1 /**
2   ******************************************************************************
3   * @file    stm32u5xx_ll_tim.h
4   * @author  MCD Application Team
5   * @brief   Header file of TIM LL module.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2021 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 
19 /* Define to prevent recursive inclusion -------------------------------------*/
20 #ifndef __STM32U5xx_LL_TIM_H
21 #define __STM32U5xx_LL_TIM_H
22 
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26 
27 /* Includes ------------------------------------------------------------------*/
28 #include "stm32u5xx.h"
29 
30 /** @addtogroup STM32U5xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1)  \
35  || defined (TIM2)  \
36  || defined (TIM3)  \
37  || defined (TIM4)  \
38  || defined (TIM5)  \
39  || defined (TIM6)  \
40  || defined (TIM7)  \
41  || defined (TIM8)  \
42  || defined (TIM15) \
43  || defined (TIM16) \
44  || defined (TIM17) \
45  || defined (TIM20)
46 
47 /** @defgroup TIM_LL TIM
48   * @{
49   */
50 
51 /* Private types -------------------------------------------------------------*/
52 /* Private variables ---------------------------------------------------------*/
53 /** @defgroup TIM_LL_Private_Variables TIM Private Variables
54   * @{
55   */
56 static const uint8_t OFFSET_TAB_CCMRx[] =
57 {
58   0x00U,   /* 0: TIMx_CH1  */
59   0x00U,   /* 1: TIMx_CH1N */
60   0x00U,   /* 2: TIMx_CH2  */
61   0x00U,   /* 3: TIMx_CH2N */
62   0x04U,   /* 4: TIMx_CH3  */
63   0x04U,   /* 5: TIMx_CH3N */
64   0x04U,   /* 6: TIMx_CH4  */
65   0x04U,   /* 7: TIMx_CH4N */
66   0x38U,   /* 8: TIMx_CH5  */
67   0x38U    /* 9: TIMx_CH6  */
68 
69 };
70 
71 static const uint8_t SHIFT_TAB_OCxx[] =
72 {
73   0U,            /* 0: OC1M, OC1FE, OC1PE */
74   0U,            /* 1: - NA */
75   8U,            /* 2: OC2M, OC2FE, OC2PE */
76   0U,            /* 3: - NA */
77   0U,            /* 4: OC3M, OC3FE, OC3PE */
78   0U,            /* 5: - NA */
79   8U,            /* 6: OC4M, OC4FE, OC4PE */
80   0U,            /* 7: - NA */
81   0U,            /* 8: OC5M, OC5FE, OC5PE */
82   8U             /* 9: OC6M, OC6FE, OC6PE */
83 };
84 
85 static const uint8_t SHIFT_TAB_ICxx[] =
86 {
87   0U,            /* 0: CC1S, IC1PSC, IC1F */
88   0U,            /* 1: - NA */
89   8U,            /* 2: CC2S, IC2PSC, IC2F */
90   0U,            /* 3: - NA */
91   0U,            /* 4: CC3S, IC3PSC, IC3F */
92   0U,            /* 5: - NA */
93   8U,            /* 6: CC4S, IC4PSC, IC4F */
94   0U,            /* 7: - NA */
95   0U,            /* 8: - NA */
96   0U             /* 9: - NA */
97 };
98 
99 static const uint8_t SHIFT_TAB_CCxP[] =
100 {
101   0U,            /* 0: CC1P */
102   2U,            /* 1: CC1NP */
103   4U,            /* 2: CC2P */
104   6U,            /* 3: CC2NP */
105   8U,            /* 4: CC3P */
106   10U,           /* 5: CC3NP */
107   12U,           /* 6: CC4P */
108   14U,           /* 7: CC4NP */
109   16U,           /* 8: CC5P */
110   20U            /* 9: CC6P */
111 };
112 
113 static const uint8_t SHIFT_TAB_OISx[] =
114 {
115   0U,            /* 0: OIS1 */
116   1U,            /* 1: OIS1N */
117   2U,            /* 2: OIS2 */
118   3U,            /* 3: OIS2N */
119   4U,            /* 4: OIS3 */
120   5U,            /* 5: OIS3N */
121   6U,            /* 6: OIS4 */
122   7U,            /* 7: OIS4N */
123   8U,            /* 8: OIS5 */
124   10U            /* 9: OIS6 */
125 };
126 /**
127   * @}
128   */
129 
130 /* Private constants ---------------------------------------------------------*/
131 /** @defgroup TIM_LL_Private_Constants TIM Private Constants
132   * @{
133   */
134 
135 /* Defines used for the bit position in the register and perform offsets */
136 #define TIM_POSITION_BRK_SOURCE            (POSITION_VAL(Source) & 0x1FUL)
137 
138 /* Generic bit definitions for TIMx_AF1 register */
139 #define TIMx_AF1_BKINP     TIM1_AF1_BKINP     /*!< BRK BKIN input polarity */
140 #define TIMx_AF1_ETRSEL    TIM1_AF1_ETRSEL    /*!< TIMx ETR source selection */
141 
142 
143 /* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
144 #define DT_DELAY_1 ((uint8_t)0x7F)
145 #define DT_DELAY_2 ((uint8_t)0x3F)
146 #define DT_DELAY_3 ((uint8_t)0x1F)
147 #define DT_DELAY_4 ((uint8_t)0x1F)
148 
149 /* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
150 #define DT_RANGE_1 ((uint8_t)0x00)
151 #define DT_RANGE_2 ((uint8_t)0x80)
152 #define DT_RANGE_3 ((uint8_t)0xC0)
153 #define DT_RANGE_4 ((uint8_t)0xE0)
154 
155 /** Legacy definitions for compatibility purpose
156 @cond 0
157   */
158 /**
159 @endcond
160   */
161 
162 #define OCREF_CLEAR_SELECT_POS (28U)
163 #define OCREF_CLEAR_SELECT_MSK (0x1U << OCREF_CLEAR_SELECT_POS)                /*!< 0x10000000 */
164 /**
165   * @}
166   */
167 
168 /* Private macros ------------------------------------------------------------*/
169 /** @defgroup TIM_LL_Private_Macros TIM Private Macros
170   * @{
171   */
172 /** @brief  Convert channel id into channel index.
173   * @param  __CHANNEL__ This parameter can be one of the following values:
174   *         @arg @ref LL_TIM_CHANNEL_CH1
175   *         @arg @ref LL_TIM_CHANNEL_CH1N
176   *         @arg @ref LL_TIM_CHANNEL_CH2
177   *         @arg @ref LL_TIM_CHANNEL_CH2N
178   *         @arg @ref LL_TIM_CHANNEL_CH3
179   *         @arg @ref LL_TIM_CHANNEL_CH3N
180   *         @arg @ref LL_TIM_CHANNEL_CH4
181   *         @arg @ref LL_TIM_CHANNEL_CH4N
182   *         @arg @ref LL_TIM_CHANNEL_CH5
183   *         @arg @ref LL_TIM_CHANNEL_CH6
184   * @retval none
185   */
186 #define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
187   (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
188    ((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
189    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
190    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
191    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
192    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U :\
193    ((__CHANNEL__) == LL_TIM_CHANNEL_CH4) ? 6U :\
194    ((__CHANNEL__) == LL_TIM_CHANNEL_CH4N) ? 7U :\
195    ((__CHANNEL__) == LL_TIM_CHANNEL_CH5) ? 8U : 9U)
196 
197 /** @brief  Calculate the deadtime sampling period(in ps).
198   * @param  __TIMCLK__ timer input clock frequency (in Hz).
199   * @param  __CKD__ This parameter can be one of the following values:
200   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
201   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
202   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
203   * @retval none
204   */
205 #define TIM_CALC_DTS(__TIMCLK__, __CKD__)                                                        \
206   (((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__))         : \
207    ((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
208    ((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
209 /**
210   * @}
211   */
212 
213 
214 /* Exported types ------------------------------------------------------------*/
215 #if defined(USE_FULL_LL_DRIVER)
216 /** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
217   * @{
218   */
219 
220 /**
221   * @brief  TIM Time Base configuration structure definition.
222   */
223 typedef struct
224 {
225   uint16_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
226                                    This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
227 
228                                    This feature can be modified afterwards using unitary function
229                                    @ref LL_TIM_SetPrescaler().*/
230 
231   uint32_t CounterMode;       /*!< Specifies the counter mode.
232                                    This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
233 
234                                    This feature can be modified afterwards using unitary function
235                                    @ref LL_TIM_SetCounterMode().*/
236 
237   uint32_t Autoreload;        /*!< Specifies the auto reload value to be loaded into the active
238                                    Auto-Reload Register at the next update event.
239                                    This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
240                                    Some timer instances may support 32 bits counters. In that case this parameter must
241                                    be a number between 0x0000 and 0xFFFFFFFF.
242 
243                                    This feature can be modified afterwards using unitary function
244                                    @ref LL_TIM_SetAutoReload().*/
245 
246   uint32_t ClockDivision;     /*!< Specifies the clock division.
247                                    This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
248 
249                                    This feature can be modified afterwards using unitary function
250                                    @ref LL_TIM_SetClockDivision().*/
251 
252   uint32_t RepetitionCounter;  /*!< Specifies the repetition counter value. Each time the RCR downcounter
253                                    reaches zero, an update event is generated and counting restarts
254                                    from the RCR value (N).
255                                    This means in PWM mode that (N+1) corresponds to:
256                                       - the number of PWM periods in edge-aligned mode
257                                       - the number of half PWM period in center-aligned mode
258                                    GP timers: this parameter must be a number between Min_Data = 0x00 and
259                                    Max_Data = 0xFF.
260                                    Advanced timers: this parameter must be a number between Min_Data = 0x0000 and
261                                    Max_Data = 0xFFFF.
262 
263                                    This feature can be modified afterwards using unitary function
264                                    @ref LL_TIM_SetRepetitionCounter().*/
265 } LL_TIM_InitTypeDef;
266 
267 /**
268   * @brief  TIM Output Compare configuration structure definition.
269   */
270 typedef struct
271 {
272   uint32_t OCMode;        /*!< Specifies the output mode.
273                                This parameter can be a value of @ref TIM_LL_EC_OCMODE.
274 
275                                This feature can be modified afterwards using unitary function
276                                @ref LL_TIM_OC_SetMode().*/
277 
278   uint32_t OCState;       /*!< Specifies the TIM Output Compare state.
279                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
280 
281                                This feature can be modified afterwards using unitary functions
282                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
283 
284   uint32_t OCNState;      /*!< Specifies the TIM complementary Output Compare state.
285                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
286 
287                                This feature can be modified afterwards using unitary functions
288                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
289 
290   uint32_t CompareValue;  /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
291                                This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
292 
293                                This feature can be modified afterwards using unitary function
294                                LL_TIM_OC_SetCompareCHx (x=1..6).*/
295 
296   uint32_t OCPolarity;    /*!< Specifies the output polarity.
297                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
298 
299                                This feature can be modified afterwards using unitary function
300                                @ref LL_TIM_OC_SetPolarity().*/
301 
302   uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
303                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
304 
305                                This feature can be modified afterwards using unitary function
306                                @ref LL_TIM_OC_SetPolarity().*/
307 
308 
309   uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
310                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
311 
312                                This feature can be modified afterwards using unitary function
313                                @ref LL_TIM_OC_SetIdleState().*/
314 
315   uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
316                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
317 
318                                This feature can be modified afterwards using unitary function
319                                @ref LL_TIM_OC_SetIdleState().*/
320 } LL_TIM_OC_InitTypeDef;
321 
322 /**
323   * @brief  TIM Input Capture configuration structure definition.
324   */
325 
326 typedef struct
327 {
328 
329   uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
330                                This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
331 
332                                This feature can be modified afterwards using unitary function
333                                @ref LL_TIM_IC_SetPolarity().*/
334 
335   uint32_t ICActiveInput; /*!< Specifies the input.
336                                This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
337 
338                                This feature can be modified afterwards using unitary function
339                                @ref LL_TIM_IC_SetActiveInput().*/
340 
341   uint32_t ICPrescaler;   /*!< Specifies the Input Capture Prescaler.
342                                This parameter can be a value of @ref TIM_LL_EC_ICPSC.
343 
344                                This feature can be modified afterwards using unitary function
345                                @ref LL_TIM_IC_SetPrescaler().*/
346 
347   uint32_t ICFilter;      /*!< Specifies the input capture filter.
348                                This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
349 
350                                This feature can be modified afterwards using unitary function
351                                @ref LL_TIM_IC_SetFilter().*/
352 } LL_TIM_IC_InitTypeDef;
353 
354 
355 /**
356   * @brief  TIM Encoder interface configuration structure definition.
357   */
358 typedef struct
359 {
360   uint32_t EncoderMode;     /*!< Specifies the encoder resolution (x2 or x4).
361                                  This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
362 
363                                  This feature can be modified afterwards using unitary function
364                                  @ref LL_TIM_SetEncoderMode().*/
365 
366   uint32_t IC1Polarity;     /*!< Specifies the active edge of TI1 input.
367                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
368 
369                                  This feature can be modified afterwards using unitary function
370                                  @ref LL_TIM_IC_SetPolarity().*/
371 
372   uint32_t IC1ActiveInput;  /*!< Specifies the TI1 input source
373                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
374 
375                                  This feature can be modified afterwards using unitary function
376                                  @ref LL_TIM_IC_SetActiveInput().*/
377 
378   uint32_t IC1Prescaler;    /*!< Specifies the TI1 input prescaler value.
379                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
380 
381                                  This feature can be modified afterwards using unitary function
382                                  @ref LL_TIM_IC_SetPrescaler().*/
383 
384   uint32_t IC1Filter;       /*!< Specifies the TI1 input filter.
385                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
386 
387                                  This feature can be modified afterwards using unitary function
388                                  @ref LL_TIM_IC_SetFilter().*/
389 
390   uint32_t IC2Polarity;      /*!< Specifies the active edge of TI2 input.
391                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
392 
393                                  This feature can be modified afterwards using unitary function
394                                  @ref LL_TIM_IC_SetPolarity().*/
395 
396   uint32_t IC2ActiveInput;  /*!< Specifies the TI2 input source
397                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
398 
399                                  This feature can be modified afterwards using unitary function
400                                  @ref LL_TIM_IC_SetActiveInput().*/
401 
402   uint32_t IC2Prescaler;    /*!< Specifies the TI2 input prescaler value.
403                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
404 
405                                  This feature can be modified afterwards using unitary function
406                                  @ref LL_TIM_IC_SetPrescaler().*/
407 
408   uint32_t IC2Filter;       /*!< Specifies the TI2 input filter.
409                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
410 
411                                  This feature can be modified afterwards using unitary function
412                                  @ref LL_TIM_IC_SetFilter().*/
413 
414 } LL_TIM_ENCODER_InitTypeDef;
415 
416 /**
417   * @brief  TIM Hall sensor interface configuration structure definition.
418   */
419 typedef struct
420 {
421 
422   uint32_t IC1Polarity;        /*!< Specifies the active edge of TI1 input.
423                                     This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
424 
425                                     This feature can be modified afterwards using unitary function
426                                     @ref LL_TIM_IC_SetPolarity().*/
427 
428   uint32_t IC1Prescaler;       /*!< Specifies the TI1 input prescaler value.
429                                     Prescaler must be set to get a maximum counter period longer than the
430                                     time interval between 2 consecutive changes on the Hall inputs.
431                                     This parameter can be a value of @ref TIM_LL_EC_ICPSC.
432 
433                                     This feature can be modified afterwards using unitary function
434                                     @ref LL_TIM_IC_SetPrescaler().*/
435 
436   uint32_t IC1Filter;          /*!< Specifies the TI1 input filter.
437                                     This parameter can be a value of
438                                     @ref TIM_LL_EC_IC_FILTER.
439 
440                                     This feature can be modified afterwards using unitary function
441                                     @ref LL_TIM_IC_SetFilter().*/
442 
443   uint32_t CommutationDelay;   /*!< Specifies the compare value to be loaded into the Capture Compare Register.
444                                     A positive pulse (TRGO event) is generated with a programmable delay every time
445                                     a change occurs on the Hall inputs.
446                                     This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
447 
448                                     This feature can be modified afterwards using unitary function
449                                     @ref LL_TIM_OC_SetCompareCH2().*/
450 } LL_TIM_HALLSENSOR_InitTypeDef;
451 
452 /**
453   * @brief  BDTR (Break and Dead Time) structure definition
454   */
455 typedef struct
456 {
457   uint32_t OSSRState;            /*!< Specifies the Off-State selection used in Run mode.
458                                       This parameter can be a value of @ref TIM_LL_EC_OSSR
459 
460                                       This feature can be modified afterwards using unitary function
461                                       @ref LL_TIM_SetOffStates()
462 
463                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
464                                        programmed. */
465 
466   uint32_t OSSIState;            /*!< Specifies the Off-State used in Idle state.
467                                       This parameter can be a value of @ref TIM_LL_EC_OSSI
468 
469                                       This feature can be modified afterwards using unitary function
470                                       @ref LL_TIM_SetOffStates()
471 
472                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
473                                       programmed. */
474 
475   uint32_t LockLevel;            /*!< Specifies the LOCK level parameters.
476                                       This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
477 
478                                       @note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR
479                                       register has been written, their content is frozen until the next reset.*/
480 
481   uint8_t DeadTime;              /*!< Specifies the delay time between the switching-off and the
482                                       switching-on of the outputs.
483                                       This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
484 
485                                       This feature can be modified afterwards using unitary function
486                                       @ref LL_TIM_OC_SetDeadTime()
487 
488                                       @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been
489                                        programmed. */
490 
491   uint16_t BreakState;           /*!< Specifies whether the TIM Break input is enabled or not.
492                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
493 
494                                       This feature can be modified afterwards using unitary functions
495                                       @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
496 
497                                       @note This bit-field can not be modified as long as LOCK level 1 has been
498                                       programmed. */
499 
500   uint32_t BreakPolarity;        /*!< Specifies the TIM Break Input pin polarity.
501                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
502 
503                                       This feature can be modified afterwards using unitary function
504                                       @ref LL_TIM_ConfigBRK()
505 
506                                       @note This bit-field can not be modified as long as LOCK level 1 has been
507                                       programmed. */
508 
509   uint32_t BreakFilter;          /*!< Specifies the TIM Break Filter.
510                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_FILTER
511 
512                                       This feature can be modified afterwards using unitary function
513                                       @ref LL_TIM_ConfigBRK()
514 
515                                       @note This bit-field can not be modified as long as LOCK level 1 has been
516                                       programmed. */
517 
518   uint32_t BreakAFMode;           /*!< Specifies the alternate function mode of the break input.
519                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_AFMODE
520 
521                                       This feature can be modified afterwards using unitary functions
522                                       @ref LL_TIM_ConfigBRK()
523 
524                                       @note Bidirectional break input is only supported by advanced timers instances.
525 
526                                       @note This bit-field can not be modified as long as LOCK level 1 has been
527                                       programmed. */
528 
529   uint32_t Break2State;          /*!< Specifies whether the TIM Break2 input is enabled or not.
530                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_ENABLE
531 
532                                       This feature can be modified afterwards using unitary functions
533                                       @ref LL_TIM_EnableBRK2() or @ref LL_TIM_DisableBRK2()
534 
535                                       @note This bit-field can not be modified as long as LOCK level 1 has been
536                                       programmed. */
537 
538   uint32_t Break2Polarity;        /*!< Specifies the TIM Break2 Input pin polarity.
539                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_POLARITY
540 
541                                       This feature can be modified afterwards using unitary function
542                                       @ref LL_TIM_ConfigBRK2()
543 
544                                       @note This bit-field can not be modified as long as LOCK level 1 has been
545                                       programmed. */
546 
547   uint32_t Break2Filter;          /*!< Specifies the TIM Break2 Filter.
548                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_FILTER
549 
550                                       This feature can be modified afterwards using unitary function
551                                       @ref LL_TIM_ConfigBRK2()
552 
553                                       @note This bit-field can not be modified as long as LOCK level 1 has been
554                                       programmed. */
555 
556   uint32_t Break2AFMode;          /*!< Specifies the alternate function mode of the break2 input.
557                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_AFMODE
558 
559                                       This feature can be modified afterwards using unitary functions
560                                       @ref LL_TIM_ConfigBRK2()
561 
562                                       @note Bidirectional break input is only supported by advanced timers instances.
563 
564                                       @note This bit-field can not be modified as long as LOCK level 1 has been
565                                       programmed. */
566 
567   uint32_t AutomaticOutput;      /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
568                                       This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
569 
570                                       This feature can be modified afterwards using unitary functions
571                                       @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
572 
573                                       @note This bit-field can not be modified as long as LOCK level 1 has been
574                                       programmed. */
575 } LL_TIM_BDTR_InitTypeDef;
576 
577 /**
578   * @}
579   */
580 #endif /* USE_FULL_LL_DRIVER */
581 
582 /* Exported constants --------------------------------------------------------*/
583 /** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
584   * @{
585   */
586 
587 /** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
588   * @brief    Flags defines which can be used with LL_TIM_ReadReg function.
589   * @{
590   */
591 #define LL_TIM_SR_UIF                          TIM_SR_UIF           /*!< Update interrupt flag */
592 #define LL_TIM_SR_CC1IF                        TIM_SR_CC1IF         /*!< Capture/compare 1 interrupt flag */
593 #define LL_TIM_SR_CC2IF                        TIM_SR_CC2IF         /*!< Capture/compare 2 interrupt flag */
594 #define LL_TIM_SR_CC3IF                        TIM_SR_CC3IF         /*!< Capture/compare 3 interrupt flag */
595 #define LL_TIM_SR_CC4IF                        TIM_SR_CC4IF         /*!< Capture/compare 4 interrupt flag */
596 #define LL_TIM_SR_CC5IF                        TIM_SR_CC5IF         /*!< Capture/compare 5 interrupt flag */
597 #define LL_TIM_SR_CC6IF                        TIM_SR_CC6IF         /*!< Capture/compare 6 interrupt flag */
598 #define LL_TIM_SR_COMIF                        TIM_SR_COMIF         /*!< COM interrupt flag */
599 #define LL_TIM_SR_TIF                          TIM_SR_TIF           /*!< Trigger interrupt flag */
600 #define LL_TIM_SR_BIF                          TIM_SR_BIF           /*!< Break interrupt flag */
601 #define LL_TIM_SR_B2IF                         TIM_SR_B2IF          /*!< Second break interrupt flag */
602 #define LL_TIM_SR_CC1OF                        TIM_SR_CC1OF         /*!< Capture/Compare 1 overcapture flag */
603 #define LL_TIM_SR_CC2OF                        TIM_SR_CC2OF         /*!< Capture/Compare 2 overcapture flag */
604 #define LL_TIM_SR_CC3OF                        TIM_SR_CC3OF         /*!< Capture/Compare 3 overcapture flag */
605 #define LL_TIM_SR_CC4OF                        TIM_SR_CC4OF         /*!< Capture/Compare 4 overcapture flag */
606 #define LL_TIM_SR_SBIF                         TIM_SR_SBIF          /*!< System Break interrupt flag  */
607 #define LL_TIM_SR_IDXF                         TIM_SR_IDXF          /*!< Index interrupt flag  */
608 #define LL_TIM_SR_DIRF                         TIM_SR_DIRF          /*!< Direction Change interrupt flag  */
609 #define LL_TIM_SR_IERRF                        TIM_SR_IERRF         /*!< Index Error flag  */
610 #define LL_TIM_SR_TERRF                        TIM_SR_TERRF         /*!< Transition Error flag  */
611 /**
612   * @}
613   */
614 
615 #if defined(USE_FULL_LL_DRIVER)
616 /** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
617   * @{
618   */
619 #define LL_TIM_BREAK_DISABLE            0x00000000U             /*!< Break function disabled */
620 #define LL_TIM_BREAK_ENABLE             TIM_BDTR_BKE            /*!< Break function enabled */
621 /**
622   * @}
623   */
624 
625 /** @defgroup TIM_LL_EC_BREAK2_ENABLE Break2 Enable
626   * @{
627   */
628 #define LL_TIM_BREAK2_DISABLE            0x00000000U              /*!< Break2 function disabled */
629 #define LL_TIM_BREAK2_ENABLE             TIM_BDTR_BK2E            /*!< Break2 function enabled */
630 /**
631   * @}
632   */
633 
634 /** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
635   * @{
636   */
637 #define LL_TIM_AUTOMATICOUTPUT_DISABLE         0x00000000U             /*!< MOE can be set only by software */
638 #define LL_TIM_AUTOMATICOUTPUT_ENABLE          TIM_BDTR_AOE            /*!< MOE can be set by software or automatically at the next update event */
639 /**
640   * @}
641   */
642 #endif /* USE_FULL_LL_DRIVER */
643 
644 /** @defgroup TIM_LL_EC_IT IT Defines
645   * @brief    IT defines which can be used with LL_TIM_ReadReg and  LL_TIM_WriteReg functions.
