1 /*
2 * Copyright (c) 2017 Google LLC.
3 * Copyright (c) 2024 Gerson Fernando Budke <nandojve@gmail.com>
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #define DT_DRV_COMPAT atmel_sam0_uart
9
10 #include <zephyr/device.h>
11 #include <errno.h>
12 #include <zephyr/init.h>
13 #include <zephyr/sys/__assert.h>
14 #include <soc.h>
15 #include <zephyr/drivers/uart.h>
16 #include <zephyr/drivers/dma.h>
17 #include <zephyr/drivers/pinctrl.h>
18 #include <string.h>
19 #include <zephyr/irq.h>
20
21 /* clang-format off */
22
23 #ifndef SERCOM_USART_CTRLA_MODE_USART_INT_CLK
24 #define SERCOM_USART_CTRLA_MODE_USART_INT_CLK SERCOM_USART_CTRLA_MODE(0x1)
25 #endif
26
27 /*
28 * Interrupt error flag is only supported in devices with
29 * SERCOM revision 0x500
30 */
31 #if defined(SERCOM_U2201) && (REV_SERCOM == 0x500)
32 #define SERCOM_REV500
33 #endif
34
35 /* Device constant configuration parameters */
36 struct uart_sam0_dev_cfg {
37 SercomUsart *regs;
38 uint32_t baudrate;
39 uint32_t pads;
40 bool collision_detect;
41 volatile uint32_t *mclk;
42 uint32_t mclk_mask;
43 uint32_t gclk_gen;
44 uint16_t gclk_id;
45
46 #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_SAM0_ASYNC
47 void (*irq_config_func)(const struct device *dev);
48 #endif
49 #if CONFIG_UART_SAM0_ASYNC
50 const struct device *dma_dev;
51 uint8_t tx_dma_request;
52 uint8_t tx_dma_channel;
53 uint8_t rx_dma_request;
54 uint8_t rx_dma_channel;
55 #endif
56 const struct pinctrl_dev_config *pcfg;
57 };
58
59 /* Device run time data */
60 struct uart_sam0_dev_data {
61 struct uart_config config_cache;
62 #ifdef CONFIG_UART_INTERRUPT_DRIVEN
63 uart_irq_callback_user_data_t cb;
64 void *cb_data;
65 uint8_t txc_cache;
66 #endif
67 #if CONFIG_UART_SAM0_ASYNC
68 const struct device *dev;
69 const struct uart_sam0_dev_cfg *cfg;
70
71 uart_callback_t async_cb;
72 void *async_cb_data;
73
74 struct k_work_delayable tx_timeout_work;
75 const uint8_t *tx_buf;
76 size_t tx_len;
77
78 struct k_work_delayable rx_timeout_work;
79 size_t rx_timeout_time;
80 size_t rx_timeout_chunk;
81 uint32_t rx_timeout_start;
82 uint8_t *rx_buf;
83 size_t rx_len;
84 size_t rx_processed_len;
85 uint8_t *rx_next_buf;
86 size_t rx_next_len;
87 bool rx_waiting_for_irq;
88 bool rx_timeout_from_isr;
89 #endif
90 };
91
wait_synchronization(SercomUsart * const usart)92 static void wait_synchronization(SercomUsart *const usart)
93 {
94 #if defined(SERCOM_USART_SYNCBUSY_MASK)
95 /* SYNCBUSY is a register */
96 while ((usart->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_MASK) != 0) {
97 }
98 #elif defined(SERCOM_USART_STATUS_SYNCBUSY)
99 /* SYNCBUSY is a bit */
100 while ((usart->STATUS.reg & SERCOM_USART_STATUS_SYNCBUSY) != 0) {
101 }
102 #else
103 #error Unsupported device
104 #endif
105 }
106
uart_sam0_set_baudrate(SercomUsart * const usart,uint32_t baudrate,uint32_t clk_freq_hz)107 static int uart_sam0_set_baudrate(SercomUsart *const usart, uint32_t baudrate,
108 uint32_t clk_freq_hz)
109 {
110 uint64_t tmp;
111 uint16_t baud;
112
113 tmp = (uint64_t)baudrate << 20;
114 tmp = (tmp + (clk_freq_hz >> 1)) / clk_freq_hz;
115
116 /* Verify that the calculated result is within range */
117 if (tmp < 1 || tmp > UINT16_MAX) {
118 return -ERANGE;
119 }
120
121 baud = 65536 - (uint16_t)tmp;
122 usart->BAUD.reg = baud;
123 wait_synchronization(usart);
124
125 return 0;
126 }
127
128
129 #if CONFIG_UART_SAM0_ASYNC
130
uart_sam0_dma_tx_done(const struct device * dma_dev,void * arg,uint32_t id,int error_code)131 static void uart_sam0_dma_tx_done(const struct device *dma_dev, void *arg,
132 uint32_t id, int error_code)
133 {
134 ARG_UNUSED(dma_dev);
135 ARG_UNUSED(id);
136 ARG_UNUSED(error_code);
137
138 struct uart_sam0_dev_data *const dev_data =
139 (struct uart_sam0_dev_data *const) arg;
140 const struct uart_sam0_dev_cfg *const cfg = dev_data->cfg;
141
142 SercomUsart * const regs = cfg->regs;
143
144 regs->INTENSET.reg = SERCOM_USART_INTENSET_TXC;
145 }
146
uart_sam0_tx_halt(struct uart_sam0_dev_data * dev_data)147 static int uart_sam0_tx_halt(struct uart_sam0_dev_data *dev_data)
148 {
149 const struct uart_sam0_dev_cfg *const cfg = dev_data->cfg;
150 unsigned int key = irq_lock();
151 size_t tx_active = dev_data->tx_len;
152 struct dma_status st;
153
154 struct uart_event evt = {
155 .type = UART_TX_ABORTED,
156 .data.tx = {
157 .buf = dev_data->tx_buf,
158 .len = 0U,
159 },
160 };
161
162 dev_data->tx_buf = NULL;
163 dev_data->tx_len = 0U;
164
165 dma_stop(cfg->dma_dev, cfg->tx_dma_channel);
166
167 irq_unlock(key);
168
169 if (dma_get_status(cfg->dma_dev, cfg->tx_dma_channel, &st) == 0) {
170 evt.data.tx.len = tx_active - st.pending_length;
171 }
172
173 if (tx_active) {
174 if (dev_data->async_cb) {
175 dev_data->async_cb(dev_data->dev,
176 &evt, dev_data->async_cb_data);
177 }
178 } else {
179 return -EINVAL;
180 }
181
182 return 0;
183 }
184
uart_sam0_tx_timeout(struct k_work * work)185 static void uart_sam0_tx_timeout(struct k_work *work)
186 {
187 struct k_work_delayable *dwork = k_work_delayable_from_work(work);
