1 /*
2  *  Elliptic curves over GF(p): curve-specific data and functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 
20 #include "common.h"
21 
22 #if defined(MBEDTLS_ECP_C)
23 
24 #include "mbedtls/ecp.h"
25 #include "mbedtls/platform_util.h"
26 #include "mbedtls/error.h"
27 
28 #include <string.h>
29 
30 #if !defined(MBEDTLS_ECP_ALT)
31 
32 /* Parameter validation macros based on platform_util.h */
33 #define ECP_VALIDATE_RET( cond )    \
34     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
35 #define ECP_VALIDATE( cond )        \
36     MBEDTLS_INTERNAL_VALIDATE( cond )
37 
38 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
39     !defined(inline) && !defined(__cplusplus)
40 #define inline __inline
41 #endif
42 
43 /*
44  * Conversion macros for embedded constants:
45  * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
46  */
47 #if defined(MBEDTLS_HAVE_INT32)
48 
49 #define BYTES_TO_T_UINT_4( a, b, c, d )                       \
50     ( (mbedtls_mpi_uint) (a) <<  0 ) |                        \
51     ( (mbedtls_mpi_uint) (b) <<  8 ) |                        \
52     ( (mbedtls_mpi_uint) (c) << 16 ) |                        \
53     ( (mbedtls_mpi_uint) (d) << 24 )
54 
55 #define BYTES_TO_T_UINT_2( a, b )                   \
56     BYTES_TO_T_UINT_4( a, b, 0, 0 )
57 
58 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
59     BYTES_TO_T_UINT_4( a, b, c, d ),                \
60     BYTES_TO_T_UINT_4( e, f, g, h )
61 
62 #else /* 64-bits */
63 
64 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
65     ( (mbedtls_mpi_uint) (a) <<  0 ) |                        \
66     ( (mbedtls_mpi_uint) (b) <<  8 ) |                        \
67     ( (mbedtls_mpi_uint) (c) << 16 ) |                        \
68     ( (mbedtls_mpi_uint) (d) << 24 ) |                        \
69     ( (mbedtls_mpi_uint) (e) << 32 ) |                        \
70     ( (mbedtls_mpi_uint) (f) << 40 ) |                        \
71     ( (mbedtls_mpi_uint) (g) << 48 ) |                        \
72     ( (mbedtls_mpi_uint) (h) << 56 )
73 
74 #define BYTES_TO_T_UINT_4( a, b, c, d )             \
75     BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
76 
77 #define BYTES_TO_T_UINT_2( a, b )                   \
78     BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
79 
80 #endif /* bits in mbedtls_mpi_uint */
81 
82 /*
83  * Note: the constants are in little-endian order
84  * to be directly usable in MPIs
85  */
86 
87 /*
88  * Domain parameters for secp192r1
89  */
90 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
91 static const mbedtls_mpi_uint secp192r1_p[] = {
92     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
93     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
94     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
95 };
96 static const mbedtls_mpi_uint secp192r1_b[] = {
97     BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
98     BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
99     BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
100 };
101 static const mbedtls_mpi_uint secp192r1_gx[] = {
102     BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
103     BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
104     BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
105 };
106 static const mbedtls_mpi_uint secp192r1_gy[] = {
107     BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
108     BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
109     BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
110 };
111 static const mbedtls_mpi_uint secp192r1_n[] = {
112     BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
113     BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
114     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
115 };
116 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
117 
118 /*
119  * Domain parameters for secp224r1
120  */
121 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
122 static const mbedtls_mpi_uint secp224r1_p[] = {
123     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
124     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
125     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
126     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
127 };
128 static const mbedtls_mpi_uint secp224r1_b[] = {
129     BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
130     BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
131     BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
132     BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
133 };
134 static const mbedtls_mpi_uint secp224r1_gx[] = {
135     BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
136     BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
137     BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
138     BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
139 };
140 static const mbedtls_mpi_uint secp224r1_gy[] = {
141     BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
142     BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
143     BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
144     BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
145 };
146 static const mbedtls_mpi_uint secp224r1_n[] = {
147     BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
148     BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
149     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
150     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
151 };
152 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
153 
154 /*
155  * Domain parameters for secp256r1
156  */
157 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
158 static const mbedtls_mpi_uint secp256r1_p[] = {
159     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
160     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
161     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
162     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
163 };
164 static const mbedtls_mpi_uint secp256r1_b[] = {
165     BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
166     BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
167     BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
168     BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
169 };
170 static const mbedtls_mpi_uint secp256r1_gx[] = {
171     BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
172     BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
173     BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
174     BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
175 };
176 static const mbedtls_mpi_uint secp256r1_gy[] = {
177     BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
178     BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
179     BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
180     BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
181 };
182 static const mbedtls_mpi_uint secp256r1_n[] = {
183     BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
184     BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
185     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
186     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
187 };
188 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
189 
190 /*
191  * Domain parameters for secp384r1
192  */
193 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
194 static const mbedtls_mpi_uint secp384r1_p[] = {
195     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
196     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
197     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
198     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
199     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
200     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
201 };
202 static const mbedtls_mpi_uint secp384r1_b[] = {
203     BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
204     BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
205     BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
206     BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
207     BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
208     BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
209 };
210 static const mbedtls_mpi_uint secp384r1_gx[] = {
211     BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
212     BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
213     BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
214     BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
215     BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
216     BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
217 };
218 static const mbedtls_mpi_uint secp384r1_gy[] = {
219     BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
220     BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
221     BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
222     BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
223     BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
224     BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
225 };
226 static const mbedtls_mpi_uint secp384r1_n[] = {
227     BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
228     BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
229     BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
230     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
231     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
232     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
233 };
234 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
235 
236 /*
237  * Domain parameters for secp521r1
238  */
239 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
240 static const mbedtls_mpi_uint secp521r1_p[] = {
241     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
242     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
243     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
244     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
245     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
246     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
247     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
248     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
249     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
250 };
251 static const mbedtls_mpi_uint secp521r1_b[] = {
252     BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
253     BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
254     BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
255     BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
256     BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
257     BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