646   * @{
647   */
648 #define LL_TIM_DIER_UIE                        TIM_DIER_UIE         /*!< Update interrupt enable */
649 #define LL_TIM_DIER_CC1IE                      TIM_DIER_CC1IE       /*!< Capture/compare 1 interrupt enable */
650 #define LL_TIM_DIER_CC2IE                      TIM_DIER_CC2IE       /*!< Capture/compare 2 interrupt enable */
651 #define LL_TIM_DIER_CC3IE                      TIM_DIER_CC3IE       /*!< Capture/compare 3 interrupt enable */
652 #define LL_TIM_DIER_CC4IE                      TIM_DIER_CC4IE       /*!< Capture/compare 4 interrupt enable */
653 #define LL_TIM_DIER_COMIE                      TIM_DIER_COMIE       /*!< COM interrupt enable */
654 #define LL_TIM_DIER_TIE                        TIM_DIER_TIE         /*!< Trigger interrupt enable */
655 #define LL_TIM_DIER_BIE                        TIM_DIER_BIE         /*!< Break interrupt enable */
656 #define LL_TIM_DIER_IDXIE                      TIM_DIER_IDXIE       /*!< Index interrupt enable */
657 #define LL_TIM_DIER_DIRIE                      TIM_DIER_DIRIE       /*!< Direction Change interrupt enable */
658 #define LL_TIM_DIER_IERRIE                     TIM_DIER_IERRIE      /*!< Index Error interrupt enable */
659 #define LL_TIM_DIER_TERRIE                     TIM_DIER_TERRIE      /*!< Transition Error interrupt enable */
660 /**
661   * @}
662   */
663 
664 /** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
665   * @{
666   */
667 #define LL_TIM_UPDATESOURCE_REGULAR            0x00000000U          /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
668 #define LL_TIM_UPDATESOURCE_COUNTER            TIM_CR1_URS          /*!< Only counter overflow/underflow generates an update request */
669 /**
670   * @}
671   */
672 
673 /** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
674   * @{
675   */
676 #define LL_TIM_ONEPULSEMODE_SINGLE             TIM_CR1_OPM          /*!< Counter stops counting at the next update event */
677 #define LL_TIM_ONEPULSEMODE_REPETITIVE         0x00000000U          /*!< Counter is not stopped at update event */
678 /**
679   * @}
680   */
681 
682 /** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
683   * @{
684   */
685 #define LL_TIM_COUNTERMODE_UP                  0x00000000U          /*!< Counter used as upcounter */
686 #define LL_TIM_COUNTERMODE_DOWN                TIM_CR1_DIR          /*!< Counter used as downcounter */
687 #define LL_TIM_COUNTERMODE_CENTER_DOWN         TIM_CR1_CMS_0        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting down. */
688 #define LL_TIM_COUNTERMODE_CENTER_UP           TIM_CR1_CMS_1        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up */
689 #define LL_TIM_COUNTERMODE_CENTER_UP_DOWN      TIM_CR1_CMS          /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up or down. */
690 /**
691   * @}
692   */
693 
694 /** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
695   * @{
696   */
697 #define LL_TIM_CLOCKDIVISION_DIV1              0x00000000U          /*!< tDTS=tCK_INT */
698 #define LL_TIM_CLOCKDIVISION_DIV2              TIM_CR1_CKD_0        /*!< tDTS=2*tCK_INT */
699 #define LL_TIM_CLOCKDIVISION_DIV4              TIM_CR1_CKD_1        /*!< tDTS=4*tCK_INT */
700 /**
701   * @}
702   */
703 
704 /** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
705   * @{
706   */
707 #define LL_TIM_COUNTERDIRECTION_UP             0x00000000U          /*!< Timer counter counts up */
708 #define LL_TIM_COUNTERDIRECTION_DOWN           TIM_CR1_DIR          /*!< Timer counter counts down */
709 /**
710   * @}
711   */
712 
713 /** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare  Update Source
714   * @{
715   */
716 #define LL_TIM_CCUPDATESOURCE_COMG_ONLY        0x00000000U          /*!< Capture/compare control bits are updated by setting the COMG bit only */
717 #define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI    TIM_CR2_CCUS         /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
718 /**
719   * @}
720   */
721 
722 /** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
723   * @{
724   */
725 #define LL_TIM_CCDMAREQUEST_CC                 0x00000000U          /*!< CCx DMA request sent when CCx event occurs */
726 #define LL_TIM_CCDMAREQUEST_UPDATE             TIM_CR2_CCDS         /*!< CCx DMA requests sent when update event occurs */
727 /**
728   * @}
729   */
730 
731 /** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
732   * @{
733   */
734 #define LL_TIM_LOCKLEVEL_OFF                   0x00000000U          /*!< LOCK OFF - No bit is write protected */
735 #define LL_TIM_LOCKLEVEL_1                     TIM_BDTR_LOCK_0      /*!< LOCK Level 1 */
736 #define LL_TIM_LOCKLEVEL_2                     TIM_BDTR_LOCK_1      /*!< LOCK Level 2 */
737 #define LL_TIM_LOCKLEVEL_3                     TIM_BDTR_LOCK        /*!< LOCK Level 3 */
738 /**
739   * @}
740   */
741 
742 /** @defgroup TIM_LL_EC_CHANNEL Channel
743   * @{
744   */
745 #define LL_TIM_CHANNEL_CH1                     TIM_CCER_CC1E     /*!< Timer input/output channel 1 */
746 #define LL_TIM_CHANNEL_CH1N                    TIM_CCER_CC1NE    /*!< Timer complementary output channel 1 */
747 #define LL_TIM_CHANNEL_CH2                     TIM_CCER_CC2E     /*!< Timer input/output channel 2 */
748 #define LL_TIM_CHANNEL_CH2N                    TIM_CCER_CC2NE    /*!< Timer complementary output channel 2 */
749 #define LL_TIM_CHANNEL_CH3                     TIM_CCER_CC3E     /*!< Timer input/output channel 3 */
750 #define LL_TIM_CHANNEL_CH3N                    TIM_CCER_CC3NE    /*!< Timer complementary output channel 3 */
751 #define LL_TIM_CHANNEL_CH4                     TIM_CCER_CC4E     /*!< Timer input/output channel 4 */
752 #define LL_TIM_CHANNEL_CH4N                    TIM_CCER_CC4NE     /*!< Timer complementary output channel 4 */
753 #define LL_TIM_CHANNEL_CH5                     TIM_CCER_CC5E     /*!< Timer output channel 5 */
754 #define LL_TIM_CHANNEL_CH6                     TIM_CCER_CC6E     /*!< Timer output channel 6 */
755 /**
756   * @}
757   */
758 
759 #if defined(USE_FULL_LL_DRIVER)
760 /** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
761   * @{
762   */
763 #define LL_TIM_OCSTATE_DISABLE                 0x00000000U             /*!< OCx is not active */
764 #define LL_TIM_OCSTATE_ENABLE                  TIM_CCER_CC1E           /*!< OCx signal is output on the corresponding output pin */
765 /**
766   * @}
767   */
768 #endif /* USE_FULL_LL_DRIVER */
769 
770 /** Legacy definitions for compatibility purpose
771 @cond 0
772   */
773 #define LL_TIM_OCMODE_ASSYMETRIC_PWM1 LL_TIM_OCMODE_ASYMMETRIC_PWM1
774 #define LL_TIM_OCMODE_ASSYMETRIC_PWM2 LL_TIM_OCMODE_ASYMMETRIC_PWM2
775 /**
776 @endcond
777   */
778 
779 /** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
780   * @{
781   */
782 #define LL_TIM_OCMODE_FROZEN                   0x00000000U                                              /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
783 #define LL_TIM_OCMODE_ACTIVE                   TIM_CCMR1_OC1M_0                                         /*!<OCyREF is forced high on compare match*/
784 #define LL_TIM_OCMODE_INACTIVE                 TIM_CCMR1_OC1M_1                                         /*!<OCyREF is forced low on compare match*/
785 #define LL_TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF toggles on compare match*/
786 #define LL_TIM_OCMODE_FORCED_INACTIVE          TIM_CCMR1_OC1M_2                                         /*!<OCyREF is forced low*/
787 #define LL_TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF is forced high*/
788 #define LL_TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1)                    /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive.  In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
789 #define LL_TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active.  In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
790 #define LL_TIM_OCMODE_RETRIG_OPM1              TIM_CCMR1_OC1M_3                                         /*!<Retrigerrable OPM mode 1*/
791 #define LL_TIM_OCMODE_RETRIG_OPM2              (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0)                    /*!<Retrigerrable OPM mode 2*/
792 #define LL_TIM_OCMODE_COMBINED_PWM1            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_2)                    /*!<Combined PWM mode 1*/
793 #define LL_TIM_OCMODE_COMBINED_PWM2            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 2*/
794 #define LL_TIM_OCMODE_ASYMMETRIC_PWM1          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!<Asymmetric PWM mode 1*/
795 #define LL_TIM_OCMODE_ASYMMETRIC_PWM2          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M)                      /*!<Asymmetric PWM mode 2*/
796 #define LL_TIM_OCMODE_PULSE_ON_COMPARE         (TIM_CCMR2_OC3M_3 | TIM_CCMR2_OC3M_1)                    /*!<Pulse on Compare mode */
797 #define LL_TIM_OCMODE_DIRECTION_OUTPUT         (TIM_CCMR2_OC3M_3 | TIM_CCMR2_OC3M_1 | TIM_CCMR2_OC3M_0) /*!<Direction output mode */
798 /**
799   * @}
800   */
801 
802 /** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
803   * @{
804   */
805 #define LL_TIM_OCPOLARITY_HIGH                 0x00000000U                 /*!< OCxactive high*/
806 #define LL_TIM_OCPOLARITY_LOW                  TIM_CCER_CC1P               /*!< OCxactive low*/
807 /**
808   * @}
809   */
810 
811 /** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
812   * @{
813   */
814 #define LL_TIM_OCIDLESTATE_LOW                 0x00000000U             /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
815 #define LL_TIM_OCIDLESTATE_HIGH                TIM_CR2_OIS1            /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
816 /**
817   * @}
818   */
819 
820 /** @defgroup TIM_LL_EC_GROUPCH5 GROUPCH5
821   * @{
822   */
823 #define LL_TIM_GROUPCH5_NONE                   0x00000000U           /*!< No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC */
824 #define LL_TIM_GROUPCH5_OC1REFC                TIM_CCR5_GC5C1        /*!< OC1REFC is the logical AND of OC1REFC and OC5REF */
825 #define LL_TIM_GROUPCH5_OC2REFC                TIM_CCR5_GC5C2        /*!< OC2REFC is the logical AND of OC2REFC and OC5REF */
826 #define LL_TIM_GROUPCH5_OC3REFC                TIM_CCR5_GC5C3        /*!< OC3REFC is the logical AND of OC3REFC and OC5REF */
827 /**
828   * @}
829   */
830 
831 /** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
832   * @{
833   */
834 #define LL_TIM_ACTIVEINPUT_DIRECTTI            (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
835 #define LL_TIM_ACTIVEINPUT_INDIRECTTI          (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
836 #define LL_TIM_ACTIVEINPUT_TRC                 (TIM_CCMR1_CC1S << 16U)   /*!< ICx is mapped on TRC */
837 /**
838   * @}
839   */
840 
841 /** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
842   * @{
843   */
844 #define LL_TIM_ICPSC_DIV1                      0x00000000U                    /*!< No prescaler, capture is done each time an edge is detected on the capture input */
845 #define LL_TIM_ICPSC_DIV2                      (TIM_CCMR1_IC1PSC_0 << 16U)    /*!< Capture is done once every 2 events */
846 #define LL_TIM_ICPSC_DIV4                      (TIM_CCMR1_IC1PSC_1 << 16U)    /*!< Capture is done once every 4 events */
847 #define LL_TIM_ICPSC_DIV8                      (TIM_CCMR1_IC1PSC << 16U)      /*!< Capture is done once every 8 events */
848 /**
849   * @}
850   */
851 
852 /** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
853   * @{
854   */
855 #define LL_TIM_IC_FILTER_FDIV1                 0x00000000U                                                        /*!< No filter, sampling is done at fDTS */
856 #define LL_TIM_IC_FILTER_FDIV1_N2              (TIM_CCMR1_IC1F_0 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=2 */
857 #define LL_TIM_IC_FILTER_FDIV1_N4              (TIM_CCMR1_IC1F_1 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=4 */
858 #define LL_TIM_IC_FILTER_FDIV1_N8              ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fCK_INT, N=8 */
859 #define LL_TIM_IC_FILTER_FDIV2_N6              (TIM_CCMR1_IC1F_2 << 16U)                                          /*!< fSAMPLING=fDTS/2, N=6 */
860 #define LL_TIM_IC_FILTER_FDIV2_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/2, N=8 */
861 #define LL_TIM_IC_FILTER_FDIV4_N6              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/4, N=6 */
862 #define LL_TIM_IC_FILTER_FDIV4_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/4, N=8 */
863 #define LL_TIM_IC_FILTER_FDIV8_N6              (TIM_CCMR1_IC1F_3 << 16U)                                          /*!< fSAMPLING=fDTS/8, N=6 */
864 #define LL_TIM_IC_FILTER_FDIV8_N8              ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/8, N=8 */
865 #define LL_TIM_IC_FILTER_FDIV16_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/16, N=5 */
866 #define LL_TIM_IC_FILTER_FDIV16_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/16, N=6 */
867 #define LL_TIM_IC_FILTER_FDIV16_N8             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U)                     /*!< fSAMPLING=fDTS/16, N=8 */
868 #define LL_TIM_IC_FILTER_FDIV32_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/32, N=5 */
869 #define LL_TIM_IC_FILTER_FDIV32_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)  /*!< fSAMPLING=fDTS/32, N=6 */
870 #define LL_TIM_IC_FILTER_FDIV32_N8             (TIM_CCMR1_IC1F << 16U)                                            /*!< fSAMPLING=fDTS/32, N=8 */
871 /**
872   * @}
873   */
874 
875 /** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
876   * @{
877   */
878 #define LL_TIM_IC_POLARITY_RISING              0x00000000U                      /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
879 #define LL_TIM_IC_POLARITY_FALLING             TIM_CCER_CC1P                    /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
880 #define LL_TIM_IC_POLARITY_BOTHEDGE            (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
881 /**
882   * @}
883   */
884 
885 /** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
886   * @{
887   */
888 #define LL_TIM_CLOCKSOURCE_INTERNAL            0x00000000U                                          /*!< The timer is clocked by the internal clock provided from the RCC */
889 #define LL_TIM_CLOCKSOURCE_EXT_MODE1           (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)   /*!< Counter counts at each rising or falling edge on a selected input*/
890 #define LL_TIM_CLOCKSOURCE_EXT_MODE2           TIM_SMCR_ECE                                         /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
891 /**
892   * @}
893   */
894 
895 /** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
896   * @{
897   */
898 #define LL_TIM_ENCODERMODE_X2_TI1                     TIM_SMCR_SMS_0                                                     /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
899 #define LL_TIM_ENCODERMODE_X2_TI2                     TIM_SMCR_SMS_1                                                     /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
900 #define LL_TIM_ENCODERMODE_X4_TI12                   (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)                                   /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
901 #define LL_TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X2     (TIM_SMCR_SMS_3 | TIM_SMCR_SMS_1)                                   /*!< Encoder mode: Clock plus direction - x2 mode */
902 #define LL_TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X1     (TIM_SMCR_SMS_3 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)                  /*!< Encoder mode: Clock plus direction, x1 mode, TI2FP2 edge sensitivity is set by CC2P */
903 #define LL_TIM_ENCODERMODE_DIRECTIONALCLOCK_X2       (TIM_SMCR_SMS_3 | TIM_SMCR_SMS_2)                                   /*!< Encoder mode: Directional Clock, x2 mode */
904 #define LL_TIM_ENCODERMODE_DIRECTIONALCLOCK_X1_TI12  (TIM_SMCR_SMS_3 | TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)                  /*!< Encoder mode: Directional Clock, x1 mode, TI1FP1 and TI2FP2 edge sensitivity is set by CC1P and CC2P */
905 #define LL_TIM_ENCODERMODE_X1_TI1                    (TIM_SMCR_SMS_3 | TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)                  /*!< Quadrature encoder mode: x1 mode, counting on TI1FP1 edges only, edge sensitivity is set by CC1P */
906 #define LL_TIM_ENCODERMODE_X1_TI2                    (TIM_SMCR_SMS_3 | TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Quadrature encoder mode: x1 mode, counting on TI2FP2 edges only, edge sensitivity is set by CC1P */
907 /**
908   * @}
909   */
910 
911 /** @defgroup TIM_LL_EC_TRGO Trigger Output
912   * @{
913   */
914 #define LL_TIM_TRGO_RESET                      0x00000000U                                     /*!< UG bit from the TIMx_EGR register is used as trigger output */
915 #define LL_TIM_TRGO_ENABLE                     TIM_CR2_MMS_0                                   /*!< Counter Enable signal (CNT_EN) is used as trigger output */
916 #define LL_TIM_TRGO_UPDATE                     TIM_CR2_MMS_1                                   /*!< Update event is used as trigger output */
917 #define LL_TIM_TRGO_CC1IF                      (TIM_CR2_MMS_1 | TIM_CR2_MMS_0)                 /*!< CC1 capture or a compare match is used as trigger output */
918 #define LL_TIM_TRGO_OC1REF                     TIM_CR2_MMS_2                                   /*!< OC1REF signal is used as trigger output */
919 #define LL_TIM_TRGO_OC2REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_0)                 /*!< OC2REF signal is used as trigger output */
920 #define LL_TIM_TRGO_OC3REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1)                 /*!< OC3REF signal is used as trigger output */
921 #define LL_TIM_TRGO_OC4REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
922 #define LL_TIM_TRGO_ENCODERCLK                 TIM_CR2_MMS_3                                   /*!< Encoder clock signal is used as trigger output */
923 /**
924   * @}
925   */
926 
927 /** @defgroup TIM_LL_EC_TRGO2 Trigger Output 2
928   * @{
929   */
930 #define LL_TIM_TRGO2_RESET                     0x00000000U                                                         /*!< UG bit from the TIMx_EGR register is used as trigger output 2 */
931 #define LL_TIM_TRGO2_ENABLE                    TIM_CR2_MMS2_0                                                      /*!< Counter Enable signal (CNT_EN) is used as trigger output 2 */
932 #define LL_TIM_TRGO2_UPDATE                    TIM_CR2_MMS2_1                                                      /*!< Update event is used as trigger output 2 */
933 #define LL_TIM_TRGO2_CC1F                      (TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                                   /*!< CC1 capture or a compare match is used as trigger output 2 */
934 #define LL_TIM_TRGO2_OC1                       TIM_CR2_MMS2_2                                                      /*!< OC1REF signal is used as trigger output 2 */
935 #define LL_TIM_TRGO2_OC2                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                                   /*!< OC2REF signal is used as trigger output 2 */
936 #define LL_TIM_TRGO2_OC3                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1)                                   /*!< OC3REF signal is used as trigger output 2 */
937 #define LL_TIM_TRGO2_OC4                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC4REF signal is used as trigger output 2 */
938 #define LL_TIM_TRGO2_OC5                       TIM_CR2_MMS2_3                                                      /*!< OC5REF signal is used as trigger output 2 */
939 #define LL_TIM_TRGO2_OC6                       (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_0)                                   /*!< OC6REF signal is used as trigger output 2 */
940 #define LL_TIM_TRGO2_OC4_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1)                                   /*!< OC4REF rising or falling edges are used as trigger output 2 */
941 #define LL_TIM_TRGO2_OC6_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC6REF rising or falling edges are used as trigger output 2 */
942 #define LL_TIM_TRGO2_OC4_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2)                                   /*!< OC4REF or OC6REF rising edges are used as trigger output 2 */
943 #define LL_TIM_TRGO2_OC4_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                  /*!< OC4REF rising or OC6REF falling edges are used as trigger output 2 */
944 #define LL_TIM_TRGO2_OC5_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 |TIM_CR2_MMS2_1)                   /*!< OC5REF or OC6REF rising edges are used as trigger output 2 */
945 #define LL_TIM_TRGO2_OC5_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC5REF rising or OC6REF falling edges are used as trigger output 2 */
946 /**
947   * @}
948   */
949 
950 /** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
951   * @{
952   */
953 #define LL_TIM_SLAVEMODE_DISABLED              0x00000000U                         /*!< Slave mode disabled */
954 #define LL_TIM_SLAVEMODE_RESET                 TIM_SMCR_SMS_2                      /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
955 #define LL_TIM_SLAVEMODE_GATED                 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)   /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
956 #define LL_TIM_SLAVEMODE_TRIGGER               (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)   /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
957 #define LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER TIM_SMCR_SMS_3                      /*!< Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI)  reinitializes the counter, generates an update of the registers and starts the counter */
958 #define LL_TIM_SLAVEMODE_COMBINED_GATEDRESET   (TIM_SMCR_SMS_3 | TIM_SMCR_SMS_0)   /*!< Combined gated + reset mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops and is reset) as soon as the trigger becomes low.Both startand stop of
959                                                                                         the counter are controlled. */
960 /**
961   * @}
962   */
963 
964 /** @defgroup TIM_LL_EC_SMS_PRELOAD_SOURCE SMS Preload Source
965   * @{
966   */
967 #define LL_TIM_SMSPS_TIMUPDATE                 0x00000000U                         /*!< The SMS preload transfer is triggered by the Timer's Update event */
968 #define LL_TIM_SMSPS_INDEX                     TIM_SMCR_SMSPS                      /*!< The SMS preload transfer is triggered by the Index event */
969 /**
970   * @}
971   */
972 
973 /** @defgroup TIM_LL_EC_TS Trigger Selection
974   * @{
975   */
976 #define LL_TIM_TS_ITR0                         0x00000000U                                                     /*!< Internal Trigger 0 (ITR0) is used as trigger input */
977 #define LL_TIM_TS_ITR1                         TIM_SMCR_TS_0                                                   /*!< Internal Trigger 1 (ITR1) is used as trigger input */
978 #define LL_TIM_TS_ITR2                         TIM_SMCR_TS_1                                                   /*!< Internal Trigger 2 (ITR2) is used as trigger input */
979 #define LL_TIM_TS_ITR3                         (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)                                 /*!< Internal Trigger 3 (ITR3) is used as trigger input */
