Home
last modified time | relevance | path

Searched refs:estimate (Results 1 – 8 of 8) sorted by relevance

/tflite-micro-3.4.0-2.7.6/tensorflow/lite/experimental/microfrontend/lib/
Dnoise_reduction.c28 uint32_t estimate = in NoiseReductionApply() local
30 ((uint64_t)state->estimate[i] * one_minus_smoothing)) >> in NoiseReductionApply()
32 state->estimate[i] = estimate; in NoiseReductionApply()
35 if (estimate > signal_scaled_up) { in NoiseReductionApply()
36 estimate = signal_scaled_up; in NoiseReductionApply()
43 (signal_scaled_up - estimate) >> state->smoothing_bits; in NoiseReductionApply()
50 memset(state->estimate, 0, sizeof(*state->estimate) * state->num_channels); in NoiseReductionReset()
Dnoise_reduction_util.c35 state->estimate = calloc(state->num_channels, sizeof(*state->estimate)); in NoiseReductionPopulateState()
36 if (state->estimate == NULL) { in NoiseReductionPopulateState()
44 free(state->estimate); in NoiseReductionFreeStateContents()
Dpcan_gain_control_test.cc44 uint32_t estimate[] = {6321887, 31248341}; in TF_LITE_MICRO_TEST() local
48 &config.config_, &state, estimate, kNumChannels, kSmoothingBits, in TF_LITE_MICRO_TEST()
Dnoise_reduction.h33 uint32_t* estimate; member
Dnoise_reduction_test.cc55 TF_LITE_MICRO_EXPECT_EQ(state.estimate[i], expected[i]); in TF_LITE_MICRO_TEST()
Dfrontend_util.c62 state->noise_reduction.estimate, state->filterbank.num_channels, in FrontendPopulateState()
/tflite-micro-3.4.0-2.7.6/tensorflow/lite/micro/examples/micro_speech/micro_features/
Dmicro_features_generator.cc66 g_micro_features_state.noise_reduction.estimate[i] = estimate_presets[i]; in SetMicroFeaturesNoiseEstimates()
/tflite-micro-3.4.0-2.7.6/tensorflow/lite/micro/examples/person_detection/
Dtraining_a_model.md194 this case we're nearly five percent complete. The steps per second estimate is
195 also useful, since you can use it to estimate a rough duration for the whole