258     BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
259     BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
260     BYTES_TO_T_UINT_2( 0x51, 0x00 ),
261 };
262 static const mbedtls_mpi_uint secp521r1_gx[] = {
263     BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
264     BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
265     BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
266     BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
267     BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
268     BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
269     BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
270     BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
271     BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
272 };
273 static const mbedtls_mpi_uint secp521r1_gy[] = {
274     BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
275     BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
276     BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
277     BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
278     BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
279     BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
280     BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
281     BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
282     BYTES_TO_T_UINT_2( 0x18, 0x01 ),
283 };
284 static const mbedtls_mpi_uint secp521r1_n[] = {
285     BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
286     BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
287     BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
288     BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
289     BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
290     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
291     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
292     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
293     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
294 };
295 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
296 
297 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
298 static const mbedtls_mpi_uint secp192k1_p[] = {
299     BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
300     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
301     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
302 };
303 static const mbedtls_mpi_uint secp192k1_a[] = {
304     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
305 };
306 static const mbedtls_mpi_uint secp192k1_b[] = {
307     BYTES_TO_T_UINT_2( 0x03, 0x00 ),
308 };
309 static const mbedtls_mpi_uint secp192k1_gx[] = {
310     BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
311     BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
312     BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
313 };
314 static const mbedtls_mpi_uint secp192k1_gy[] = {
315     BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
316     BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
317     BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
318 };
319 static const mbedtls_mpi_uint secp192k1_n[] = {
320     BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
321     BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
322     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
323 };
324 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
325 
326 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
327 static const mbedtls_mpi_uint secp224k1_p[] = {
328     BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
329     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
330     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
331     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
332 };
333 static const mbedtls_mpi_uint secp224k1_a[] = {
334     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
335 };
336 static const mbedtls_mpi_uint secp224k1_b[] = {
337     BYTES_TO_T_UINT_2( 0x05, 0x00 ),
338 };
339 static const mbedtls_mpi_uint secp224k1_gx[] = {
340     BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
341     BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
342     BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
343     BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
344 };
345 static const mbedtls_mpi_uint secp224k1_gy[] = {
346     BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
347     BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
348     BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
349     BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
350 };
351 static const mbedtls_mpi_uint secp224k1_n[] = {
352     BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
353     BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
354     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
355     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
356 };
357 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
358 
359 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
360 static const mbedtls_mpi_uint secp256k1_p[] = {
361     BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
362     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
363     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
364     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
365 };
366 static const mbedtls_mpi_uint secp256k1_a[] = {
367     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
368 };
369 static const mbedtls_mpi_uint secp256k1_b[] = {
370     BYTES_TO_T_UINT_2( 0x07, 0x00 ),
371 };
372 static const mbedtls_mpi_uint secp256k1_gx[] = {
373     BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
374     BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
375     BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
376     BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
377 };
378 static const mbedtls_mpi_uint secp256k1_gy[] = {
379     BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
380     BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
381     BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
382     BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
383 };
384 static const mbedtls_mpi_uint secp256k1_n[] = {
385     BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
386     BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
387     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
388     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
389 };
390 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
391 
392 /*
393  * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
394  */
395 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
396 static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
397     BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
398     BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
399     BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
400     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
401 };
402 static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
403     BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
404     BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
405     BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
406     BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
407 };
408 static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
409     BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
410     BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
411     BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
412     BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
413 };
414 static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
415     BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
416     BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
417     BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
418     BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
419 };
420 static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
421     BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
422     BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
423     BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
424     BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
425 };
426 static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
427     BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
428     BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
429     BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
430     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
431 };
432 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
433 
434 /*
435  * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
436  */
437 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
438 static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
439     BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
440     BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
441     BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
442     BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
443     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
444     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
445 };
446 static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
447     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
448     BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
449     BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
450     BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
451     BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
452     BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
453 };
454 static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
455     BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
456     BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
457     BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
458     BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
459     BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
460     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
461 };
462 static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
463     BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
464     BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
465     BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
466     BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
467     BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
468     BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
469 };
470 static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
471     BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