980 #define LL_TIM_TS_ITR4                         TIM_SMCR_TS_3                                                   /*!< Internal Trigger 4 (ITR4) is used as trigger input */
981 #define LL_TIM_TS_ITR5                         (TIM_SMCR_TS_3 | TIM_SMCR_TS_0)                                 /*!< Internal Trigger 5 (ITR5) is used as trigger input */
982 #define LL_TIM_TS_ITR6                         (TIM_SMCR_TS_3 | TIM_SMCR_TS_1)                                 /*!< Internal Trigger 6 (ITR6) is used as trigger input */
983 #define LL_TIM_TS_ITR7                         (TIM_SMCR_TS_3 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Internal Trigger 7 (ITR7) is used as trigger input */
984 #define LL_TIM_TS_ITR8                         (TIM_SMCR_TS_3 | TIM_SMCR_TS_2)                                 /*!< Internal Trigger 8 (ITR8) is used as trigger input */
985 #define LL_TIM_TS_ITR11                        (TIM_SMCR_TS_0 | TIM_SMCR_TS_1 | TIM_SMCR_TS_2 | TIM_SMCR_TS_3) /*!< Internal Trigger 11 (ITR11) is used as trigger input */
986 #define LL_TIM_TS_TI1F_ED                      TIM_SMCR_TS_2                                                   /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
987 #define LL_TIM_TS_TI1FP1                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_0)                                 /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
988 #define LL_TIM_TS_TI2FP2                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_1)                                 /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
989 #define LL_TIM_TS_ETRF                         (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Filtered external Trigger (ETRF) is used as trigger input */
990 /**
991   * @}
992   */
993 
994 /** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
995   * @{
996   */
997 #define LL_TIM_ETR_POLARITY_NONINVERTED        0x00000000U             /*!< ETR is non-inverted, active at high level or rising edge */
998 #define LL_TIM_ETR_POLARITY_INVERTED           TIM_SMCR_ETP            /*!< ETR is inverted, active at low level or falling edge */
999 /**
1000   * @}
1001   */
1002 
1003 /** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
1004   * @{
1005   */
1006 #define LL_TIM_ETR_PRESCALER_DIV1              0x00000000U             /*!< ETR prescaler OFF */
1007 #define LL_TIM_ETR_PRESCALER_DIV2              TIM_SMCR_ETPS_0         /*!< ETR frequency is divided by 2 */
1008 #define LL_TIM_ETR_PRESCALER_DIV4              TIM_SMCR_ETPS_1         /*!< ETR frequency is divided by 4 */
1009 #define LL_TIM_ETR_PRESCALER_DIV8              TIM_SMCR_ETPS           /*!< ETR frequency is divided by 8 */
1010 /**
1011   * @}
1012   */
1013 
1014 /** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
1015   * @{
1016   */
1017 #define LL_TIM_ETR_FILTER_FDIV1                0x00000000U                                          /*!< No filter, sampling is done at fDTS */
1018 #define LL_TIM_ETR_FILTER_FDIV1_N2             TIM_SMCR_ETF_0                                       /*!< fSAMPLING=fCK_INT, N=2 */
1019 #define LL_TIM_ETR_FILTER_FDIV1_N4             TIM_SMCR_ETF_1                                       /*!< fSAMPLING=fCK_INT, N=4 */
1020 #define LL_TIM_ETR_FILTER_FDIV1_N8             (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fCK_INT, N=8 */
1021 #define LL_TIM_ETR_FILTER_FDIV2_N6             TIM_SMCR_ETF_2                                       /*!< fSAMPLING=fDTS/2, N=6 */
1022 #define LL_TIM_ETR_FILTER_FDIV2_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/2, N=8 */
1023 #define LL_TIM_ETR_FILTER_FDIV4_N6             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/4, N=6 */
1024 #define LL_TIM_ETR_FILTER_FDIV4_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/4, N=8 */
1025 #define LL_TIM_ETR_FILTER_FDIV8_N6             TIM_SMCR_ETF_3                                       /*!< fSAMPLING=fDTS/8, N=6 */
1026 #define LL_TIM_ETR_FILTER_FDIV8_N8             (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/16, N=8 */
1027 #define LL_TIM_ETR_FILTER_FDIV16_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/16, N=5 */
1028 #define LL_TIM_ETR_FILTER_FDIV16_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/16, N=6 */
1029 #define LL_TIM_ETR_FILTER_FDIV16_N8            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2)                    /*!< fSAMPLING=fDTS/16, N=8 */
1030 #define LL_TIM_ETR_FILTER_FDIV32_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/32, N=5 */
1031 #define LL_TIM_ETR_FILTER_FDIV32_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)   /*!< fSAMPLING=fDTS/32, N=6 */
1032 #define LL_TIM_ETR_FILTER_FDIV32_N8            TIM_SMCR_ETF                                         /*!< fSAMPLING=fDTS/32, N=8 */
1033 /**
1034   * @}
1035   */
1036 
1037 /** @defgroup TIM_LL_EC_TIM1_ETRSOURCE External Trigger Source TIM1
1038   * @{
1039   */
1040 #define LL_TIM_TIM1_ETRSOURCE_GPIO        0x00000000U                                                  /*!< ETR input is connected to GPIO */
1041 #define LL_TIM_TIM1_ETRSOURCE_COMP1       TIM1_AF1_ETRSEL_0                                            /*!< ETR input is connected to COMP1_OUT */
1042 #if defined(COMP2)
1043 #define LL_TIM_TIM1_ETRSOURCE_COMP2       TIM1_AF1_ETRSEL_1                                            /*!< ETR input is connected to COMP2_OUT */
1044 #endif /* COMP2 */
1045 #define LL_TIM_TIM1_ETRSOURCE_MSIK        (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0)                      /*!< ETR input is connected to MSIK */
1046 #define LL_TIM_TIM1_ETRSOURCE_HSI         TIM1_AF1_ETRSEL_2                                            /*!< ETR input is connected to HSI */
1047 #define LL_TIM_TIM1_ETRSOURCE_MSIS        (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0)                      /*!< ETR input is connected to MSIS */
1048 #if defined(ADC2)
1049 #define LL_TIM_TIM1_ETRSOURCE_ADC2_AWD2   (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1)                      /*!< ADC2 analog watchdog 2 */
1050 #define LL_TIM_TIM1_ETRSOURCE_ADC2_AWD3   (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1| TIM1_AF1_ETRSEL_0)   /*!< ADC2 analog watchdog 3 */
1051 #endif /* ADC2 */
1052 #define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD1   TIM1_AF1_ETRSEL_3                                            /*!< ADC1 analog watchdog 1 */
1053 #define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD2   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_0)                      /*!< ADC1 analog watchdog 2 */
1054 #define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD3   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_1)                      /*!< ADC1 analog watchdog 3 */
1055 #define LL_TIM_TIM1_ETRSOURCE_ADC4_AWD1   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0)  /*!< ADC4 analog watchdog 1 */
1056 #define LL_TIM_TIM1_ETRSOURCE_ADC4_AWD2   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2)                      /*!< ADC4 analog watchdog 2 */
1057 #define LL_TIM_TIM1_ETRSOURCE_ADC4_AWD3   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0)  /*!< ADC4 analog watchdog 3 */
1058 #if defined(ADC2)
1059 #define LL_TIM_TIM1_ETRSOURCE_ADC2_AWD1   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1)  /*!< ADC2 analog watchdog 1 */
1060 #endif /* ADC2 */
1061 /**
1062   * @}
1063   */
1064 
1065 /** @defgroup TIM_LL_EC_TIM2_ETRSOURCE External Trigger Source TIM2
1066   * @{
1067   */
1068 #define LL_TIM_TIM2_ETRSOURCE_GPIO         0x00000000U                                                 /*!< ETR input is connected to GPIO */
1069 #define LL_TIM_TIM2_ETRSOURCE_COMP1        TIM1_AF1_ETRSEL_0                                           /*!< ETR input is connected to COMP1_OUT */
1070 #if defined(COMP2)
1071 #define LL_TIM_TIM2_ETRSOURCE_COMP2        TIM1_AF1_ETRSEL_1                                           /*!< ETR input is connected to COMP2_OUT */
1072 #endif /* COMP2 */
1073 #define LL_TIM_TIM2_ETRSOURCE_MSIK         (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to MSIK */
1074 #define LL_TIM_TIM2_ETRSOURCE_HSI          TIM1_AF1_ETRSEL_2                                           /*!< ETR input is connected to HSI */
1075 #define LL_TIM_TIM2_ETRSOURCE_MSIS         (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to MSIS */
1076 #if defined(DCMI) && defined(LTDC)
1077 #define LL_TIM_TIM2_ETRSOURCE_DCMI_VSYNC        (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1)                /*!< ETR input is connected to DCMI VSYNC   */
1078 #define LL_TIM_TIM2_ETRSOURCE_LTDC_VSYNC        (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1| TIM1_AF1_ETRSEL_0)  /*!< ETR input is connected to LTDC_VSYNC   */
1079 #endif /* DCMI && LTDC */
1080 #define LL_TIM_TIM2_ETRSOURCE_TIM3_ETR     TIM1_AF1_ETRSEL_3                                           /*!< ETR input is connected to TIM3 ETR */
1081 #define LL_TIM_TIM2_ETRSOURCE_TIM4_ETR     (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to TIM4 ETR */
1082 #define LL_TIM_TIM2_ETRSOURCE_TIM5_ETR     (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_1)                     /*!< ETR input is connected to TIM5 ETR */
1083 #define LL_TIM_TIM2_ETRSOURCE_LSE          (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to LSE */
1084 #if defined(DSI)
1085 #define LL_TIM_TIM2_ETRSOURCE_DSI_TE       (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to DSI_TE       */
1086 #endif /* DSI */
1087 #if defined(DCMI) && defined(LTDC)
1088 #define LL_TIM_TIM2_ETRSOURCE_DCMI_HSYNC   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1) /*!< ETR input is connected to DCMI HSYNC   */
1089 #define LL_TIM_TIM2_ETRSOURCE_LTDC_HSYNC   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to LTDC HSYNC   */
1090 #endif /* DCMI && LTDC */
1091 /**
1092   * @}
1093   */
1094 
1095 /** @defgroup TIM_LL_EC_TIM3_ETRSOURCE External Trigger Source TIM3
1096   * @{
1097   */
1098 #define LL_TIM_TIM3_ETRSOURCE_GPIO         0x00000000U                                                 /*!< ETR input is connected to GPIO */
1099 #define LL_TIM_TIM3_ETRSOURCE_COMP1        TIM1_AF1_ETRSEL_0                                           /*!< ETR input is connected to COMP1_OUT */
1100 #if defined(COMP2)
1101 #define LL_TIM_TIM3_ETRSOURCE_COMP2        TIM1_AF1_ETRSEL_1                                           /*!< ETR input is connected to COMP2_OUT */
1102 #endif /* COMP2 */
1103 #define LL_TIM_TIM3_ETRSOURCE_MSIK         (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to MSIK */
1104 #define LL_TIM_TIM3_ETRSOURCE_HSI          TIM1_AF1_ETRSEL_2                                           /*!< ETR input is connected to HSI */
1105 #define LL_TIM_TIM3_ETRSOURCE_MSIS         (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to MSIS */
1106 #if defined(DCMI) && defined(LTDC)
1107 #define LL_TIM_TIM3_ETRSOURCE_DCMI_VSYNC   (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1)                     /*!< ETR input is connected to DCMI VSYNC   */
1108 #define LL_TIM_TIM3_ETRSOURCE_LTDC_VSYNC   (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1| TIM1_AF1_ETRSEL_0)  /*!< ETR input is connected to LTDC_VSYNC   */
1109 #endif /* DCMI && LTDC */
1110 #define LL_TIM_TIM3_ETRSOURCE_TIM2_ETR     TIM1_AF1_ETRSEL_3                                           /*!< ETR input is connected to TIM2 ETR */
1111 #define LL_TIM_TIM3_ETRSOURCE_TIM4_ETR     (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to TIM4 ETR */
1112 #if defined(DSI)
1113 #define LL_TIM_TIM3_ETRSOURCE_DSI_TE       (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_1)                     /*!< ETR input is connected to DSI_TE       */
1114 #endif /* DSI */
1115 #define LL_TIM_TIM3_ETRSOURCE_ADC1_AWD1    (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ADC1 analog watchdog 1 */
1116 #define LL_TIM_TIM3_ETRSOURCE_ADC1_AWD2    (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2)                     /*!< ADC1 analog watchdog 2 */
1117 #define LL_TIM_TIM3_ETRSOURCE_ADC1_AWD3    (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0) /*!< ADC1 analog watchdog 3 */
1118 #if defined(DCMI) && defined(LTDC)
1119 #define LL_TIM_TIM3_ETRSOURCE_DCMI_HSYNC   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1) /*!< ETR input is connected to DCMI HSYNC   */
1120 #define LL_TIM_TIM3_ETRSOURCE_LTDC_HSYNC   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to LTDC HSYNC   */
1121 #endif /* DCMI && LTDC */
1122 /**
1123   * @}
1124   */
1125 
1126 /** @defgroup TIM_LL_EC_TIM4_ETRSOURCE External Trigger Source TIM4
1127   * @{
1128   */
1129 #define LL_TIM_TIM4_ETRSOURCE_GPIO         0x00000000U                                                 /*!< ETR input is connected to GPIO */
1130 #define LL_TIM_TIM4_ETRSOURCE_COMP1        TIM1_AF1_ETRSEL_0                                           /*!< ETR input is connected to COMP1_OUT */
1131 #if defined(COMP2)
1132 #define LL_TIM_TIM4_ETRSOURCE_COMP2        TIM1_AF1_ETRSEL_1                                           /*!< ETR input is connected to COMP2_OUT */
1133 #endif /* COMP2 */
1134 #define LL_TIM_TIM4_ETRSOURCE_MSIK         (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to MSIK */
1135 #define LL_TIM_TIM4_ETRSOURCE_HSI          TIM1_AF1_ETRSEL_2                                           /*!< ETR input is connected to HSI */
1136 #define LL_TIM_TIM4_ETRSOURCE_MSIS         (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to MSIS */
1137 #if defined(DCMI) && defined(LTDC)
1138 #define LL_TIM_TIM4_ETRSOURCE_DCMI_VSYNC   (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1)                     /*!< ETR input is connected to DCMI VSYNC   */
1139 #define LL_TIM_TIM4_ETRSOURCE_LTDC_VSYNC   (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1| TIM1_AF1_ETRSEL_0)  /*!< ETR input is connected to LTDC_VSYNC   */
1140 #endif /* DCMI && LTDC */
1141 #define LL_TIM_TIM4_ETRSOURCE_TIM3_ETR     TIM1_AF1_ETRSEL_3                                           /*!< ETR input is connected to TIM3 ETR */
1142 #define LL_TIM_TIM4_ETRSOURCE_TIM5_ETR     (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to TIM5 ETR */
1143 #if defined(DSI)
1144 #define LL_TIM_TIM4_ETRSOURCE_DSI_TE       (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_1)                     /*!< TIM2_ETR is connected to DSI_TE       */
1145 #endif /* DSI */
1146 #if defined(ADC2)
1147 #define LL_TIM_TIM4_ETRSOURCE_ADC2_AWD1    (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to ADC2 AWD1    */
1148 #define LL_TIM_TIM4_ETRSOURCE_ADC2_AWD2    (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2)                     /*!< ETR input is connected to ADC2 AWD2    */
1149 #define LL_TIM_TIM4_ETRSOURCE_ADC2_AWD3    (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to ADC2 AWD3    */
1150 #endif /* ADC2 */
1151 #if defined(DCMI) && defined(LTDC)
1152 #define LL_TIM_TIM4_ETRSOURCE_DCMI_HSYNC   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1) /*!< ETR input is connected to DCMI HSYNC   */
1153 #define LL_TIM_TIM4_ETRSOURCE_LTDC_HSYNC   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to LTDC HSYNC   */
1154 #endif /* DCMI && LTDC */
1155 /**
1156   * @}
1157   */
1158 
1159 /** @defgroup TIM_LL_EC_TIM5_ETRSOURCE External Trigger Source TIM5
1160   * @{
1161   */
1162 #define LL_TIM_TIM5_ETRSOURCE_GPIO         0x00000000U                                                 /*!< ETR input is connected to GPIO */
1163 #define LL_TIM_TIM5_ETRSOURCE_COMP1        TIM1_AF1_ETRSEL_0                                           /*!< ETR input is connected to COMP1_OUT */
1164 #if defined(COMP2)
1165 #define LL_TIM_TIM5_ETRSOURCE_COMP2        TIM1_AF1_ETRSEL_1                                           /*!< ETR input is connected to COMP2_OUT */
1166 #endif /* COMP2 */
1167 #define LL_TIM_TIM5_ETRSOURCE_MSIK         (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to MSIK */
1168 #define LL_TIM_TIM5_ETRSOURCE_HSI          TIM1_AF1_ETRSEL_2                                           /*!< ETR input is connected to HSI */
1169 #define LL_TIM_TIM5_ETRSOURCE_MSIS         (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to MSIS */
1170 #if defined(DCMI) && defined(LTDC)
1171 #define LL_TIM_TIM5_ETRSOURCE_DCMI_VSYNC   (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1)                     /*!< ETR input is connected to DCMI VSYNC   */
1172 #define LL_TIM_TIM5_ETRSOURCE_LTDC_VSYNC   (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to LTDC_VSYNC   */
1173 #endif /* DCMI && LTDC */
1174 #define LL_TIM_TIM5_ETRSOURCE_TIM2_ETR     TIM1_AF1_ETRSEL_3                                           /*!< ETR input is connected to TIM2 ETR */
1175 #define LL_TIM_TIM5_ETRSOURCE_TIM3_ETR     (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_0)                     /*!< ETR input is connected to TIM3 ETR */
1176 #if defined(DSI)
1177 #define LL_TIM_TIM5_ETRSOURCE_DSI_TE       (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_1)                     /*!< ETR input is connected to DSI_TE       */
1178 #endif /* DSI */
1179 #if defined(DCMI) && defined(LTDC)
1180 #define LL_TIM_TIM5_ETRSOURCE_DCMI_HSYNC   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1) /*!< ETR input is connected to DCMI HSYNC   */
1181 #define LL_TIM_TIM5_ETRSOURCE_LTDC_HSYNC   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to LTDC HSYNC   */
1182 #endif /* DCMI && LTDC */
1183 /**
1184   * @}
1185   */
1186 
1187 /** @defgroup TIM_LL_EC_TIM8_ETRSOURCE External Trigger Source TIM8
1188   * @{
1189   */
1190 #define LL_TIM_TIM8_ETRSOURCE_GPIO        0x00000000U                                                  /*!< ETR input is connected to GPIO */
1191 #define LL_TIM_TIM8_ETRSOURCE_COMP1       TIM1_AF1_ETRSEL_0                                            /*!< ETR input is connected to COMP1_OUT */
1192 #if defined(COMP2)
1193 #define LL_TIM_TIM8_ETRSOURCE_COMP2       TIM1_AF1_ETRSEL_1                                            /*!< ETR input is connected to COMP2_OUT */
1194 #endif /* COMP2 */
1195 #define LL_TIM_TIM8_ETRSOURCE_MSIK        (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0)                      /*!< ETR input is connected to MSIK */
1196 #define LL_TIM_TIM8_ETRSOURCE_HSI         TIM1_AF1_ETRSEL_2                                            /*!< ETR input is connected to HSI */
1197 #define LL_TIM_TIM8_ETRSOURCE_MSIS        (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0)                      /*!< ETR input is connected to MSIS */
1198 #if defined (ADC2)
1199 #define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD2   (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1)                      /*!< ETR input is connected to ADC2 AWD2    */
1200 #define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD3   (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1| TIM1_AF1_ETRSEL_0)   /*!< ETR input is connected to ADC2 AWD3    */
1201 #endif /* ADC2 */
1202 #define LL_TIM_TIM8_ETRSOURCE_ADC1_AWD1   TIM1_AF1_ETRSEL_3                                            /*!< ADC1 analog watchdog 1 */
1203 #define LL_TIM_TIM8_ETRSOURCE_ADC1_AWD2   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_0)                      /*!< ADC1 analog watchdog 2 */
1204 #define LL_TIM_TIM8_ETRSOURCE_ADC1_AWD3   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_1)                      /*!< ADC1 analog watchdog 3 */
1205 #define LL_TIM_TIM8_ETRSOURCE_ADC4_AWD1   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0)  /*!< ADC4 analog watchdog 1 */
1206 #define LL_TIM_TIM8_ETRSOURCE_ADC4_AWD2   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2)                      /*!< ADC4 analog watchdog 2 */
1207 #define LL_TIM_TIM8_ETRSOURCE_ADC4_AWD3   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0)  /*!< ADC4 analog watchdog 3 */
1208 #if defined (ADC2)
1209 #define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD1   (TIM1_AF1_ETRSEL_3 | TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1)  /*!< ETR input is connected to ADC2 AWD1    */
1210 #endif /* ADC2 */
1211 /**
1212   * @}
1213   */
1214 
1215 /** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
1216   * @{
1217   */
1218 #define LL_TIM_BREAK_POLARITY_LOW              0x00000000U               /*!< Break input BRK is active low */
1219 #define LL_TIM_BREAK_POLARITY_HIGH             TIM_BDTR_BKP              /*!< Break input BRK is active high */
1220 /**
1221   * @}
1222   */
1223 
1224 /** @defgroup TIM_LL_EC_BREAK_FILTER break filter
1225   * @{
1226   */
1227 #define LL_TIM_BREAK_FILTER_FDIV1              0x00000000U   /*!< No filter, BRK acts asynchronously */
1228 #define LL_TIM_BREAK_FILTER_FDIV1_N2           0x00010000U   /*!< fSAMPLING=fCK_INT, N=2 */
1229 #define LL_TIM_BREAK_FILTER_FDIV1_N4           0x00020000U   /*!< fSAMPLING=fCK_INT, N=4 */
1230 #define LL_TIM_BREAK_FILTER_FDIV1_N8           0x00030000U   /*!< fSAMPLING=fCK_INT, N=8 */
1231 #define LL_TIM_BREAK_FILTER_FDIV2_N6           0x00040000U   /*!< fSAMPLING=fDTS/2, N=6 */
1232 #define LL_TIM_BREAK_FILTER_FDIV2_N8           0x00050000U   /*!< fSAMPLING=fDTS/2, N=8 */
1233 #define LL_TIM_BREAK_FILTER_FDIV4_N6           0x00060000U   /*!< fSAMPLING=fDTS/4, N=6 */
1234 #define LL_TIM_BREAK_FILTER_FDIV4_N8           0x00070000U   /*!< fSAMPLING=fDTS/4, N=8 */
1235 #define LL_TIM_BREAK_FILTER_FDIV8_N6           0x00080000U   /*!< fSAMPLING=fDTS/8, N=6 */
1236 #define LL_TIM_BREAK_FILTER_FDIV8_N8           0x00090000U   /*!< fSAMPLING=fDTS/8, N=8 */
1237 #define LL_TIM_BREAK_FILTER_FDIV16_N5          0x000A0000U   /*!< fSAMPLING=fDTS/16, N=5 */
1238 #define LL_TIM_BREAK_FILTER_FDIV16_N6          0x000B0000U   /*!< fSAMPLING=fDTS/16, N=6 */
1239 #define LL_TIM_BREAK_FILTER_FDIV16_N8          0x000C0000U   /*!< fSAMPLING=fDTS/16, N=8 */
1240 #define LL_TIM_BREAK_FILTER_FDIV32_N5          0x000D0000U   /*!< fSAMPLING=fDTS/32, N=5 */
1241 #define LL_TIM_BREAK_FILTER_FDIV32_N6          0x000E0000U   /*!< fSAMPLING=fDTS/32, N=6 */
1242 #define LL_TIM_BREAK_FILTER_FDIV32_N8          0x000F0000U   /*!< fSAMPLING=fDTS/32, N=8 */
1243 /**
1244   * @}
1245   */
1246 
1247 /** @defgroup TIM_LL_EC_BREAK2_POLARITY BREAK2 POLARITY
1248   * @{
1249   */
1250 #define LL_TIM_BREAK2_POLARITY_LOW             0x00000000U             /*!< Break input BRK2 is active low */
1251 #define LL_TIM_BREAK2_POLARITY_HIGH            TIM_BDTR_BK2P           /*!< Break input BRK2 is active high */
1252 /**
1253   * @}
1254   */
1255 
1256 /** @defgroup TIM_LL_EC_BREAK2_FILTER BREAK2 FILTER
1257   * @{
1258   */
1259 #define LL_TIM_BREAK2_FILTER_FDIV1             0x00000000U   /*!< No filter, BRK acts asynchronously */
1260 #define LL_TIM_BREAK2_FILTER_FDIV1_N2          0x00100000U   /*!< fSAMPLING=fCK_INT, N=2 */
1261 #define LL_TIM_BREAK2_FILTER_FDIV1_N4          0x00200000U   /*!< fSAMPLING=fCK_INT, N=4 */
1262 #define LL_TIM_BREAK2_FILTER_FDIV1_N8          0x00300000U   /*!< fSAMPLING=fCK_INT, N=8 */
1263 #define LL_TIM_BREAK2_FILTER_FDIV2_N6          0x00400000U   /*!< fSAMPLING=fDTS/2, N=6 */
1264 #define LL_TIM_BREAK2_FILTER_FDIV2_N8          0x00500000U   /*!< fSAMPLING=fDTS/2, N=8 */
1265 #define LL_TIM_BREAK2_FILTER_FDIV4_N6          0x00600000U   /*!< fSAMPLING=fDTS/4, N=6 */
1266 #define LL_TIM_BREAK2_FILTER_FDIV4_N8          0x00700000U   /*!< fSAMPLING=fDTS/4, N=8 */
1267 #define LL_TIM_BREAK2_FILTER_FDIV8_N6          0x00800000U   /*!< fSAMPLING=fDTS/8, N=6 */
1268 #define LL_TIM_BREAK2_FILTER_FDIV8_N8          0x00900000U   /*!< fSAMPLING=fDTS/8, N=8 */
1269 #define LL_TIM_BREAK2_FILTER_FDIV16_N5         0x00A00000U   /*!< fSAMPLING=fDTS/16, N=5 */
