1 /*
2 * Copyright (c) 2018 Nordic Semiconductor ASA
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /**
8 * @file
9 * This file implements the OpenThread platform abstraction
10 * for radio communication.
11 *
12 */
13
14 #include <openthread/error.h>
15 #define LOG_MODULE_NAME net_otPlat_radio
16
17 #include <zephyr/logging/log.h>
18 LOG_MODULE_REGISTER(LOG_MODULE_NAME, CONFIG_OPENTHREAD_L2_LOG_LEVEL);
19
20 #include <stdbool.h>
21 #include <stddef.h>
22 #include <stdint.h>
23 #include <string.h>
24
25 #include <zephyr/kernel.h>
26 #include <zephyr/device.h>
27 #include <zephyr/net/ieee802154_radio.h>
28 #include <zephyr/net/net_pkt.h>
29 #include <zephyr/net/net_time.h>
30 #include <zephyr/sys/__assert.h>
31
32 #include <openthread/ip6.h>
33 #include <openthread-system.h>
34 #include <openthread/instance.h>
35 #include <openthread/platform/radio.h>
36 #include <openthread/platform/diag.h>
37 #include <openthread/platform/time.h>
38 #include <openthread/message.h>
39
40 #include "platform-zephyr.h"
41
42 #if defined(CONFIG_OPENTHREAD_NAT64_TRANSLATOR)
43 #include <openthread/nat64.h>
44 #endif
45
46 #define PKT_IS_IPv6(_p) ((NET_IPV6_HDR(_p)->vtc & 0xf0) == 0x60)
47
48 #define SHORT_ADDRESS_SIZE 2
49
50 #define FCS_SIZE 2
51 #if defined(CONFIG_OPENTHREAD_THREAD_VERSION_1_1)
52 #define ACK_PKT_LENGTH 5
53 #else
54 #define ACK_PKT_LENGTH 127
55 #endif
56
57 #define FRAME_TYPE_MASK 0x07
58 #define FRAME_TYPE_ACK 0x02
59
60 #if defined(CONFIG_NET_TC_THREAD_COOPERATIVE)
61 #define OT_WORKER_PRIORITY K_PRIO_COOP(CONFIG_OPENTHREAD_THREAD_PRIORITY)
62 #else
63 #define OT_WORKER_PRIORITY K_PRIO_PREEMPT(CONFIG_OPENTHREAD_THREAD_PRIORITY)
64 #endif
65
66 #define CHANNEL_COUNT OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MAX - OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MIN + 1
67
68 /* PHY header duration in us (i.e. 2 symbol periods @ 62.5k symbol rate), see
69 * IEEE 802.15.4, sections 12.1.3.1, 12.2.5 and 12.3.3.
70 */
71 #define PHR_DURATION_US 32U
72
73 enum pending_events {
74 PENDING_EVENT_FRAME_TO_SEND, /* There is a tx frame to send */
75 PENDING_EVENT_FRAME_RECEIVED, /* Radio has received new frame */
76 PENDING_EVENT_RX_FAILED, /* The RX failed */
77 PENDING_EVENT_TX_STARTED, /* Radio has started transmitting */
78 PENDING_EVENT_TX_DONE, /* Radio transmission finished */
79 PENDING_EVENT_DETECT_ENERGY, /* Requested to start Energy Detection procedure */
80 PENDING_EVENT_DETECT_ENERGY_DONE, /* Energy Detection finished */
81 PENDING_EVENT_SLEEP, /* Sleep if idle */
82 PENDING_EVENT_COUNT /* Keep last */
83 };
84
85 K_SEM_DEFINE(radio_sem, 0, 1);
86
87 static otRadioState sState = OT_RADIO_STATE_DISABLED;
88
89 static otRadioFrame sTransmitFrame;
90 static otRadioFrame ack_frame;
91 static uint8_t ack_psdu[ACK_PKT_LENGTH];
92
93 #if defined(CONFIG_OPENTHREAD_TIME_SYNC)
94 static otRadioIeInfo tx_ie_info;
95 #endif
96
97 static struct net_pkt *tx_pkt;
98 static struct net_buf *tx_payload;
99
100 static const struct device *const radio_dev =
101 DEVICE_DT_GET(DT_CHOSEN(zephyr_ieee802154));
102 static struct ieee802154_radio_api *radio_api;
103
104 /* Get the default tx output power from Kconfig */
105 static int8_t tx_power = CONFIG_OPENTHREAD_DEFAULT_TX_POWER;
106 static uint16_t channel;
107 static bool promiscuous;
108
109 static uint16_t energy_detection_time;
110 static uint8_t energy_detection_channel;
111 static int16_t energy_detected_value;
112
113 static int8_t max_tx_power_table[CHANNEL_COUNT];
114
115 ATOMIC_DEFINE(pending_events, PENDING_EVENT_COUNT);
116 K_KERNEL_STACK_DEFINE(ot_task_stack,
117 CONFIG_OPENTHREAD_RADIO_WORKQUEUE_STACK_SIZE);
118 static struct k_work_q ot_work_q;
119 static otError rx_result;
120 static otError tx_result;
121
122 K_FIFO_DEFINE(rx_pkt_fifo);
123 K_FIFO_DEFINE(tx_pkt_fifo);
124
get_transmit_power_for_channel(uint8_t aChannel)125 static int8_t get_transmit_power_for_channel(uint8_t aChannel)
126 {
127 int8_t channel_max_power = OT_RADIO_POWER_INVALID;
128 int8_t power = 0; /* 0 dbm as default value */
129
130 if (aChannel >= OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MIN &&
131 aChannel <= OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MAX) {
132 channel_max_power =
133 max_tx_power_table[aChannel - OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MIN];
134 }
135
136 if (tx_power != OT_RADIO_POWER_INVALID) {
137 power = (channel_max_power < tx_power) ? channel_max_power : tx_power;
138 } else if (channel_max_power != OT_RADIO_POWER_INVALID) {
139 power = channel_max_power;
140 }
141
142 return power;
143 }
144
is_pending_event_set(enum pending_events event)145 static inline bool is_pending_event_set(enum pending_events event)
146 {
147 return atomic_test_bit(pending_events, event);
148 }
149
set_pending_event(enum pending_events event)150 static void set_pending_event(enum pending_events event)
151 {
152 atomic_set_bit(pending_events, event);
153 otSysEventSignalPending();
154 }
155
reset_pending_event(enum pending_events event)156 static void reset_pending_event(enum pending_events event)
157 {
158 atomic_clear_bit(pending_events, event);
159 }
160
clear_pending_events(void)161 static inline void clear_pending_events(void)
162 {
163 atomic_clear(pending_events);
164 }
165
energy_detected(const struct device * dev,int16_t max_ed)166 void energy_detected(const struct device *dev, int16_t max_ed)
167 {
168 if (dev == radio_dev) {
169 energy_detected_value = max_ed;
170 set_pending_event(PENDING_EVENT_DETECT_ENERGY_DONE);
171 }
172 }
173
ieee802154_handle_ack(struct net_if * iface,struct net_pkt * pkt)174 enum net_verdict ieee802154_handle_ack(struct net_if *iface, struct net_pkt *pkt)
175 {
176 ARG_UNUSED(iface);
177
178 size_t ack_len = net_pkt_get_len(pkt);
179
180 if (ack_len > ACK_PKT_LENGTH) {
181 return NET_CONTINUE;
182 }
183
184 if ((*net_pkt_data(pkt) & FRAME_TYPE_MASK) != FRAME_TYPE_ACK) {
185 return NET_CONTINUE;
186 }
187
188 if (ack_frame.mLength != 0) {
189 LOG_ERR("Overwriting unhandled ACK frame.");
190 }
191
192 if (net_pkt_read(pkt, ack_psdu, ack_len) < 0) {
193 LOG_ERR("Failed to read ACK frame.");
194 return NET_CONTINUE;
195 }
196
197 ack_frame.mPsdu = ack_psdu;
198 ack_frame.mLength = ack_len;
199 ack_frame.mInfo.mRxInfo.mLqi = net_pkt_ieee802154_lqi(pkt);
200 ack_frame.mInfo.mRxInfo.mRssi = net_pkt_ieee802154_rssi_dbm(pkt);
201
202 #if defined(CONFIG_NET_PKT_TIMESTAMP)
203 ack_frame.mInfo.mRxInfo.mTimestamp = net_pkt_timestamp_ns(pkt) / NSEC_PER_USEC;
204 #endif
205
206 return NET_OK;
207 }
208
handle_radio_event(const struct device * dev,enum ieee802154_event evt,void * event_params)209 void handle_radio_event(const struct device *dev, enum ieee802154_event evt,
210 void *event_params)
211 {
212 ARG_UNUSED(event_params);
213
214 switch (evt) {
215 case IEEE802154_EVENT_TX_STARTED:
216 if (sState == OT_RADIO_STATE_TRANSMIT) {
217 set_pending_event(PENDING_EVENT_TX_STARTED);
218 }
219 break;
220 case IEEE802154_EVENT_RX_FAILED:
221 if (sState == OT_RADIO_STATE_RECEIVE) {
222 switch (*(enum ieee802154_rx_fail_reason *) event_params) {
223 case IEEE802154_RX_FAIL_NOT_RECEIVED:
224 rx_result = OT_ERROR_NO_FRAME_RECEIVED;
225 break;
226
227 case IEEE802154_RX_FAIL_INVALID_FCS:
228 rx_result = OT_ERROR_FCS;
229 break;
230
231 case IEEE802154_RX_FAIL_ADDR_FILTERED:
232 rx_result = OT_ERROR_DESTINATION_ADDRESS_FILTERED;
233 break;
234
235 case IEEE802154_RX_FAIL_OTHER:
236 default:
237 rx_result = OT_ERROR_FAILED;
238 break;
239 }
240 set_pending_event(PENDING_EVENT_RX_FAILED);
241 }
242 break;
243 case IEEE802154_EVENT_RX_OFF:
244 set_pending_event(PENDING_EVENT_SLEEP);
245 break;
246 default:
247 /* do nothing - ignore event */
248 break;
249 }
250 }
251
252 #if defined(CONFIG_NET_PKT_TXTIME) || defined(CONFIG_OPENTHREAD_CSL_RECEIVER)
253 /**
254 * @brief Convert 32-bit (potentially wrapped) OpenThread microsecond timestamps
255 * to 64-bit Zephyr network subsystem nanosecond timestamps.