472     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
473     BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
474     BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
475     BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
476     BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
477 };
478 static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
479     BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
480     BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
481     BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
482     BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
483     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
484     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
485 };
486 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
487 
488 /*
489  * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
490  */
491 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
492 static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
493     BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
494     BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
495     BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
496     BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
497     BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
498     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
499     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
500     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
501 };
502 static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
503     BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
504     BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
505     BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
506     BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
507     BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
508     BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
509     BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
510     BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
511 };
512 static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
513     BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
514     BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
515     BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
516     BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
517     BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
518     BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
519     BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
520     BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
521 };
522 static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
523     BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
524     BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
525     BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
526     BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
527     BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
528     BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
529     BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
530     BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
531 };
532 static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
533     BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
534     BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
535     BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
536     BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
537     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
538     BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
539     BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
540     BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
541 };
542 static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
543     BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
544     BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
545     BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
546     BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
547     BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
548     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
549     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
550     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
551 };
552 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
553 
554 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \
555     defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
556     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
557     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \
558     defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \
559     defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \
560     defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \
561     defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \
562     defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
563     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
564     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
565 /* For these curves, we build the group parameters dynamically. */
566 #define ECP_LOAD_GROUP
567 #endif
568 
569 #if defined(ECP_LOAD_GROUP)
570 /*
571  * Create an MPI from embedded constants
572  * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
573  */
ecp_mpi_load(mbedtls_mpi * X,const mbedtls_mpi_uint * p,size_t len)574 static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
575 {
576     X->s = 1;
577     X->n = len / sizeof( mbedtls_mpi_uint );
578     X->p = (mbedtls_mpi_uint *) p;
579 }
580 
581 /*
582  * Set an MPI to static value 1
583  */
ecp_mpi_set1(mbedtls_mpi * X)584 static inline void ecp_mpi_set1( mbedtls_mpi *X )
585 {
586     static mbedtls_mpi_uint one[] = { 1 };
587     X->s = 1;
588     X->n = 1;
589     X->p = one;
590 }
591 
592 /*
593  * Make group available from embedded constants
594  */
ecp_group_load(mbedtls_ecp_group * grp,const mbedtls_mpi_uint * p,size_t plen,const mbedtls_mpi_uint * a,size_t alen,const mbedtls_mpi_uint * b,size_t blen,const mbedtls_mpi_uint * gx,size_t gxlen,const mbedtls_mpi_uint * gy,size_t gylen,const mbedtls_mpi_uint * n,size_t nlen)595 static int ecp_group_load( mbedtls_ecp_group *grp,
596                            const mbedtls_mpi_uint *p,  size_t plen,
597                            const mbedtls_mpi_uint *a,  size_t alen,
598                            const mbedtls_mpi_uint *b,  size_t blen,
599                            const mbedtls_mpi_uint *gx, size_t gxlen,
600                            const mbedtls_mpi_uint *gy, size_t gylen,
601                            const mbedtls_mpi_uint *n,  size_t nlen)
602 {
603     ecp_mpi_load( &grp->P, p, plen );
604     if( a != NULL )
605         ecp_mpi_load( &grp->A, a, alen );
606     ecp_mpi_load( &grp->B, b, blen );
607     ecp_mpi_load( &grp->N, n, nlen );
608 
609     ecp_mpi_load( &grp->G.X, gx, gxlen );
610     ecp_mpi_load( &grp->G.Y, gy, gylen );
611     ecp_mpi_set1( &grp->G.Z );
612 
613     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
614     grp->nbits = mbedtls_mpi_bitlen( &grp->N );
615 
616     grp->h = 1;
617 
618     return( 0 );
619 }
620 #endif /* ECP_LOAD_GROUP */
621 
622 #if defined(MBEDTLS_ECP_NIST_OPTIM)
623 /* Forward declarations */
624 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
625 static int ecp_mod_p192( mbedtls_mpi * );
626 #endif
627 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
628 static int ecp_mod_p224( mbedtls_mpi * );
629 #endif
630 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
631 static int ecp_mod_p256( mbedtls_mpi * );
632 #endif
633 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
634 static int ecp_mod_p384( mbedtls_mpi * );
635 #endif
636 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
637 static int ecp_mod_p521( mbedtls_mpi * );
638 #endif
639 
640 #define NIST_MODP( P )      grp->modp = ecp_mod_ ## P;
641 #else
642 #define NIST_MODP( P )
643 #endif /* MBEDTLS_ECP_NIST_OPTIM */
644 
645 /* Additional forward declarations */
646 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
647 static int ecp_mod_p255( mbedtls_mpi * );
648 #endif
649 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
650 static int ecp_mod_p448( mbedtls_mpi * );
651 #endif
652 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
653 static int ecp_mod_p192k1( mbedtls_mpi * );
654 #endif
655 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
656 static int ecp_mod_p224k1( mbedtls_mpi * );
657 #endif
658 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
659 static int ecp_mod_p256k1( mbedtls_mpi * );
660 #endif
661 
662 #if defined(ECP_LOAD_GROUP)
663 #define LOAD_GROUP_A( G )   ecp_group_load( grp,            \
664                             G ## _p,  sizeof( G ## _p  ),   \
665                             G ## _a,  sizeof( G ## _a  ),   \
666                             G ## _b,  sizeof( G ## _b  ),   \
667                             G ## _gx, sizeof( G ## _gx ),   \
668                             G ## _gy, sizeof( G ## _gy ),   \
669                             G ## _n,  sizeof( G ## _n  ) )
670 
671 #define LOAD_GROUP( G )     ecp_group_load( grp,            \
672                             G ## _p,  sizeof( G ## _p  ),   \
673                             NULL,     0,                    \
674                             G ## _b,  sizeof( G ## _b  ),   \
675                             G ## _gx, sizeof( G ## _gx ),   \
676                             G ## _gy, sizeof( G ## _gy ),   \
677                             G ## _n,  sizeof( G ## _n  ) )
678 #endif /* ECP_LOAD_GROUP */
679 
680 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
681 /*
682  * Specialized function for creating the Curve25519 group
683  */
ecp_use_curve25519(mbedtls_ecp_group * grp)684 static int ecp_use_curve25519( mbedtls_ecp_group *grp )
685 {
686     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
687 
688     /* Actually ( A + 2 ) / 4 */
689     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
690 
691     /* P = 2^255 - 19 */
692     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
693     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
694     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
695     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
696 
697     /* N = 2^252 + 27742317777372353535851937790883648493 */
698     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->N, 16,
699                                               "14DEF9DEA2F79CD65812631A5CF5D3ED" ) );
700     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) );
701 
702     /* Y intentionally not set, since we use x/z coordinates.