1270 #define LL_TIM_BREAK2_FILTER_FDIV16_N6         0x00B00000U   /*!< fSAMPLING=fDTS/16, N=6 */
1271 #define LL_TIM_BREAK2_FILTER_FDIV16_N8         0x00C00000U   /*!< fSAMPLING=fDTS/16, N=8 */
1272 #define LL_TIM_BREAK2_FILTER_FDIV32_N5         0x00D00000U   /*!< fSAMPLING=fDTS/32, N=5 */
1273 #define LL_TIM_BREAK2_FILTER_FDIV32_N6         0x00E00000U   /*!< fSAMPLING=fDTS/32, N=6 */
1274 #define LL_TIM_BREAK2_FILTER_FDIV32_N8         0x00F00000U   /*!< fSAMPLING=fDTS/32, N=8 */
1275 /**
1276   * @}
1277   */
1278 
1279 /** @defgroup TIM_LL_EC_OSSI OSSI
1280   * @{
1281   */
1282 #define LL_TIM_OSSI_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1283 #define LL_TIM_OSSI_ENABLE                     TIM_BDTR_OSSI           /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
1284 /**
1285   * @}
1286   */
1287 
1288 /** @defgroup TIM_LL_EC_OSSR OSSR
1289   * @{
1290   */
1291 #define LL_TIM_OSSR_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1292 #define LL_TIM_OSSR_ENABLE                     TIM_BDTR_OSSR           /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
1293 /**
1294   * @}
1295   */
1296 
1297 /** @defgroup TIM_LL_EC_BREAK_INPUT BREAK INPUT
1298   * @{
1299   */
1300 #define LL_TIM_BREAK_INPUT_BKIN                0x00000000U  /*!< TIMx_BKIN input */
1301 #define LL_TIM_BREAK_INPUT_BKIN2               0x00000004U  /*!< TIMx_BKIN2 input */
1302 /**
1303   * @}
1304   */
1305 
1306 /** @defgroup TIM_LL_EC_BKIN_SOURCE BKIN SOURCE
1307   * @{
1308   */
1309 #define LL_TIM_BKIN_SOURCE_BKIN                TIM1_AF1_BKINE      /*!< BKIN input from AF controller */
1310 #define LL_TIM_BKIN_SOURCE_BKCOMP1             TIM1_AF1_BKCMP1E    /*!< internal signal: COMP1 output */
1311 #if defined(COMP2)
1312 #define LL_TIM_BKIN_SOURCE_BKCOMP2             TIM1_AF1_BKCMP2E    /*!< internal signal: COMP2 output */
1313 #endif /* COMP2 */
1314 #define LL_TIM_BKIN_SOURCE_MDF1                TIM1_AF1_BKDF1BK0E  /*!< internal signal: Digital filter break output */
1315 /**
1316   * @}
1317   */
1318 
1319 /** @defgroup TIM_LL_EC_BKIN_POLARITY BKIN POLARITY
1320   * @{
1321   */
1322 #define LL_TIM_BKIN_POLARITY_LOW               TIM1_AF1_BKINP           /*!< BRK BKIN input is active low */
1323 #define LL_TIM_BKIN_POLARITY_HIGH              0x00000000U              /*!< BRK BKIN input is active high */
1324 /**
1325   * @}
1326   */
1327 
1328 /** @defgroup TIM_LL_EC_BREAK_AFMODE BREAK AF MODE
1329   * @{
1330   */
1331 #define LL_TIM_BREAK_AFMODE_INPUT              0x00000000U              /*!< Break input BRK in input mode */
1332 #define LL_TIM_BREAK_AFMODE_BIDIRECTIONAL      TIM_BDTR_BKBID           /*!< Break input BRK in bidirectional mode */
1333 /**
1334   * @}
1335   */
1336 
1337 /** @defgroup TIM_LL_EC_BREAK2_AFMODE BREAK2 AF MODE
1338   * @{
1339   */
1340 #define LL_TIM_BREAK2_AFMODE_INPUT             0x00000000U             /*!< Break2 input BRK2 in input mode */
1341 #define LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL     TIM_BDTR_BK2BID         /*!< Break2 input BRK2 in bidirectional mode */
1342 /**
1343   * @}
1344   */
1345 
1346 /** Legacy definitions for compatibility purpose
1347 @cond 0
1348   */
1349 #define LL_TIM_ReArmBRK(_PARAM_)
1350 #define LL_TIM_ReArmBRK2(_PARAM_)
1351 /**
1352 @endcond
1353   */
1354 
1355 /** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
1356   * @{
1357   */
1358 #define LL_TIM_DMABURST_BASEADDR_CR1           0x00000000U                                                      /*!< TIMx_CR1 register is the DMA base address for DMA burst */
1359 #define LL_TIM_DMABURST_BASEADDR_CR2           TIM_DCR_DBA_0                                                    /*!< TIMx_CR2 register is the DMA base address for DMA burst */
1360 #define LL_TIM_DMABURST_BASEADDR_SMCR          TIM_DCR_DBA_1                                                    /*!< TIMx_SMCR register is the DMA base address for DMA burst */
1361 #define LL_TIM_DMABURST_BASEADDR_DIER          (TIM_DCR_DBA_1 |  TIM_DCR_DBA_0)                                 /*!< TIMx_DIER register is the DMA base address for DMA burst */
1362 #define LL_TIM_DMABURST_BASEADDR_SR            TIM_DCR_DBA_2                                                    /*!< TIMx_SR register is the DMA base address for DMA burst */
1363 #define LL_TIM_DMABURST_BASEADDR_EGR           (TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                                  /*!< TIMx_EGR register is the DMA base address for DMA burst */
1364 #define LL_TIM_DMABURST_BASEADDR_CCMR1         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
1365 #define LL_TIM_DMABURST_BASEADDR_CCMR2         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
1366 #define LL_TIM_DMABURST_BASEADDR_CCER          TIM_DCR_DBA_3                                                    /*!< TIMx_CCER register is the DMA base address for DMA burst */
1367 #define LL_TIM_DMABURST_BASEADDR_CNT           (TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                                  /*!< TIMx_CNT register is the DMA base address for DMA burst */
1368 #define LL_TIM_DMABURST_BASEADDR_PSC           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                                  /*!< TIMx_PSC register is the DMA base address for DMA burst */
1369 #define LL_TIM_DMABURST_BASEADDR_ARR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_ARR register is the DMA base address for DMA burst */
1370 #define LL_TIM_DMABURST_BASEADDR_RCR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_2)                                  /*!< TIMx_RCR register is the DMA base address for DMA burst */
1371 #define LL_TIM_DMABURST_BASEADDR_CCR1          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
1372 #define LL_TIM_DMABURST_BASEADDR_CCR2          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
1373 #define LL_TIM_DMABURST_BASEADDR_CCR3          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
1374 #define LL_TIM_DMABURST_BASEADDR_CCR4          TIM_DCR_DBA_4                                                    /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
1375 #define LL_TIM_DMABURST_BASEADDR_BDTR          (TIM_DCR_DBA_4 | TIM_DCR_DBA_0)                                  /*!< TIMx_BDTR register is the DMA base address for DMA burst */
1376 #define LL_TIM_DMABURST_BASEADDR_CCR5          (TIM_DCR_DBA_4 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCR5 register is the DMA base address for DMA burst */
1377 #define LL_TIM_DMABURST_BASEADDR_CCR6          (TIM_DCR_DBA_4 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR6 register is the DMA base address for DMA burst */
1378 #define LL_TIM_DMABURST_BASEADDR_CCMR3         (TIM_DCR_DBA_4 | TIM_DCR_DBA_2)                                  /*!< TIMx_CCMR3 register is the DMA base address for DMA burst */
1379 #define LL_TIM_DMABURST_BASEADDR_DTR2          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_DTR2 register is the DMA base address for DMA burst */
1380 #define LL_TIM_DMABURST_BASEADDR_ECR           (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_ECR register is the DMA base address for DMA burst */
1381 #define LL_TIM_DMABURST_BASEADDR_TISEL         (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_TISEL register is the DMA base address for DMA burst */
1382 #define LL_TIM_DMABURST_BASEADDR_AF1           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3)                                  /*!< TIMx_AF1 register is the DMA base address for DMA burst */
1383 #define LL_TIM_DMABURST_BASEADDR_AF2           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                  /*!< TIMx_AF2 register is the DMA base address for DMA burst */
1384 #define LL_TIM_DMABURST_BASEADDR_OR1           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                  /*!< TIMx_OR1 register is the DMA base address for DMA burst */
1385 /**
1386   * @}
1387   */
1388 
1389 /** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
1390   * @{
1391   */
1392 #define LL_TIM_DMABURST_LENGTH_1TRANSFER       0x00000000U                                                     /*!< Transfer is done to 1 register starting from the DMA burst base address */
1393 #define LL_TIM_DMABURST_LENGTH_2TRANSFERS      TIM_DCR_DBL_0                                                   /*!< Transfer is done to 2 registers starting from the DMA burst base address */
1394 #define LL_TIM_DMABURST_LENGTH_3TRANSFERS      TIM_DCR_DBL_1                                                   /*!< Transfer is done to 3 registers starting from the DMA burst base address */
1395 #define LL_TIM_DMABURST_LENGTH_4TRANSFERS      (TIM_DCR_DBL_1 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 4 registers starting from the DMA burst base address */
1396 #define LL_TIM_DMABURST_LENGTH_5TRANSFERS      TIM_DCR_DBL_2                                                   /*!< Transfer is done to 5 registers starting from the DMA burst base address */
1397 #define LL_TIM_DMABURST_LENGTH_6TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 6 registers starting from the DMA burst base address */
1398 #define LL_TIM_DMABURST_LENGTH_7TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 7 registers starting from the DMA burst base address */
1399 #define LL_TIM_DMABURST_LENGTH_8TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 1 registers starting from the DMA burst base address */
1400 #define LL_TIM_DMABURST_LENGTH_9TRANSFERS      TIM_DCR_DBL_3                                                   /*!< Transfer is done to 9 registers starting from the DMA burst base address */
1401 #define LL_TIM_DMABURST_LENGTH_10TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 10 registers starting from the DMA burst base address */
1402 #define LL_TIM_DMABURST_LENGTH_11TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 11 registers starting from the DMA burst base address */
1403 #define LL_TIM_DMABURST_LENGTH_12TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 12 registers starting from the DMA burst base address */
1404 #define LL_TIM_DMABURST_LENGTH_13TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 13 registers starting from the DMA burst base address */
1405 #define LL_TIM_DMABURST_LENGTH_14TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 14 registers starting from the DMA burst base address */
1406 #define LL_TIM_DMABURST_LENGTH_15TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 15 registers starting from the DMA burst base address */
1407 #define LL_TIM_DMABURST_LENGTH_16TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
1408 #define LL_TIM_DMABURST_LENGTH_17TRANSFERS     TIM_DCR_DBL_4                                                   /*!< Transfer is done to 17 registers starting from the DMA burst base address */
1409 #define LL_TIM_DMABURST_LENGTH_18TRANSFERS     (TIM_DCR_DBL_4 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 18 registers starting from the DMA burst base address */
1410 #define LL_TIM_DMABURST_LENGTH_19TRANSFERS     (TIM_DCR_DBL_4 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 19 registers starting from the DMA burst base address */
1411 #define LL_TIM_DMABURST_LENGTH_20TRANSFERS     (TIM_DCR_DBL_4 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 20 registers starting from the DMA burst base address */
1412 #define LL_TIM_DMABURST_LENGTH_21TRANSFERS     (TIM_DCR_DBL_4 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 21 registers starting from the DMA burst base address */
1413 #define LL_TIM_DMABURST_LENGTH_22TRANSFERS     (TIM_DCR_DBL_4 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 22 registers starting from the DMA burst base address */
1414 #define LL_TIM_DMABURST_LENGTH_23TRANSFERS     (TIM_DCR_DBL_4 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 23 registers starting from the DMA burst base address */
1415 #define LL_TIM_DMABURST_LENGTH_24TRANSFERS     (TIM_DCR_DBL_4 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 24 registers starting from the DMA burst base address */
1416 #define LL_TIM_DMABURST_LENGTH_25TRANSFERS     (TIM_DCR_DBL_4 | TIM_DCR_DBL_3)                                 /*!< Transfer is done to 25 registers starting from the DMA burst base address */
1417 #define LL_TIM_DMABURST_LENGTH_26TRANSFERS     (TIM_DCR_DBL_4 | TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 26 registers starting from the DMA burst base address */
1418 /**
1419   * @}
1420   */
1421 
1422 /** @defgroup TIM_LL_EC_DMABURST_SOURCE DMA Burst Source
1423   * @{
1424   */
1425 #define LL_TIM_DMA_UPDATE                      TIM_DCR_DBSS_0                                                  /*!< Transfer source is update event */
1426 #define LL_TIM_DMA_CC1                         TIM_DCR_DBSS_1                                                  /*!< Transfer source is CC1 event */
1427 #define LL_TIM_DMA_CC2                         (TIM_DCR_DBSS_1 |  TIM_DCR_DBSS_0)                              /*!< Transfer source is CC2 event */
1428 #define LL_TIM_DMA_CC3                         TIM_DCR_DBSS_2                                                  /*!< Transfer source is CC3 event */
1429 #define LL_TIM_DMA_CC4                         (TIM_DCR_DBSS_2 | TIM_DCR_DBSS_0)                               /*!< Transfer source is CC4 event */
1430 #define LL_TIM_DMA_COM                         (TIM_DCR_DBSS_2 | TIM_DCR_DBSS_1)                               /*!< Transfer source is COM event */
1431 #define LL_TIM_DMA_TRIGGER                     (TIM_DCR_DBSS_2 | TIM_DCR_DBSS_1 | TIM_DCR_DBSS_0)              /*!< Transfer source is trigger event */
1432 /**
1433   * @}
1434   */
1435 /** @defgroup TIM_LL_EC_TIM1_TI1_RMP  TIM1 External Input Ch1 Remap
1436   * @{
1437   */
1438 #define LL_TIM_TIM1_TI1_RMP_GPIO                 0x00000000UL                                       /*!< TIM1 TI1 is connected to GPIO */
1439 #define LL_TIM_TIM1_TI1_RMP_COMP1                TIM_TISEL_TI1SEL_0                                 /*!< TIM1 TI1 is connected to COMP1 output */
1440 #if defined(COMP2)
1441 #define LL_TIM_TIM1_TI1_RMP_COMP2                TIM_TISEL_TI1SEL_1                                 /*!< TIM1 TI1 is connected to COMP2 output */
1442 #endif /* COMP2 */
1443 /**
1444   * @}
1445   */
1446 
1447 /** @defgroup TIM_LL_EC_TIM2_TI1_RMP  TIM2 External Input Ch1 Remap
1448   * @{
1449   */
1450 #define LL_TIM_TIM2_TI1_RMP_GPIO                0x00000000UL                                       /*!< TIM2 TI1 is connected to GPIO */
1451 #define LL_TIM_TIM2_TI1_RMP_COMP1               TIM_TISEL_TI1SEL_0                                 /*!< TIM2 TI1 is connected to COMP1 output */
1452 #if defined(COMP2)
1453 #define LL_TIM_TIM2_TI1_RMP_COMP2               TIM_TISEL_TI1SEL_1                                 /*!< TIM2 TI1 is connected to COMP2 output */
1454 #endif /* COMP2 */
1455 /**
1456   * @}
1457   */
1458 
1459 /** @defgroup TIM_LL_EC_TIM2_TI2_RMP  TIM16 External Input Ch2 Remap
1460   * @{
1461   */
1462 #define LL_TIM_TIM2_TI2_RMP_GPIO                0x00000000UL                                       /*!< TIM2 TI2 is connected to GPIO */
1463 #define LL_TIM_TIM2_TI2_RMP_COMP1               TIM_TISEL_TI2SEL_0                                 /*!< TIM2 TI2 is connected to COMP1 output */
1464 #if defined(COMP2)
1465 #define LL_TIM_TIM2_TI2_RMP_COMP2               TIM_TISEL_TI2SEL_1                                 /*!< TIM2 TI2 is connected to COMP2 output */
1466 #endif /* COMP2 */
1467 /**
1468   * @}
1469   */
1470 
1471 /** @defgroup TIM_LL_EC_TIM2_TI4_RMP  TIM2 External Input Ch4 Remap
1472   * @{
1473   */
1474 #define LL_TIM_TIM2_TI4_RMP_GPIO                0x00000000UL                                      /*!< TIM2 TI4 is connected to COMP1 output */
1475 #define LL_TIM_TIM2_TI4_RMP_COMP1               TIM_TISEL_TI4SEL_0                                /*!< TIM2 TI4 is connected to COMP1 output */
1476 #if defined(COMP2)
1477 #define LL_TIM_TIM2_TI4_RMP_COMP2               TIM_TISEL_TI4SEL_1                                /*!< TIM2 TI4 is connected to COMP2 output */
1478 #endif /* COMP2 */
1479 /**
1480   * @}
1481   */
1482 
1483 /** @defgroup TIM_LL_EC_TIM3_TI1_RMP  TIM3 External Input Ch1 Remap
1484   * @{
1485   */
1486 #define LL_TIM_TIM3_TI1_RMP_GPIO                0x00000000UL                                       /*!< TIM3 TI1 is connected to GPIO */
1487 #define LL_TIM_TIM3_TI1_RMP_COMP1               TIM_TISEL_TI1SEL_0                                 /*!< TIM3 TI1 is connected to COMP1 output */
1488 #if defined(COMP2)
1489 #define LL_TIM_TIM3_TI1_RMP_COMP2               TIM_TISEL_TI1SEL_1                                 /*!< TIM3 TI1 is connected to COMP2 output */
1490 #endif /* COMP2 */
1491 /**
1492   * @}
1493   */
1494 
1495 /** @defgroup TIM_LL_EC_TIM3_TI2_RMP  TIM3 External Input Ch2 Remap
1496   * @{
1497   */
1498 #define LL_TIM_TIM3_TI2_RMP_GPIO                0x00000000UL                                       /*!< TIM3 TI2 is connected to GPIO */
1499 #define LL_TIM_TIM3_TI2_RMP_COMP1               TIM_TISEL_TI2SEL_0                                 /*!< TIM3 TI2 is connected to COMP1 output */
1500 #if defined(COMP2)
1501 #define LL_TIM_TIM3_TI2_RMP_COMP2               TIM_TISEL_TI2SEL_1                                 /*!< TIM3 TI2 is connected to COMP2 output */
1502 #endif /* COMP2 */
1503 /**
1504   * @}
1505   */
1506 
1507 /** @defgroup TIM_LL_EC_TIM4_TI1_RMP  TIM4 External Input Ch1 Remap
1508   * @{
1509   */
1510 #define LL_TIM_TIM4_TI1_RMP_GPIO                0x00000000UL                                       /*!< TIM4 TI1 is connected to GPIO */
1511 #define LL_TIM_TIM4_TI1_RMP_COMP1               TIM_TISEL_TI1SEL_0                                 /*!< TIM4 TI1 is connected to COMP1 output */
1512 #if defined(COMP2)
1513 #define LL_TIM_TIM4_TI1_RMP_COMP2               TIM_TISEL_TI1SEL_1                                 /*!< TIM4 TI1 is connected to COMP2 output */
1514 #endif /* COMP2 */
1515 /**
1516   * @}
1517   */
1518 
1519 /** @defgroup TIM_LL_EC_TIM4_TI2_RMP  TIM4 External Input Ch2 Remap
1520   * @{
1521   */
1522 #define LL_TIM_TIM4_TI2_RMP_GPIO                0x00000000UL                                       /*!< TIM4 TI2 is connected to GPIO */
1523 #define LL_TIM_TIM4_TI2_RMP_COMP1               TIM_TISEL_TI2SEL_0                                 /*!< TIM4 TI2 is connected to COMP1 output */
1524 #if defined(COMP2)
1525 #define LL_TIM_TIM4_TI2_RMP_COMP2               TIM_TISEL_TI2SEL_1                                 /*!< TIM4 TI2 is connected to COMP2 output */
1526 #endif /* COMP2 */
1527 /**
1528   * @}
1529   */
1530 
1531 /** @defgroup TIM_LL_EC_TIM5_TI1_RMP  TIM5 External Input Ch1 Remap
1532   * @{
1533   */
1534 #define LL_TIM_TIM5_TI1_RMP_GPIO               0x00000000UL                                       /*!<  TIM5 TI1 is connected to GPIO */
1535 #define LL_TIM_TIM5_TI1_RMP_LSI                TIM_TISEL_TI1SEL_0                                 /*!<  TIM5 TI1 is connected to LSI */
1536 #define LL_TIM_TIM5_TI1_RMP_LSE                TIM_TISEL_TI1SEL_1                                 /*!<  TIM5 TI1 is connected to LSE */
1537 #define LL_TIM_TIM5_TI1_RMP_RTC                (TIM_TISEL_TI1SEL_1 | TIM_TISEL_TI1SEL_0)          /*!<  TIM5 TI1 is connected to RTC Wakeup */
1538 #define LL_TIM_TIM5_TI1_RMP_COMP1              TIM_TISEL_TI1SEL_2                                 /*!<  TIM5 TI1 is connected to COMP1 output */
1539 #if defined(COMP2)
1540 #define LL_TIM_TIM5_TI1_RMP_COMP2              (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_0)          /*!<  TIM5 TI1 is connected to COMP2 output */
1541 #endif /* COMP2 */
1542 /**
1543   * @}
1544   */
1545 
1546 /** @defgroup TIM_LL_EC_TIM5_TI2_RMP  TIM5 External Input Ch2 Remap
1547   * @{
1548   */
1549 #define LL_TIM_TIM5_TI2_RMP_GPIO               0x00000000UL                                       /*!< TIM5 TI2 is connected to GPIO */
1550 #define LL_TIM_TIM5_TI2_RMP_COMP1              TIM_TISEL_TI2SEL_0                                 /*!< TIM5 TI2 is connected to COMP1 output */
1551 #if defined(COMP2)
1552 #define LL_TIM_TIM5_TI2_RMP_COMP2              TIM_TISEL_TI2SEL_1                                 /*!< TIM5 TI2 is connected to COMP2 output */
1553 #endif /* COMP2 */
1554 /**
1555   * @}
1556   */
1557 
1558 /** @defgroup TIM_LL_EC_TIM8_TI1_RMP  TIM8 External Input Ch1 Remap
1559   * @{
1560   */
1561 #define LL_TIM_TIM8_TI1_RMP_GPIO               0x00000000UL                                       /*!< TIM8 TI1 is connected to GPIO */
1562 #define LL_TIM_TIM8_TI1_RMP_COMP1              TIM_TISEL_TI1SEL_0                                 /*!< TIM8 TI1 is connected to COMP1 output */
1563 #if defined(COMP2)
1564 #define LL_TIM_TIM8_TI1_RMP_COMP2              TIM_TISEL_TI1SEL_1                                 /*!< TIM8 TI1 is connected to COMP2 output */
1565 #endif /* COMP2 */
1566 /**
1567   * @}
1568   */
1569 
1570 /** @defgroup TIM_LL_EC_TIM15_TI1_RMP  TIM15 External Input Ch1 Remap
1571   * @{
1572   */
1573 #define LL_TIM_TIM15_TI1_RMP_GPIO              0x00000000UL                                       /*!< TIM15 TI1 is connected to GPIO */
1574 #define LL_TIM_TIM15_TI1_RMP_LSE               TIM_TISEL_TI1SEL_0                                 /*!< TIM15 TI1 is connected to LSE */
1575 #define LL_TIM_TIM15_TI1_RMP_COMP1             TIM_TISEL_TI1SEL_1                                 /*!< TIM15 TI1 is connected to COMP1 output */
1576 #if defined(COMP2)
1577 #define LL_TIM_TIM15_TI1_RMP_COMP2             (TIM_TISEL_TI1SEL_1 | TIM_TISEL_TI1SEL_0)          /*!< TIM15 TI1 is connected to COMP2 output */
1578 #endif /* COMP2 */
1579 /**
1580   * @}
1581   */
1582 
1583 /** @defgroup TIM_LL_EC_TIM15_TI2_RMP  TIM15 External Input Ch2 Remap
1584   * @{
1585   */
1586 #define LL_TIM_TIM15_TI2_RMP_GPIO              0x00000000UL                                       /*!< TIM15 TI2 is connected to GPIO */
1587 #if defined(COMP2)
1588 #define LL_TIM_TIM15_TI2_RMP_COMP2              TIM_TISEL_TI1SEL_0                                /*!< TIM15 TI2 is connected to COMP2 output */
1589 #endif /* COMP2 */
1590 /**
1591   * @}
1592   */
1593 
1594 /** @defgroup TIM_LL_EC_TIM16_TI1_RMP  TIM16 External Input Ch1 Remap
1595   * @{
1596   */
1597 #define LL_TIM_TIM16_TI1_RMP_GPIO              0x00000000UL                                                   /*!< TIM16 TI1 is connected to GPIO */
1598 #define LL_TIM_TIM16_TI1_RMP_MCO               TIM_TISEL_TI1SEL_1                                             /*!< TIM16 TI1 is connected to MCO */
1599 #define LL_TIM_TIM16_TI1_RMP_HSE_DIV32         (TIM_TISEL_TI1SEL_1 | TIM_TISEL_TI1SEL_0)                      /*!< TIM16 TI1 is connected to HSE DIV32 */
1600 #define LL_TIM_TIM16_TI1_RMP_RTC               TIM_TISEL_TI1SEL_2                                             /*!< TIM16 TI1 is connected to RTC */
1601 #define LL_TIM_TIM16_TI1_RMP_LSE               (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_0)                      /*!< TIM16 TI1 is connected to LSE */
1602 #define LL_TIM_TIM16_TI1_RMP_LSI               (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_1)                      /*!< TIM16 TI1 is connected to LSI */
1603 #define LL_TIM_TIM16_TI1_RMP_MSIS_1024         (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_1 | TIM_TISEL_TI1SEL_0) /*!< TIM16 TI1 is connected to MSIS/1024 */
1604 #define LL_TIM_TIM16_TI1_RMP_MSIS_4             TIM_TISEL_TI1SEL_3                                            /*!< TIM16 TI1 is connected to MSIS/4 */
1605 #define LL_TIM_TIM16_TI1_RMP_HSI_256           (TIM_TISEL_TI1SEL_3 | TIM_TISEL_TI1SEL_0)                      /*!< TIM16 TI1 is connected to HSI/256 */