256 *
257 * This is a workaround until OpenThread is able to schedule 64-bit RX/TX time.
258 *
259 * @param target_time_ns_wrapped time in nanoseconds referred to the radio clock
260 * modulo UINT32_MAX.
261 *
262 * @return 64-bit nanosecond timestamp
263 */
convert_32bit_us_wrapped_to_64bit_ns(uint32_t target_time_us_wrapped)264 static net_time_t convert_32bit_us_wrapped_to_64bit_ns(uint32_t target_time_us_wrapped)
265 {
266 /**
267 * OpenThread provides target time as a (potentially wrapped) 32-bit
268 * integer defining a moment in time in the microsecond domain.
269 *
270 * The target time can point to a moment in the future, but can be
271 * overdue as well. In order to determine what's the case and correctly
272 * set the absolute (non-wrapped) target time, it's necessary to compare
273 * the least significant 32 bits of the current 64-bit network subsystem
274 * time with the provided 32-bit target time. Let's assume that half of
275 * the 32-bit range can be used for specifying target times in the
276 * future, and the other half - in the past.
277 */
278 uint64_t now_us = otPlatTimeGet();
279 uint32_t now_us_wrapped = (uint32_t)now_us;
280 uint32_t time_diff = target_time_us_wrapped - now_us_wrapped;
281 uint64_t result = UINT64_C(0);
282
283 if (time_diff < 0x80000000) {
284 /**
285 * Target time is assumed to be in the future. Check if a 32-bit overflow
286 * occurs between the current time and the target time.
287 */
288 if (now_us_wrapped > target_time_us_wrapped) {
289 /**
290 * Add a 32-bit overflow and replace the least significant 32 bits
291 * with the provided target time.
292 */
293 result = now_us + UINT32_MAX + 1;
294 result &= ~(uint64_t)UINT32_MAX;
295 result |= target_time_us_wrapped;
296 } else {
297 /**
298 * Leave the most significant 32 bits and replace the least significant
299 * 32 bits with the provided target time.
300 */
301 result = (now_us & (~(uint64_t)UINT32_MAX)) | target_time_us_wrapped;
302 }
303 } else {
304 /**
305 * Target time is assumed to be in the past. Check if a 32-bit overflow
306 * occurs between the target time and the current time.
307 */
308 if (now_us_wrapped > target_time_us_wrapped) {
309 /**
310 * Leave the most significant 32 bits and replace the least significant
311 * 32 bits with the provided target time.
312 */
313 result = (now_us & (~(uint64_t)UINT32_MAX)) | target_time_us_wrapped;
314 } else {
315 /**
316 * Subtract a 32-bit overflow and replace the least significant
317 * 32 bits with the provided target time.
318 */
319 result = now_us - UINT32_MAX - 1;
320 result &= ~(uint64_t)UINT32_MAX;
321 result |= target_time_us_wrapped;
322 }
323 }
324
325 __ASSERT_NO_MSG(result <= INT64_MAX / NSEC_PER_USEC);
326 return (net_time_t)result * NSEC_PER_USEC;
327 }
328 #endif /* CONFIG_NET_PKT_TXTIME || CONFIG_OPENTHREAD_CSL_RECEIVER */
329
dataInit(void)330 static void dataInit(void)
331 {
332 tx_pkt = net_pkt_alloc(K_NO_WAIT);
333 __ASSERT_NO_MSG(tx_pkt != NULL);
334
335 tx_payload = net_pkt_get_reserve_tx_data(IEEE802154_MAX_PHY_PACKET_SIZE,
336 K_NO_WAIT);
337 __ASSERT_NO_MSG(tx_payload != NULL);
338
339 net_pkt_append_buffer(tx_pkt, tx_payload);
340
341 sTransmitFrame.mPsdu = tx_payload->data;
342
343 for (size_t i = 0; i < CHANNEL_COUNT; i++) {
344 max_tx_power_table[i] = OT_RADIO_POWER_INVALID;
345 }
346
347 #if defined(CONFIG_OPENTHREAD_TIME_SYNC)
348 sTransmitFrame.mInfo.mTxInfo.mIeInfo = &tx_ie_info;
349 #endif
350 }
351
platformRadioInit(void)352 void platformRadioInit(void)
353 {
354 struct ieee802154_config cfg;
355
356 dataInit();
357
358 __ASSERT_NO_MSG(device_is_ready(radio_dev));
359
360 radio_api = (struct ieee802154_radio_api *)radio_dev->api;
361 if (!radio_api) {
362 return;
363 }
364
365 k_work_queue_start(&ot_work_q, ot_task_stack,
366 K_KERNEL_STACK_SIZEOF(ot_task_stack),
367 OT_WORKER_PRIORITY, NULL);
368 k_thread_name_set(&ot_work_q.thread, "ot_radio_workq");
369
370 if ((radio_api->get_capabilities(radio_dev) &
371 IEEE802154_HW_TX_RX_ACK) != IEEE802154_HW_TX_RX_ACK) {
372 LOG_ERR("Only radios with automatic ack handling "
373 "are currently supported");
374 k_panic();
375 }
376
377 cfg.event_handler = handle_radio_event;
378 radio_api->configure(radio_dev, IEEE802154_CONFIG_EVENT_HANDLER, &cfg);
379 }
380
radio_set_channel(uint16_t ch)381 static void radio_set_channel(uint16_t ch)
382 {
383 channel = ch;
384 radio_api->set_channel(radio_dev, ch);
385 }
386
transmit_message(struct k_work * tx_job)387 void transmit_message(struct k_work *tx_job)
388 {
389 int tx_err;
390
391 ARG_UNUSED(tx_job);
392
393 enum ieee802154_hw_caps radio_caps = radio_api->get_capabilities(radio_dev);
394
395 /*
396 * The payload is already in tx_payload->data,
397 * but we need to set the length field
398 * according to sTransmitFrame.length.
399 * We subtract the FCS size as radio driver
400 * adds CRC and increases frame length on its own.
401 */
402 tx_payload->len = sTransmitFrame.mLength - FCS_SIZE;
403
404 radio_api->set_txpower(radio_dev, get_transmit_power_for_channel(sTransmitFrame.mChannel));
405
406 #if defined(CONFIG_OPENTHREAD_TIME_SYNC)
407 if (sTransmitFrame.mInfo.mTxInfo.mIeInfo->mTimeIeOffset != 0) {
408 uint8_t *time_ie =
409 sTransmitFrame.mPsdu + sTransmitFrame.mInfo.mTxInfo.mIeInfo->mTimeIeOffset;
410 uint64_t offset_plat_time =
411 otPlatTimeGet() + sTransmitFrame.mInfo.mTxInfo.mIeInfo->mNetworkTimeOffset;
412
413 *(time_ie++) = sTransmitFrame.mInfo.mTxInfo.mIeInfo->mTimeSyncSeq;
414 sys_put_le64(offset_plat_time, time_ie);
415 }
416 #endif
417
418 net_pkt_set_ieee802154_frame_secured(tx_pkt,
419 sTransmitFrame.mInfo.mTxInfo.mIsSecurityProcessed);
420 net_pkt_set_ieee802154_mac_hdr_rdy(tx_pkt, sTransmitFrame.mInfo.mTxInfo.mIsHeaderUpdated);
421
422 if ((radio_caps & IEEE802154_HW_TXTIME) &&
423 (sTransmitFrame.mInfo.mTxInfo.mTxDelay != 0)) {
424 #if defined(CONFIG_NET_PKT_TXTIME)
425 uint32_t tx_at = sTransmitFrame.mInfo.mTxInfo.mTxDelayBaseTime +
426 sTransmitFrame.mInfo.mTxInfo.mTxDelay;
427 net_pkt_set_timestamp_ns(tx_pkt, convert_32bit_us_wrapped_to_64bit_ns(tx_at));
428 #endif
429 #if defined(CONFIG_IEEE802154_SELECTIVE_TXCHANNEL)
430 if (radio_caps & IEEE802154_HW_SELECTIVE_TXCHANNEL) {
431 net_pkt_set_ieee802154_txchannel(tx_pkt, sTransmitFrame.mChannel);
432 } else {
433 radio_set_channel(sTransmitFrame.mChannel);
434 }
435 #else
436 radio_set_channel(sTransmitFrame.mChannel);
437 #endif
438 tx_err =
439 radio_api->tx(radio_dev, IEEE802154_TX_MODE_TXTIME_CCA, tx_pkt, tx_payload);
440 } else if (sTransmitFrame.mInfo.mTxInfo.mCsmaCaEnabled) {
441 radio_set_channel(sTransmitFrame.mChannel);
442 if (radio_caps & IEEE802154_HW_CSMA) {
443 tx_err = radio_api->tx(radio_dev, IEEE802154_TX_MODE_CSMA_CA, tx_pkt,
444 tx_payload);
445 } else {
446 tx_err = radio_api->cca(radio_dev);
447 if (tx_err == 0) {
448 tx_err = radio_api->tx(radio_dev, IEEE802154_TX_MODE_DIRECT, tx_pkt,
449 tx_payload);
450 }
451 }
452 } else {
453 radio_set_channel(sTransmitFrame.mChannel);
454 tx_err = radio_api->tx(radio_dev, IEEE802154_TX_MODE_DIRECT, tx_pkt, tx_payload);
455 }
456
457 /*
458 * OpenThread handles the following errors:
459 * - OT_ERROR_NONE
460 * - OT_ERROR_NO_ACK
461 * - OT_ERROR_CHANNEL_ACCESS_FAILURE
462 * - OT_ERROR_ABORT
463 * Any other error passed to `otPlatRadioTxDone` will result in assertion.