703      * This is used as a marker to identify Montgomery curves! */
704     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
705     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
706     mbedtls_mpi_free( &grp->G.Y );
707 
708     /* Actually, the required msb for private keys */
709     grp->nbits = 254;
710 
711 cleanup:
712     if( ret != 0 )
713         mbedtls_ecp_group_free( grp );
714 
715     return( ret );
716 }
717 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
718 
719 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
720 /*
721  * Specialized function for creating the Curve448 group
722  */
ecp_use_curve448(mbedtls_ecp_group * grp)723 static int ecp_use_curve448( mbedtls_ecp_group *grp )
724 {
725     mbedtls_mpi Ns;
726     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
727 
728     mbedtls_mpi_init( &Ns );
729 
730     /* Actually ( A + 2 ) / 4 */
731     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "98AA" ) );
732 
733     /* P = 2^448 - 2^224 - 1 */
734     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
735     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
736     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
737     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
738     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
739     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
740 
741     /* Y intentionally not set, since we use x/z coordinates.
742      * This is used as a marker to identify Montgomery curves! */
743     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 5 ) );
744     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
745     mbedtls_mpi_free( &grp->G.Y );
746 
747     /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
748     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 446, 1 ) );
749     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &Ns, 16,
750                                               "8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D" ) );
751     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &grp->N, &grp->N, &Ns ) );
752 
753     /* Actually, the required msb for private keys */
754     grp->nbits = 447;
755 
756 cleanup:
757     mbedtls_mpi_free( &Ns );
758     if( ret != 0 )
759         mbedtls_ecp_group_free( grp );
760 
761     return( ret );
762 }
763 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
764 
765 /*
766  * Set a group using well-known domain parameters
767  */
mbedtls_ecp_group_load(mbedtls_ecp_group * grp,mbedtls_ecp_group_id id)768 int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
769 {
770     ECP_VALIDATE_RET( grp != NULL );
771     mbedtls_ecp_group_free( grp );
772 
773     grp->id = id;
774 
775     switch( id )
776     {
777 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
778         case MBEDTLS_ECP_DP_SECP192R1:
779             NIST_MODP( p192 );
780             return( LOAD_GROUP( secp192r1 ) );
781 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
782 
783 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
784         case MBEDTLS_ECP_DP_SECP224R1:
785             NIST_MODP( p224 );
786             return( LOAD_GROUP( secp224r1 ) );
787 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
788 
789 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
790         case MBEDTLS_ECP_DP_SECP256R1:
791             NIST_MODP( p256 );
792             return( LOAD_GROUP( secp256r1 ) );
793 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
794 
795 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
796         case MBEDTLS_ECP_DP_SECP384R1:
797             NIST_MODP( p384 );
798             return( LOAD_GROUP( secp384r1 ) );
799 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
800 
801 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
802         case MBEDTLS_ECP_DP_SECP521R1:
803             NIST_MODP( p521 );
804             return( LOAD_GROUP( secp521r1 ) );
805 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
806 
807 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
808         case MBEDTLS_ECP_DP_SECP192K1:
809             grp->modp = ecp_mod_p192k1;
810             return( LOAD_GROUP_A( secp192k1 ) );
811 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
812 
813 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
814         case MBEDTLS_ECP_DP_SECP224K1:
815             grp->modp = ecp_mod_p224k1;
816             return( LOAD_GROUP_A( secp224k1 ) );
817 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
818 
819 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
820         case MBEDTLS_ECP_DP_SECP256K1:
821             grp->modp = ecp_mod_p256k1;
822             return( LOAD_GROUP_A( secp256k1 ) );
823 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
824 
825 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
826         case MBEDTLS_ECP_DP_BP256R1:
827             return( LOAD_GROUP_A( brainpoolP256r1 ) );
828 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
829 
830 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
831         case MBEDTLS_ECP_DP_BP384R1:
832             return( LOAD_GROUP_A( brainpoolP384r1 ) );
833 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
834 
835 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
836         case MBEDTLS_ECP_DP_BP512R1:
837             return( LOAD_GROUP_A( brainpoolP512r1 ) );
838 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
839 
840 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
841         case MBEDTLS_ECP_DP_CURVE25519:
842             grp->modp = ecp_mod_p255;
843             return( ecp_use_curve25519( grp ) );
844 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
845 
846 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
847         case MBEDTLS_ECP_DP_CURVE448:
848             grp->modp = ecp_mod_p448;
849             return( ecp_use_curve448( grp ) );
850 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
851 
852         default:
853             grp->id = MBEDTLS_ECP_DP_NONE;
854             return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
855     }
856 }
857 
858 #if defined(MBEDTLS_ECP_NIST_OPTIM)
859 /*
860  * Fast reduction modulo the primes used by the NIST curves.