188 struct uart_sam0_dev_data *dev_data = CONTAINER_OF(dwork,
189 struct uart_sam0_dev_data, tx_timeout_work);
190
191 uart_sam0_tx_halt(dev_data);
192 }
193
uart_sam0_notify_rx_processed(struct uart_sam0_dev_data * dev_data,size_t processed)194 static void uart_sam0_notify_rx_processed(struct uart_sam0_dev_data *dev_data,
195 size_t processed)
196 {
197 if (!dev_data->async_cb) {
198 return;
199 }
200
201 if (dev_data->rx_processed_len == processed) {
202 return;
203 }
204
205 struct uart_event evt = {
206 .type = UART_RX_RDY,
207 .data.rx = {
208 .buf = dev_data->rx_buf,
209 .offset = dev_data->rx_processed_len,
210 .len = processed - dev_data->rx_processed_len,
211 },
212 };
213
214 dev_data->rx_processed_len = processed;
215
216 dev_data->async_cb(dev_data->dev,
217 &evt, dev_data->async_cb_data);
218 }
219
uart_sam0_dma_rx_done(const struct device * dma_dev,void * arg,uint32_t id,int error_code)220 static void uart_sam0_dma_rx_done(const struct device *dma_dev, void *arg,
221 uint32_t id, int error_code)
222 {
223 ARG_UNUSED(dma_dev);
224 ARG_UNUSED(id);
225 ARG_UNUSED(error_code);
226
227 struct uart_sam0_dev_data *const dev_data =
228 (struct uart_sam0_dev_data *const)arg;
229 const struct device *dev = dev_data->dev;
230 const struct uart_sam0_dev_cfg *const cfg = dev_data->cfg;
231 SercomUsart * const regs = cfg->regs;
232 unsigned int key = irq_lock();
233
234 if (dev_data->rx_len == 0U) {
235 irq_unlock(key);
236 return;
237 }
238
239 uart_sam0_notify_rx_processed(dev_data, dev_data->rx_len);
240
241 if (dev_data->async_cb) {
242 struct uart_event evt = {
243 .type = UART_RX_BUF_RELEASED,
244 .data.rx_buf = {
245 .buf = dev_data->rx_buf,
246 },
247 };
248
249 dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
250 }
251
252 /* No next buffer, so end the transfer */
253 if (!dev_data->rx_next_len) {
254 dev_data->rx_buf = NULL;
255 dev_data->rx_len = 0U;
256
257 if (dev_data->async_cb) {
258 struct uart_event evt = {
259 .type = UART_RX_DISABLED,
260 };
261
262 dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
263 }
264
265 irq_unlock(key);
266 return;
267 }
268
269 dev_data->rx_buf = dev_data->rx_next_buf;
270 dev_data->rx_len = dev_data->rx_next_len;
271 dev_data->rx_next_buf = NULL;
272 dev_data->rx_next_len = 0U;
273 dev_data->rx_processed_len = 0U;
274
275 dma_reload(cfg->dma_dev, cfg->rx_dma_channel,
276 (uint32_t)(&(regs->DATA.reg)),
277 (uint32_t)dev_data->rx_buf, dev_data->rx_len);
278
279 /*
280 * If there should be a timeout, handle starting the DMA in the
281 * ISR, since reception resets it and DMA completion implies
282 * reception. This also catches the case of DMA completion during
283 * timeout handling.
284 */
285 if (dev_data->rx_timeout_time != SYS_FOREVER_US) {
286 dev_data->rx_waiting_for_irq = true;
287 regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
288 irq_unlock(key);
289 return;
290 }
291
292 /* Otherwise, start the transfer immediately. */
293 dma_start(cfg->dma_dev, cfg->rx_dma_channel);
294
295 struct uart_event evt = {
296 .type = UART_RX_BUF_REQUEST,
297 };
298
299 dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
300
301 irq_unlock(key);
302 }
303
uart_sam0_rx_timeout(struct k_work * work)304 static void uart_sam0_rx_timeout(struct k_work *work)
305 {
306 struct k_work_delayable *dwork = k_work_delayable_from_work(work);
307 struct uart_sam0_dev_data *dev_data = CONTAINER_OF(dwork,
308 struct uart_sam0_dev_data, rx_timeout_work);
309 const struct uart_sam0_dev_cfg *const cfg = dev_data->cfg;
310 SercomUsart * const regs = cfg->regs;
311 struct dma_status st;
312 unsigned int key = irq_lock();
313
314 if (dev_data->rx_len == 0U) {
315 irq_unlock(key);
316 return;
317 }
318
319 /*
320 * Stop the DMA transfer and restart the interrupt read
321 * component (so the timeout restarts if there's still data).
322 * However, just ignore it if the transfer has completed (nothing
323 * pending) that means the DMA ISR is already pending, so just let
324 * it handle things instead when we re-enable IRQs.
325 */
326 dma_stop(cfg->dma_dev, cfg->rx_dma_channel);
327 if (dma_get_status(cfg->dma_dev, cfg->rx_dma_channel,
328 &st) == 0 && st.pending_length == 0U) {
329 irq_unlock(key);
330 return;
331 }
332
333 uint8_t *rx_dma_start = dev_data->rx_buf + dev_data->rx_len -
334 st.pending_length;
335 size_t rx_processed = rx_dma_start - dev_data->rx_buf;
336
337 /*
338 * We know we still have space, since the above will catch the
339 * empty buffer, so always restart the transfer.
340 */
341 dma_reload(cfg->dma_dev, cfg->rx_dma_channel,
342 (uint32_t)(&(regs->DATA.reg)),
343 (uint32_t)rx_dma_start,
344 dev_data->rx_len - rx_processed);
345
346 dev_data->rx_waiting_for_irq = true;
347 regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
348
349 /*
350 * Never do a notify on a timeout started from the ISR: timing
351 * granularity means the first timeout can be in the middle
352 * of reception but still have the total elapsed time exhausted.