464 */
465 switch (tx_err) {
466 case 0:
467 tx_result = OT_ERROR_NONE;
468 break;
469 case -ENOMSG:
470 tx_result = OT_ERROR_NO_ACK;
471 break;
472 case -EBUSY:
473 tx_result = OT_ERROR_CHANNEL_ACCESS_FAILURE;
474 break;
475 case -EIO:
476 tx_result = OT_ERROR_ABORT;
477 break;
478 default:
479 tx_result = OT_ERROR_CHANNEL_ACCESS_FAILURE;
480 break;
481 }
482
483 set_pending_event(PENDING_EVENT_TX_DONE);
484 }
485
handle_tx_done(otInstance * aInstance)486 static inline void handle_tx_done(otInstance *aInstance)
487 {
488 sTransmitFrame.mInfo.mTxInfo.mIsSecurityProcessed =
489 net_pkt_ieee802154_frame_secured(tx_pkt);
490 sTransmitFrame.mInfo.mTxInfo.mIsHeaderUpdated = net_pkt_ieee802154_mac_hdr_rdy(tx_pkt);
491
492 if (IS_ENABLED(CONFIG_OPENTHREAD_DIAG) && otPlatDiagModeGet()) {
493 otPlatDiagRadioTransmitDone(aInstance, &sTransmitFrame, tx_result);
494 } else {
495 otPlatRadioTxDone(aInstance, &sTransmitFrame, ack_frame.mLength ? &ack_frame : NULL,
496 tx_result);
497 ack_frame.mLength = 0;
498 }
499 }
500
openthread_handle_received_frame(otInstance * instance,struct net_pkt * pkt)501 static void openthread_handle_received_frame(otInstance *instance,
502 struct net_pkt *pkt)
503 {
504 otRadioFrame recv_frame;
505 memset(&recv_frame, 0, sizeof(otRadioFrame));
506
507 recv_frame.mPsdu = net_buf_frag_last(pkt->buffer)->data;
508 /* Length inc. CRC. */
509 recv_frame.mLength = net_buf_frags_len(pkt->buffer);
510 recv_frame.mChannel = platformRadioChannelGet(instance);
511 recv_frame.mInfo.mRxInfo.mLqi = net_pkt_ieee802154_lqi(pkt);
512 recv_frame.mInfo.mRxInfo.mRssi = net_pkt_ieee802154_rssi_dbm(pkt);
513 recv_frame.mInfo.mRxInfo.mAckedWithFramePending = net_pkt_ieee802154_ack_fpb(pkt);
514
515 #if defined(CONFIG_NET_PKT_TIMESTAMP)
516 recv_frame.mInfo.mRxInfo.mTimestamp = net_pkt_timestamp_ns(pkt) / NSEC_PER_USEC;
517 #endif
518
519 recv_frame.mInfo.mRxInfo.mAckedWithSecEnhAck = net_pkt_ieee802154_ack_seb(pkt);
520 recv_frame.mInfo.mRxInfo.mAckFrameCounter = net_pkt_ieee802154_ack_fc(pkt);
521 recv_frame.mInfo.mRxInfo.mAckKeyId = net_pkt_ieee802154_ack_keyid(pkt);
522
523 if (IS_ENABLED(CONFIG_OPENTHREAD_DIAG) && otPlatDiagModeGet()) {
524 otPlatDiagRadioReceiveDone(instance, &recv_frame, OT_ERROR_NONE);
525 } else {
526 otPlatRadioReceiveDone(instance, &recv_frame, OT_ERROR_NONE);
527 }
528
529 net_pkt_unref(pkt);
530 }
531
532 #if defined(CONFIG_OPENTHREAD_NAT64_TRANSLATOR)
533
openthread_ip4_new_msg(otInstance * instance,otMessageSettings * settings)534 static otMessage *openthread_ip4_new_msg(otInstance *instance, otMessageSettings *settings)
535 {
536 return otIp4NewMessage(instance, settings);
537 }
538
openthread_nat64_send(otInstance * instance,otMessage * message)539 static otError openthread_nat64_send(otInstance *instance, otMessage *message)
540 {
541 return otNat64Send(instance, message);
542 }
543
544 #else /* CONFIG_OPENTHREAD_NAT64_TRANSLATOR */
545
openthread_ip4_new_msg(otInstance * instance,otMessageSettings * settings)546 static otMessage *openthread_ip4_new_msg(otInstance *instance, otMessageSettings *settings)
547 {
548 return NULL;
549 }
550
openthread_nat64_send(otInstance * instance,otMessage * message)551 static otError openthread_nat64_send(otInstance *instance, otMessage *message)
552 {
553 return OT_ERROR_DROP;
554 }
555
556 #endif /* CONFIG_OPENTHREAD_NAT64_TRANSLATOR */
557
openthread_handle_frame_to_send(otInstance * instance,struct net_pkt * pkt)558 static void openthread_handle_frame_to_send(otInstance *instance, struct net_pkt *pkt)
559 {
560 otError error;
561 struct net_buf *buf;
562 otMessage *message;
563 otMessageSettings settings;
564 bool is_ip6 = PKT_IS_IPv6(pkt);
565
566 NET_DBG("Sending %s packet to ot stack", is_ip6 ? "IPv6" : "IPv4");
567
568 settings.mPriority = OT_MESSAGE_PRIORITY_NORMAL;
569 settings.mLinkSecurityEnabled = true;
570
571 message = is_ip6 ? otIp6NewMessage(instance, &settings)
572 : openthread_ip4_new_msg(instance, &settings);
573 if (!message) {
574 NET_ERR("Cannot allocate new message buffer");
575 goto exit;
576 }
577
578 if (IS_ENABLED(CONFIG_OPENTHREAD)) {
579 /* Set multicast loop so the stack can process multicast packets for
580 * subscribed addresses.