1606 /**
1607   * @}
1608   */
1609 
1610 /** @defgroup TIM_LL_EC_TIM17_TI1_RMP  TIM17 External Input Ch1 Remap
1611   * @{
1612   */
1613 #define LL_TIM_TIM17_TI1_RMP_GPIO              0x00000000UL                                                   /*!< TIM17 TI1 is connected to GPIO */
1614 #define LL_TIM_TIM17_TI1_RMP_MCO               TIM_TISEL_TI1SEL_1                                             /*!< TIM17 TI1 is connected to MCO */
1615 #define LL_TIM_TIM17_TI1_RMP_HSE_DIV32         (TIM_TISEL_TI1SEL_1 | TIM_TISEL_TI1SEL_0)                      /*!< TIM17 TI1 is connected to HSE DIV32 */
1616 #define LL_TIM_TIM17_TI1_RMP_RTC               TIM_TISEL_TI1SEL_2                                             /*!< TIM17 TI1 is connected to RTC */
1617 #define LL_TIM_TIM17_TI1_RMP_LSE               (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_0)                      /*!< TIM17 TI1 is connected to LSE */
1618 #define LL_TIM_TIM17_TI1_RMP_LSI               (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_1)                      /*!< TIM17 TI1 is connected to LSI */
1619 #define LL_TIM_TIM17_TI1_RMP_MSIS_1024         (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_1 | TIM_TISEL_TI1SEL_0) /*!< TIM17 TI1 is connected to MSIS/1024 */
1620 #define LL_TIM_TIM17_TI1_RMP_MSIS_4             TIM_TISEL_TI1SEL_3                                            /*!< TIM17 TI1 is connected to MSIS/4 */
1621 #define LL_TIM_TIM17_TI1_RMP_HSI_256           (TIM_TISEL_TI1SEL_3 | TIM_TISEL_TI1SEL_0)                       /*!< TIM17 TI1 is connected to HSI/256 */
1622 /**
1623   * @}
1624   */
1625 
1626 /** @defgroup TIM_LL_EC_OCREF_CLR_INT OCREF clear input selection
1627   * @{
1628   */
1629 #define LL_TIM_OCREF_CLR_INT_ETR         OCREF_CLEAR_SELECT_MSK                   /*!< OCREF_CLR_INT is connected to ETRF */
1630 #define LL_TIM_OCREF_CLR_INT_COMP1       0x00000000U                              /*!< OCREF clear input is connected to COMP1_OUT */
1631 #if defined(COMP2)
1632 #define LL_TIM_OCREF_CLR_INT_COMP2       TIM1_AF2_OCRSEL_0                        /*!< OCREF clear input is connected to COMP2_OUT */
1633 #endif /* COMP2 */
1634 /**
1635   * @}
1636   */
1637 
1638 /** @defgroup TIM_LL_EC_INDEX_DIR index direction selection
1639   * @{
1640   */
1641 #define LL_TIM_INDEX_UP_DOWN     0x00000000U         /*!< Index resets the counter whatever the direction */
1642 #define LL_TIM_INDEX_UP          TIM_ECR_IDIR_0      /*!< Index resets the counter when up-counting only */
1643 #define LL_TIM_INDEX_DOWN        TIM_ECR_IDIR_1      /*!< Index resets the counter when down-counting only */
1644 /**
1645   * @}
1646   */
1647 
1648 /** @defgroup TIM_LL_EC_INDEX_BLANK index blanking selection
1649   * @{
1650   */
1651 #define LL_TIM_INDEX_BLANK_ALWAYS     0x00000000U         /*!< Index always active */
1652 #define LL_TIM_INDEX_BLANK_TI3        TIM_ECR_IBLK_0      /*!< Index disabled when TI3 input is active, as per CC3P bitfield */
1653 #define LL_TIM_INDEX_BLANK_TI4        TIM_ECR_IBLK_1      /*!< Index disabled when TI4 input is active, as per CC4P bitfield */
1654 /**
1655   * @}
1656   */
1657 
1658 /** @defgroup TIM_LL_EC_INDEX_POSITION index positioning selection
1659   * @{
1660   */
1661 #define LL_TIM_INDEX_POSITION_DOWN_DOWN    0x00000000U                           /*!< Index resets the counter when AB = 00 */
1662 #define LL_TIM_INDEX_POSITION_DOWN_UP      TIM_ECR_IPOS_0                        /*!< Index resets the counter when AB = 01 */
1663 #define LL_TIM_INDEX_POSITION_UP_DOWN      TIM_ECR_IPOS_1                        /*!< Index resets the counter when AB = 10 */
1664 #define LL_TIM_INDEX_POSITION_UP_UP        (TIM_ECR_IPOS_1 | TIM_ECR_IPOS_0)     /*!< Index resets the counter when AB = 11 */
1665 #define LL_TIM_INDEX_POSITION_DOWN         0x00000000U                           /*!< Index resets the counter when clock is 0 */
1666 #define LL_TIM_INDEX_POSITION_UP           TIM_ECR_IPOS_0                        /*!< Index resets the counter when clock is 1 */
1667 /**
1668   * @}
1669   */
1670 
1671 /** @defgroup TIM_LL_EC_FIRST_INDEX first index selection
1672   * @{
1673   */
1674 #define LL_TIM_INDEX_ALL           0x00000000U                           /*!< Index is always active */
1675 #define LL_TIM_INDEX_FIRST_ONLY    TIM_ECR_FIDX                          /*!< The first Index only resets the counter */
1676 /**
1677   * @}
1678   */
1679 /** @defgroup TIM_LL_EC_PWPRSC Pulse on compare pulse width prescaler
1680   * @{
1681   */
1682 #define LL_TIM_PWPRSC_X1     0x00000000U                                              /*!< Pulse on compare pulse width prescaler 1 */
1683 #define LL_TIM_PWPRSC_X2     TIM_ECR_PWPRSC_0                                         /*!< Pulse on compare pulse width prescaler 2 */
1684 #define LL_TIM_PWPRSC_X4     TIM_ECR_PWPRSC_1                                         /*!< Pulse on compare pulse width prescaler 4 */
1685 #define LL_TIM_PWPRSC_X8     (TIM_ECR_PWPRSC_1 | TIM_ECR_PWPRSC_0)                    /*!< Pulse on compare pulse width prescaler 8 */
1686 #define LL_TIM_PWPRSC_X16    TIM_ECR_PWPRSC_2                                         /*!< Pulse on compare pulse width prescaler 16 */
1687 #define LL_TIM_PWPRSC_X32    (TIM_ECR_PWPRSC_2 | TIM_ECR_PWPRSC_0)                    /*!< Pulse on compare pulse width prescaler 32 */
1688 #define LL_TIM_PWPRSC_X64    (TIM_ECR_PWPRSC_2 | TIM_ECR_PWPRSC_1)                    /*!< Pulse on compare pulse width prescaler 64 */
1689 #define LL_TIM_PWPRSC_X128   (TIM_ECR_PWPRSC_2 | TIM_ECR_PWPRSC_1 | TIM_ECR_PWPRSC_0) /*!< Pulse on compare pulse width prescaler 128 */
1690 /**
1691   * @}
1692   */
1693 
1694 /** Legacy definitions for compatibility purpose
1695 @cond 0
1696   */
1697 #define LL_TIM_BKIN_SOURCE_DFBK  LL_TIM_BKIN_SOURCE_DF1BK
1698 /**
1699 @endcond
1700   */
1701 
1702 /**
1703   * @}
1704   */
1705 
1706 /* Exported macro ------------------------------------------------------------*/
1707 /** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
1708   * @{
1709   */
1710 
1711 /** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
1712   * @{
1713   */
1714 /**
1715   * @brief  Write a value in TIM register.
1716   * @param  __INSTANCE__ TIM Instance
1717   * @param  __REG__ Register to be written
1718   * @param  __VALUE__ Value to be written in the register
1719   * @retval None
1720   */
1721 #define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
1722 
1723 /**
1724   * @brief  Read a value in TIM register.
1725   * @param  __INSTANCE__ TIM Instance
1726   * @param  __REG__ Register to be read
1727   * @retval Register value
1728   */
1729 #define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
1730 /**
1731   * @}
1732   */
1733 
1734 /**
1735   * @brief  HELPER macro retrieving the UIFCPY flag from the counter value.
1736   * @note ex: @ref __LL_TIM_GETFLAG_UIFCPY (@ref LL_TIM_GetCounter ());
1737   * @note  Relevant only if UIF flag remapping has been enabled  (UIF status bit is copied
1738   *        to TIMx_CNT register bit 31)
1739   * @param  __CNT__ Counter value
1740   * @retval UIF status bit
1741   */
1742 #define __LL_TIM_GETFLAG_UIFCPY(__CNT__)  \
1743   (READ_BIT((__CNT__), TIM_CNT_UIFCPY) >> TIM_CNT_UIFCPY_Pos)
1744 
1745 /**
1746   * @brief  HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
1747   * @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
1748   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1749   * @param  __CKD__ This parameter can be one of the following values:
1750   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1751   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1752   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1753   * @param  __DT__ deadtime duration (in ns)
1754   * @retval DTG[0:7]
1755   */
1756 #define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__)  \
1757   ( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))    ?  \
1758     (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__)))  & DT_DELAY_1) :      \
1759     (((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1760     (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),   \
1761                                                  (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
1762     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1763     (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1764                                                  (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
1765     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ?  \
1766     (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1767                                                  (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
1768     0U)
1769 
1770 /**
1771   * @brief  HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
1772   * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
1773   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1774   * @param  __CNTCLK__ counter clock frequency (in Hz)
1775   * @retval Prescaler value  (between Min_Data=0 and Max_Data=65535)
1776   */
1777 #define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__)   \
1778   (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((((__TIMCLK__) + (__CNTCLK__)/2U)/(__CNTCLK__)) - 1U) : 0U)
1779 
1780 /**
1781   * @brief  HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
1782   * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
1783   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1784   * @param  __PSC__ prescaler
1785   * @param  __FREQ__ output signal frequency (in Hz)
1786   * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1787   */
1788 #define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
1789   ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
1790 
1791 /**
1792   * @brief  HELPER macro calculating the auto-reload value, with dithering feature enabled, to achieve the required
1793   *         output signal frequency.
1794   * @note ex: @ref __LL_TIM_CALC_ARR_DITHER (1000000, @ref LL_TIM_GetPrescaler (), 10000);
1795   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1796   * @param  __PSC__ prescaler
1797   * @param  __FREQ__ output signal frequency (in Hz)
1798   * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1799   */
1800 #define __LL_TIM_CALC_ARR_DITHER(__TIMCLK__, __PSC__, __FREQ__) \
1801   ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? \
1802    (uint32_t)((((uint64_t)(__TIMCLK__) * 16U/((__FREQ__) * ((__PSC__) + 1U))) - 16U)) : 0U)
1803 
1804 /**
1805   * @brief  HELPER macro calculating the compare value required to achieve the required timer output compare
1806   *         active/inactive delay.
1807   * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
1808   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1809   * @param  __PSC__ prescaler
1810   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1811   * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
1812   */
1813 #define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__)  \
1814   ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
1815               / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
1816 
1817 /**
1818   * @brief  HELPER macro calculating the compare value, with dithering feature enabled, to achieve the required timer
1819   *         output compare active/inactive delay.
1820   * @note ex: @ref __LL_TIM_CALC_DELAY_DITHER (1000000, @ref LL_TIM_GetPrescaler (), 10);
1821   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1822   * @param  __PSC__ prescaler
1823   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1824   * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
1825   */
1826 #define __LL_TIM_CALC_DELAY_DITHER(__TIMCLK__, __PSC__, __DELAY__)  \
1827   ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__) * 16U) \
1828               / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
1829 
1830 /**
1831   * @brief  HELPER macro calculating the auto-reload value to achieve the required pulse duration
1832   *         (when the timer operates in one pulse mode).
1833   * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
1834   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1835   * @param  __PSC__ prescaler
1836   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1837   * @param  __PULSE__ pulse duration (in us)
1838   * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1839   */
1840 #define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
1841   ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
1842               + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
1843 
1844 /**
1845   * @brief  HELPER macro calculating the auto-reload value, with dithering feature enabled, to achieve the required
1846   *         pulse duration (when the timer operates in one pulse mode).
1847   * @note ex: @ref __LL_TIM_CALC_PULSE_DITHER (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
1848   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1849   * @param  __PSC__ prescaler
1850   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1851   * @param  __PULSE__ pulse duration (in us)
1852   * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1853   */
1854 #define __LL_TIM_CALC_PULSE_DITHER(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
1855   ((uint32_t)(__LL_TIM_CALC_DELAY_DITHER((__TIMCLK__), (__PSC__), (__PULSE__)) \
1856               + __LL_TIM_CALC_DELAY_DITHER((__TIMCLK__), (__PSC__), (__DELAY__))))
1857 
1858 /**
1859   * @brief  HELPER macro retrieving the ratio of the input capture prescaler
1860   * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
1861   * @param  __ICPSC__ This parameter can be one of the following values:
1862   *         @arg @ref LL_TIM_ICPSC_DIV1
1863   *         @arg @ref LL_TIM_ICPSC_DIV2
1864   *         @arg @ref LL_TIM_ICPSC_DIV4
1865   *         @arg @ref LL_TIM_ICPSC_DIV8
1866   * @retval Input capture prescaler ratio (1, 2, 4 or 8)
1867   */
1868 #define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__)  \
1869   ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
1870 
1871 
1872 /**
1873   * @}
1874   */
1875 
1876 /* Exported functions --------------------------------------------------------*/
1877 /** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
1878   * @{
1879   */
1880 
1881 /** @defgroup TIM_LL_EF_Time_Base Time Base configuration
1882   * @{
1883   */
1884 /**
1885   * @brief  Enable timer counter.
1886   * @rmtoll CR1          CEN           LL_TIM_EnableCounter
1887   * @param  TIMx Timer instance
1888   * @retval None
1889   */
LL_TIM_EnableCounter(TIM_TypeDef * TIMx)1890 __STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
1891 {
1892   SET_BIT(TIMx->CR1, TIM_CR1_CEN);
1893 }
1894 
1895 /**
1896   * @brief  Disable timer counter.
1897   * @rmtoll CR1          CEN           LL_TIM_DisableCounter
1898   * @param  TIMx Timer instance
1899   * @retval None
1900   */
LL_TIM_DisableCounter(TIM_TypeDef * TIMx)1901 __STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
1902 {
1903   CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
1904 }
1905 
1906 /**
1907   * @brief  Indicates whether the timer counter is enabled.
1908   * @rmtoll CR1          CEN           LL_TIM_IsEnabledCounter
1909   * @param  TIMx Timer instance
1910   * @retval State of bit (1 or 0).
1911   */
LL_TIM_IsEnabledCounter(const TIM_TypeDef * TIMx)1912 __STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(const TIM_TypeDef *TIMx)
1913 {
1914   return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
1915 }
1916 
1917 /**
1918   * @brief  Enable update event generation.
1919   * @rmtoll CR1          UDIS          LL_TIM_EnableUpdateEvent
1920   * @param  TIMx Timer instance
1921   * @retval None
1922   */
LL_TIM_EnableUpdateEvent(TIM_TypeDef * TIMx)1923 __STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
1924 {
1925   CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
1926 }
1927 
1928 /**
1929   * @brief  Disable update event generation.
1930   * @rmtoll CR1          UDIS          LL_TIM_DisableUpdateEvent
1931   * @param  TIMx Timer instance
1932   * @retval None
1933   */
LL_TIM_DisableUpdateEvent(TIM_TypeDef * TIMx)1934 __STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
1935 {
1936   SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
1937 }
1938 
1939 /**
1940   * @brief  Indicates whether update event generation is enabled.
1941   * @rmtoll CR1          UDIS          LL_TIM_IsEnabledUpdateEvent
1942   * @param  TIMx Timer instance
1943   * @retval Inverted state of bit (0 or 1).
1944   */
LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef * TIMx)1945 __STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef *TIMx)
1946 {
1947   return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
1948 }
1949 
1950 /**
1951   * @brief  Set update event source
1952   * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
1953   *       generate an update interrupt or DMA request if enabled:
1954   *        - Counter overflow/underflow
1955   *        - Setting the UG bit
1956   *        - Update generation through the slave mode controller
1957   * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
1958   *       overflow/underflow generates an update interrupt or DMA request if enabled.
1959   * @rmtoll CR1          URS           LL_TIM_SetUpdateSource
1960   * @param  TIMx Timer instance
1961   * @param  UpdateSource This parameter can be one of the following values:
1962   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1963   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1964   * @retval None
1965   */
LL_TIM_SetUpdateSource(TIM_TypeDef * TIMx,uint32_t UpdateSource)1966 __STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
1967 {
1968   MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
1969 }
1970 
1971 /**
1972   * @brief  Get actual event update source
1973   * @rmtoll CR1          URS           LL_TIM_GetUpdateSource
1974   * @param  TIMx Timer instance
1975   * @retval Returned value can be one of the following values:
1976   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1977   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1978   */
LL_TIM_GetUpdateSource(const TIM_TypeDef * TIMx)1979 __STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(const TIM_TypeDef *TIMx)
1980 {
1981   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
1982 }
1983 
1984 /**
1985   * @brief  Set one pulse mode (one shot v.s. repetitive).
1986   * @rmtoll CR1          OPM           LL_TIM_SetOnePulseMode
1987   * @param  TIMx Timer instance
1988   * @param  OnePulseMode This parameter can be one of the following values:
1989   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1990   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1991   * @retval None
1992   */
LL_TIM_SetOnePulseMode(TIM_TypeDef * TIMx,uint32_t OnePulseMode)1993 __STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
1994 {
1995   MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
1996 }
1997 
1998 /**
1999   * @brief  Get actual one pulse mode.
2000   * @rmtoll CR1          OPM           LL_TIM_GetOnePulseMode
2001   * @param  TIMx Timer instance
2002   * @retval Returned value can be one of the following values:
2003   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
2004   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
2005   */
LL_TIM_GetOnePulseMode(const TIM_TypeDef * TIMx)2006 __STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(const TIM_TypeDef *TIMx)
2007 {
2008   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
2009 }
2010 
2011 /**
2012   * @brief  Set the timer counter counting mode.
2013   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
2014   *       check whether or not the counter mode selection feature is supported
2015   *       by a timer instance.
2016   * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
2017   *       requires a timer reset to avoid unexpected direction
2018   *       due to DIR bit readonly in center aligned mode.
2019   * @rmtoll CR1          DIR           LL_TIM_SetCounterMode\n
2020   *         CR1          CMS           LL_TIM_SetCounterMode
2021   * @param  TIMx Timer instance
2022   * @param  CounterMode This parameter can be one of the following values:
2023   *         @arg @ref LL_TIM_COUNTERMODE_UP
2024   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
2025   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
2026   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
2027   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
2028   * @retval None
2029   */
LL_TIM_SetCounterMode(TIM_TypeDef * TIMx,uint32_t CounterMode)2030 __STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
2031 {
2032   MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
2033 }
2034 
2035 /**
2036   * @brief  Get actual counter mode.
2037   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
2038   *       check whether or not the counter mode selection feature is supported
2039   *       by a timer instance.
2040   * @rmtoll CR1          DIR           LL_TIM_GetCounterMode\n
2041   *         CR1          CMS           LL_TIM_GetCounterMode
2042   * @param  TIMx Timer instance
2043   * @retval Returned value can be one of the following values:
2044   *         @arg @ref LL_TIM_COUNTERMODE_UP
2045   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
2046   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
2047   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
2048   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
2049   */
LL_TIM_GetCounterMode(const TIM_TypeDef * TIMx)2050 __STATIC_INLINE uint32_t LL_TIM_GetCounterMode(const TIM_TypeDef *TIMx)
2051 {
2052   uint32_t counter_mode;
2053 
2054   counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CMS));
2055 
2056   if (counter_mode == 0U)
2057   {
2058     counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
2059   }
2060 
2061   return counter_mode;
2062 }
2063 
2064 /**
2065   * @brief  Enable auto-reload (ARR) preload.
2066   * @rmtoll CR1          ARPE          LL_TIM_EnableARRPreload
2067   * @param  TIMx Timer instance
2068   * @retval None
2069   */
LL_TIM_EnableARRPreload(TIM_TypeDef * TIMx)2070 __STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
2071 {
2072   SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
2073 }
2074 
2075 /**
2076   * @brief  Disable auto-reload (ARR) preload.
2077   * @rmtoll CR1          ARPE          LL_TIM_DisableARRPreload
2078   * @param  TIMx Timer instance
2079   * @retval None
2080   */
LL_TIM_DisableARRPreload(TIM_TypeDef * TIMx)2081 __STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
2082 {
2083   CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
2084 }
2085 
2086 /**
2087   * @brief  Indicates whether auto-reload (ARR) preload is enabled.
2088   * @rmtoll CR1          ARPE          LL_TIM_IsEnabledARRPreload
2089   * @param  TIMx Timer instance
2090   * @retval State of bit (1 or 0).
2091   */
LL_TIM_IsEnabledARRPreload(const TIM_TypeDef * TIMx)2092 __STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(const TIM_TypeDef *TIMx)
2093 {
2094   return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
2095 }
2096 
2097 /**
2098   * @brief  Set the division ratio between the timer clock  and the sampling clock used by the dead-time generators
2099   *         (when supported) and the digital filters.
2100   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
2101   *       whether or not the clock division feature is supported by the timer
2102   *       instance.