353 * So we require a timeout chunk with no data seen at all
354 * (i.e. no ISR entry).
355 */
356 if (dev_data->rx_timeout_from_isr) {
357 dev_data->rx_timeout_from_isr = false;
358 k_work_reschedule(&dev_data->rx_timeout_work,
359 K_USEC(dev_data->rx_timeout_chunk));
360 irq_unlock(key);
361 return;
362 }
363
364 uint32_t now = k_uptime_get_32();
365 uint32_t elapsed = now - dev_data->rx_timeout_start;
366
367 if (elapsed >= dev_data->rx_timeout_time) {
368 /*
369 * No time left, so call the handler, and let the ISR
370 * restart the timeout when it sees data.
371 */
372 uart_sam0_notify_rx_processed(dev_data, rx_processed);
373 } else {
374 /*
375 * Still have time left, so start another timeout.
376 */
377 uint32_t remaining = MIN(dev_data->rx_timeout_time - elapsed,
378 dev_data->rx_timeout_chunk);
379
380 k_work_reschedule(&dev_data->rx_timeout_work,
381 K_USEC(remaining));
382 }
383
384 irq_unlock(key);
385 }
386
387 #endif
388
389 #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
uart_sam0_configure(const struct device * dev,const struct uart_config * new_cfg)390 static int uart_sam0_configure(const struct device *dev,
391 const struct uart_config *new_cfg)
392 {
393 int retval;
394
395 const struct uart_sam0_dev_cfg *const cfg = dev->config;
396 struct uart_sam0_dev_data *const dev_data = dev->data;
397 SercomUsart * const usart = cfg->regs;
398
399 wait_synchronization(usart);
400
401 usart->CTRLA.bit.ENABLE = 0;
402 wait_synchronization(usart);
403
404 if (new_cfg->flow_ctrl != UART_CFG_FLOW_CTRL_NONE) {
405 /* Flow control not yet supported though in principle possible
406 * on this soc family.
407 */
408 return -ENOTSUP;
409 }
410
411 dev_data->config_cache.flow_ctrl = new_cfg->flow_ctrl;
412
413 SERCOM_USART_CTRLA_Type CTRLA_temp = usart->CTRLA;
414 SERCOM_USART_CTRLB_Type CTRLB_temp = usart->CTRLB;
415
416 switch (new_cfg->parity) {
417 case UART_CFG_PARITY_NONE:
418 CTRLA_temp.bit.FORM = 0x0;
419 break;
420 case UART_CFG_PARITY_ODD:
421 CTRLA_temp.bit.FORM = 0x1;
422 CTRLB_temp.bit.PMODE = 1;
423 break;
424 case UART_CFG_PARITY_EVEN:
425 CTRLA_temp.bit.FORM = 0x1;
426 CTRLB_temp.bit.PMODE = 0;
427 break;
428 default:
429 return -ENOTSUP;
430 }
431
432 dev_data->config_cache.parity = new_cfg->parity;
433
434 switch (new_cfg->stop_bits) {
435 case UART_CFG_STOP_BITS_1:
436 CTRLB_temp.bit.SBMODE = 0;
437 break;
438 case UART_CFG_STOP_BITS_2:
439 CTRLB_temp.bit.SBMODE = 1;
440 break;
441 default:
442 return -ENOTSUP;
443 }
444
445 dev_data->config_cache.stop_bits = new_cfg->stop_bits;
446
447 switch (new_cfg->data_bits) {
448 case UART_CFG_DATA_BITS_5:
449 CTRLB_temp.bit.CHSIZE = 0x5;
450 break;
451 case UART_CFG_DATA_BITS_6:
452 CTRLB_temp.bit.CHSIZE = 0x6;
453 break;
454 case UART_CFG_DATA_BITS_7:
455 CTRLB_temp.bit.CHSIZE = 0x7;
456 break;
457 case UART_CFG_DATA_BITS_8:
458 CTRLB_temp.bit.CHSIZE = 0x0;
459 break;
460 case UART_CFG_DATA_BITS_9:
461 CTRLB_temp.bit.CHSIZE = 0x1;
462 break;
463 default:
464 return -ENOTSUP;
465 }
466
467 dev_data->config_cache.data_bits = new_cfg->data_bits;
468
469 #if defined(SERCOM_REV500)
470 CTRLB_temp.bit.COLDEN = cfg->pads;
471 #endif
472
473 usart->CTRLA = CTRLA_temp;
474 wait_synchronization(usart);
475
476 usart->CTRLB = CTRLB_temp;
477 wait_synchronization(usart);
478
479 retval = uart_sam0_set_baudrate(usart, new_cfg->baudrate,
480 SOC_ATMEL_SAM0_GCLK0_FREQ_HZ);
481 if (retval != 0) {
482 return retval;
483 }
484
485 dev_data->config_cache.baudrate = new_cfg->baudrate;
486
487 usart->CTRLA.bit.ENABLE = 1;
488 wait_synchronization(usart);
489
490 return 0;
491 }
492
uart_sam0_config_get(const struct device * dev,struct uart_config * out_cfg)493 static int uart_sam0_config_get(const struct device *dev,
494 struct uart_config *out_cfg)
495 {
496 struct uart_sam0_dev_data *const dev_data = dev->data;
497
498 memcpy(out_cfg, &(dev_data->config_cache),
499 sizeof(dev_data->config_cache));
500
501 return 0;
502 }
503 #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
504
uart_sam0_init(const struct device * dev)505 static int uart_sam0_init(const struct device *dev)
506 {
507 int retval;
508 const struct uart_sam0_dev_cfg *const cfg = dev->config;
509 struct uart_sam0_dev_data *const dev_data = dev->data;
510
511 SercomUsart * const usart = cfg->regs;
512
513 *cfg->mclk |= cfg->mclk_mask;
514
515 #ifdef MCLK
516 GCLK->PCHCTRL[cfg->gclk_id].reg = GCLK_PCHCTRL_CHEN
517 | GCLK_PCHCTRL_GEN(cfg->gclk_gen);
518 #else
519 GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN
520 | GCLK_CLKCTRL_GEN(cfg->gclk_gen)
521 | GCLK_CLKCTRL_ID(cfg->gclk_id);
522 #endif
523
524 /* Disable all USART interrupts */
525 usart->INTENCLR.reg = SERCOM_USART_INTENCLR_MASK;