581 */
582 otMessageSetMulticastLoopEnabled(message, true);
583 }
584
585 for (buf = pkt->buffer; buf; buf = buf->frags) {
586 if (otMessageAppend(message, buf->data, buf->len) != OT_ERROR_NONE) {
587 NET_ERR("Error while appending to otMessage");
588 otMessageFree(message);
589 goto exit;
590 }
591 }
592
593 error = is_ip6 ? otIp6Send(instance, message) : openthread_nat64_send(instance, message);
594
595 if (error != OT_ERROR_NONE) {
596 NET_ERR("Error while calling %s [error: %d]",
597 is_ip6 ? "otIp6Send" : "openthread_nat64_send", error);
598 }
599
600 exit:
601 net_pkt_unref(pkt);
602 }
603
notify_new_rx_frame(struct net_pkt * pkt)604 int notify_new_rx_frame(struct net_pkt *pkt)
605 {
606 k_fifo_put(&rx_pkt_fifo, pkt);
607 set_pending_event(PENDING_EVENT_FRAME_RECEIVED);
608
609 return 0;
610 }
611
notify_new_tx_frame(struct net_pkt * pkt)612 int notify_new_tx_frame(struct net_pkt *pkt)
613 {
614 k_fifo_put(&tx_pkt_fifo, pkt);
615 set_pending_event(PENDING_EVENT_FRAME_TO_SEND);
616
617 return 0;
618 }
619
run_tx_task(otInstance * aInstance)620 static int run_tx_task(otInstance *aInstance)
621 {
622 static K_WORK_DEFINE(tx_job, transmit_message);
623
624 ARG_UNUSED(aInstance);
625
626 if (!k_work_is_pending(&tx_job)) {
627 sState = OT_RADIO_STATE_TRANSMIT;
628
629 k_work_submit_to_queue(&ot_work_q, &tx_job);
630 return 0;
631 } else {
632 return -EBUSY;
633 }
634 }
635
platformRadioProcess(otInstance * aInstance)636 void platformRadioProcess(otInstance *aInstance)
637 {
638 bool event_pending = false;
639
640 if (is_pending_event_set(PENDING_EVENT_FRAME_TO_SEND)) {
641 struct net_pkt *evt_pkt;
642
643 reset_pending_event(PENDING_EVENT_FRAME_TO_SEND);
644 while ((evt_pkt = (struct net_pkt *) k_fifo_get(&tx_pkt_fifo, K_NO_WAIT)) != NULL) {
645 if (IS_ENABLED(CONFIG_OPENTHREAD_COPROCESSOR_RCP)) {
646 net_pkt_unref(evt_pkt);
647 } else {
648 openthread_handle_frame_to_send(aInstance, evt_pkt);
649 }
650 }
651 }
652
653 if (is_pending_event_set(PENDING_EVENT_FRAME_RECEIVED)) {
654 struct net_pkt *rx_pkt;
655
656 reset_pending_event(PENDING_EVENT_FRAME_RECEIVED);
657 while ((rx_pkt = (struct net_pkt *) k_fifo_get(&rx_pkt_fifo, K_NO_WAIT)) != NULL) {
658 openthread_handle_received_frame(aInstance, rx_pkt);
659 }
660 }
661
662 if (is_pending_event_set(PENDING_EVENT_RX_FAILED)) {
663 reset_pending_event(PENDING_EVENT_RX_FAILED);
664 if (IS_ENABLED(CONFIG_OPENTHREAD_DIAG) && otPlatDiagModeGet()) {
665 otPlatDiagRadioReceiveDone(aInstance, NULL, rx_result);
666 } else {
667 otPlatRadioReceiveDone(aInstance, NULL, rx_result);
668 }
669 }
670
671 if (is_pending_event_set(PENDING_EVENT_TX_STARTED)) {
672 reset_pending_event(PENDING_EVENT_TX_STARTED);
673 otPlatRadioTxStarted(aInstance, &sTransmitFrame);
674 }
675
676 if (is_pending_event_set(PENDING_EVENT_TX_DONE)) {
677 reset_pending_event(PENDING_EVENT_TX_DONE);
678
679 if (sState == OT_RADIO_STATE_TRANSMIT ||
680 radio_api->get_capabilities(radio_dev) & IEEE802154_HW_SLEEP_TO_TX) {
681 sState = OT_RADIO_STATE_RECEIVE;
682 handle_tx_done(aInstance);
683 }
684 }
685
686 if (is_pending_event_set(PENDING_EVENT_SLEEP)) {
687 reset_pending_event(PENDING_EVENT_SLEEP);
688 ARG_UNUSED(otPlatRadioSleep(aInstance));
689 }
690
691 /* handle events that can't run during transmission */
692 if (sState != OT_RADIO_STATE_TRANSMIT) {
693 if (is_pending_event_set(PENDING_EVENT_DETECT_ENERGY)) {
694 radio_api->set_channel(radio_dev,
695 energy_detection_channel);
696
697 if (!radio_api->ed_scan(radio_dev,
698 energy_detection_time,
699 energy_detected)) {
700 reset_pending_event(
701 PENDING_EVENT_DETECT_ENERGY);
702 } else {
703 event_pending = true;
704 }
705 }
706
707 if (is_pending_event_set(PENDING_EVENT_DETECT_ENERGY_DONE)) {
708 otPlatRadioEnergyScanDone(aInstance, (int8_t) energy_detected_value);
709 reset_pending_event(PENDING_EVENT_DETECT_ENERGY_DONE);
710 }
711 }
712
713 if (event_pending) {
714 otSysEventSignalPending();
715 }
716 }
717
platformRadioChannelGet(otInstance * aInstance)718 uint16_t platformRadioChannelGet(otInstance *aInstance)
719 {
720 ARG_UNUSED(aInstance);
721
722 return channel;
723 }
724
725 #if defined(CONFIG_OPENTHREAD_DIAG)
platformRadioChannelSet(uint8_t aChannel)726 void platformRadioChannelSet(uint8_t aChannel)
727 {
728 channel = aChannel;
729 }
730 #endif
731
otPlatRadioSetPanId(otInstance * aInstance,uint16_t aPanId)732 void otPlatRadioSetPanId(otInstance *aInstance, uint16_t aPanId)
733 {
734 ARG_UNUSED(aInstance);
735
736 radio_api->filter(radio_dev, true, IEEE802154_FILTER_TYPE_PAN_ID,
737 (struct ieee802154_filter *) &aPanId);
738 }
739
otPlatRadioSetExtendedAddress(otInstance * aInstance,const otExtAddress * aExtAddress)740 void otPlatRadioSetExtendedAddress(otInstance *aInstance,
741 const otExtAddress *aExtAddress)
742 {
743 ARG_UNUSED(aInstance);
744
745 radio_api->filter(radio_dev, true, IEEE802154_FILTER_TYPE_IEEE_ADDR,
746 (struct ieee802154_filter *) &aExtAddress);
747 }
748
otPlatRadioSetShortAddress(otInstance * aInstance,uint16_t aShortAddress)749 void otPlatRadioSetShortAddress(otInstance *aInstance, uint16_t aShortAddress)
750 {
751 ARG_UNUSED(aInstance);
752
753 radio_api->filter(radio_dev, true, IEEE802154_FILTER_TYPE_SHORT_ADDR,
754 (struct ieee802154_filter *) &aShortAddress);
755 }
756
otPlatRadioIsEnabled(otInstance * aInstance)757 bool otPlatRadioIsEnabled(otInstance *aInstance)
758 {
759 ARG_UNUSED(aInstance);
760
761 return (sState != OT_RADIO_STATE_DISABLED) ? true : false;
762 }
763
otPlatRadioEnable(otInstance * aInstance)764 otError otPlatRadioEnable(otInstance *aInstance)
765 {
766 ARG_UNUSED(aInstance);
767
768 if (sState != OT_RADIO_STATE_DISABLED && sState != OT_RADIO_STATE_SLEEP) {
769 return OT_ERROR_INVALID_STATE;
770 }
771
772 sState = OT_RADIO_STATE_SLEEP;
773 return OT_ERROR_NONE;
774 }
775
otPlatRadioDisable(otInstance * aInstance)776 otError otPlatRadioDisable(otInstance *aInstance)
777 {
778 ARG_UNUSED(aInstance);
779
780 if (sState != OT_RADIO_STATE_DISABLED && sState != OT_RADIO_STATE_SLEEP) {
781 return OT_ERROR_INVALID_STATE;
782 }
783
784 sState = OT_RADIO_STATE_DISABLED;
785 return OT_ERROR_NONE;
786 }
787
otPlatRadioSleep(otInstance * aInstance)788 otError otPlatRadioSleep(otInstance *aInstance)
789 {
790 ARG_UNUSED(aInstance);
791
792 if (sState != OT_RADIO_STATE_SLEEP && sState != OT_RADIO_STATE_RECEIVE) {
793 return OT_ERROR_INVALID_STATE;
794 }
795
796 radio_api->stop(radio_dev);
797 sState = OT_RADIO_STATE_SLEEP;
798
799 return OT_ERROR_NONE;
800 }
801
otPlatRadioReceive(otInstance * aInstance,uint8_t aChannel)802 otError otPlatRadioReceive(otInstance *aInstance, uint8_t aChannel)
803 {
804 ARG_UNUSED(aInstance);
805
806 if (sState == OT_RADIO_STATE_DISABLED) {
807 return OT_ERROR_INVALID_STATE;
808 }
809
810 channel = aChannel;
811
812 radio_api->set_channel(radio_dev, aChannel);
813 radio_api->set_txpower(radio_dev, get_transmit_power_for_channel(channel));
814 radio_api->start(radio_dev);
815 sState = OT_RADIO_STATE_RECEIVE;
816
817 return OT_ERROR_NONE;
818 }
819
820 #if defined(CONFIG_OPENTHREAD_CSL_RECEIVER) || defined(CONFIG_OPENTHREAD_WAKEUP_END_DEVICE)
otPlatRadioReceiveAt(otInstance * aInstance,uint8_t aChannel,uint32_t aStart,uint32_t aDuration)821 otError otPlatRadioReceiveAt(otInstance *aInstance, uint8_t aChannel,
822 uint32_t aStart, uint32_t aDuration)
823 {
824 int result;
825
826 ARG_UNUSED(aInstance);
827
828 struct ieee802154_config config = {
829 .rx_slot.channel = aChannel,
830 .rx_slot.start = convert_32bit_us_wrapped_to_64bit_ns(aStart),