2103   * @rmtoll CR1          CKD           LL_TIM_SetClockDivision
2104   * @param  TIMx Timer instance
2105   * @param  ClockDivision This parameter can be one of the following values:
2106   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
2107   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
2108   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
2109   * @retval None
2110   */
LL_TIM_SetClockDivision(TIM_TypeDef * TIMx,uint32_t ClockDivision)2111 __STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
2112 {
2113   MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
2114 }
2115 
2116 /**
2117   * @brief  Get the actual division ratio between the timer clock  and the sampling clock used by the dead-time
2118   *         generators (when supported) and the digital filters.
2119   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
2120   *       whether or not the clock division feature is supported by the timer
2121   *       instance.
2122   * @rmtoll CR1          CKD           LL_TIM_GetClockDivision
2123   * @param  TIMx Timer instance
2124   * @retval Returned value can be one of the following values:
2125   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
2126   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
2127   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
2128   */
LL_TIM_GetClockDivision(const TIM_TypeDef * TIMx)2129 __STATIC_INLINE uint32_t LL_TIM_GetClockDivision(const TIM_TypeDef *TIMx)
2130 {
2131   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
2132 }
2133 
2134 /**
2135   * @brief  Set the counter value.
2136   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2137   *       whether or not a timer instance supports a 32 bits counter.
2138   * @note If dithering is activated, pay attention to the Counter value interpretation
2139   * @rmtoll CNT          CNT           LL_TIM_SetCounter
2140   * @param  TIMx Timer instance
2141   * @param  Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
2142   * @retval None
2143   */
LL_TIM_SetCounter(TIM_TypeDef * TIMx,uint32_t Counter)2144 __STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
2145 {
2146   WRITE_REG(TIMx->CNT, Counter);
2147 }
2148 
2149 /**
2150   * @brief  Get the counter value.
2151   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2152   *       whether or not a timer instance supports a 32 bits counter.
2153   * @note If dithering is activated, pay attention to the Counter value interpretation
2154   * @rmtoll CNT          CNT           LL_TIM_GetCounter
2155   * @param  TIMx Timer instance
2156   * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
2157   */
LL_TIM_GetCounter(const TIM_TypeDef * TIMx)2158 __STATIC_INLINE uint32_t LL_TIM_GetCounter(const TIM_TypeDef *TIMx)
2159 {
2160   return (uint32_t)(READ_REG(TIMx->CNT));
2161 }
2162 
2163 /**
2164   * @brief  Get the current direction of the counter
2165   * @rmtoll CR1          DIR           LL_TIM_GetDirection
2166   * @param  TIMx Timer instance
2167   * @retval Returned value can be one of the following values:
2168   *         @arg @ref LL_TIM_COUNTERDIRECTION_UP
2169   *         @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
2170   */
LL_TIM_GetDirection(const TIM_TypeDef * TIMx)2171 __STATIC_INLINE uint32_t LL_TIM_GetDirection(const TIM_TypeDef *TIMx)
2172 {
2173   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
2174 }
2175 
2176 /**
2177   * @brief  Set the prescaler value.
2178   * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
2179   * @note The prescaler can be changed on the fly as this control register is buffered. The new
2180   *       prescaler ratio is taken into account at the next update event.
2181   * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
2182   * @rmtoll PSC          PSC           LL_TIM_SetPrescaler
2183   * @param  TIMx Timer instance
2184   * @param  Prescaler between Min_Data=0 and Max_Data=65535
2185   * @retval None
2186   */
LL_TIM_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Prescaler)2187 __STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
2188 {
2189   WRITE_REG(TIMx->PSC, Prescaler);
2190 }
2191 
2192 /**
2193   * @brief  Get the prescaler value.
2194   * @rmtoll PSC          PSC           LL_TIM_GetPrescaler
2195   * @param  TIMx Timer instance
2196   * @retval  Prescaler value between Min_Data=0 and Max_Data=65535
2197   */
LL_TIM_GetPrescaler(const TIM_TypeDef * TIMx)2198 __STATIC_INLINE uint32_t LL_TIM_GetPrescaler(const TIM_TypeDef *TIMx)
2199 {
2200   return (uint32_t)(READ_REG(TIMx->PSC));
2201 }
2202 
2203 /**
2204   * @brief  Set the auto-reload value.
2205   * @note The counter is blocked while the auto-reload value is null.
2206   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2207   *       whether or not a timer instance supports a 32 bits counter.
2208   * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
2209   *       In case dithering is activated,macro __LL_TIM_CALC_ARR_DITHER can be used instead, to calculate the AutoReload
2210   *       parameter.
2211   * @rmtoll ARR          ARR           LL_TIM_SetAutoReload
2212   * @param  TIMx Timer instance
2213   * @param  AutoReload between Min_Data=0 and Max_Data=65535
2214   * @retval None
2215   */
LL_TIM_SetAutoReload(TIM_TypeDef * TIMx,uint32_t AutoReload)2216 __STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
2217 {
2218   WRITE_REG(TIMx->ARR, AutoReload);
2219 }
2220 
2221 /**
2222   * @brief  Get the auto-reload value.
2223   * @rmtoll ARR          ARR           LL_TIM_GetAutoReload
2224   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2225   *       whether or not a timer instance supports a 32 bits counter.
2226   * @note If dithering is activated, pay attention to the returned value interpretation
2227   * @param  TIMx Timer instance
2228   * @retval Auto-reload value
2229   */
LL_TIM_GetAutoReload(const TIM_TypeDef * TIMx)2230 __STATIC_INLINE uint32_t LL_TIM_GetAutoReload(const TIM_TypeDef *TIMx)
2231 {
2232   return (uint32_t)(READ_REG(TIMx->ARR));
2233 }
2234 
2235 /**
2236   * @brief  Set the repetition counter value.
2237   * @note For advanced timer instances RepetitionCounter can be up to 65535.
2238   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
2239   *       whether or not a timer instance supports a repetition counter.
2240   * @rmtoll RCR          REP           LL_TIM_SetRepetitionCounter
2241   * @param  TIMx Timer instance
2242   * @param  RepetitionCounter between Min_Data=0 and Max_Data=255 or 65535 for advanced timer.
2243   * @retval None
2244   */
LL_TIM_SetRepetitionCounter(TIM_TypeDef * TIMx,uint32_t RepetitionCounter)2245 __STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
2246 {
2247   WRITE_REG(TIMx->RCR, RepetitionCounter);
2248 }
2249 
2250 /**
2251   * @brief  Get the repetition counter value.
2252   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
2253   *       whether or not a timer instance supports a repetition counter.
2254   * @rmtoll RCR          REP           LL_TIM_GetRepetitionCounter
2255   * @param  TIMx Timer instance
2256   * @retval Repetition counter value
2257   */
LL_TIM_GetRepetitionCounter(const TIM_TypeDef * TIMx)2258 __STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(const TIM_TypeDef *TIMx)
2259 {
2260   return (uint32_t)(READ_REG(TIMx->RCR));
2261 }
2262 
2263 /**
2264   * @brief  Force a continuous copy of the update interrupt flag (UIF) into the timer counter register (bit 31).
2265   * @note This allows both the counter value and a potential roll-over condition signalled by the UIFCPY flag to be read
2266   *       in an atomic way.
2267   * @rmtoll CR1          UIFREMAP      LL_TIM_EnableUIFRemap
2268   * @param  TIMx Timer instance
2269   * @retval None
2270   */
LL_TIM_EnableUIFRemap(TIM_TypeDef * TIMx)2271 __STATIC_INLINE void LL_TIM_EnableUIFRemap(TIM_TypeDef *TIMx)
2272 {
2273   SET_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
2274 }
2275 
2276 /**
2277   * @brief  Disable update interrupt flag (UIF) remapping.
2278   * @rmtoll CR1          UIFREMAP      LL_TIM_DisableUIFRemap
2279   * @param  TIMx Timer instance
2280   * @retval None
2281   */
LL_TIM_DisableUIFRemap(TIM_TypeDef * TIMx)2282 __STATIC_INLINE void LL_TIM_DisableUIFRemap(TIM_TypeDef *TIMx)
2283 {
2284   CLEAR_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
2285 }
2286 
2287 /**
2288   * @brief  Indicate whether update interrupt flag (UIF) copy is set.
2289   * @param  Counter Counter value
2290   * @retval State of bit (1 or 0).
2291   */
LL_TIM_IsActiveUIFCPY(const uint32_t Counter)2292 __STATIC_INLINE uint32_t LL_TIM_IsActiveUIFCPY(const uint32_t Counter)
2293 {
2294   return (((Counter & TIM_CNT_UIFCPY) == (TIM_CNT_UIFCPY)) ? 1UL : 0UL);
2295 }
2296 
2297 /**
2298   * @brief  Enable dithering.
2299   * @note Macro IS_TIM_DITHERING_INSTANCE(TIMx) can be used to check whether or not
2300   *       a timer instance provides dithering.
2301   * @rmtoll CR1          DITHEN          LL_TIM_EnableDithering
2302   * @param  TIMx Timer instance
2303   * @retval None
2304   */
LL_TIM_EnableDithering(TIM_TypeDef * TIMx)2305 __STATIC_INLINE void LL_TIM_EnableDithering(TIM_TypeDef *TIMx)
2306 {
2307   SET_BIT(TIMx->CR1, TIM_CR1_DITHEN);
2308 }
2309 
2310 /**
2311   * @brief  Disable dithering.
2312   * @note Macro IS_TIM_DITHERING_INSTANCE(TIMx) can be used to check whether or not
2313   *       a timer instance provides dithering.
2314   * @rmtoll CR1          DITHEN          LL_TIM_DisableDithering
2315   * @param  TIMx Timer instance
2316   * @retval None
2317   */
LL_TIM_DisableDithering(TIM_TypeDef * TIMx)2318 __STATIC_INLINE void LL_TIM_DisableDithering(TIM_TypeDef *TIMx)
2319 {
2320   CLEAR_BIT(TIMx->CR1, TIM_CR1_DITHEN);
2321 }
2322 
2323 /**
2324   * @brief  Indicates whether dithering is activated.
2325   * @note Macro IS_TIM_DITHERING_INSTANCE(TIMx) can be used to check whether or not
2326   *       a timer instance provides dithering.
2327   * @rmtoll CR1          DITHEN          LL_TIM_IsEnabledDithering
2328   * @param  TIMx Timer instance
2329   * @retval State of bit (1 or 0).
2330   */
LL_TIM_IsEnabledDithering(const TIM_TypeDef * TIMx)2331 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDithering(const TIM_TypeDef *TIMx)
2332 {
2333   return ((READ_BIT(TIMx->CR1, TIM_CR1_DITHEN) == (TIM_CR1_DITHEN)) ? 1UL : 0UL);
2334 }
2335 
2336 /**
2337   * @}
2338   */
2339 
2340 /** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
2341   * @{
2342   */
2343 /**
2344   * @brief  Enable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
2345   * @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
2346   *       they are updated only when a commutation event (COM) occurs.
2347   * @note Only on channels that have a complementary output.
2348   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
2349   *       whether or not a timer instance is able to generate a commutation event.
2350   * @rmtoll CR2          CCPC          LL_TIM_CC_EnablePreload
2351   * @param  TIMx Timer instance
2352   * @retval None
2353   */
LL_TIM_CC_EnablePreload(TIM_TypeDef * TIMx)2354 __STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
2355 {
2356   SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
2357 }
2358 
2359 /**
2360   * @brief  Disable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
2361   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
2362   *       whether or not a timer instance is able to generate a commutation event.
2363   * @rmtoll CR2          CCPC          LL_TIM_CC_DisablePreload
2364   * @param  TIMx Timer instance
2365   * @retval None
2366   */
LL_TIM_CC_DisablePreload(TIM_TypeDef * TIMx)2367 __STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
2368 {
2369   CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
2370 }
2371 
2372 /**
2373   * @brief  Indicates whether the capture/compare control bits (CCxE, CCxNE and OCxM) preload is enabled.
2374   * @rmtoll CR2          CCPC          LL_TIM_CC_IsEnabledPreload
2375   * @param  TIMx Timer instance
2376   * @retval State of bit (1 or 0).
2377   */
LL_TIM_CC_IsEnabledPreload(const TIM_TypeDef * TIMx)2378 __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledPreload(const TIM_TypeDef *TIMx)
2379 {
2380   return ((READ_BIT(TIMx->CR2, TIM_CR2_CCPC) == (TIM_CR2_CCPC)) ? 1UL : 0UL);
2381 }
2382 
2383 /**
2384   * @brief  Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
2385   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
2386   *       whether or not a timer instance is able to generate a commutation event.
2387   * @rmtoll CR2          CCUS          LL_TIM_CC_SetUpdate
2388   * @param  TIMx Timer instance
2389   * @param  CCUpdateSource This parameter can be one of the following values:
2390   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
2391   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
2392   * @retval None
2393   */
LL_TIM_CC_SetUpdate(TIM_TypeDef * TIMx,uint32_t CCUpdateSource)2394 __STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
2395 {
2396   MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
2397 }
2398 
2399 /**
2400   * @brief  Set the trigger of the capture/compare DMA request.
2401   * @rmtoll CR2          CCDS          LL_TIM_CC_SetDMAReqTrigger
2402   * @param  TIMx Timer instance
2403   * @param  DMAReqTrigger This parameter can be one of the following values:
2404   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
2405   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
2406   * @retval None
2407   */
LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef * TIMx,uint32_t DMAReqTrigger)2408 __STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
2409 {
2410   MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
2411 }
2412 
2413 /**
2414   * @brief  Get actual trigger of the capture/compare DMA request.
2415   * @rmtoll CR2          CCDS          LL_TIM_CC_GetDMAReqTrigger
2416   * @param  TIMx Timer instance
2417   * @retval Returned value can be one of the following values:
2418   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
2419   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
2420   */
LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef * TIMx)2421 __STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef *TIMx)
2422 {
2423   return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
2424 }
2425 
2426 /**
2427   * @brief  Set the lock level to freeze the
2428   *         configuration of several capture/compare parameters.
2429   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2430   *       the lock mechanism is supported by a timer instance.
2431   * @rmtoll BDTR         LOCK          LL_TIM_CC_SetLockLevel
2432   * @param  TIMx Timer instance
2433   * @param  LockLevel This parameter can be one of the following values:
2434   *         @arg @ref LL_TIM_LOCKLEVEL_OFF
2435   *         @arg @ref LL_TIM_LOCKLEVEL_1
2436   *         @arg @ref LL_TIM_LOCKLEVEL_2
2437   *         @arg @ref LL_TIM_LOCKLEVEL_3
2438   * @retval None
2439   */
LL_TIM_CC_SetLockLevel(TIM_TypeDef * TIMx,uint32_t LockLevel)2440 __STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
2441 {
2442   MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
2443 }
2444 
2445 /**
2446   * @brief  Enable capture/compare channels.
2447   * @rmtoll CCER         CC1E          LL_TIM_CC_EnableChannel\n
2448   *         CCER         CC1NE         LL_TIM_CC_EnableChannel\n
2449   *         CCER         CC2E          LL_TIM_CC_EnableChannel\n
2450   *         CCER         CC2NE         LL_TIM_CC_EnableChannel\n
2451   *         CCER         CC3E          LL_TIM_CC_EnableChannel\n
2452   *         CCER         CC3NE         LL_TIM_CC_EnableChannel\n
2453   *         CCER         CC4E          LL_TIM_CC_EnableChannel\n
2454   *         CCER         CC4NE         LL_TIM_CC_EnableChannel\n
2455   *         CCER         CC5E          LL_TIM_CC_EnableChannel\n
2456   *         CCER         CC6E          LL_TIM_CC_EnableChannel
2457   * @param  TIMx Timer instance
2458   * @param  Channels This parameter can be a combination of the following values:
2459   *         @arg @ref LL_TIM_CHANNEL_CH1
2460   *         @arg @ref LL_TIM_CHANNEL_CH1N
2461   *         @arg @ref LL_TIM_CHANNEL_CH2
2462   *         @arg @ref LL_TIM_CHANNEL_CH2N
2463   *         @arg @ref LL_TIM_CHANNEL_CH3
2464   *         @arg @ref LL_TIM_CHANNEL_CH3N
2465   *         @arg @ref LL_TIM_CHANNEL_CH4
2466   *         @arg @ref LL_TIM_CHANNEL_CH4N
2467   *         @arg @ref LL_TIM_CHANNEL_CH5
2468   *         @arg @ref LL_TIM_CHANNEL_CH6
2469   * @retval None
2470   */
LL_TIM_CC_EnableChannel(TIM_TypeDef * TIMx,uint32_t Channels)2471 __STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
2472 {
2473   SET_BIT(TIMx->CCER, Channels);
2474 }
2475 
2476 /**
2477   * @brief  Disable capture/compare channels.
2478   * @rmtoll CCER         CC1E          LL_TIM_CC_DisableChannel\n
2479   *         CCER         CC1NE         LL_TIM_CC_DisableChannel\n
2480   *         CCER         CC2E          LL_TIM_CC_DisableChannel\n
2481   *         CCER         CC2NE         LL_TIM_CC_DisableChannel\n
2482   *         CCER         CC3E          LL_TIM_CC_DisableChannel\n
2483   *         CCER         CC3NE         LL_TIM_CC_DisableChannel\n
2484   *         CCER         CC4E          LL_TIM_CC_DisableChannel\n
2485   *         CCER         CC4NE         LL_TIM_CC_DisableChannel\n
2486   *         CCER         CC5E          LL_TIM_CC_DisableChannel\n
2487   *         CCER         CC6E          LL_TIM_CC_DisableChannel
2488   * @param  TIMx Timer instance
2489   * @param  Channels This parameter can be a combination of the following values:
2490   *         @arg @ref LL_TIM_CHANNEL_CH1
2491   *         @arg @ref LL_TIM_CHANNEL_CH1N
2492   *         @arg @ref LL_TIM_CHANNEL_CH2
2493   *         @arg @ref LL_TIM_CHANNEL_CH2N
2494   *         @arg @ref LL_TIM_CHANNEL_CH3
2495   *         @arg @ref LL_TIM_CHANNEL_CH3N
2496   *         @arg @ref LL_TIM_CHANNEL_CH4
2497   *         @arg @ref LL_TIM_CHANNEL_CH4N
2498   *         @arg @ref LL_TIM_CHANNEL_CH5
2499   *         @arg @ref LL_TIM_CHANNEL_CH6
2500   * @retval None
2501   */
LL_TIM_CC_DisableChannel(TIM_TypeDef * TIMx,uint32_t Channels)2502 __STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
2503 {
2504   CLEAR_BIT(TIMx->CCER, Channels);
2505 }
2506 
2507 /**
2508   * @brief  Indicate whether channel(s) is(are) enabled.
2509   * @rmtoll CCER         CC1E          LL_TIM_CC_IsEnabledChannel\n
2510   *         CCER         CC1NE         LL_TIM_CC_IsEnabledChannel\n
2511   *         CCER         CC2E          LL_TIM_CC_IsEnabledChannel\n
2512   *         CCER         CC2NE         LL_TIM_CC_IsEnabledChannel\n
2513   *         CCER         CC3E          LL_TIM_CC_IsEnabledChannel\n
2514   *         CCER         CC3NE         LL_TIM_CC_IsEnabledChannel\n
2515   *         CCER         CC4E          LL_TIM_CC_IsEnabledChannel\n
2516   *         CCER         CC4NE         LL_TIM_CC_IsEnabledChannel\n
2517   *         CCER         CC5E          LL_TIM_CC_IsEnabledChannel\n
2518   *         CCER         CC6E          LL_TIM_CC_IsEnabledChannel
2519   * @param  TIMx Timer instance
2520   * @param  Channels This parameter can be a combination of the following values:
2521   *         @arg @ref LL_TIM_CHANNEL_CH1
2522   *         @arg @ref LL_TIM_CHANNEL_CH1N
2523   *         @arg @ref LL_TIM_CHANNEL_CH2
2524   *         @arg @ref LL_TIM_CHANNEL_CH2N
2525   *         @arg @ref LL_TIM_CHANNEL_CH3
2526   *         @arg @ref LL_TIM_CHANNEL_CH3N
2527   *         @arg @ref LL_TIM_CHANNEL_CH4
2528   *         @arg @ref LL_TIM_CHANNEL_CH4N
2529   *         @arg @ref LL_TIM_CHANNEL_CH5
2530   *         @arg @ref LL_TIM_CHANNEL_CH6
2531   * @retval State of bit (1 or 0).
2532   */
LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef * TIMx,uint32_t Channels)2533 __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef *TIMx, uint32_t Channels)
2534 {
2535   return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
2536 }
2537 
2538 /**
2539   * @}
2540   */
2541 
2542 /** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
2543   * @{
2544   */
2545 /**
2546   * @brief  Configure an output channel.
2547   * @rmtoll CCMR1        CC1S          LL_TIM_OC_ConfigOutput\n
2548   *         CCMR1        CC2S          LL_TIM_OC_ConfigOutput\n
2549   *         CCMR2        CC3S          LL_TIM_OC_ConfigOutput\n
2550   *         CCMR2        CC4S          LL_TIM_OC_ConfigOutput\n
2551   *         CCMR3        CC5S          LL_TIM_OC_ConfigOutput\n
2552   *         CCMR3        CC6S          LL_TIM_OC_ConfigOutput\n
2553   *         CCER         CC1P          LL_TIM_OC_ConfigOutput\n
2554   *         CCER         CC2P          LL_TIM_OC_ConfigOutput\n
2555   *         CCER         CC3P          LL_TIM_OC_ConfigOutput\n
2556   *         CCER         CC4P          LL_TIM_OC_ConfigOutput\n
2557   *         CCER         CC5P          LL_TIM_OC_ConfigOutput\n
2558   *         CCER         CC6P          LL_TIM_OC_ConfigOutput\n
2559   *         CR2          OIS1          LL_TIM_OC_ConfigOutput\n
2560   *         CR2          OIS2          LL_TIM_OC_ConfigOutput\n
2561   *         CR2          OIS3          LL_TIM_OC_ConfigOutput\n
2562   *         CR2          OIS4          LL_TIM_OC_ConfigOutput\n
2563   *         CR2          OIS5          LL_TIM_OC_ConfigOutput\n
2564   *         CR2          OIS6          LL_TIM_OC_ConfigOutput
2565   * @param  TIMx Timer instance
2566   * @param  Channel This parameter can be one of the following values:
2567   *         @arg @ref LL_TIM_CHANNEL_CH1
2568   *         @arg @ref LL_TIM_CHANNEL_CH2
2569   *         @arg @ref LL_TIM_CHANNEL_CH3
2570   *         @arg @ref LL_TIM_CHANNEL_CH4
2571   *         @arg @ref LL_TIM_CHANNEL_CH5
2572   *         @arg @ref LL_TIM_CHANNEL_CH6
2573   * @param  Configuration This parameter must be a combination of all the following values:
2574   *         @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
2575   *         @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
2576   * @retval None
2577   */
LL_TIM_OC_ConfigOutput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2578 __STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2579 {
2580   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2581   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2582   CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
2583   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
2584              (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
2585   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
2586              (Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
2587 }
2588 
2589 /**
2590   * @brief  Define the behavior of the output reference signal OCxREF from which
2591   *         OCx and OCxN (when relevant) are derived.
2592   * @rmtoll CCMR1        OC1M          LL_TIM_OC_SetMode\n
2593   *         CCMR1        OC2M          LL_TIM_OC_SetMode\n
2594   *         CCMR2        OC3M          LL_TIM_OC_SetMode\n
2595   *         CCMR2        OC4M          LL_TIM_OC_SetMode\n
2596   *         CCMR3        OC5M          LL_TIM_OC_SetMode\n
2597   *         CCMR3        OC6M          LL_TIM_OC_SetMode
2598   * @param  TIMx Timer instance
2599   * @param  Channel This parameter can be one of the following values:
2600   *         @arg @ref LL_TIM_CHANNEL_CH1
2601   *         @arg @ref LL_TIM_CHANNEL_CH2
2602   *         @arg @ref LL_TIM_CHANNEL_CH3
2603   *         @arg @ref LL_TIM_CHANNEL_CH4
2604   *         @arg @ref LL_TIM_CHANNEL_CH5
2605   *         @arg @ref LL_TIM_CHANNEL_CH6
2606   * @param  Mode This parameter can be one of the following values:
2607   *         @arg @ref LL_TIM_OCMODE_FROZEN
2608   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2609   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2610   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2611   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2612   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2613   *         @arg @ref LL_TIM_OCMODE_PWM1
2614   *         @arg @ref LL_TIM_OCMODE_PWM2
2615   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2616   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2617   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2618   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2619   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM1
2620   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM2
2621   *         @arg @ref LL_TIM_OCMODE_PULSE_ON_COMPARE   (for channel 3 or channel 4 only)
2622   *         @arg @ref LL_TIM_OCMODE_DIRECTION_OUTPUT   (for channel 3 or channel 4 only)
2623   * @retval None
2624   */
LL_TIM_OC_SetMode(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Mode)2625 __STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
2626 {
2627   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2628   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2629   MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]);
2630 }
2631 
2632 /**
2633   * @brief  Get the output compare mode of an output channel.