526 wait_synchronization(usart);
527
528 /* 8 bits of data, no parity, 1 stop bit in normal mode */
529 usart->CTRLA.reg =
530 cfg->pads
531 /* Internal clock */
532 | SERCOM_USART_CTRLA_MODE_USART_INT_CLK
533 #if defined(SERCOM_USART_CTRLA_SAMPR)
534 /* 16x oversampling with arithmetic baud rate generation */
535 | SERCOM_USART_CTRLA_SAMPR(0)
536 #endif
537 | SERCOM_USART_CTRLA_FORM(0) |
538 SERCOM_USART_CTRLA_CPOL | SERCOM_USART_CTRLA_DORD;
539 wait_synchronization(usart);
540
541 /* Enable PINMUX based on PINCTRL */
542 retval = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
543 if (retval < 0) {
544 return retval;
545 }
546
547 dev_data->config_cache.flow_ctrl = UART_CFG_FLOW_CTRL_NONE;
548 dev_data->config_cache.parity = UART_CFG_PARITY_NONE;
549 dev_data->config_cache.stop_bits = UART_CFG_STOP_BITS_1;
550 dev_data->config_cache.data_bits = UART_CFG_DATA_BITS_8;
551
552 /* Enable receiver and transmitter */
553 usart->CTRLB.reg = SERCOM_USART_CTRLB_CHSIZE(0) |
554 SERCOM_USART_CTRLB_RXEN | SERCOM_USART_CTRLB_TXEN;
555 wait_synchronization(usart);
556
557 retval = uart_sam0_set_baudrate(usart, cfg->baudrate,
558 SOC_ATMEL_SAM0_GCLK0_FREQ_HZ);
559 if (retval != 0) {
560 return retval;
561 }
562 dev_data->config_cache.baudrate = cfg->baudrate;
563
564 #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_SAM0_ASYNC
565 cfg->irq_config_func(dev);
566 #endif
567
568 #ifdef CONFIG_UART_SAM0_ASYNC
569 dev_data->dev = dev;
570 dev_data->cfg = cfg;
571 if (!device_is_ready(cfg->dma_dev)) {
572 return -ENODEV;
573 }
574
575 k_work_init_delayable(&dev_data->tx_timeout_work, uart_sam0_tx_timeout);
576 k_work_init_delayable(&dev_data->rx_timeout_work, uart_sam0_rx_timeout);
577
578 if (cfg->tx_dma_channel != 0xFFU) {
579 struct dma_config dma_cfg = { 0 };
580 struct dma_block_config dma_blk = { 0 };
581
582 dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
583 dma_cfg.source_data_size = 1;
584 dma_cfg.dest_data_size = 1;
585 dma_cfg.user_data = dev_data;
586 dma_cfg.dma_callback = uart_sam0_dma_tx_done;
587 dma_cfg.block_count = 1;
588 dma_cfg.head_block = &dma_blk;
589 dma_cfg.dma_slot = cfg->tx_dma_request;
590
591 dma_blk.block_size = 1;
592 dma_blk.dest_address = (uint32_t)(&(usart->DATA.reg));
593 dma_blk.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
594
595 retval = dma_config(cfg->dma_dev, cfg->tx_dma_channel,
596 &dma_cfg);
597 if (retval != 0) {
598 return retval;
599 }
600 }
601
602 if (cfg->rx_dma_channel != 0xFFU) {
603 struct dma_config dma_cfg = { 0 };
604 struct dma_block_config dma_blk = { 0 };
605
606 dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
607 dma_cfg.source_data_size = 1;
608 dma_cfg.dest_data_size = 1;
609 dma_cfg.user_data = dev_data;
610 dma_cfg.dma_callback = uart_sam0_dma_rx_done;
611 dma_cfg.block_count = 1;
612 dma_cfg.head_block = &dma_blk;
613 dma_cfg.dma_slot = cfg->rx_dma_request;
614
615 dma_blk.block_size = 1;
616 dma_blk.source_address = (uint32_t)(&(usart->DATA.reg));
617 dma_blk.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
618
619 retval = dma_config(cfg->dma_dev, cfg->rx_dma_channel,
620 &dma_cfg);
621 if (retval != 0) {
622 return retval;
623 }
624 }
625
626 #endif
627
628 usart->CTRLA.bit.ENABLE = 1;
629 wait_synchronization(usart);
630
631 return 0;
632 }
633
uart_sam0_poll_in(const struct device * dev,unsigned char * c)634 static int uart_sam0_poll_in(const struct device *dev, unsigned char *c)
635 {
636 const struct uart_sam0_dev_cfg *config = dev->config;
637
638 SercomUsart * const usart = config->regs;
639
640 if (!usart->INTFLAG.bit.RXC) {
641 return -EBUSY;
642 }
643
644 *c = (unsigned char)usart->DATA.reg;
645 return 0;
646 }
647
uart_sam0_poll_out(const struct device * dev,unsigned char c)648 static void uart_sam0_poll_out(const struct device *dev, unsigned char c)
649 {
650 const struct uart_sam0_dev_cfg *config = dev->config;
651
652 SercomUsart * const usart = config->regs;
653
654 while (!usart->INTFLAG.bit.DRE) {
655 }
656
657 /* send a character */
658 usart->DATA.reg = c;
659 }
660
uart_sam0_err_check(const struct device * dev)661 static int uart_sam0_err_check(const struct device *dev)
662 {
663 const struct uart_sam0_dev_cfg *config = dev->config;
664
665 SercomUsart * const regs = config->regs;
666 uint32_t err = 0U;
667
668 if (regs->STATUS.reg & SERCOM_USART_STATUS_BUFOVF) {
669 err |= UART_ERROR_OVERRUN;
670 }
671
672 if (regs->STATUS.reg & SERCOM_USART_STATUS_FERR) {
673 err |= UART_ERROR_PARITY;
674 }
675
676 if (regs->STATUS.reg & SERCOM_USART_STATUS_PERR) {
677 err |= UART_ERROR_FRAMING;
678 }
679
680 #if defined(SERCOM_REV500)
681 if (regs->STATUS.reg & SERCOM_USART_STATUS_ISF) {
682 err |= UART_BREAK;