831 .rx_slot.duration = (net_time_t)aDuration * NSEC_PER_USEC,
832 };
833
834 result = radio_api->configure(radio_dev, IEEE802154_CONFIG_RX_SLOT,
835 &config);
836
837 return result ? OT_ERROR_FAILED : OT_ERROR_NONE;
838 }
839 #endif
840
841 #if defined(CONFIG_IEEE802154_CARRIER_FUNCTIONS)
platformRadioTransmitCarrier(otInstance * aInstance,bool aEnable)842 otError platformRadioTransmitCarrier(otInstance *aInstance, bool aEnable)
843 {
844 if (radio_api->continuous_carrier == NULL) {
845 return OT_ERROR_NOT_IMPLEMENTED;
846 }
847
848 if ((aEnable) && (sState == OT_RADIO_STATE_RECEIVE)) {
849 radio_api->set_txpower(radio_dev, get_transmit_power_for_channel(channel));
850
851 if (radio_api->continuous_carrier(radio_dev) != 0) {
852 return OT_ERROR_FAILED;
853 }
854
855 sState = OT_RADIO_STATE_TRANSMIT;
856 } else if ((!aEnable) && (sState == OT_RADIO_STATE_TRANSMIT)) {
857 return otPlatRadioReceive(aInstance, channel);
858 } else {
859 return OT_ERROR_INVALID_STATE;
860 }
861
862 return OT_ERROR_NONE;
863 }
864
platformRadioTransmitModulatedCarrier(otInstance * aInstance,bool aEnable,const uint8_t * aData)865 otError platformRadioTransmitModulatedCarrier(otInstance *aInstance, bool aEnable,
866 const uint8_t *aData)
867 {
868 if (radio_api->modulated_carrier == NULL) {
869 return OT_ERROR_NOT_IMPLEMENTED;
870 }
871
872 if (aEnable && sState == OT_RADIO_STATE_RECEIVE) {
873 if (aData == NULL) {
874 return OT_ERROR_INVALID_ARGS;
875 }
876
877 radio_api->set_txpower(radio_dev, get_transmit_power_for_channel(channel));
878
879 if (radio_api->modulated_carrier(radio_dev, aData) != 0) {
880 return OT_ERROR_FAILED;
881 }
882 sState = OT_RADIO_STATE_TRANSMIT;
883 } else if ((!aEnable) && sState == OT_RADIO_STATE_TRANSMIT) {
884 return otPlatRadioReceive(aInstance, channel);
885 } else {
886 return OT_ERROR_INVALID_STATE;
887 }
888
889 return OT_ERROR_NONE;
890 }
891
892 #endif /* CONFIG_IEEE802154_CARRIER_FUNCTIONS */
893
otPlatRadioGetState(otInstance * aInstance)894 otRadioState otPlatRadioGetState(otInstance *aInstance)
895 {
896 ARG_UNUSED(aInstance);
897
898 return sState;
899 }
900
otPlatRadioTransmit(otInstance * aInstance,otRadioFrame * aPacket)901 otError otPlatRadioTransmit(otInstance *aInstance, otRadioFrame *aPacket)
902 {
903 otError error = OT_ERROR_INVALID_STATE;
904
905 ARG_UNUSED(aInstance);
906 ARG_UNUSED(aPacket);
907
908 __ASSERT_NO_MSG(aPacket == &sTransmitFrame);
909
910 enum ieee802154_hw_caps radio_caps;
911
912 radio_caps = radio_api->get_capabilities(radio_dev);
913
914 if (sState == OT_RADIO_STATE_RECEIVE ||
915 (sState == OT_RADIO_STATE_SLEEP &&
916 radio_caps & IEEE802154_HW_SLEEP_TO_TX)) {
917 if (run_tx_task(aInstance) == 0) {
918 error = OT_ERROR_NONE;
919 }
920 }
921
922 return error;
923 }
924
otPlatRadioGetTransmitBuffer(otInstance * aInstance)925 otRadioFrame *otPlatRadioGetTransmitBuffer(otInstance *aInstance)
926 {
927 ARG_UNUSED(aInstance);
928
929 return &sTransmitFrame;
930 }
931
get_rssi_energy_detected(const struct device * dev,int16_t max_ed)932 static void get_rssi_energy_detected(const struct device *dev, int16_t max_ed)
933 {
934 ARG_UNUSED(dev);
935 energy_detected_value = max_ed;
936 k_sem_give(&radio_sem);
937 }
938
otPlatRadioGetRssi(otInstance * aInstance)939 int8_t otPlatRadioGetRssi(otInstance *aInstance)
940 {
941 int8_t ret_rssi = INT8_MAX;
942 int error = 0;
943 const uint16_t detection_time = 1;
944 enum ieee802154_hw_caps radio_caps;
945 ARG_UNUSED(aInstance);
946
947 radio_caps = radio_api->get_capabilities(radio_dev);
948
949 if (!(radio_caps & IEEE802154_HW_ENERGY_SCAN)) {
950 /*
951 * TODO: No API in Zephyr to get the RSSI
952 * when IEEE802154_HW_ENERGY_SCAN is not available
953 */
954 ret_rssi = 0;
955 } else {
956 /*
957 * Blocking implementation of get RSSI
958 * using no-blocking ed_scan
959 */
960 error = radio_api->ed_scan(radio_dev, detection_time,
961 get_rssi_energy_detected);
962
963 if (error == 0) {
964 k_sem_take(&radio_sem, K_FOREVER);
965
966 ret_rssi = (int8_t)energy_detected_value;
967 }
968 }
969
970 return ret_rssi;
971 }
972
otPlatRadioGetCaps(otInstance * aInstance)973 otRadioCaps otPlatRadioGetCaps(otInstance *aInstance)
974 {
975 otRadioCaps caps = OT_RADIO_CAPS_NONE;
976
977 enum ieee802154_hw_caps radio_caps;
978 ARG_UNUSED(aInstance);
979 __ASSERT(radio_api,
980 "platformRadioInit needs to be called prior to otPlatRadioGetCaps");
981
982 radio_caps = radio_api->get_capabilities(radio_dev);
983
984 if (radio_caps & IEEE802154_HW_ENERGY_SCAN) {
985 caps |= OT_RADIO_CAPS_ENERGY_SCAN;
986 }
987
988 if (radio_caps & IEEE802154_HW_CSMA) {
989 caps |= OT_RADIO_CAPS_CSMA_BACKOFF;
990 }
991
992 if (radio_caps & IEEE802154_HW_TX_RX_ACK) {
993 caps |= OT_RADIO_CAPS_ACK_TIMEOUT;
994 }
995
996 if (radio_caps & IEEE802154_HW_SLEEP_TO_TX) {
997 caps |= OT_RADIO_CAPS_SLEEP_TO_TX;
998 }
999
1000 #if !defined(CONFIG_OPENTHREAD_THREAD_VERSION_1_1)
1001 if (radio_caps & IEEE802154_HW_TX_SEC) {
1002 caps |= OT_RADIO_CAPS_TRANSMIT_SEC;
1003 }
1004 #endif
1005
1006 #if defined(CONFIG_NET_PKT_TXTIME)
1007 if (radio_caps & IEEE802154_HW_TXTIME) {
1008 caps |= OT_RADIO_CAPS_TRANSMIT_TIMING;
1009 }
1010 #endif
1011
1012 if (radio_caps & IEEE802154_HW_RXTIME) {
1013 caps |= OT_RADIO_CAPS_RECEIVE_TIMING;
1014 }
1015
1016 if (radio_caps & IEEE802154_RX_ON_WHEN_IDLE) {
1017 caps |= OT_RADIO_CAPS_RX_ON_WHEN_IDLE;
1018 }
1019
1020 return caps;
1021 }
1022
otPlatRadioSetRxOnWhenIdle(otInstance * aInstance,bool aRxOnWhenIdle)1023 void otPlatRadioSetRxOnWhenIdle(otInstance *aInstance, bool aRxOnWhenIdle)
1024 {
1025 struct ieee802154_config config = {
1026 .rx_on_when_idle = aRxOnWhenIdle
1027 };
1028
1029 ARG_UNUSED(aInstance);
1030
1031 LOG_DBG("RxOnWhenIdle=%d", aRxOnWhenIdle ? 1 : 0);
1032
1033 radio_api->configure(radio_dev, IEEE802154_CONFIG_RX_ON_WHEN_IDLE, &config);
1034 }
1035
otPlatRadioGetPromiscuous(otInstance * aInstance)1036 bool otPlatRadioGetPromiscuous(otInstance *aInstance)
1037 {
1038 ARG_UNUSED(aInstance);
1039
1040 LOG_DBG("PromiscuousMode=%d", promiscuous ? 1 : 0);
1041
1042 return promiscuous;
1043 }
1044
otPlatRadioSetPromiscuous(otInstance * aInstance,bool aEnable)1045 void otPlatRadioSetPromiscuous(otInstance *aInstance, bool aEnable)
1046 {
1047 struct ieee802154_config config = {
1048 .promiscuous = aEnable
1049 };
1050
1051 ARG_UNUSED(aInstance);
1052
1053 LOG_DBG("PromiscuousMode=%d", aEnable ? 1 : 0);
1054
1055 promiscuous = aEnable;
1056 /* TODO: Should check whether the radio driver actually supports
1057 * promiscuous mode, see net_if_l2(iface)->get_flags() and
1058 * ieee802154_radio_get_hw_capabilities(iface).
1059 */
1060 radio_api->configure(radio_dev, IEEE802154_CONFIG_PROMISCUOUS, &config);
1061 }
1062
otPlatRadioEnergyScan(otInstance * aInstance,uint8_t aScanChannel,uint16_t aScanDuration)1063 otError otPlatRadioEnergyScan(otInstance *aInstance, uint8_t aScanChannel,
1064 uint16_t aScanDuration)
1065 {
1066 energy_detection_time = aScanDuration;
1067 energy_detection_channel = aScanChannel;
1068
1069 if (radio_api->ed_scan == NULL) {
1070 return OT_ERROR_NOT_IMPLEMENTED;
1071 }
1072
1073 reset_pending_event(PENDING_EVENT_DETECT_ENERGY);
1074 reset_pending_event(PENDING_EVENT_DETECT_ENERGY_DONE);
1075
1076 radio_api->set_channel(radio_dev, aScanChannel);
1077
1078 if (radio_api->ed_scan(radio_dev, energy_detection_time, energy_detected) != 0) {
1079 /*
1080 * OpenThread API does not accept failure of this function,
1081 * it can return 'No Error' or 'Not Implemented' error only.