2634   * @rmtoll CCMR1        OC1M          LL_TIM_OC_GetMode\n
2635   *         CCMR1        OC2M          LL_TIM_OC_GetMode\n
2636   *         CCMR2        OC3M          LL_TIM_OC_GetMode\n
2637   *         CCMR2        OC4M          LL_TIM_OC_GetMode\n
2638   *         CCMR3        OC5M          LL_TIM_OC_GetMode\n
2639   *         CCMR3        OC6M          LL_TIM_OC_GetMode
2640   * @param  TIMx Timer instance
2641   * @param  Channel This parameter can be one of the following values:
2642   *         @arg @ref LL_TIM_CHANNEL_CH1
2643   *         @arg @ref LL_TIM_CHANNEL_CH2
2644   *         @arg @ref LL_TIM_CHANNEL_CH3
2645   *         @arg @ref LL_TIM_CHANNEL_CH4
2646   *         @arg @ref LL_TIM_CHANNEL_CH5
2647   *         @arg @ref LL_TIM_CHANNEL_CH6
2648   * @retval Returned value can be one of the following values:
2649   *         @arg @ref LL_TIM_OCMODE_FROZEN
2650   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2651   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2652   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2653   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2654   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2655   *         @arg @ref LL_TIM_OCMODE_PWM1
2656   *         @arg @ref LL_TIM_OCMODE_PWM2
2657   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2658   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2659   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2660   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2661   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM1
2662   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM2
2663   *         @arg @ref LL_TIM_OCMODE_PULSE_ON_COMPARE   (for channel 3 or channel 4 only)
2664   *         @arg @ref LL_TIM_OCMODE_DIRECTION_OUTPUT   (for channel 3 or channel 4 only)
2665   */
LL_TIM_OC_GetMode(const TIM_TypeDef * TIMx,uint32_t Channel)2666 __STATIC_INLINE uint32_t LL_TIM_OC_GetMode(const TIM_TypeDef *TIMx, uint32_t Channel)
2667 {
2668   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2669   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2670   return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
2671 }
2672 
2673 /**
2674   * @brief  Set the polarity of an output channel.
2675   * @rmtoll CCER         CC1P          LL_TIM_OC_SetPolarity\n
2676   *         CCER         CC1NP         LL_TIM_OC_SetPolarity\n
2677   *         CCER         CC2P          LL_TIM_OC_SetPolarity\n
2678   *         CCER         CC2NP         LL_TIM_OC_SetPolarity\n
2679   *         CCER         CC3P          LL_TIM_OC_SetPolarity\n
2680   *         CCER         CC3NP         LL_TIM_OC_SetPolarity\n
2681   *         CCER         CC4P          LL_TIM_OC_SetPolarity\n
2682   *         CCER         CC4NP         LL_TIM_OC_SetPolarity\n
2683   *         CCER         CC5P          LL_TIM_OC_SetPolarity\n
2684   *         CCER         CC6P          LL_TIM_OC_SetPolarity
2685   * @param  TIMx Timer instance
2686   * @param  Channel This parameter can be one of the following values:
2687   *         @arg @ref LL_TIM_CHANNEL_CH1
2688   *         @arg @ref LL_TIM_CHANNEL_CH1N
2689   *         @arg @ref LL_TIM_CHANNEL_CH2
2690   *         @arg @ref LL_TIM_CHANNEL_CH2N
2691   *         @arg @ref LL_TIM_CHANNEL_CH3
2692   *         @arg @ref LL_TIM_CHANNEL_CH3N
2693   *         @arg @ref LL_TIM_CHANNEL_CH4
2694   *         @arg @ref LL_TIM_CHANNEL_CH4N
2695   *         @arg @ref LL_TIM_CHANNEL_CH5
2696   *         @arg @ref LL_TIM_CHANNEL_CH6
2697   * @param  Polarity This parameter can be one of the following values:
2698   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2699   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2700   * @retval None
2701   */
LL_TIM_OC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Polarity)2702 __STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
2703 {
2704   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2705   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),  Polarity << SHIFT_TAB_CCxP[iChannel]);
2706 }
2707 
2708 /**
2709   * @brief  Get the polarity of an output channel.
2710   * @rmtoll CCER         CC1P          LL_TIM_OC_GetPolarity\n
2711   *         CCER         CC1NP         LL_TIM_OC_GetPolarity\n
2712   *         CCER         CC2P          LL_TIM_OC_GetPolarity\n
2713   *         CCER         CC2NP         LL_TIM_OC_GetPolarity\n
2714   *         CCER         CC3P          LL_TIM_OC_GetPolarity\n
2715   *         CCER         CC3NP         LL_TIM_OC_GetPolarity\n
2716   *         CCER         CC4P          LL_TIM_OC_GetPolarity\n
2717   *         CCER         CC4NP         LL_TIM_OC_GetPolarity\n
2718   *         CCER         CC5P          LL_TIM_OC_GetPolarity\n
2719   *         CCER         CC6P          LL_TIM_OC_GetPolarity
2720   * @param  TIMx Timer instance
2721   * @param  Channel This parameter can be one of the following values:
2722   *         @arg @ref LL_TIM_CHANNEL_CH1
2723   *         @arg @ref LL_TIM_CHANNEL_CH1N
2724   *         @arg @ref LL_TIM_CHANNEL_CH2
2725   *         @arg @ref LL_TIM_CHANNEL_CH2N
2726   *         @arg @ref LL_TIM_CHANNEL_CH3
2727   *         @arg @ref LL_TIM_CHANNEL_CH3N
2728   *         @arg @ref LL_TIM_CHANNEL_CH4
2729   *         @arg @ref LL_TIM_CHANNEL_CH4N
2730   *         @arg @ref LL_TIM_CHANNEL_CH5
2731   *         @arg @ref LL_TIM_CHANNEL_CH6
2732   * @retval Returned value can be one of the following values:
2733   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2734   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2735   */
LL_TIM_OC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)2736 __STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
2737 {
2738   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2739   return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
2740 }
2741 
2742 /**
2743   * @brief  Set the IDLE state of an output channel
2744   * @note This function is significant only for the timer instances
2745   *       supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx)
2746   *       can be used to check whether or not a timer instance provides
2747   *       a break input.
2748   * @rmtoll CR2         OIS1          LL_TIM_OC_SetIdleState\n
2749   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2750   *         CR2         OIS2          LL_TIM_OC_SetIdleState\n
2751   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2752   *         CR2         OIS3          LL_TIM_OC_SetIdleState\n
2753   *         CR2         OIS3N         LL_TIM_OC_SetIdleState\n
2754   *         CR2         OIS4          LL_TIM_OC_SetIdleState\n
2755   *         CR2         OIS4N         LL_TIM_OC_SetIdleState\n
2756   *         CR2         OIS5          LL_TIM_OC_SetIdleState\n
2757   *         CR2         OIS6          LL_TIM_OC_SetIdleState
2758   * @param  TIMx Timer instance
2759   * @param  Channel This parameter can be one of the following values:
2760   *         @arg @ref LL_TIM_CHANNEL_CH1
2761   *         @arg @ref LL_TIM_CHANNEL_CH1N
2762   *         @arg @ref LL_TIM_CHANNEL_CH2
2763   *         @arg @ref LL_TIM_CHANNEL_CH2N
2764   *         @arg @ref LL_TIM_CHANNEL_CH3
2765   *         @arg @ref LL_TIM_CHANNEL_CH3N
2766   *         @arg @ref LL_TIM_CHANNEL_CH4
2767   *         @arg @ref LL_TIM_CHANNEL_CH4N
2768   *         @arg @ref LL_TIM_CHANNEL_CH5
2769   *         @arg @ref LL_TIM_CHANNEL_CH6
2770   * @param  IdleState This parameter can be one of the following values:
2771   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2772   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2773   * @retval None
2774   */
LL_TIM_OC_SetIdleState(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t IdleState)2775 __STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
2776 {
2777   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2778   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),  IdleState << SHIFT_TAB_OISx[iChannel]);
2779 }
2780 
2781 /**
2782   * @brief  Get the IDLE state of an output channel
2783   * @rmtoll CR2         OIS1          LL_TIM_OC_GetIdleState\n
2784   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2785   *         CR2         OIS2          LL_TIM_OC_GetIdleState\n
2786   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2787   *         CR2         OIS3          LL_TIM_OC_GetIdleState\n
2788   *         CR2         OIS3N         LL_TIM_OC_GetIdleState\n
2789   *         CR2         OIS4          LL_TIM_OC_GetIdleState\n
2790   *         CR2         OIS4N         LL_TIM_OC_GetIdleState\n
2791   *         CR2         OIS5          LL_TIM_OC_GetIdleState\n
2792   *         CR2         OIS6          LL_TIM_OC_GetIdleState
2793   * @param  TIMx Timer instance
2794   * @param  Channel This parameter can be one of the following values:
2795   *         @arg @ref LL_TIM_CHANNEL_CH1
2796   *         @arg @ref LL_TIM_CHANNEL_CH1N
2797   *         @arg @ref LL_TIM_CHANNEL_CH2
2798   *         @arg @ref LL_TIM_CHANNEL_CH2N
2799   *         @arg @ref LL_TIM_CHANNEL_CH3
2800   *         @arg @ref LL_TIM_CHANNEL_CH3N
2801   *         @arg @ref LL_TIM_CHANNEL_CH4
2802   *         @arg @ref LL_TIM_CHANNEL_CH4N
2803   *         @arg @ref LL_TIM_CHANNEL_CH5
2804   *         @arg @ref LL_TIM_CHANNEL_CH6
2805   * @retval Returned value can be one of the following values:
2806   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2807   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2808   */
LL_TIM_OC_GetIdleState(const TIM_TypeDef * TIMx,uint32_t Channel)2809 __STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(const TIM_TypeDef *TIMx, uint32_t Channel)
2810 {
2811   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2812   return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
2813 }
2814 
2815 /**
2816   * @brief  Enable fast mode for the output channel.
2817   * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
2818   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_EnableFast\n
2819   *         CCMR1        OC2FE          LL_TIM_OC_EnableFast\n
2820   *         CCMR2        OC3FE          LL_TIM_OC_EnableFast\n
2821   *         CCMR2        OC4FE          LL_TIM_OC_EnableFast\n
2822   *         CCMR3        OC5FE          LL_TIM_OC_EnableFast\n
2823   *         CCMR3        OC6FE          LL_TIM_OC_EnableFast
2824   * @param  TIMx Timer instance
2825   * @param  Channel This parameter can be one of the following values:
2826   *         @arg @ref LL_TIM_CHANNEL_CH1
2827   *         @arg @ref LL_TIM_CHANNEL_CH2
2828   *         @arg @ref LL_TIM_CHANNEL_CH3
2829   *         @arg @ref LL_TIM_CHANNEL_CH4
2830   *         @arg @ref LL_TIM_CHANNEL_CH5
2831   *         @arg @ref LL_TIM_CHANNEL_CH6
2832   * @retval None
2833   */
LL_TIM_OC_EnableFast(TIM_TypeDef * TIMx,uint32_t Channel)2834 __STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2835 {
2836   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2837   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2838   SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2839 
2840 }
2841 
2842 /**
2843   * @brief  Disable fast mode for the output channel.
2844   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_DisableFast\n
2845   *         CCMR1        OC2FE          LL_TIM_OC_DisableFast\n
2846   *         CCMR2        OC3FE          LL_TIM_OC_DisableFast\n
2847   *         CCMR2        OC4FE          LL_TIM_OC_DisableFast\n
2848   *         CCMR3        OC5FE          LL_TIM_OC_DisableFast\n
2849   *         CCMR3        OC6FE          LL_TIM_OC_DisableFast
2850   * @param  TIMx Timer instance
2851   * @param  Channel This parameter can be one of the following values:
2852   *         @arg @ref LL_TIM_CHANNEL_CH1
2853   *         @arg @ref LL_TIM_CHANNEL_CH2
2854   *         @arg @ref LL_TIM_CHANNEL_CH3
2855   *         @arg @ref LL_TIM_CHANNEL_CH4
2856   *         @arg @ref LL_TIM_CHANNEL_CH5
2857   *         @arg @ref LL_TIM_CHANNEL_CH6
2858   * @retval None
2859   */
LL_TIM_OC_DisableFast(TIM_TypeDef * TIMx,uint32_t Channel)2860 __STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2861 {
2862   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2863   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2864   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2865 
2866 }
2867 
2868 /**
2869   * @brief  Indicates whether fast mode is enabled for the output channel.
2870   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_IsEnabledFast\n
2871   *         CCMR1        OC2FE          LL_TIM_OC_IsEnabledFast\n
2872   *         CCMR2        OC3FE          LL_TIM_OC_IsEnabledFast\n
2873   *         CCMR2        OC4FE          LL_TIM_OC_IsEnabledFast\n
2874   *         CCMR3        OC5FE          LL_TIM_OC_IsEnabledFast\n
2875   *         CCMR3        OC6FE          LL_TIM_OC_IsEnabledFast
2876   * @param  TIMx Timer instance
2877   * @param  Channel This parameter can be one of the following values:
2878   *         @arg @ref LL_TIM_CHANNEL_CH1
2879   *         @arg @ref LL_TIM_CHANNEL_CH2
2880   *         @arg @ref LL_TIM_CHANNEL_CH3
2881   *         @arg @ref LL_TIM_CHANNEL_CH4
2882   *         @arg @ref LL_TIM_CHANNEL_CH5
2883   *         @arg @ref LL_TIM_CHANNEL_CH6
2884   * @retval State of bit (1 or 0).
2885   */
LL_TIM_OC_IsEnabledFast(const TIM_TypeDef * TIMx,uint32_t Channel)2886 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(const TIM_TypeDef *TIMx, uint32_t Channel)
2887 {
2888   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2889   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2890   uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
2891   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2892 }
2893 
2894 /**
2895   * @brief  Enable compare register (TIMx_CCRx) preload for the output channel.
2896   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_EnablePreload\n
2897   *         CCMR1        OC2PE          LL_TIM_OC_EnablePreload\n
2898   *         CCMR2        OC3PE          LL_TIM_OC_EnablePreload\n
2899   *         CCMR2        OC4PE          LL_TIM_OC_EnablePreload\n
2900   *         CCMR3        OC5PE          LL_TIM_OC_EnablePreload\n
2901   *         CCMR3        OC6PE          LL_TIM_OC_EnablePreload
2902   * @param  TIMx Timer instance
2903   * @param  Channel This parameter can be one of the following values:
2904   *         @arg @ref LL_TIM_CHANNEL_CH1
2905   *         @arg @ref LL_TIM_CHANNEL_CH2
2906   *         @arg @ref LL_TIM_CHANNEL_CH3
2907   *         @arg @ref LL_TIM_CHANNEL_CH4
2908   *         @arg @ref LL_TIM_CHANNEL_CH5
2909   *         @arg @ref LL_TIM_CHANNEL_CH6
2910   * @retval None
2911   */
LL_TIM_OC_EnablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2912 __STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2913 {
2914   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2915   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2916   SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2917 }
2918 
2919 /**
2920   * @brief  Disable compare register (TIMx_CCRx) preload for the output channel.
2921   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_DisablePreload\n
2922   *         CCMR1        OC2PE          LL_TIM_OC_DisablePreload\n
2923   *         CCMR2        OC3PE          LL_TIM_OC_DisablePreload\n
2924   *         CCMR2        OC4PE          LL_TIM_OC_DisablePreload\n
2925   *         CCMR3        OC5PE          LL_TIM_OC_DisablePreload\n
2926   *         CCMR3        OC6PE          LL_TIM_OC_DisablePreload
2927   * @param  TIMx Timer instance
2928   * @param  Channel This parameter can be one of the following values:
2929   *         @arg @ref LL_TIM_CHANNEL_CH1
2930   *         @arg @ref LL_TIM_CHANNEL_CH2
2931   *         @arg @ref LL_TIM_CHANNEL_CH3
2932   *         @arg @ref LL_TIM_CHANNEL_CH4
2933   *         @arg @ref LL_TIM_CHANNEL_CH5
2934   *         @arg @ref LL_TIM_CHANNEL_CH6
2935   * @retval None
2936   */
LL_TIM_OC_DisablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2937 __STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2938 {
2939   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2940   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2941   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2942 }
2943 
2944 /**
2945   * @brief  Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
2946   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_IsEnabledPreload\n
2947   *         CCMR1        OC2PE          LL_TIM_OC_IsEnabledPreload\n
2948   *         CCMR2        OC3PE          LL_TIM_OC_IsEnabledPreload\n
2949   *         CCMR2        OC4PE          LL_TIM_OC_IsEnabledPreload\n
2950   *         CCMR3        OC5PE          LL_TIM_OC_IsEnabledPreload\n
2951   *         CCMR3        OC6PE          LL_TIM_OC_IsEnabledPreload
2952   * @param  TIMx Timer instance
2953   * @param  Channel This parameter can be one of the following values:
2954   *         @arg @ref LL_TIM_CHANNEL_CH1
2955   *         @arg @ref LL_TIM_CHANNEL_CH2
2956   *         @arg @ref LL_TIM_CHANNEL_CH3
2957   *         @arg @ref LL_TIM_CHANNEL_CH4
2958   *         @arg @ref LL_TIM_CHANNEL_CH5
2959   *         @arg @ref LL_TIM_CHANNEL_CH6
2960   * @retval State of bit (1 or 0).
2961   */
LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef * TIMx,uint32_t Channel)2962 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef *TIMx, uint32_t Channel)
2963 {
2964   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2965   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2966   uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
2967   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2968 }
2969 
2970 /**
2971   * @brief  Enable clearing the output channel on an external event.
2972   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2973   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2974   *       or not a timer instance can clear the OCxREF signal on an external event.
2975   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_EnableClear\n
2976   *         CCMR1        OC2CE          LL_TIM_OC_EnableClear\n
2977   *         CCMR2        OC3CE          LL_TIM_OC_EnableClear\n
2978   *         CCMR2        OC4CE          LL_TIM_OC_EnableClear\n
2979   *         CCMR3        OC5CE          LL_TIM_OC_EnableClear\n
2980   *         CCMR3        OC6CE          LL_TIM_OC_EnableClear
2981   * @param  TIMx Timer instance
2982   * @param  Channel This parameter can be one of the following values:
2983   *         @arg @ref LL_TIM_CHANNEL_CH1
2984   *         @arg @ref LL_TIM_CHANNEL_CH2
2985   *         @arg @ref LL_TIM_CHANNEL_CH3
2986   *         @arg @ref LL_TIM_CHANNEL_CH4
2987   *         @arg @ref LL_TIM_CHANNEL_CH5
2988   *         @arg @ref LL_TIM_CHANNEL_CH6
2989   * @retval None
2990   */
LL_TIM_OC_EnableClear(TIM_TypeDef * TIMx,uint32_t Channel)2991 __STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2992 {
2993   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2994   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2995   SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2996 }
2997 
2998 /**
2999   * @brief  Disable clearing the output channel on an external event.
3000   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
3001   *       or not a timer instance can clear the OCxREF signal on an external event.
3002   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_DisableClear\n
3003   *         CCMR1        OC2CE          LL_TIM_OC_DisableClear\n
3004   *         CCMR2        OC3CE          LL_TIM_OC_DisableClear\n
3005   *         CCMR2        OC4CE          LL_TIM_OC_DisableClear\n
3006   *         CCMR3        OC5CE          LL_TIM_OC_DisableClear\n
3007   *         CCMR3        OC6CE          LL_TIM_OC_DisableClear
3008   * @param  TIMx Timer instance
3009   * @param  Channel This parameter can be one of the following values:
3010   *         @arg @ref LL_TIM_CHANNEL_CH1
3011   *         @arg @ref LL_TIM_CHANNEL_CH2
3012   *         @arg @ref LL_TIM_CHANNEL_CH3
3013   *         @arg @ref LL_TIM_CHANNEL_CH4
3014   *         @arg @ref LL_TIM_CHANNEL_CH5
3015   *         @arg @ref LL_TIM_CHANNEL_CH6
3016   * @retval None
3017   */
LL_TIM_OC_DisableClear(TIM_TypeDef * TIMx,uint32_t Channel)3018 __STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
3019 {
3020   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3021   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3022   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
3023 }
3024 
3025 /**
3026   * @brief  Indicates clearing the output channel on an external event is enabled for the output channel.
3027   * @note This function enables clearing the output channel on an external event.
3028   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
3029   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
3030   *       or not a timer instance can clear the OCxREF signal on an external event.
3031   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_IsEnabledClear\n
3032   *         CCMR1        OC2CE          LL_TIM_OC_IsEnabledClear\n
3033   *         CCMR2        OC3CE          LL_TIM_OC_IsEnabledClear\n
3034   *         CCMR2        OC4CE          LL_TIM_OC_IsEnabledClear\n
3035   *         CCMR3        OC5CE          LL_TIM_OC_IsEnabledClear\n
3036   *         CCMR3        OC6CE          LL_TIM_OC_IsEnabledClear
3037   * @param  TIMx Timer instance
3038   * @param  Channel This parameter can be one of the following values:
3039   *         @arg @ref LL_TIM_CHANNEL_CH1
3040   *         @arg @ref LL_TIM_CHANNEL_CH2
3041   *         @arg @ref LL_TIM_CHANNEL_CH3
3042   *         @arg @ref LL_TIM_CHANNEL_CH4
3043   *         @arg @ref LL_TIM_CHANNEL_CH5
3044   *         @arg @ref LL_TIM_CHANNEL_CH6
3045   * @retval State of bit (1 or 0).
3046   */
LL_TIM_OC_IsEnabledClear(const TIM_TypeDef * TIMx,uint32_t Channel)3047 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(const TIM_TypeDef *TIMx, uint32_t Channel)
3048 {
3049   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3050   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3051   uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
3052   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
3053 }
3054 
3055 /**
3056   * @brief  Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of
3057   *         the Ocx and OCxN signals).
3058   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3059   *       dead-time insertion feature is supported by a timer instance.
3060   * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
3061   * @rmtoll BDTR         DTG           LL_TIM_OC_SetDeadTime
3062   * @param  TIMx Timer instance
3063   * @param  DeadTime between Min_Data=0 and Max_Data=255
3064   * @retval None
3065   */
LL_TIM_OC_SetDeadTime(TIM_TypeDef * TIMx,uint32_t DeadTime)3066 __STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
3067 {
3068   MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
3069 }
3070 
3071 /**
3072   * @brief  Set compare value for output channel 1 (TIMx_CCR1).
3073   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
3074   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3075   *       whether or not a timer instance supports a 32 bits counter.
3076   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
3077   *       output channel 1 is supported by a timer instance.
3078   * @note If dithering is activated, CompareValue can be calculated with macro @ref __LL_TIM_CALC_DELAY_DITHER .
3079   * @rmtoll CCR1         CCR1          LL_TIM_OC_SetCompareCH1
3080   * @param  TIMx Timer instance
3081   * @param  CompareValue between Min_Data=0 and Max_Data=65535
3082   * @retval None
3083   */
LL_TIM_OC_SetCompareCH1(TIM_TypeDef * TIMx,uint32_t CompareValue)3084 __STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
3085 {
3086   WRITE_REG(TIMx->CCR1, CompareValue);
3087 }
3088 
3089 /**
3090   * @brief  Set compare value for output channel 2 (TIMx_CCR2).
3091   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
3092   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3093   *       whether or not a timer instance supports a 32 bits counter.