683 }
684
685 if (regs->STATUS.reg & SERCOM_USART_STATUS_COLL) {
686 err |= UART_ERROR_COLLISION;
687 }
688
689 regs->STATUS.reg |= SERCOM_USART_STATUS_BUFOVF
690 | SERCOM_USART_STATUS_FERR
691 | SERCOM_USART_STATUS_PERR
692 | SERCOM_USART_STATUS_COLL
693 | SERCOM_USART_STATUS_ISF;
694 #else
695 regs->STATUS.reg |= SERCOM_USART_STATUS_BUFOVF
696 | SERCOM_USART_STATUS_FERR
697 | SERCOM_USART_STATUS_PERR;
698 #endif
699
700 wait_synchronization(regs);
701 return err;
702 }
703
704 #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_SAM0_ASYNC
705
uart_sam0_isr(const struct device * dev)706 static void uart_sam0_isr(const struct device *dev)
707 {
708 struct uart_sam0_dev_data *const dev_data = dev->data;
709
710 #if CONFIG_UART_INTERRUPT_DRIVEN
711 if (dev_data->cb) {
712 dev_data->cb(dev, dev_data->cb_data);
713 }
714 #endif
715
716 #if CONFIG_UART_SAM0_ASYNC
717 const struct uart_sam0_dev_cfg *const cfg = dev->config;
718 SercomUsart * const regs = cfg->regs;
719
720 if (dev_data->tx_len && regs->INTFLAG.bit.TXC) {
721 regs->INTENCLR.reg = SERCOM_USART_INTENCLR_TXC;
722
723 k_work_cancel_delayable(&dev_data->tx_timeout_work);
724
725 unsigned int key = irq_lock();
726
727 struct uart_event evt = {
728 .type = UART_TX_DONE,
729 .data.tx = {
730 .buf = dev_data->tx_buf,
731 .len = dev_data->tx_len,
732 },
733 };
734
735 dev_data->tx_buf = NULL;
736 dev_data->tx_len = 0U;
737
738 if (evt.data.tx.len != 0U && dev_data->async_cb) {
739 dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
740 }
741
742 irq_unlock(key);
743 }
744
745 if (dev_data->rx_len && regs->INTFLAG.bit.RXC &&
746 dev_data->rx_waiting_for_irq) {
747 dev_data->rx_waiting_for_irq = false;
748 regs->INTENCLR.reg = SERCOM_USART_INTENCLR_RXC;
749
750 /* Receive started, so request the next buffer */
751 if (dev_data->rx_next_len == 0U && dev_data->async_cb) {
752 struct uart_event evt = {
753 .type = UART_RX_BUF_REQUEST,
754 };
755
756 dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
757 }
758
759 /*
760 * If we have a timeout, restart the time remaining whenever
761 * we see data.
762 */
763 if (dev_data->rx_timeout_time != SYS_FOREVER_US) {
764 dev_data->rx_timeout_from_isr = true;
765 dev_data->rx_timeout_start = k_uptime_get_32();
766 k_work_reschedule(&dev_data->rx_timeout_work,
767 K_USEC(dev_data->rx_timeout_chunk));
768 }
769
770 /* DMA will read the currently ready byte out */
771 dma_start(cfg->dma_dev, cfg->rx_dma_channel);
772 }
773 #endif
774 }
775
776 #endif
777
778 #if CONFIG_UART_INTERRUPT_DRIVEN
779
uart_sam0_fifo_fill(const struct device * dev,const uint8_t * tx_data,int len)780 static int uart_sam0_fifo_fill(const struct device *dev,
781 const uint8_t *tx_data, int len)
782 {
783 const struct uart_sam0_dev_cfg *config = dev->config;
784 SercomUsart *regs = config->regs;
785
786 if (regs->INTFLAG.bit.DRE && len >= 1) {
787 regs->DATA.reg = tx_data[0];
788 return 1;
789 } else {
790 return 0;
791 }
792 }
793
uart_sam0_irq_tx_enable(const struct device * dev)794 static void uart_sam0_irq_tx_enable(const struct device *dev)
795 {
796 const struct uart_sam0_dev_cfg *config = dev->config;
797 SercomUsart * const regs = config->regs;
798
799 regs->INTENSET.reg = SERCOM_USART_INTENSET_DRE
800 | SERCOM_USART_INTENSET_TXC;
801 }
802
uart_sam0_irq_tx_disable(const struct device * dev)803 static void uart_sam0_irq_tx_disable(const struct device *dev)
804 {
805 const struct uart_sam0_dev_cfg *config = dev->config;
806 SercomUsart * const regs = config->regs;
807
808 regs->INTENCLR.reg = SERCOM_USART_INTENCLR_DRE
809 | SERCOM_USART_INTENCLR_TXC;
810 }
811
uart_sam0_irq_tx_ready(const struct device * dev)812 static int uart_sam0_irq_tx_ready(const struct device *dev)
813 {
814 const struct uart_sam0_dev_cfg *config = dev->config;
815 SercomUsart * const regs = config->regs;
816
817 return (regs->INTFLAG.bit.DRE != 0) && (regs->INTENSET.bit.DRE != 0);
818 }
819
uart_sam0_irq_tx_complete(const struct device * dev)820 static int uart_sam0_irq_tx_complete(const struct device *dev)
821 {
822 const struct uart_sam0_dev_cfg *config = dev->config;
823 struct uart_sam0_dev_data *const dev_data = dev->data;
824 SercomUsart * const regs = config->regs;
825
826 return (dev_data->txc_cache != 0) && (regs->INTENSET.bit.TXC != 0);
827 }
828
uart_sam0_irq_rx_enable(const struct device * dev)829 static void uart_sam0_irq_rx_enable(const struct device *dev)
830 {
831 const struct uart_sam0_dev_cfg *config = dev->config;
832 SercomUsart * const regs = config->regs;
833
834 regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
835 }
836
uart_sam0_irq_rx_disable(const struct device * dev)837 static void uart_sam0_irq_rx_disable(const struct device *dev)