1082 * If ed_scan start failed event is set to schedule the scan at
1083 * later time.
1084 */
1085 LOG_ERR("Failed do start energy scan, scheduling for later");
1086 set_pending_event(PENDING_EVENT_DETECT_ENERGY);
1087 }
1088
1089 return OT_ERROR_NONE;
1090 }
1091
otPlatRadioGetCcaEnergyDetectThreshold(otInstance * aInstance,int8_t * aThreshold)1092 otError otPlatRadioGetCcaEnergyDetectThreshold(otInstance *aInstance,
1093 int8_t *aThreshold)
1094 {
1095 OT_UNUSED_VARIABLE(aInstance);
1096 OT_UNUSED_VARIABLE(aThreshold);
1097
1098 return OT_ERROR_NOT_IMPLEMENTED;
1099 }
1100
otPlatRadioSetCcaEnergyDetectThreshold(otInstance * aInstance,int8_t aThreshold)1101 otError otPlatRadioSetCcaEnergyDetectThreshold(otInstance *aInstance,
1102 int8_t aThreshold)
1103 {
1104 OT_UNUSED_VARIABLE(aInstance);
1105 OT_UNUSED_VARIABLE(aThreshold);
1106
1107 return OT_ERROR_NOT_IMPLEMENTED;
1108 }
1109
otPlatRadioEnableSrcMatch(otInstance * aInstance,bool aEnable)1110 void otPlatRadioEnableSrcMatch(otInstance *aInstance, bool aEnable)
1111 {
1112 ARG_UNUSED(aInstance);
1113
1114 struct ieee802154_config config = {
1115 .auto_ack_fpb.enabled = aEnable,
1116 .auto_ack_fpb.mode = IEEE802154_FPB_ADDR_MATCH_THREAD,
1117 };
1118
1119 (void)radio_api->configure(radio_dev, IEEE802154_CONFIG_AUTO_ACK_FPB,
1120 &config);
1121 }
1122
otPlatRadioAddSrcMatchShortEntry(otInstance * aInstance,const uint16_t aShortAddress)1123 otError otPlatRadioAddSrcMatchShortEntry(otInstance *aInstance,
1124 const uint16_t aShortAddress)
1125 {
1126 ARG_UNUSED(aInstance);
1127
1128 uint8_t short_address[SHORT_ADDRESS_SIZE];
1129 struct ieee802154_config config = {
1130 .ack_fpb.enabled = true,
1131 .ack_fpb.addr = short_address,
1132 .ack_fpb.extended = false
1133 };
1134
1135 sys_put_le16(aShortAddress, short_address);
1136
1137 if (radio_api->configure(radio_dev, IEEE802154_CONFIG_ACK_FPB,
1138 &config) != 0) {
1139 return OT_ERROR_NO_BUFS;
1140 }
1141
1142 return OT_ERROR_NONE;
1143 }
1144
otPlatRadioAddSrcMatchExtEntry(otInstance * aInstance,const otExtAddress * aExtAddress)1145 otError otPlatRadioAddSrcMatchExtEntry(otInstance *aInstance,
1146 const otExtAddress *aExtAddress)
1147 {
1148 ARG_UNUSED(aInstance);
1149
1150 struct ieee802154_config config = {
1151 .ack_fpb.enabled = true,
1152 .ack_fpb.addr = (uint8_t *)aExtAddress->m8,
1153 .ack_fpb.extended = true
1154 };
1155
1156 if (radio_api->configure(radio_dev, IEEE802154_CONFIG_ACK_FPB,
1157 &config) != 0) {
1158 return OT_ERROR_NO_BUFS;
1159 }
1160
1161 return OT_ERROR_NONE;
1162 }
1163
otPlatRadioClearSrcMatchShortEntry(otInstance * aInstance,const uint16_t aShortAddress)1164 otError otPlatRadioClearSrcMatchShortEntry(otInstance *aInstance,
1165 const uint16_t aShortAddress)
1166 {
1167 ARG_UNUSED(aInstance);
1168
1169 uint8_t short_address[SHORT_ADDRESS_SIZE];
1170 struct ieee802154_config config = {
1171 .ack_fpb.enabled = false,
1172 .ack_fpb.addr = short_address,
1173 .ack_fpb.extended = false
1174 };
1175
1176 sys_put_le16(aShortAddress, short_address);
1177
1178 if (radio_api->configure(radio_dev, IEEE802154_CONFIG_ACK_FPB,
1179 &config) != 0) {
1180 return OT_ERROR_NO_BUFS;
1181 }
1182
1183 return OT_ERROR_NONE;
1184 }
1185
otPlatRadioClearSrcMatchExtEntry(otInstance * aInstance,const otExtAddress * aExtAddress)1186 otError otPlatRadioClearSrcMatchExtEntry(otInstance *aInstance,
1187 const otExtAddress *aExtAddress)
1188 {
1189 ARG_UNUSED(aInstance);
1190
1191 struct ieee802154_config config = {
1192 .ack_fpb.enabled = false,
1193 .ack_fpb.addr = (uint8_t *)aExtAddress->m8,
1194 .ack_fpb.extended = true
1195 };
1196
1197 if (radio_api->configure(radio_dev, IEEE802154_CONFIG_ACK_FPB,
1198 &config) != 0) {
1199 return OT_ERROR_NO_BUFS;
1200 }
1201
1202 return OT_ERROR_NONE;
1203 }
1204
otPlatRadioClearSrcMatchShortEntries(otInstance * aInstance)1205 void otPlatRadioClearSrcMatchShortEntries(otInstance *aInstance)
1206 {
1207 ARG_UNUSED(aInstance);
1208
1209 struct ieee802154_config config = {
1210 .ack_fpb.enabled = false,
1211 .ack_fpb.addr = NULL,
1212 .ack_fpb.extended = false
1213 };
1214
1215 (void)radio_api->configure(radio_dev, IEEE802154_CONFIG_ACK_FPB,
1216 &config);
1217 }
1218
otPlatRadioClearSrcMatchExtEntries(otInstance * aInstance)1219 void otPlatRadioClearSrcMatchExtEntries(otInstance *aInstance)
1220 {
1221 ARG_UNUSED(aInstance);
1222
1223 struct ieee802154_config config = {
1224 .ack_fpb.enabled = false,
1225 .ack_fpb.addr = NULL,
1226 .ack_fpb.extended = true
1227 };
1228
1229 (void)radio_api->configure(radio_dev, IEEE802154_CONFIG_ACK_FPB,
1230 &config);
1231 }
1232
otPlatRadioGetReceiveSensitivity(otInstance * aInstance)1233 int8_t otPlatRadioGetReceiveSensitivity(otInstance *aInstance)
1234 {
1235 ARG_UNUSED(aInstance);
1236
1237 return CONFIG_OPENTHREAD_DEFAULT_RX_SENSITIVITY;
1238 }
1239
otPlatRadioGetTransmitPower(otInstance * aInstance,int8_t * aPower)1240 otError otPlatRadioGetTransmitPower(otInstance *aInstance, int8_t *aPower)
1241 {
1242 ARG_UNUSED(aInstance);
1243
1244 if (aPower == NULL) {
1245 return OT_ERROR_INVALID_ARGS;
1246 }
1247
1248 *aPower = tx_power;
1249
1250 return OT_ERROR_NONE;
1251 }
1252
otPlatRadioSetTransmitPower(otInstance * aInstance,int8_t aPower)1253 otError otPlatRadioSetTransmitPower(otInstance *aInstance, int8_t aPower)
1254 {
1255 ARG_UNUSED(aInstance);
1256
1257 tx_power = aPower;
1258
1259 return OT_ERROR_NONE;
1260 }
1261
otPlatTimeGet(void)1262 uint64_t otPlatTimeGet(void)
1263 {
1264 if (radio_api == NULL || radio_api->get_time == NULL) {
1265 return k_ticks_to_us_floor64(k_uptime_ticks());
1266 } else {
1267 return radio_api->get_time(radio_dev) / NSEC_PER_USEC;
1268 }
1269 }
1270
1271 #if defined(CONFIG_NET_PKT_TXTIME)
otPlatRadioGetNow(otInstance * aInstance)1272 uint64_t otPlatRadioGetNow(otInstance *aInstance)
1273 {
1274 ARG_UNUSED(aInstance);
1275
1276 return otPlatTimeGet();
1277 }
1278 #endif
1279
1280 #if !defined(CONFIG_OPENTHREAD_THREAD_VERSION_1_1)
otPlatRadioSetMacKey(otInstance * aInstance,uint8_t aKeyIdMode,uint8_t aKeyId,const otMacKeyMaterial * aPrevKey,const otMacKeyMaterial * aCurrKey,const otMacKeyMaterial * aNextKey,otRadioKeyType aKeyType)1281 void otPlatRadioSetMacKey(otInstance *aInstance, uint8_t aKeyIdMode, uint8_t aKeyId,
1282 const otMacKeyMaterial *aPrevKey, const otMacKeyMaterial *aCurrKey,