861  *
862  * These functions are critical for speed, but not needed for correct
863  * operations. So, we make the choice to heavily rely on the internals of our
864  * bignum library, which creates a tight coupling between these functions and
865  * our MPI implementation.  However, the coupling between the ECP module and
866  * MPI remains loose, since these functions can be deactivated at will.
867  */
868 
869 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
870 /*
871  * Compared to the way things are presented in FIPS 186-3 D.2,
872  * we proceed in columns, from right (least significant chunk) to left,
873  * adding chunks to N in place, and keeping a carry for the next chunk.
874  * This avoids moving things around in memory, and uselessly adding zeros,
875  * compared to the more straightforward, line-oriented approach.
876  *
877  * For this prime we need to handle data in chunks of 64 bits.
878  * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
879  * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
880  */
881 
882 /* Add 64-bit chunks (dst += src) and update carry */
add64(mbedtls_mpi_uint * dst,mbedtls_mpi_uint * src,mbedtls_mpi_uint * carry)883 static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
884 {
885     unsigned char i;
886     mbedtls_mpi_uint c = 0;
887     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
888     {
889         *dst += c;      c  = ( *dst < c );
890         *dst += *src;   c += ( *dst < *src );
891     }
892     *carry += c;
893 }
894 
895 /* Add carry to a 64-bit chunk and update carry */
carry64(mbedtls_mpi_uint * dst,mbedtls_mpi_uint * carry)896 static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
897 {
898     unsigned char i;
899     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
900     {
901         *dst += *carry;
902         *carry  = ( *dst < *carry );
903     }
904 }
905 
906 #define WIDTH       8 / sizeof( mbedtls_mpi_uint )
907 #define A( i )      N->p + (i) * WIDTH
908 #define ADD( i )    add64( p, A( i ), &c )
909 #define NEXT        p += WIDTH; carry64( p, &c )
910 #define LAST        p += WIDTH; *p = c; while( ++p < end ) *p = 0
911 
912 /*
913  * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
914  */
ecp_mod_p192(mbedtls_mpi * N)915 static int ecp_mod_p192( mbedtls_mpi *N )
916 {
917     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
918     mbedtls_mpi_uint c = 0;
919     mbedtls_mpi_uint *p, *end;
920 
921     /* Make sure we have enough blocks so that A(5) is legal */
922     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
923 
924     p = N->p;
925     end = p + N->n;
926 
927     ADD( 3 ); ADD( 5 );             NEXT; // A0 += A3 + A5
928     ADD( 3 ); ADD( 4 ); ADD( 5 );   NEXT; // A1 += A3 + A4 + A5
929     ADD( 4 ); ADD( 5 );             LAST; // A2 += A4 + A5
930 
931 cleanup:
932     return( ret );
933 }
934 
935 #undef WIDTH
936 #undef A
937 #undef ADD
938 #undef NEXT
939 #undef LAST
940 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
941 
942 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
943     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
944     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
945 /*
946  * The reader is advised to first understand ecp_mod_p192() since the same
947  * general structure is used here, but with additional complications:
948  * (1) chunks of 32 bits, and (2) subtractions.
949  */
950 
951 /*
952  * For these primes, we need to handle data in chunks of 32 bits.
953  * This makes it more complicated if we use 64 bits limbs in MPI,
954  * which prevents us from using a uniform access method as for p192.
955  *
956  * So, we define a mini abstraction layer to access 32 bit chunks,
957  * load them in 'cur' for work, and store them back from 'cur' when done.
958  *
959  * While at it, also define the size of N in terms of 32-bit chunks.
960  */
961 #define LOAD32      cur = A( i );
962 
963 #if defined(MBEDTLS_HAVE_INT32)  /* 32 bit */
964 
965 #define MAX32       N->n
966 #define A( j )      N->p[j]
967 #define STORE32     N->p[i] = cur;
968 
969 #else                               /* 64-bit */
970 
971 #define MAX32       N->n * 2
972 #define A( j ) (j) % 2 ? (uint32_t)( N->p[(j)/2] >> 32 ) : \
973                          (uint32_t)( N->p[(j)/2] )
974 #define STORE32                                   \
975     if( i % 2 ) {                                 \
976         N->p[i/2] &= 0x00000000FFFFFFFF;          \
977         N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32;        \
978     } else {                                      \
979         N->p[i/2] &= 0xFFFFFFFF00000000;          \
980         N->p[i/2] |= (mbedtls_mpi_uint) cur;                \
981     }
982 
983 #endif /* sizeof( mbedtls_mpi_uint ) */
984 
985 /*
986  * Helpers for addition and subtraction of chunks, with signed carry.