838 {
839 const struct uart_sam0_dev_cfg *config = dev->config;
840 SercomUsart * const regs = config->regs;
841
842 regs->INTENCLR.reg = SERCOM_USART_INTENCLR_RXC;
843 }
844
uart_sam0_irq_rx_ready(const struct device * dev)845 static int uart_sam0_irq_rx_ready(const struct device *dev)
846 {
847 const struct uart_sam0_dev_cfg *config = dev->config;
848 SercomUsart * const regs = config->regs;
849
850 return regs->INTFLAG.bit.RXC != 0;
851 }
852
uart_sam0_fifo_read(const struct device * dev,uint8_t * rx_data,const int size)853 static int uart_sam0_fifo_read(const struct device *dev, uint8_t *rx_data,
854 const int size)
855 {
856 const struct uart_sam0_dev_cfg *config = dev->config;
857 SercomUsart * const regs = config->regs;
858
859 if (regs->INTFLAG.bit.RXC) {
860 uint8_t ch = regs->DATA.reg;
861
862 if (size >= 1) {
863 *rx_data = ch;
864 return 1;
865 } else {
866 return -EINVAL;
867 }
868 }
869 return 0;
870 }
871
uart_sam0_irq_is_pending(const struct device * dev)872 static int uart_sam0_irq_is_pending(const struct device *dev)
873 {
874 const struct uart_sam0_dev_cfg *config = dev->config;
875 SercomUsart * const regs = config->regs;
876
877 return (regs->INTENSET.reg & regs->INTFLAG.reg) != 0;
878 }
879
880 #if defined(SERCOM_REV500)
uart_sam0_irq_err_enable(const struct device * dev)881 static void uart_sam0_irq_err_enable(const struct device *dev)
882 {
883 const struct uart_sam0_dev_cfg *config = dev->config;
884 SercomUsart * const regs = config->regs;
885
886 regs->INTENSET.reg |= SERCOM_USART_INTENCLR_ERROR;
887 wait_synchronization(regs);
888 }
889
uart_sam0_irq_err_disable(const struct device * dev)890 static void uart_sam0_irq_err_disable(const struct device *dev)
891 {
892 const struct uart_sam0_dev_cfg *config = dev->config;
893 SercomUsart * const regs = config->regs;
894
895 regs->INTENCLR.reg |= SERCOM_USART_INTENSET_ERROR;
896 wait_synchronization(regs);
897 }
898 #endif
899
uart_sam0_irq_update(const struct device * dev)900 static int uart_sam0_irq_update(const struct device *dev)
901 {
902 /* Clear sticky interrupts */
903 const struct uart_sam0_dev_cfg *config = dev->config;
904 SercomUsart * const regs = config->regs;
905
906 #if defined(SERCOM_REV500)
907 /*
908 * Cache the TXC flag, and use this cached value to clear the interrupt
909 * if we do not used the cached value, there is a chance TXC will set
910 * after caching...this will cause TXC to never cached.
911 */
912 struct uart_sam0_dev_data *const dev_data = dev->data;
913
914 dev_data->txc_cache = regs->INTFLAG.bit.TXC;
915 regs->INTFLAG.reg = SERCOM_USART_INTENCLR_ERROR
916 | SERCOM_USART_INTENCLR_RXBRK
917 | SERCOM_USART_INTENCLR_CTSIC
918 | SERCOM_USART_INTENCLR_RXS
919 | (dev_data->txc_cache << SERCOM_USART_INTENCLR_TXC_Pos);
920 #else
921 regs->INTFLAG.reg = SERCOM_USART_INTENCLR_RXS;
922 #endif
923 return 1;
924 }
925
uart_sam0_irq_callback_set(const struct device * dev,uart_irq_callback_user_data_t cb,void * cb_data)926 static void uart_sam0_irq_callback_set(const struct device *dev,
927 uart_irq_callback_user_data_t cb,
928 void *cb_data)
929 {
930 struct uart_sam0_dev_data *const dev_data = dev->data;
931
932 dev_data->cb = cb;
933 dev_data->cb_data = cb_data;
934
935 #if defined(CONFIG_UART_SAM0_ASYNC) && defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
936 dev_data->async_cb = NULL;
937 dev_data->async_cb_data = NULL;
938 #endif
939 }
940 #endif
941
942 #ifdef CONFIG_UART_SAM0_ASYNC
943
uart_sam0_callback_set(const struct device * dev,uart_callback_t callback,void * user_data)944 static int uart_sam0_callback_set(const struct device *dev,
945 uart_callback_t callback,
946 void *user_data)
947 {
948 struct uart_sam0_dev_data *const dev_data = dev->data;
949
950 dev_data->async_cb = callback;
951 dev_data->async_cb_data = user_data;
952
953 #if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
954 dev_data->cb = NULL;
955 dev_data->cb_data = NULL;
956 #endif
957
958 return 0;
959 }
960
uart_sam0_tx(const struct device * dev,const uint8_t * buf,size_t len,int32_t timeout)961 static int uart_sam0_tx(const struct device *dev, const uint8_t *buf,
962 size_t len,
963 int32_t timeout)
964 {
965 struct uart_sam0_dev_data *const dev_data = dev->data;
966 const struct uart_sam0_dev_cfg *const cfg = dev->config;
967 SercomUsart *regs = cfg->regs;
968 int retval;
969
970 if (cfg->tx_dma_channel == 0xFFU) {
971 return -ENOTSUP;
972 }
973
974 if (len > 0xFFFFU) {
975 return -EINVAL;
976 }
977
978 unsigned int key = irq_lock();
979
980 if (dev_data->tx_len != 0U) {
981 retval = -EBUSY;
982 goto err;
983 }
984
985 dev_data->tx_buf = buf;
986 dev_data->tx_len = len;
987
988 irq_unlock(key);
989
