ticks, bool idle)
638 {
639 ARG_UNUSED(idle);
640 uint32_t cyc;
641
642 if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
643 return;
644 }
645
646 if (ticks == K_TICKS_FOREVER) {
647 cyc = MAX_TICKS * CYC_PER_TICK;
648 sys_busy = false;
649 } else {
650 /* Value of ticks can be zero or negative, what means "announce
651 * the next tick" (the same as ticks equal to 1).
652 */
653 cyc = CLAMP(ticks, 1, (int32_t)MAX_TICKS);
654 cyc *= CYC_PER_TICK;
655 sys_busy = true;
656 }
657
658 uint32_t unannounced = z_nrf_rtc_timer_read() - last_count;
659
660 /* If we haven't announced for more than half the 24-bit wrap
661 * duration, then force an announce to avoid loss of a wrap
662 * event. This can happen if new timeouts keep being set
663 * before the existing one triggers the interrupt.
664 */
665 if (unannounced >= COUNTER_HALF_SPAN) {
666 cyc = 0;
667 }
668
669 /* Get the cycles from last_count to the tick boundary after
670 * the requested ticks have passed starting now.
671 */
672 cyc += unannounced;
673 cyc = DIV_ROUND_UP(cyc, CYC_PER_TICK) * CYC_PER_TICK;
674
675 /* Due to elapsed time the calculation above might produce a
676 * duration that laps the counter. Don't let it.
677 * This limitation also guarantees that the anchor will be properly
678 * updated before every overflow (see anchor_update()).
679 */
680 if (cyc > MAX_CYCLES) {
681 cyc = MAX_CYCLES;
682 }
683
684 uint64_t target_time = cyc + last_count;
685
686 compare_set(0, target_time, sys_clock_timeout_handler, NULL, false);
687 }
688
sys_clock_elapsed(void)689 uint32_t sys_clock_elapsed(void)
690 {
691 if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
692 return 0;
693 }
694
695 return (z_nrf_rtc_timer_read() - last_count) / CYC_PER_TICK;
696 }
697
sys_clock_cycle_get_32(void)698 uint32_t sys_clock_cycle_get_32(void)
699 {
700 return (uint32_t)z_nrf_rtc_timer_read();
701 }
702
int_event_disable_rtc(void)703 static void int_event_disable_rtc(void)
704 {
705 uint32_t mask = NRF_RTC_INT_TICK_MASK |
706 NRF_RTC_INT_OVERFLOW_MASK |
707 NRF_RTC_INT_COMPARE0_MASK |
708 NRF_RTC_INT_COMPARE1_MASK |
709 NRF_RTC_INT_COMPARE2_MASK |
710 NRF_RTC_INT_COMPARE3_MASK;
711
712 /* Reset interrupt enabling to expected reset values */
713 nrfy_rtc_int_disable(RTC, mask);
714
715 /* Reset event routing enabling to expected reset values */
716 nrfy_rtc_event_disable(RTC, mask);
717 }
718
sys_clock_disable(void)719 void sys_clock_disable(void)
720 {
721 nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_STOP);
722 irq_disable(RTC_IRQn);
723 int_event_disable_rtc();
724 NVIC_ClearPendingIRQ(RTC_IRQn);
725 }
726
sys_clock_driver_init(void)727 static int sys_clock_driver_init(void)
728 {
729 static const enum nrf_lfclk_start_mode mode =
730 IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ?
731 CLOCK_CONTROL_NRF_LF_START_NOWAIT :
732 (IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ?
733 CLOCK_CONTROL_NRF_LF_START_AVAILABLE :
734 CLOCK_CONTROL_NRF_LF_START_STABLE);
735
736 int_event_disable_rtc();
737
738 /* TODO: replace with counter driver to access RTC */
739 nrfy_rtc_prescaler_set(RTC, 0);
740 for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
741 cc_data[chan].target_time = TARGET_TIME_INVALID;
742 nrfy_rtc_int_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
743 }
744
745 nrfy_rtc_int_enable(RTC, NRF_RTC_INT_OVERFLOW_MASK);
746
747 NVIC_ClearPendingIRQ(RTC_IRQn);
748
749 IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority),
750 rtc_nrf_isr, 0, 0);
751 irq_enable(RTC_IRQn);
752
753 nrfy_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
754 nrfy_rtc_task_trigger(RTC, NRF_RTC_TASK_START);
755
756 int_mask = BIT_MASK(CHAN_COUNT);
757 if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) {
758 alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1;
759 }
760
761 uint32_t initial_timeout = IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
762 MAX_CYCLES : CYC_PER_TICK;
763
764 compare_set(0, initial_timeout, sys_clock_timeout_handler, NULL, false);
765
766 z_nrf_clock_control_lf_on(mode);
767
768 return 0;
769 }
770
771 SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
772 CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
773