987  */
add32(uint32_t * dst,uint32_t src,signed char * carry)988 static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
989 {
990     *dst += src;
991     *carry += ( *dst < src );
992 }
993 
sub32(uint32_t * dst,uint32_t src,signed char * carry)994 static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
995 {
996     *carry -= ( *dst < src );
997     *dst -= src;
998 }
999 
1000 #define ADD( j )    add32( &cur, A( j ), &c );
1001 #define SUB( j )    sub32( &cur, A( j ), &c );
1002 
1003 /*
1004  * Helpers for the main 'loop'
1005  * (see fix_negative for the motivation of C)
1006  */
1007 #define INIT( b )                                                       \
1008     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;                                                            \
1009     signed char c = 0, cc;                                              \
1010     uint32_t cur;                                                       \
1011     size_t i = 0, bits = (b);                                           \
1012     mbedtls_mpi C;                                                      \
1013     mbedtls_mpi_uint Cp[ (b) / 8 / sizeof( mbedtls_mpi_uint) + 1 ];     \
1014                                                                         \
1015     C.s = 1;                                                            \
1016     C.n = (b) / 8 / sizeof( mbedtls_mpi_uint) + 1;                      \
1017     C.p = Cp;                                                           \
1018     memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) );                  \
1019                                                                         \
1020     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, (b) * 2 / 8 /                 \
1021                                        sizeof( mbedtls_mpi_uint ) ) );  \
1022     LOAD32;
1023 
1024 #define NEXT                    \
1025     STORE32; i++; LOAD32;       \
1026     cc = c; c = 0;              \
1027     if( cc < 0 )                \
1028         sub32( &cur, -cc, &c ); \
1029     else                        \
1030         add32( &cur, cc, &c );  \
1031 
1032 #define LAST                                    \
1033     STORE32; i++;                               \
1034     cur = c > 0 ? c : 0; STORE32;               \
1035     cur = 0; while( ++i < MAX32 ) { STORE32; }  \
1036     if( c < 0 ) MBEDTLS_MPI_CHK( fix_negative( N, c, &C, bits ) );
1037 
1038 /*
1039  * If the result is negative, we get it in the form
1040  * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
1041  */
fix_negative(mbedtls_mpi * N,signed char c,mbedtls_mpi * C,size_t bits)1042 static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
1043 {
1044     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1045 
1046     /* C = - c * 2^(bits + 32) */
1047 #if !defined(MBEDTLS_HAVE_INT64)
1048     ((void) bits);
1049 #else
1050     if( bits == 224 )
1051         C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
1052     else
1053 #endif
1054         C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
1055 
1056     /* N = - ( C - N ) */
1057     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
1058     N->s = -1;
1059 
1060 cleanup:
1061 
1062     return( ret );
1063 }
1064 
1065 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
1066 /*
1067  * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
1068  */
ecp_mod_p224(mbedtls_mpi * N)1069 static int ecp_mod_p224( mbedtls_mpi *N )
1070 {
1071     INIT( 224 );
1072 
1073     SUB(  7 ); SUB( 11 );               NEXT; // A0 += -A7 - A11
1074     SUB(  8 ); SUB( 12 );               NEXT; // A1 += -A8 - A12
1075     SUB(  9 ); SUB( 13 );               NEXT; // A2 += -A9 - A13
1076     SUB( 10 ); ADD(  7 ); ADD( 11 );    NEXT; // A3 += -A10 + A7 + A11
1077     SUB( 11 ); ADD(  8 ); ADD( 12 );    NEXT; // A4 += -A11 + A8 + A12
1078     SUB( 12 ); ADD(  9 ); ADD( 13 );    NEXT; // A5 += -A12 + A9 + A13
1079     SUB( 13 ); ADD( 10 );               LAST; // A6 += -A13 + A10
1080 
1081 cleanup:
1082     return( ret );
1083 }
1084 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
1085 
1086 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
1087 /*
1088  * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1089  */
ecp_mod_p256(mbedtls_mpi * N)1090 static int ecp_mod_p256( mbedtls_mpi *N )
1091 {
1092     INIT( 256 );
1093 
1094     ADD(  8 ); ADD(  9 );
1095     SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 );             NEXT; // A0
1096 
1097     ADD(  9 ); ADD( 10 );
1098     SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 );             NEXT; // A1
1099 
1100     ADD( 10 ); ADD( 11 );
1101     SUB( 13 ); SUB( 14 ); SUB( 15 );                        NEXT; // A2
1102 
1103     ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1104     SUB( 15 ); SUB(  8 ); SUB(  9 );                        NEXT; // A3
1105 
1106     ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1107     SUB(  9 ); SUB( 10 );                                   NEXT; // A4
1108 
1109     ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1110     SUB( 10 ); SUB( 11 );                                   NEXT; // A5
1111 
1112     ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1113     SUB(  8 ); SUB(  9 );                                   NEXT; // A6
1114 
1115     ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1116     SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 );             LAST; // A7
1117 
1118 cleanup:
1119     return( ret );
1120 }
1121 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1122 
1123 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1124 /*
1125  * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1126  */
ecp_mod_p384(mbedtls_mpi * N)1127 static int ecp_mod_p384( mbedtls_mpi *N )
1128 {
1129     INIT( 384 );
1130 
1131     ADD( 12 ); ADD( 21 ); ADD( 20 );
1132     SUB( 23 );                                              NEXT; // A0
1133 
1134     ADD( 13 ); ADD( 22 ); ADD( 23 );
1135     SUB( 12 ); SUB( 20 );                                   NEXT; // A2
1136 
1137     ADD( 14 ); ADD( 23 );
1138     SUB( 13 ); SUB( 21 );                                   NEXT; // A2
1139 
1140     ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1141     SUB( 14 ); SUB( 22 ); SUB( 23 );                        NEXT; // A3
1142 
1143     ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1144     SUB( 15 ); SUB( 23 ); SUB( 23 );                        NEXT; // A4
1145 
1146     ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1147     SUB( 16 );                                              NEXT; // A5
1148 
1149     ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1150     SUB( 17 );                                              NEXT; // A6
1151 
1152     ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1153     SUB( 18 );                                              NEXT; // A7
1154 
1155     ADD( 20 ); ADD( 17 ); ADD( 16 );
1156     SUB( 19 );                                              NEXT; // A8
1157 
1158     ADD( 21 ); ADD( 18 ); ADD( 17 );
1159     SUB( 20 );                                              NEXT; // A9
1160 
1161     ADD( 22 ); ADD( 19 ); ADD( 18 );
1162     SUB( 21 );                                              NEXT; // A10
1163 
1164     ADD( 23 ); ADD( 20 ); ADD( 19 );
1165     SUB( 22 );                                              LAST; // A11
1166 
1167 cleanup:
1168     return( ret );
1169 }
1170 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1171 
1172 #undef A
1173 #undef LOAD32
1174 #undef STORE32
1175 #undef MAX32
1176 #undef INIT
1177 #undef NEXT
1178 #undef LAST
1179 
1180 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1181           MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1182           MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1183 
1184 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1185 /*
1186  * Here we have an actual Mersenne prime, so things are more straightforward.