990 retval = dma_reload(cfg->dma_dev, cfg->tx_dma_channel, (uint32_t)buf,
991 (uint32_t)(&(regs->DATA.reg)), len);
992 if (retval != 0U) {
993 return retval;
994 }
995
996 if (timeout != SYS_FOREVER_US) {
997 k_work_reschedule(&dev_data->tx_timeout_work,
998 K_USEC(timeout));
999 }
1000
1001 return dma_start(cfg->dma_dev, cfg->tx_dma_channel);
1002 err:
1003 irq_unlock(key);
1004 return retval;
1005 }
1006
uart_sam0_tx_abort(const struct device * dev)1007 static int uart_sam0_tx_abort(const struct device *dev)
1008 {
1009 struct uart_sam0_dev_data *const dev_data = dev->data;
1010 const struct uart_sam0_dev_cfg *const cfg = dev->config;
1011
1012 if (cfg->tx_dma_channel == 0xFFU) {
1013 return -ENOTSUP;
1014 }
1015
1016 k_work_cancel_delayable(&dev_data->tx_timeout_work);
1017
1018 return uart_sam0_tx_halt(dev_data);
1019 }
1020
uart_sam0_rx_enable(const struct device * dev,uint8_t * buf,size_t len,int32_t timeout)1021 static int uart_sam0_rx_enable(const struct device *dev, uint8_t *buf,
1022 size_t len,
1023 int32_t timeout)
1024 {
1025 struct uart_sam0_dev_data *const dev_data = dev->data;
1026 const struct uart_sam0_dev_cfg *const cfg = dev->config;
1027 SercomUsart *regs = cfg->regs;
1028 int retval;
1029
1030 if (cfg->rx_dma_channel == 0xFFU) {
1031 return -ENOTSUP;
1032 }
1033
1034 if (len > 0xFFFFU) {
1035 return -EINVAL;
1036 }
1037
1038 unsigned int key = irq_lock();
1039
1040 if (dev_data->rx_len != 0U) {
1041 retval = -EBUSY;
1042 goto err;
1043 }
1044
1045 /* Read off anything that was already there */
1046 while (regs->INTFLAG.bit.RXC) {
1047 char discard = regs->DATA.reg;
1048
1049 (void)discard;
1050 }
1051
1052 retval = dma_reload(cfg->dma_dev, cfg->rx_dma_channel,
1053 (uint32_t)(&(regs->DATA.reg)),
1054 (uint32_t)buf, len);
1055 if (retval != 0) {
1056 return retval;
1057 }
1058
1059 dev_data->rx_buf = buf;
1060 dev_data->rx_len = len;
1061 dev_data->rx_processed_len = 0U;
1062 dev_data->rx_waiting_for_irq = true;
1063 dev_data->rx_timeout_from_isr = true;
1064 dev_data->rx_timeout_time = timeout;
1065 dev_data->rx_timeout_chunk = MAX(timeout / 4U, 1);
1066
1067 regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
1068
1069 irq_unlock(key);
1070 return 0;
1071
1072 err:
1073 irq_unlock(key);
1074 return retval;
1075 }
1076
uart_sam0_rx_buf_rsp(const struct device * dev,uint8_t * buf,size_t len)1077 static int uart_sam0_rx_buf_rsp(const struct device *dev, uint8_t *buf,
1078 size_t len)
1079 {
1080 if (len > 0xFFFFU) {
1081 return -EINVAL;
1082 }
1083
1084 struct uart_sam0_dev_data *const dev_data = dev->data;
1085 unsigned int key = irq_lock();
1086 int retval = 0;
1087
1088 if (dev_data->rx_len == 0U) {
1089 retval = -EACCES;
1090 goto err;
1091 }
1092
1093 if (dev_data->rx_next_len != 0U) {
1094 retval = -EBUSY;
1095 goto err;
1096 }
1097
1098 dev_data->rx_next_buf = buf;
1099 dev_data->rx_next_len = len;
1100
1101 irq_unlock(key);
1102 return 0;
1103
1104 err:
1105 irq_unlock(key);
1106 return retval;
1107 }
1108
uart_sam0_rx_disable(const struct device * dev)1109 static int uart_sam0_rx_disable(const struct device *dev)
1110 {
1111 struct uart_sam0_dev_data *const dev_data = dev->data;
1112 const struct uart_sam0_dev_cfg *const cfg = dev->config;
1113 SercomUsart * const regs = cfg->regs;
1114 struct dma_status st;
1115
1116 k_work_cancel_delayable(&dev_data->rx_timeout_work);
1117
1118 unsigned int key = irq_lock();
1119
1120 if (dev_data->rx_len == 0U) {
1121 irq_unlock(key);
1122 return -EINVAL;
1123 }
1124
1125 regs->INTENCLR.reg = SERCOM_USART_INTENCLR_RXC;
1126 dma_stop(cfg->dma_dev, cfg->rx_dma_channel);
1127
1128
1129 if (dma_get_status(cfg->dma_dev, cfg->rx_dma_channel,
1130 &st) == 0 && st.pending_length != 0U) {
1131 size_t rx_processed = dev_data->rx_len - st.pending_length;
1132
1133 uart_sam0_notify_rx_processed(dev_data, rx_processed);
1134 }
1135
1136 struct uart_event evt = {
1137 .type = UART_RX_BUF_RELEASED,
1138 .data.rx_buf = {
1139 .buf = dev_data->rx_buf,
1140 },
1141 };
1142
1143 dev_data->rx_buf = NULL;
1144 dev_data->rx_len = 0U;
1145
1146 if (dev_data->async_cb) {
1147 dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
1148 }
1149
1150 if (dev_data->rx_next_len) {
1151 struct uart_event next_evt = {
1152 .type = UART_RX_BUF_RELEASED,
1153 .data.rx_buf = {
1154 .buf = dev_data->rx_next_buf,
1155 },
1156 };
1157
1158 dev_data->rx_next_buf = NULL;
1159 dev_data->rx_next_len = 0U;
1160
1161 if (dev_data->async_cb) {
1162 dev_data->async_cb(dev, &next_evt, dev_data->async_cb_data);
1163 }
1164 }
1165
1166 evt.type = UART_RX_DISABLED;
1167 if (dev_data->async_cb) {
1168 dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
1169 }
1170
1171 irq_unlock(key);