1283 const otMacKeyMaterial *aNextKey, otRadioKeyType aKeyType)
1284 {
1285 ARG_UNUSED(aInstance);
1286 __ASSERT_NO_MSG(aPrevKey != NULL && aCurrKey != NULL && aNextKey != NULL);
1287
1288 #if defined(CONFIG_OPENTHREAD_PLATFORM_KEYS_EXPORTABLE_ENABLE)
1289 __ASSERT_NO_MSG(aKeyType == OT_KEY_TYPE_KEY_REF);
1290 size_t keyLen;
1291 otError error;
1292
1293 error = otPlatCryptoExportKey(aPrevKey->mKeyMaterial.mKeyRef,
1294 (uint8_t *)aPrevKey->mKeyMaterial.mKey.m8, OT_MAC_KEY_SIZE,
1295 &keyLen);
1296 __ASSERT_NO_MSG(error == OT_ERROR_NONE);
1297 error = otPlatCryptoExportKey(aCurrKey->mKeyMaterial.mKeyRef,
1298 (uint8_t *)aCurrKey->mKeyMaterial.mKey.m8, OT_MAC_KEY_SIZE,
1299 &keyLen);
1300 __ASSERT_NO_MSG(error == OT_ERROR_NONE);
1301 error = otPlatCryptoExportKey(aNextKey->mKeyMaterial.mKeyRef,
1302 (uint8_t *)aNextKey->mKeyMaterial.mKey.m8, OT_MAC_KEY_SIZE,
1303 &keyLen);
1304 __ASSERT_NO_MSG(error == OT_ERROR_NONE);
1305 #else
1306 __ASSERT_NO_MSG(aKeyType == OT_KEY_TYPE_LITERAL_KEY);
1307 #endif
1308
1309 uint8_t key_id_mode = aKeyIdMode >> 3;
1310
1311 struct ieee802154_key keys[] = {
1312 {
1313 .key_id_mode = key_id_mode,
1314 .frame_counter_per_key = false,
1315 },
1316 {
1317 .key_id_mode = key_id_mode,
1318 .frame_counter_per_key = false,
1319 },
1320 {
1321 .key_id_mode = key_id_mode,
1322 .frame_counter_per_key = false,
1323 },
1324 {
1325 .key_value = NULL,
1326 },
1327 };
1328
1329 struct ieee802154_key clear_keys[] = {
1330 {
1331 .key_value = NULL,
1332 },
1333 };
1334
1335 if (key_id_mode == 1) {
1336 /* aKeyId in range: (1, 0x80) means valid keys */
1337 uint8_t prev_key_id = aKeyId == 1 ? 0x80 : aKeyId - 1;
1338 uint8_t next_key_id = aKeyId == 0x80 ? 1 : aKeyId + 1;
1339
1340 keys[0].key_id = &prev_key_id;
1341 keys[0].key_value = (uint8_t *)aPrevKey->mKeyMaterial.mKey.m8;
1342
1343 keys[1].key_id = &aKeyId;
1344 keys[1].key_value = (uint8_t *)aCurrKey->mKeyMaterial.mKey.m8;
1345
1346 keys[2].key_id = &next_key_id;
1347 keys[2].key_value = (uint8_t *)aNextKey->mKeyMaterial.mKey.m8;
1348 } else {
1349 /* aKeyId == 0 is used only to clear keys for stack reset in RCP */
1350 __ASSERT_NO_MSG((key_id_mode == 0) && (aKeyId == 0));
1351 }
1352
1353 struct ieee802154_config config = {
1354 .mac_keys = aKeyId == 0 ? clear_keys : keys,
1355 };
1356
1357 (void)radio_api->configure(radio_dev, IEEE802154_CONFIG_MAC_KEYS,
1358 &config);
1359 }
1360
otPlatRadioSetMacFrameCounter(otInstance * aInstance,uint32_t aMacFrameCounter)1361 void otPlatRadioSetMacFrameCounter(otInstance *aInstance,
1362 uint32_t aMacFrameCounter)
1363 {
1364 ARG_UNUSED(aInstance);
1365
1366 struct ieee802154_config config = { .frame_counter = aMacFrameCounter };
1367
1368 (void)radio_api->configure(radio_dev, IEEE802154_CONFIG_FRAME_COUNTER,
1369 &config);
1370 }
1371
otPlatRadioSetMacFrameCounterIfLarger(otInstance * aInstance,uint32_t aMacFrameCounter)1372 void otPlatRadioSetMacFrameCounterIfLarger(otInstance *aInstance, uint32_t aMacFrameCounter)
1373 {
1374 ARG_UNUSED(aInstance);
1375
1376 struct ieee802154_config config = { .frame_counter = aMacFrameCounter };
1377 (void)radio_api->configure(radio_dev, IEEE802154_CONFIG_FRAME_COUNTER_IF_LARGER,
1378 &config);
1379 }
1380 #endif
1381
1382 #if defined(CONFIG_OPENTHREAD_CSL_RECEIVER)
otPlatRadioEnableCsl(otInstance * aInstance,uint32_t aCslPeriod,otShortAddress aShortAddr,const otExtAddress * aExtAddr)1383 otError otPlatRadioEnableCsl(otInstance *aInstance, uint32_t aCslPeriod, otShortAddress aShortAddr,
1384 const otExtAddress *aExtAddr)
1385 {
1386 struct ieee802154_config config;
1387 /* CSL phase will be injected on-the-fly by the driver. */
1388 struct ieee802154_header_ie header_ie =
1389 IEEE802154_DEFINE_HEADER_IE_CSL_REDUCED(/* phase */ 0, aCslPeriod);
1390 int result;
1391
1392 ARG_UNUSED(aInstance);
1393
1394 /* Configure the CSL period first to give drivers a chance to validate
1395 * the IE for consistency if they wish to.
1396 */
1397 config.csl_period = aCslPeriod;
1398 result = radio_api->configure(radio_dev, IEEE802154_CONFIG_CSL_PERIOD, &config);
1399 if (result) {
1400 return OT_ERROR_FAILED;
1401 }
1402
1403 /* Configure the CSL IE. */
1404 config.ack_ie.header_ie = aCslPeriod > 0 ? &header_ie : NULL;
1405 config.ack_ie.short_addr = aShortAddr;
1406 config.ack_ie.ext_addr = aExtAddr != NULL ? aExtAddr->m8 : NULL;
1407 config.ack_ie.purge_ie = false;
1408
1409 result = radio_api->configure(radio_dev, IEEE802154_CONFIG_ENH_ACK_HEADER_IE, &config);
1410
1411 return result ? OT_ERROR_FAILED : OT_ERROR_NONE;
1412 }
1413
otPlatRadioResetCsl(otInstance * aInstance)1414 otError otPlatRadioResetCsl(otInstance *aInstance)
1415 {
1416 struct ieee802154_config config = { 0 };
1417 int result;
1418
1419 result = radio_api->configure(radio_dev, IEEE802154_CONFIG_CSL_PERIOD, &config);
1420 if (result) {
1421 return OT_ERROR_FAILED;
1422 }
1423
1424 config.ack_ie.purge_ie = true;
1425 result = radio_api->configure(radio_dev, IEEE802154_CONFIG_ENH_ACK_HEADER_IE, &config);
1426
1427 return result ? OT_ERROR_FAILED : OT_ERROR_NONE;
1428 }
1429
otPlatRadioUpdateCslSampleTime(otInstance * aInstance,uint32_t aCslSampleTime)1430 void otPlatRadioUpdateCslSampleTime(otInstance *aInstance, uint32_t aCslSampleTime)
1431 {
1432 ARG_UNUSED(aInstance);
1433
1434 /* CSL sample time points to "start of MAC" while the expected RX time
1435 * refers to "end of SFD".
1436 */
1437 struct ieee802154_config config = {
1438 .expected_rx_time =
1439 convert_32bit_us_wrapped_to_64bit_ns(aCslSampleTime - PHR_DURATION_US),
1440 };
1441
1442 (void)radio_api->configure(radio_dev, IEEE802154_CONFIG_EXPECTED_RX_TIME, &config);
1443 }
1444 #endif /* CONFIG_OPENTHREAD_CSL_RECEIVER */
1445
1446 #if defined(CONFIG_OPENTHREAD_WAKEUP_COORDINATOR)
otPlatRadioEnableCst(otInstance * aInstance,uint32_t aCstPeriod,otShortAddress aShortAddr,const otExtAddress * aExtAddr)1447 otError otPlatRadioEnableCst(otInstance *aInstance, uint32_t aCstPeriod, otShortAddress aShortAddr,
1448 const otExtAddress *aExtAddr)
1449 {
1450 struct ieee802154_config config;
1451 int result;
1452 uint8_t header_ie[OT_IE_HEADER_SIZE + OT_THREAD_IE_SIZE + OT_CST_IE_SIZE] = { 0 };
1453 size_t index = 0;
1454
1455 ARG_UNUSED(aInstance);
1456
1457 /* Configure the CST period first to give drivers a chance to validate
1458 * the IE for consistency if they wish to.