1187  * However, chunks are aligned on a 'weird' boundary (521 bits).
1188  */
1189 
1190 /* Size of p521 in terms of mbedtls_mpi_uint */
1191 #define P521_WIDTH      ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1192 
1193 /* Bits to keep in the most significant mbedtls_mpi_uint */
1194 #define P521_MASK       0x01FF
1195 
1196 /*
1197  * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1198  * Write N as A1 + 2^521 A0, return A0 + A1
1199  */
ecp_mod_p521(mbedtls_mpi * N)1200 static int ecp_mod_p521( mbedtls_mpi *N )
1201 {
1202     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1203     size_t i;
1204     mbedtls_mpi M;
1205     mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1206     /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1207      * we need to hold bits 513 to 1056, which is 34 limbs, that is
1208      * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1209 
1210     if( N->n < P521_WIDTH )
1211         return( 0 );
1212 
1213     /* M = A1 */
1214     M.s = 1;
1215     M.n = N->n - ( P521_WIDTH - 1 );
1216     if( M.n > P521_WIDTH + 1 )
1217         M.n = P521_WIDTH + 1;
1218     M.p = Mp;
1219     memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1220     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1221 
1222     /* N = A0 */
1223     N->p[P521_WIDTH - 1] &= P521_MASK;
1224     for( i = P521_WIDTH; i < N->n; i++ )
1225         N->p[i] = 0;
1226 
1227     /* N = A0 + A1 */
1228     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1229 
1230 cleanup:
1231     return( ret );
1232 }
1233 
1234 #undef P521_WIDTH
1235 #undef P521_MASK
1236 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1237 
1238 #endif /* MBEDTLS_ECP_NIST_OPTIM */
1239 
1240 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1241 
1242 /* Size of p255 in terms of mbedtls_mpi_uint */
1243 #define P255_WIDTH      ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1244 
1245 /*
1246  * Fast quasi-reduction modulo p255 = 2^255 - 19
1247  * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1248  */
ecp_mod_p255(mbedtls_mpi * N)1249 static int ecp_mod_p255( mbedtls_mpi *N )
1250 {
1251     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1252     size_t i;
1253     mbedtls_mpi M;
1254     mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1255 
1256     if( N->n < P255_WIDTH )
1257         return( 0 );
1258 
1259     /* M = A1 */
1260     M.s = 1;
1261     M.n = N->n - ( P255_WIDTH - 1 );
1262     if( M.n > P255_WIDTH + 1 )
1263         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1264     M.p = Mp;
1265     memset( Mp, 0, sizeof Mp );
1266     memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1267     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1268     M.n++; /* Make room for multiplication by 19 */
1269 
1270     /* N = A0 */
1271     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1272     for( i = P255_WIDTH; i < N->n; i++ )
1273         N->p[i] = 0;
1274 
1275     /* N = A0 + 19 * A1 */
1276     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1277     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1278 
1279 cleanup:
1280     return( ret );
1281 }
1282 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1283 
1284 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
1285 
1286 /* Size of p448 in terms of mbedtls_mpi_uint */
1287 #define P448_WIDTH      ( 448 / 8 / sizeof( mbedtls_mpi_uint ) )
1288 
1289 /* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
1290 #define DIV_ROUND_UP( X, Y ) ( ( ( X ) + ( Y ) - 1 ) / ( Y ) )
1291 #define P224_WIDTH_MIN   ( 28 / sizeof( mbedtls_mpi_uint ) )
1292 #define P224_WIDTH_MAX   DIV_ROUND_UP( 28, sizeof( mbedtls_mpi_uint ) )
1293 #define P224_UNUSED_BITS ( ( P224_WIDTH_MAX * sizeof( mbedtls_mpi_uint ) * 8 ) - 224 )
1294 
1295 /*
1296  * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
1297  * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
1298  * A0 + A1 + B1 + (B0 + B1) * 2^224.  This is different to the reference
1299  * implementation of Curve448, which uses its own special 56-bit limbs rather
1300  * than a generic bignum library.  We could squeeze some extra speed out on
1301  * 32-bit machines by splitting N up into 32-bit limbs and doing the
1302  * arithmetic using the limbs directly as we do for the NIST primes above,
1303  * but for 64-bit targets it should use half the number of operations if we do
1304  * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
1305  */
ecp_mod_p448(mbedtls_mpi * N)1306 static int ecp_mod_p448( mbedtls_mpi *N )
1307 {
1308     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1309     size_t i;
1310     mbedtls_mpi M, Q;
1311     mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
1312 
1313     if( N->n <= P448_WIDTH )
1314         return( 0 );
1315 
1316     /* M = A1 */
1317     M.s = 1;
1318     M.n = N->n - ( P448_WIDTH );
1319     if( M.n > P448_WIDTH )
1320         /* Shouldn't be called with N larger than 2^896! */
1321         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1322     M.p = Mp;
1323     memset( Mp, 0, sizeof( Mp ) );
1324     memcpy( Mp, N->p + P448_WIDTH, M.n * sizeof( mbedtls_mpi_uint ) );
1325 
1326     /* N = A0 */
1327     for( i = P448_WIDTH; i < N->n; i++ )
1328         N->p[i] = 0;
1329 
1330     /* N += A1 */
1331     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1332 
1333     /* Q = B1, N += B1 */
1334     Q = M;
1335     Q.p = Qp;
1336     memcpy( Qp, Mp, sizeof( Qp ) );
1337     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Q, 224 ) );
1338     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &Q ) );
1339 
1340     /* M = (B0 + B1) * 2^224, N += M */
1341     if( sizeof( mbedtls_mpi_uint ) > 4 )
1342         Mp[P224_WIDTH_MIN] &= ( (mbedtls_mpi_uint)-1 ) >> ( P224_UNUSED_BITS );
1343     for( i = P224_WIDTH_MAX; i < M.n; ++i )
1344         Mp[i] = 0;
1345     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &Q ) );
1346     M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
1347     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &M, 224 ) );
1348     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1349 
1350 cleanup:
1351     return( ret );
1352 }
1353 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
1354 
1355 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
1356     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
1357     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1358 /*
1359  * Fast quasi-reduction modulo P = 2^s - R,
1360  * with R about 33 bits, used by the Koblitz curves.