1172
1173 return 0;
1174 }
1175
1176 #endif
1177
1178 static DEVICE_API(uart, uart_sam0_driver_api) = {
1179 .poll_in = uart_sam0_poll_in,
1180 .poll_out = uart_sam0_poll_out,
1181 #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
1182 .configure = uart_sam0_configure,
1183 .config_get = uart_sam0_config_get,
1184 #endif
1185 .err_check = uart_sam0_err_check,
1186 #if CONFIG_UART_INTERRUPT_DRIVEN
1187 .fifo_fill = uart_sam0_fifo_fill,
1188 .fifo_read = uart_sam0_fifo_read,
1189 .irq_tx_enable = uart_sam0_irq_tx_enable,
1190 .irq_tx_disable = uart_sam0_irq_tx_disable,
1191 .irq_tx_ready = uart_sam0_irq_tx_ready,
1192 .irq_tx_complete = uart_sam0_irq_tx_complete,
1193 .irq_rx_enable = uart_sam0_irq_rx_enable,
1194 .irq_rx_disable = uart_sam0_irq_rx_disable,
1195 .irq_rx_ready = uart_sam0_irq_rx_ready,
1196 .irq_is_pending = uart_sam0_irq_is_pending,
1197 #if defined(SERCOM_REV500)
1198 .irq_err_enable = uart_sam0_irq_err_enable,
1199 .irq_err_disable = uart_sam0_irq_err_disable,
1200 #endif
1201 .irq_update = uart_sam0_irq_update,
1202 .irq_callback_set = uart_sam0_irq_callback_set,
1203 #endif
1204 #if CONFIG_UART_SAM0_ASYNC
1205 .callback_set = uart_sam0_callback_set,
1206 .tx = uart_sam0_tx,
1207 .tx_abort = uart_sam0_tx_abort,
1208 .rx_enable = uart_sam0_rx_enable,
1209 .rx_buf_rsp = uart_sam0_rx_buf_rsp,
1210 .rx_disable = uart_sam0_rx_disable,
1211 #endif
1212 };
1213
1214 #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_SAM0_ASYNC
1215
1216 #define SAM0_UART_IRQ_CONNECT(n, m) \
1217 do { \
1218 IRQ_CONNECT(DT_INST_IRQ_BY_IDX(n, m, irq), \
1219 DT_INST_IRQ_BY_IDX(n, m, priority), \
1220 uart_sam0_isr, \
1221 DEVICE_DT_INST_GET(n), 0); \
1222 irq_enable(DT_INST_IRQ_BY_IDX(n, m, irq)); \
1223 } while (false)
1224
1225 #define UART_SAM0_IRQ_HANDLER_DECL(n) \
1226 static void uart_sam0_irq_config_##n(const struct device *dev)
1227 #define UART_SAM0_IRQ_HANDLER_FUNC(n) \
1228 .irq_config_func = uart_sam0_irq_config_##n,
1229
1230 #if DT_INST_IRQ_HAS_IDX(0, 3)
1231 #define UART_SAM0_IRQ_HANDLER(n) \
1232 static void uart_sam0_irq_config_##n(const struct device *dev) \
1233 { \
1234 SAM0_UART_IRQ_CONNECT(n, 0); \
1235 SAM0_UART_IRQ_CONNECT(n, 1); \
1236 SAM0_UART_IRQ_CONNECT(n, 2); \
1237 SAM0_UART_IRQ_CONNECT(n, 3); \
1238 }
1239 #else
1240 #define UART_SAM0_IRQ_HANDLER(n) \
1241 static void uart_sam0_irq_config_##n(const struct device *dev) \
1242 { \
1243 SAM0_UART_IRQ_CONNECT(n, 0); \
1244 }
1245 #endif
1246 #else
1247 #define UART_SAM0_IRQ_HANDLER_DECL(n)
1248 #define UART_SAM0_IRQ_HANDLER_FUNC(n)
1249 #define UART_SAM0_IRQ_HANDLER(n)
1250 #endif
1251
1252 #if CONFIG_UART_SAM0_ASYNC
1253 #define UART_SAM0_DMA_CHANNELS(n) \
1254 .dma_dev = DEVICE_DT_GET(ATMEL_SAM0_DT_INST_DMA_CTLR(n, tx)), \
1255 .tx_dma_request = ATMEL_SAM0_DT_INST_DMA_TRIGSRC(n, tx), \
1256 .tx_dma_channel = ATMEL_SAM0_DT_INST_DMA_CHANNEL(n, tx), \
1257 .rx_dma_request = ATMEL_SAM0_DT_INST_DMA_TRIGSRC(n, rx), \
1258 .rx_dma_channel = ATMEL_SAM0_DT_INST_DMA_CHANNEL(n, rx),
1259 #else
1260 #define UART_SAM0_DMA_CHANNELS(n)
1261 #endif
1262
1263 #define UART_SAM0_SERCOM_PADS(n) \
1264 (DT_INST_PROP(n, rxpo) << SERCOM_USART_CTRLA_RXPO_Pos) | \
1265 (DT_INST_PROP(n, txpo) << SERCOM_USART_CTRLA_TXPO_Pos)
1266
1267 #define UART_SAM0_SERCOM_COLLISION_DETECT(n) \
1268 (DT_INST_PROP(n, collision_detection))
1269
1270 #define ASSIGNED_CLOCKS_CELL_BY_NAME \
1271 ATMEL_SAM0_DT_INST_ASSIGNED_CLOCKS_CELL_BY_NAME
1272
1273 #define UART_SAM0_CONFIG_DEFN(n) \
1274 static const struct uart_sam0_dev_cfg uart_sam0_config_##n = { \
1275 .regs = (SercomUsart *)DT_INST_REG_ADDR(n), \
1276 .baudrate = DT_INST_PROP(n, current_speed), \
1277 .gclk_gen = ASSIGNED_CLOCKS_CELL_BY_NAME(n, gclk, gen), \
1278 .gclk_id = DT_INST_CLOCKS_CELL_BY_NAME(n, gclk, id), \
1279 .mclk = ATMEL_SAM0_DT_INST_MCLK_PM_REG_ADDR_OFFSET(n), \
1280 .mclk_mask = ATMEL_SAM0_DT_INST_MCLK_PM_PERIPH_MASK(n, bit), \
1281 .pads = UART_SAM0_SERCOM_PADS(n), \
1282 .collision_detect = UART_SAM0_SERCOM_COLLISION_DETECT(n), \
1283 .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
1284 UART_SAM0_IRQ_HANDLER_FUNC(n) \
1285 UART_SAM0_DMA_CHANNELS(n) \
1286 }
1287
1288 #define UART_SAM0_DEVICE_INIT(n) \
1289 PINCTRL_DT_INST_DEFINE(n); \
1290 static struct uart_sam0_dev_data uart_sam0_data_##n; \
1291 UART_SAM0_IRQ_HANDLER_DECL(n); \
1292 UART_SAM0_CONFIG_DEFN(n); \
1293 DEVICE_DT_INST_DEFINE(n, uart_sam0_init, NULL, \
1294 &uart_sam0_data_##n, \
1295 &uart_sam0_config_##n, PRE_KERNEL_1, \
1296 CONFIG_SERIAL_INIT_PRIORITY, \
1297 &uart_sam0_driver_api); \
1298 UART_SAM0_IRQ_HANDLER(n)
1299
1300 DT_INST_FOREACH_STATUS_OKAY(UART_SAM0_DEVICE_INIT)
1301
1302 /* clang-format on */
1303