1459 */
1460 config.cst_period = aCstPeriod;
1461 result = radio_api->configure(radio_dev, IEEE802154_OPENTHREAD_CONFIG_CST_PERIOD, &config);
1462 if (result) {
1463 return OT_ERROR_FAILED;
1464 }
1465
1466 /* Configure the CST IE. */
1467 header_ie[index++] = OT_THREAD_IE_SIZE + OT_CST_IE_SIZE;
1468 header_ie[index++] = 0;
1469 sys_put_le24(THREAD_IE_VENDOR_OUI, &header_ie[index]);
1470 index += 3;
1471 header_ie[index++] = THREAD_IE_SUBTYPE_CST;
1472 /* Leave CST Phase empty intentionally */
1473 index += 2;
1474 sys_put_le16(aCstPeriod, &header_ie[index]);
1475 index += 2;
1476
1477 config.ack_ie.header_ie = aCstPeriod > 0 ? (struct ieee802154_header_ie *)header_ie : NULL;
1478 config.ack_ie.short_addr = aShortAddr;
1479 config.ack_ie.ext_addr = aExtAddr != NULL ? aExtAddr->m8 : NULL;
1480 config.ack_ie.purge_ie = false;
1481
1482 result = radio_api->configure(radio_dev, IEEE802154_CONFIG_ENH_ACK_HEADER_IE, &config);
1483
1484 return result ? OT_ERROR_FAILED : OT_ERROR_NONE;
1485 }
1486
otPlatRadioUpdateCstSampleTime(otInstance * aInstance,uint32_t aCstSampleTime)1487 void otPlatRadioUpdateCstSampleTime(otInstance *aInstance, uint32_t aCstSampleTime)
1488 {
1489 int result;
1490
1491 ARG_UNUSED(aInstance);
1492
1493 struct ieee802154_config config = {
1494 .expected_tx_time = convert_32bit_us_wrapped_to_64bit_ns(
1495 aCstSampleTime - PHR_DURATION_US),
1496 };
1497
1498 result = radio_api->configure(radio_dev, IEEE802154_OPENTHREAD_CONFIG_EXPECTED_TX_TIME,
1499 &config);
1500 __ASSERT_NO_MSG(result == 0);
1501 (void)result;
1502 }
1503 #endif /* CONFIG_OPENTHREAD_WAKEUP_COORDINATOR */
1504
otPlatRadioGetCslAccuracy(otInstance * aInstance)1505 uint8_t otPlatRadioGetCslAccuracy(otInstance *aInstance)
1506 {
1507 ARG_UNUSED(aInstance);
1508
1509 return radio_api->get_sch_acc(radio_dev);
1510 }
1511
1512 #if defined(CONFIG_OPENTHREAD_PLATFORM_CSL_UNCERT)
otPlatRadioGetCslUncertainty(otInstance * aInstance)1513 uint8_t otPlatRadioGetCslUncertainty(otInstance *aInstance)
1514 {
1515 ARG_UNUSED(aInstance);
1516
1517 return CONFIG_OPENTHREAD_PLATFORM_CSL_UNCERT;
1518 }
1519 #endif
1520
1521 #if defined(CONFIG_OPENTHREAD_LINK_METRICS_SUBJECT)
1522 /**
1523 * Header IE format - IEEE Std. 802.15.4-2015, 7.4.2.1 && 7.4.2.2
1524 *
1525 * +---------------------------------+----------------------+
1526 * | Length | Element ID | Type=0 | Vendor OUI |
1527 * +-----------+------------+--------+----------------------+
1528 * | Bytes: 0-1 | 2-4 |
1529 * +-----------+---------------------+----------------------+
1530 * | Bits: 0-6 | 7-14 | 15 | IE_VENDOR_THREAD_OUI |
1531 * +-----------+------------+--------+----------------------|
1532 *
1533 * Thread v1.2.1 Spec., 4.11.3.4.4.6
1534 * +---------------------------------+-------------------+------------------+
1535 * | Vendor Specific Information |
1536 * +---------------------------------+-------------------+------------------+
1537 * | 5 | 6 | 7 (optional) |
1538 * +---------------------------------+-------------------+------------------+
1539 * | IE_VENDOR_THREAD_ACK_PROBING_ID | LINK_METRIC_TOKEN | LINK_METRIC_TOKEN|
1540 * |---------------------------------|-------------------|------------------|
1541 */
set_vendor_ie_header_lm(bool lqi,bool link_margin,bool rssi,uint8_t * ie_header)1542 static void set_vendor_ie_header_lm(bool lqi, bool link_margin, bool rssi, uint8_t *ie_header)
1543 {
1544 /* Vendor-specific IE identifier */
1545 const uint8_t ie_vendor_id = 0x00;
1546 /* Thread Vendor-specific ACK Probing IE subtype ID */
1547 const uint8_t ie_vendor_thread_ack_probing_id = 0x00;
1548 /* Thread Vendor-specific IE OUI */
1549 const uint32_t ie_vendor_thread_oui = 0xeab89b;
1550 /* Thread Vendor-specific ACK Probing IE RSSI value placeholder */
1551 const uint8_t ie_vendor_thread_rssi_token = 0x01;
1552 /* Thread Vendor-specific ACK Probing IE Link margin value placeholder */
1553 const uint8_t ie_vendor_thread_margin_token = 0x02;
1554 /* Thread Vendor-specific ACK Probing IE LQI value placeholder */
1555 const uint8_t ie_vendor_thread_lqi_token = 0x03;
1556 const uint8_t oui_size = 3;
1557 const uint8_t sub_type = 1;
1558 const uint8_t id_offset = 7;
1559 const uint16_t id_mask = 0x00ff << id_offset;
1560 const uint8_t type = 0x00;
1561 const uint8_t type_offset = 7;
1562 const uint8_t type_mask = 0x01 << type_offset;
1563 const uint8_t length_mask = 0x7f;
1564 uint8_t content_len;
1565 uint16_t element_id = 0x0000;
1566 uint8_t link_metrics_idx = 6;
1567 uint8_t link_metrics_data_len = (uint8_t)lqi + (uint8_t)link_margin + (uint8_t)rssi;
1568
1569 __ASSERT(link_metrics_data_len <= 2, "Thread limits to 2 metrics at most");
1570 __ASSERT(ie_header, "Invalid argument");
1571
1572 if (link_metrics_data_len == 0) {
1573 ie_header[0] = 0;
1574 return;
1575 }
1576
1577 /* Set Element ID */
1578 element_id = (((uint16_t)ie_vendor_id) << id_offset) & id_mask;
1579 sys_put_le16(element_id, &ie_header[0]);
1580
1581 /* Set Length - number of octets in content field. */
1582 content_len = oui_size + sub_type + link_metrics_data_len;
1583 ie_header[0] = (ie_header[0] & ~length_mask) | (content_len & length_mask);
1584
1585 /* Set Type */
1586 ie_header[1] = (ie_header[1] & ~type_mask) | (type & type_mask);
1587
1588 /* Set Vendor Oui */
1589 sys_put_le24(ie_vendor_thread_oui, &ie_header[2]);
1590
1591 /* Set SubType */
1592 ie_header[5] = ie_vendor_thread_ack_probing_id;
1593
1594 /* Set Link Metrics Tokens
1595 * TODO: Thread requires the order of requested metrics by the Link Metrics Initiator
1596 * to be kept by the Link Metrics Subject in the ACKs.
1597 */
1598 if (lqi) {
1599 ie_header[link_metrics_idx++] = ie_vendor_thread_lqi_token;
1600 }
1601
1602 if (link_margin) {
1603 ie_header[link_metrics_idx++] = ie_vendor_thread_margin_token;
1604 }
1605
1606 if (rssi) {
1607 ie_header[link_metrics_idx++] = ie_vendor_thread_rssi_token;
1608 }
1609 }
1610
otPlatRadioConfigureEnhAckProbing(otInstance * aInstance,otLinkMetrics aLinkMetrics,const otShortAddress aShortAddress,const otExtAddress * aExtAddress)1611 otError otPlatRadioConfigureEnhAckProbing(otInstance *aInstance, otLinkMetrics aLinkMetrics,
1612 const otShortAddress aShortAddress,
1613 const otExtAddress *aExtAddress)
1614 {
1615 struct ieee802154_config config = {
1616 .ack_ie.short_addr = aShortAddress,
1617 .ack_ie.ext_addr = aExtAddress->m8,
1618 };
1619 uint8_t header_ie_buf[OT_ACK_IE_MAX_SIZE];
1620 int result;
1621
1622 ARG_UNUSED(aInstance);
1623
1624 set_vendor_ie_header_lm(aLinkMetrics.mLqi, aLinkMetrics.mLinkMargin,
1625 aLinkMetrics.mRssi, header_ie_buf);
1626 config.ack_ie.header_ie = (struct ieee802154_header_ie *)header_ie_buf;
1627 result = radio_api->configure(radio_dev, IEEE802154_CONFIG_ENH_ACK_HEADER_IE, &config);
1628
1629 return result ? OT_ERROR_FAILED : OT_ERROR_NONE;
1630 }
1631
1632 #endif /* CONFIG_OPENTHREAD_LINK_METRICS_SUBJECT */
1633
otPlatRadioSetChannelMaxTransmitPower(otInstance * aInstance,uint8_t aChannel,int8_t aMaxPower)1634 otError otPlatRadioSetChannelMaxTransmitPower(otInstance *aInstance, uint8_t aChannel,
1635 int8_t aMaxPower)
1636 {
1637 ARG_UNUSED(aInstance);
1638
1639 if (aChannel < OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MIN ||
1640 aChannel > OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MAX) {
1641 return OT_ERROR_INVALID_ARGS;
1642 }
1643
1644 max_tx_power_table[aChannel - OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MIN] = aMaxPower;
1645
1646 if (aChannel == channel) {
1647 radio_api->set_txpower(radio_dev, get_transmit_power_for_channel(aChannel));
1648 }
1649
1650 return OT_ERROR_NONE;
1651 }
1652