1361  *
1362  * Write N as A0 + 2^224 A1, return A0 + R * A1.
1363  * Actually do two passes, since R is big.
1364  */
1365 #define P_KOBLITZ_MAX   ( 256 / 8 / sizeof( mbedtls_mpi_uint ) )  // Max limbs in P
1366 #define P_KOBLITZ_R     ( 8 / sizeof( mbedtls_mpi_uint ) )        // Limbs in R
ecp_mod_koblitz(mbedtls_mpi * N,mbedtls_mpi_uint * Rp,size_t p_limbs,size_t adjust,size_t shift,mbedtls_mpi_uint mask)1367 static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1368                                    size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1369 {
1370     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1371     size_t i;
1372     mbedtls_mpi M, R;
1373     mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1374 
1375     if( N->n < p_limbs )
1376         return( 0 );
1377 
1378     /* Init R */
1379     R.s = 1;
1380     R.p = Rp;
1381     R.n = P_KOBLITZ_R;
1382 
1383     /* Common setup for M */
1384     M.s = 1;
1385     M.p = Mp;
1386 
1387     /* M = A1 */
1388     M.n = N->n - ( p_limbs - adjust );
1389     if( M.n > p_limbs + adjust )
1390         M.n = p_limbs + adjust;
1391     memset( Mp, 0, sizeof Mp );
1392     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1393     if( shift != 0 )
1394         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1395     M.n += R.n; /* Make room for multiplication by R */
1396 
1397     /* N = A0 */
1398     if( mask != 0 )
1399         N->p[p_limbs - 1] &= mask;
1400     for( i = p_limbs; i < N->n; i++ )
1401         N->p[i] = 0;
1402 
1403     /* N = A0 + R * A1 */
1404     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1405     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1406 
1407     /* Second pass */
1408 
1409     /* M = A1 */
1410     M.n = N->n - ( p_limbs - adjust );
1411     if( M.n > p_limbs + adjust )
1412         M.n = p_limbs + adjust;
1413     memset( Mp, 0, sizeof Mp );
1414     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1415     if( shift != 0 )
1416         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1417     M.n += R.n; /* Make room for multiplication by R */
1418 
1419     /* N = A0 */
1420     if( mask != 0 )
1421         N->p[p_limbs - 1] &= mask;
1422     for( i = p_limbs; i < N->n; i++ )
1423         N->p[i] = 0;
1424 
1425     /* N = A0 + R * A1 */
1426     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1427     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1428 
1429 cleanup:
1430     return( ret );
1431 }
1432 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1433           MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1434           MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1435 
1436 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1437 /*
1438  * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1439  * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1440  */
ecp_mod_p192k1(mbedtls_mpi * N)1441 static int ecp_mod_p192k1( mbedtls_mpi *N )
1442 {
1443     static mbedtls_mpi_uint Rp[] = {
1444         BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1445 
1446     return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1447 }
1448 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1449 
1450 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1451 /*
1452  * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1453  * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1454  */
ecp_mod_p224k1(mbedtls_mpi * N)1455 static int ecp_mod_p224k1( mbedtls_mpi *N )
1456 {
1457     static mbedtls_mpi_uint Rp[] = {
1458         BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1459 
1460 #if defined(MBEDTLS_HAVE_INT64)
1461     return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1462 #else
1463     return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1464 #endif
1465 }
1466 
1467 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1468 
1469 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1470 /*
1471  * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1472  * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1473  */
ecp_mod_p256k1(mbedtls_mpi * N)1474 static int ecp_mod_p256k1( mbedtls_mpi *N )
1475 {
1476     static mbedtls_mpi_uint Rp[] = {
1477         BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1478     return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1479 }
1480 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1481 
1482 #endif /* !MBEDTLS_ECP_ALT */
1483 
1484 #endif /* MBEDTLS_ECP_C */
1485