3094   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
3095   *       output channel 2 is supported by a timer instance.
3096   * @note If dithering is activated, CompareValue can be calculated with macro @ref __LL_TIM_CALC_DELAY_DITHER .
3097   * @rmtoll CCR2         CCR2          LL_TIM_OC_SetCompareCH2
3098   * @param  TIMx Timer instance
3099   * @param  CompareValue between Min_Data=0 and Max_Data=65535
3100   * @retval None
3101   */
LL_TIM_OC_SetCompareCH2(TIM_TypeDef * TIMx,uint32_t CompareValue)3102 __STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
3103 {
3104   WRITE_REG(TIMx->CCR2, CompareValue);
3105 }
3106 
3107 /**
3108   * @brief  Set compare value for output channel 3 (TIMx_CCR3).
3109   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
3110   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3111   *       whether or not a timer instance supports a 32 bits counter.
3112   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
3113   *       output channel is supported by a timer instance.
3114   * @note If dithering is activated, CompareValue can be calculated with macro @ref __LL_TIM_CALC_DELAY_DITHER .
3115   * @rmtoll CCR3         CCR3          LL_TIM_OC_SetCompareCH3
3116   * @param  TIMx Timer instance
3117   * @param  CompareValue between Min_Data=0 and Max_Data=65535
3118   * @retval None
3119   */
LL_TIM_OC_SetCompareCH3(TIM_TypeDef * TIMx,uint32_t CompareValue)3120 __STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
3121 {
3122   WRITE_REG(TIMx->CCR3, CompareValue);
3123 }
3124 
3125 /**
3126   * @brief  Set compare value for output channel 4 (TIMx_CCR4).
3127   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
3128   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3129   *       whether or not a timer instance supports a 32 bits counter.
3130   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
3131   *       output channel 4 is supported by a timer instance.
3132   * @note If dithering is activated, CompareValue can be calculated with macro @ref __LL_TIM_CALC_DELAY_DITHER .
3133   * @rmtoll CCR4         CCR4          LL_TIM_OC_SetCompareCH4
3134   * @param  TIMx Timer instance
3135   * @param  CompareValue between Min_Data=0 and Max_Data=65535
3136   * @retval None
3137   */
LL_TIM_OC_SetCompareCH4(TIM_TypeDef * TIMx,uint32_t CompareValue)3138 __STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
3139 {
3140   WRITE_REG(TIMx->CCR4, CompareValue);
3141 }
3142 
3143 /**
3144   * @brief  Set compare value for output channel 5 (TIMx_CCR5).
3145   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
3146   *       output channel 5 is supported by a timer instance.
3147   * @note If dithering is activated, CompareValue can be calculated with macro @ref __LL_TIM_CALC_DELAY_DITHER .
3148   * @rmtoll CCR5         CCR5          LL_TIM_OC_SetCompareCH5
3149   * @param  TIMx Timer instance
3150   * @param  CompareValue between Min_Data=0 and Max_Data=65535
3151   * @retval None
3152   */
LL_TIM_OC_SetCompareCH5(TIM_TypeDef * TIMx,uint32_t CompareValue)3153 __STATIC_INLINE void LL_TIM_OC_SetCompareCH5(TIM_TypeDef *TIMx, uint32_t CompareValue)
3154 {
3155   MODIFY_REG(TIMx->CCR5, TIM_CCR5_CCR5, CompareValue);
3156 }
3157 
3158 /**
3159   * @brief  Set compare value for output channel 6 (TIMx_CCR6).
3160   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
3161   *       output channel 6 is supported by a timer instance.
3162   * @note If dithering is activated, CompareValue can be calculated with macro @ref __LL_TIM_CALC_DELAY_DITHER .
3163   * @rmtoll CCR6         CCR6          LL_TIM_OC_SetCompareCH6
3164   * @param  TIMx Timer instance
3165   * @param  CompareValue between Min_Data=0 and Max_Data=65535
3166   * @retval None
3167   */
LL_TIM_OC_SetCompareCH6(TIM_TypeDef * TIMx,uint32_t CompareValue)3168 __STATIC_INLINE void LL_TIM_OC_SetCompareCH6(TIM_TypeDef *TIMx, uint32_t CompareValue)
3169 {
3170   WRITE_REG(TIMx->CCR6, CompareValue);
3171 }
3172 
3173 /**
3174   * @brief  Get compare value (TIMx_CCR1) set for  output channel 1.
3175   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
3176   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3177   *       whether or not a timer instance supports a 32 bits counter.
3178   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
3179   *       output channel 1 is supported by a timer instance.
3180   * @note If dithering is activated, pay attention to the returned value interpretation.
3181   * @rmtoll CCR1         CCR1          LL_TIM_OC_GetCompareCH1
3182   * @param  TIMx Timer instance
3183   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
3184   */
LL_TIM_OC_GetCompareCH1(const TIM_TypeDef * TIMx)3185 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(const TIM_TypeDef *TIMx)
3186 {
3187   return (uint32_t)(READ_REG(TIMx->CCR1));
3188 }
3189 
3190 /**
3191   * @brief  Get compare value (TIMx_CCR2) set for  output channel 2.
3192   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
3193   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3194   *       whether or not a timer instance supports a 32 bits counter.
3195   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
3196   *       output channel 2 is supported by a timer instance.
3197   * @note If dithering is activated, pay attention to the returned value interpretation.
3198   * @rmtoll CCR2         CCR2          LL_TIM_OC_GetCompareCH2
3199   * @param  TIMx Timer instance
3200   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
3201   */
LL_TIM_OC_GetCompareCH2(const TIM_TypeDef * TIMx)3202 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(const TIM_TypeDef *TIMx)
3203 {
3204   return (uint32_t)(READ_REG(TIMx->CCR2));
3205 }
3206 
3207 /**
3208   * @brief  Get compare value (TIMx_CCR3) set for  output channel 3.
3209   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
3210   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3211   *       whether or not a timer instance supports a 32 bits counter.
3212   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
3213   *       output channel 3 is supported by a timer instance.
3214   * @note If dithering is activated, pay attention to the returned value interpretation.
3215   * @rmtoll CCR3         CCR3          LL_TIM_OC_GetCompareCH3
3216   * @param  TIMx Timer instance
3217   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
3218   */
LL_TIM_OC_GetCompareCH3(const TIM_TypeDef * TIMx)3219 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(const TIM_TypeDef *TIMx)
3220 {
3221   return (uint32_t)(READ_REG(TIMx->CCR3));
3222 }
3223 
3224 /**
3225   * @brief  Get compare value (TIMx_CCR4) set for  output channel 4.
3226   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
3227   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3228   *       whether or not a timer instance supports a 32 bits counter.
3229   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
3230   *       output channel 4 is supported by a timer instance.
3231   * @note If dithering is activated, pay attention to the returned value interpretation.
3232   * @rmtoll CCR4         CCR4          LL_TIM_OC_GetCompareCH4
3233   * @param  TIMx Timer instance
3234   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
3235   */
LL_TIM_OC_GetCompareCH4(const TIM_TypeDef * TIMx)3236 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(const TIM_TypeDef *TIMx)
3237 {
3238   return (uint32_t)(READ_REG(TIMx->CCR4));
3239 }
3240 
3241 /**
3242   * @brief  Get compare value (TIMx_CCR5) set for  output channel 5.
3243   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
3244   *       output channel 5 is supported by a timer instance.
3245   * @note If dithering is activated, pay attention to the returned value interpretation.
3246   * @rmtoll CCR5         CCR5          LL_TIM_OC_GetCompareCH5
3247   * @param  TIMx Timer instance
3248   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
3249   */
LL_TIM_OC_GetCompareCH5(const TIM_TypeDef * TIMx)3250 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH5(const TIM_TypeDef *TIMx)
3251 {
3252   return (uint32_t)(READ_BIT(TIMx->CCR5, TIM_CCR5_CCR5));
3253 }
3254 
3255 /**
3256   * @brief  Get compare value (TIMx_CCR6) set for  output channel 6.
3257   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
3258   *       output channel 6 is supported by a timer instance.
3259   * @note If dithering is activated, pay attention to the returned value interpretation.
3260   * @rmtoll CCR6         CCR6          LL_TIM_OC_GetCompareCH6
3261   * @param  TIMx Timer instance
3262   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
3263   */
LL_TIM_OC_GetCompareCH6(const TIM_TypeDef * TIMx)3264 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH6(const TIM_TypeDef *TIMx)
3265 {
3266   return (uint32_t)(READ_REG(TIMx->CCR6));
3267 }
3268 
3269 /**
3270   * @brief  Select on which reference signal the OC5REF is combined to.
3271   * @note Macro IS_TIM_COMBINED3PHASEPWM_INSTANCE(TIMx) can be used to check
3272   *       whether or not a timer instance supports the combined 3-phase PWM mode.
3273   * @rmtoll CCR5         GC5C3          LL_TIM_SetCH5CombinedChannels\n
3274   *         CCR5         GC5C2          LL_TIM_SetCH5CombinedChannels\n
3275   *         CCR5         GC5C1          LL_TIM_SetCH5CombinedChannels
3276   * @param  TIMx Timer instance
3277   * @param  GroupCH5 This parameter can be a combination of the following values:
3278   *         @arg @ref LL_TIM_GROUPCH5_NONE
3279   *         @arg @ref LL_TIM_GROUPCH5_OC1REFC
3280   *         @arg @ref LL_TIM_GROUPCH5_OC2REFC
3281   *         @arg @ref LL_TIM_GROUPCH5_OC3REFC
3282   * @retval None
3283   */
LL_TIM_SetCH5CombinedChannels(TIM_TypeDef * TIMx,uint32_t GroupCH5)3284 __STATIC_INLINE void LL_TIM_SetCH5CombinedChannels(TIM_TypeDef *TIMx, uint32_t GroupCH5)
3285 {
3286   MODIFY_REG(TIMx->CCR5, (TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1), GroupCH5);
3287 }
3288 
3289 /**
3290   * @brief  Set the pulse on compare pulse width prescaler.
3291   * @note Macro IS_TIM_PULSEONCOMPARE_INSTANCE(TIMx) can be used to check
3292   *       whether or not the pulse on compare feature is supported by the timer
3293   *       instance.
3294   * @rmtoll ECR          PWPRSC           LL_TIM_OC_SetPulseWidthPrescaler
3295   * @param  TIMx Timer instance
3296   * @param  PulseWidthPrescaler This parameter can be one of the following values:
3297   *         @arg @ref LL_TIM_PWPRSC_X1
3298   *         @arg @ref LL_TIM_PWPRSC_X2
3299   *         @arg @ref LL_TIM_PWPRSC_X4
3300   *         @arg @ref LL_TIM_PWPRSC_X8
3301   *         @arg @ref LL_TIM_PWPRSC_X16
3302   *         @arg @ref LL_TIM_PWPRSC_X32
3303   *         @arg @ref LL_TIM_PWPRSC_X64
3304   *         @arg @ref LL_TIM_PWPRSC_X128
3305   * @retval None
3306   */
LL_TIM_OC_SetPulseWidthPrescaler(TIM_TypeDef * TIMx,uint32_t PulseWidthPrescaler)3307 __STATIC_INLINE void LL_TIM_OC_SetPulseWidthPrescaler(TIM_TypeDef *TIMx, uint32_t PulseWidthPrescaler)
3308 {
3309   MODIFY_REG(TIMx->ECR, TIM_ECR_PWPRSC, PulseWidthPrescaler);
3310 }
3311 
3312 /**
3313   * @brief  Get the pulse on compare pulse width prescaler.
3314   * @note Macro IS_TIM_PULSEONCOMPARE_INSTANCE(TIMx) can be used to check
3315   *       whether or not the pulse on compare feature is supported by the timer
3316   *       instance.
3317   * @rmtoll ECR          PWPRSC           LL_TIM_OC_GetPulseWidthPrescaler
3318   * @param  TIMx Timer instance
3319   * @retval Returned value can be one of the following values:
3320   *         @arg @ref LL_TIM_PWPRSC_X1
3321   *         @arg @ref LL_TIM_PWPRSC_X2
3322   *         @arg @ref LL_TIM_PWPRSC_X4
3323   *         @arg @ref LL_TIM_PWPRSC_X8
3324   *         @arg @ref LL_TIM_PWPRSC_X16
3325   *         @arg @ref LL_TIM_PWPRSC_X32
3326   *         @arg @ref LL_TIM_PWPRSC_X64
3327   *         @arg @ref LL_TIM_PWPRSC_X128
3328   */
LL_TIM_OC_GetPulseWidthPrescaler(const TIM_TypeDef * TIMx)3329 __STATIC_INLINE uint32_t LL_TIM_OC_GetPulseWidthPrescaler(const TIM_TypeDef *TIMx)
3330 {
3331   return (uint32_t)(READ_BIT(TIMx->ECR, TIM_ECR_PWPRSC));
3332 }
3333 
3334 /**
3335   * @brief  Set the pulse on compare pulse width duration.
3336   * @note Macro IS_TIM_PULSEONCOMPARE_INSTANCE(TIMx) can be used to check
3337   *       whether or not the pulse on compare feature is supported by the timer
3338   *       instance.
3339   * @rmtoll ECR          PW           LL_TIM_OC_SetPulseWidth
3340   * @param  TIMx Timer instance
3341   * @param  PulseWidth This parameter can be between Min_Data=0 and Max_Data=255
3342   * @retval None
3343   */
LL_TIM_OC_SetPulseWidth(TIM_TypeDef * TIMx,uint32_t PulseWidth)3344 __STATIC_INLINE void LL_TIM_OC_SetPulseWidth(TIM_TypeDef *TIMx, uint32_t PulseWidth)
3345 {
3346   MODIFY_REG(TIMx->ECR, TIM_ECR_PW, PulseWidth << TIM_ECR_PW_Pos);
3347 }
3348 
3349 /**
3350   * @brief  Get the pulse on compare pulse width duration.
3351   * @note Macro IS_TIM_PULSEONCOMPARE_INSTANCE(TIMx) can be used to check
3352   *       whether or not the pulse on compare feature is supported by the timer
3353   *       instance.
3354   * @rmtoll ECR          PW           LL_TIM_OC_GetPulseWidth
3355   * @param  TIMx Timer instance
3356   * @retval Returned value can be between Min_Data=0 and Max_Data=255:
3357   */
LL_TIM_OC_GetPulseWidth(const TIM_TypeDef * TIMx)3358 __STATIC_INLINE uint32_t LL_TIM_OC_GetPulseWidth(const TIM_TypeDef *TIMx)
3359 {
3360   return (uint32_t)(READ_BIT(TIMx->ECR, TIM_ECR_PW));
3361 }
3362 
3363 /**
3364   * @}
3365   */
3366 
3367 /** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
3368   * @{
3369   */
3370 /**
3371   * @brief  Configure input channel.
3372   * @rmtoll CCMR1        CC1S          LL_TIM_IC_Config\n
3373   *         CCMR1        IC1PSC        LL_TIM_IC_Config\n
3374   *         CCMR1        IC1F          LL_TIM_IC_Config\n
3375   *         CCMR1        CC2S          LL_TIM_IC_Config\n
3376   *         CCMR1        IC2PSC        LL_TIM_IC_Config\n
3377   *         CCMR1        IC2F          LL_TIM_IC_Config\n
3378   *         CCMR2        CC3S          LL_TIM_IC_Config\n
3379   *         CCMR2        IC3PSC        LL_TIM_IC_Config\n
3380   *         CCMR2        IC3F          LL_TIM_IC_Config\n
3381   *         CCMR2        CC4S          LL_TIM_IC_Config\n
3382   *         CCMR2        IC4PSC        LL_TIM_IC_Config\n
3383   *         CCMR2        IC4F          LL_TIM_IC_Config\n
3384   *         CCER         CC1P          LL_TIM_IC_Config\n
3385   *         CCER         CC1NP         LL_TIM_IC_Config\n
3386   *         CCER         CC2P          LL_TIM_IC_Config\n
3387   *         CCER         CC2NP         LL_TIM_IC_Config\n
3388   *         CCER         CC3P          LL_TIM_IC_Config\n
3389   *         CCER         CC3NP         LL_TIM_IC_Config\n
3390   *         CCER         CC4P          LL_TIM_IC_Config\n
3391   *         CCER         CC4NP         LL_TIM_IC_Config
3392   * @param  TIMx Timer instance
3393   * @param  Channel This parameter can be one of the following values:
3394   *         @arg @ref LL_TIM_CHANNEL_CH1
3395   *         @arg @ref LL_TIM_CHANNEL_CH2
3396   *         @arg @ref LL_TIM_CHANNEL_CH3
3397   *         @arg @ref LL_TIM_CHANNEL_CH4
3398   * @param  Configuration This parameter must be a combination of all the following values:
3399   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
3400   *         @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
3401   *         @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
3402   *         @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
3403   * @retval None
3404   */
LL_TIM_IC_Config(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)3405 __STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
3406 {
3407   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3408   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3409   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
3410              ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S))                \
3411              << SHIFT_TAB_ICxx[iChannel]);
3412   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
3413              (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
3414 }
3415 
3416 /**
3417   * @brief  Set the active input.
3418   * @rmtoll CCMR1        CC1S          LL_TIM_IC_SetActiveInput\n
3419   *         CCMR1        CC2S          LL_TIM_IC_SetActiveInput\n
3420   *         CCMR2        CC3S          LL_TIM_IC_SetActiveInput\n
3421   *         CCMR2        CC4S          LL_TIM_IC_SetActiveInput
3422   * @param  TIMx Timer instance
3423   * @param  Channel This parameter can be one of the following values:
3424   *         @arg @ref LL_TIM_CHANNEL_CH1
3425   *         @arg @ref LL_TIM_CHANNEL_CH2
3426   *         @arg @ref LL_TIM_CHANNEL_CH3
3427   *         @arg @ref LL_TIM_CHANNEL_CH4
3428   * @param  ICActiveInput This parameter can be one of the following values:
3429   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
3430   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
3431   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
3432   * @retval None
3433   */
LL_TIM_IC_SetActiveInput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICActiveInput)3434 __STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
3435 {
3436   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3437   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3438   MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
3439 }
3440 
3441 /**
3442   * @brief  Get the current active input.
3443   * @rmtoll CCMR1        CC1S          LL_TIM_IC_GetActiveInput\n
3444   *         CCMR1        CC2S          LL_TIM_IC_GetActiveInput\n
3445   *         CCMR2        CC3S          LL_TIM_IC_GetActiveInput\n
3446   *         CCMR2        CC4S          LL_TIM_IC_GetActiveInput
3447   * @param  TIMx Timer instance
3448   * @param  Channel This parameter can be one of the following values:
3449   *         @arg @ref LL_TIM_CHANNEL_CH1
3450   *         @arg @ref LL_TIM_CHANNEL_CH2
3451   *         @arg @ref LL_TIM_CHANNEL_CH3
3452   *         @arg @ref LL_TIM_CHANNEL_CH4
3453   * @retval Returned value can be one of the following values:
3454   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
3455   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
3456   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
3457   */
LL_TIM_IC_GetActiveInput(const TIM_TypeDef * TIMx,uint32_t Channel)3458 __STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(const TIM_TypeDef *TIMx, uint32_t Channel)
3459 {
3460   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3461   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3462   return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
3463 }
3464 
3465 /**
3466   * @brief  Set the prescaler of input channel.
3467   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_SetPrescaler\n
3468   *         CCMR1        IC2PSC        LL_TIM_IC_SetPrescaler\n
3469   *         CCMR2        IC3PSC        LL_TIM_IC_SetPrescaler\n
3470   *         CCMR2        IC4PSC        LL_TIM_IC_SetPrescaler
3471   * @param  TIMx Timer instance
3472   * @param  Channel This parameter can be one of the following values:
3473   *         @arg @ref LL_TIM_CHANNEL_CH1
3474   *         @arg @ref LL_TIM_CHANNEL_CH2
3475   *         @arg @ref LL_TIM_CHANNEL_CH3
3476   *         @arg @ref LL_TIM_CHANNEL_CH4
3477   * @param  ICPrescaler This parameter can be one of the following values:
3478   *         @arg @ref LL_TIM_ICPSC_DIV1
3479   *         @arg @ref LL_TIM_ICPSC_DIV2
3480   *         @arg @ref LL_TIM_ICPSC_DIV4
3481   *         @arg @ref LL_TIM_ICPSC_DIV8
3482   * @retval None
3483   */
LL_TIM_IC_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPrescaler)3484 __STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
3485 {
3486   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3487   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3488   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
3489 }
3490 
3491 /**
3492   * @brief  Get the current prescaler value acting on an  input channel.
3493   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_GetPrescaler\n
3494   *         CCMR1        IC2PSC        LL_TIM_IC_GetPrescaler\n
3495   *         CCMR2        IC3PSC        LL_TIM_IC_GetPrescaler\n
3496   *         CCMR2        IC4PSC        LL_TIM_IC_GetPrescaler
3497   * @param  TIMx Timer instance
3498   * @param  Channel This parameter can be one of the following values:
3499   *         @arg @ref LL_TIM_CHANNEL_CH1
3500   *         @arg @ref LL_TIM_CHANNEL_CH2
3501   *         @arg @ref LL_TIM_CHANNEL_CH3
3502   *         @arg @ref LL_TIM_CHANNEL_CH4
3503   * @retval Returned value can be one of the following values:
3504   *         @arg @ref LL_TIM_ICPSC_DIV1
3505   *         @arg @ref LL_TIM_ICPSC_DIV2
3506   *         @arg @ref LL_TIM_ICPSC_DIV4
3507   *         @arg @ref LL_TIM_ICPSC_DIV8
3508   */
LL_TIM_IC_GetPrescaler(const TIM_TypeDef * TIMx,uint32_t Channel)3509 __STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(const TIM_TypeDef *TIMx, uint32_t Channel)
3510 {
3511   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3512   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3513   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
3514 }
3515 
3516 /**
3517   * @brief  Set the input filter duration.
3518   * @rmtoll CCMR1        IC1F          LL_TIM_IC_SetFilter\n
3519   *         CCMR1        IC2F          LL_TIM_IC_SetFilter\n
3520   *         CCMR2        IC3F          LL_TIM_IC_SetFilter\n
3521   *         CCMR2        IC4F          LL_TIM_IC_SetFilter
3522   * @param  TIMx Timer instance
3523   * @param  Channel This parameter can be one of the following values:
3524   *         @arg @ref LL_TIM_CHANNEL_CH1
3525   *         @arg @ref LL_TIM_CHANNEL_CH2
3526   *         @arg @ref LL_TIM_CHANNEL_CH3
3527   *         @arg @ref LL_TIM_CHANNEL_CH4
3528   * @param  ICFilter This parameter can be one of the following values:
3529   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
3530   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
3531   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
3532   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
3533   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
3534   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
3535   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
3536   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
3537   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
3538   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
3539   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
3540   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
3541   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
3542   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
3543   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
3544   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
3545   * @retval None
3546   */
LL_TIM_IC_SetFilter(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICFilter)3547 __STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
3548 {
3549   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3550   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3551   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
3552 }
3553 
3554 /**
3555   * @brief  Get the input filter duration.
3556   * @rmtoll CCMR1        IC1F          LL_TIM_IC_GetFilter\n
3557   *         CCMR1        IC2F          LL_TIM_IC_GetFilter\n
3558   *         CCMR2        IC3F          LL_TIM_IC_GetFilter\n
3559   *         CCMR2        IC4F          LL_TIM_IC_GetFilter
3560   * @param  TIMx Timer instance
3561   * @param  Channel This parameter can be one of the following values:
3562   *         @arg @ref LL_TIM_CHANNEL_CH1
3563   *         @arg @ref LL_TIM_CHANNEL_CH2
3564   *         @arg @ref LL_TIM_CHANNEL_CH3
3565   *         @arg @ref LL_TIM_CHANNEL_CH4
3566   * @retval Returned value can be one of the following values:
3567   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
3568   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
3569   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
3570   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
3571   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
3572   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
3573   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
3574   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
3575   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
3576   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
3577   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
3578   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
3579   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
3580   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
3581   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
3582   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
3583   */
LL_TIM_IC_GetFilter(const TIM_TypeDef * TIMx,uint32_t Channel)3584 __STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(const TIM_TypeDef *TIMx, uint32_t Channel)
3585 {
3586   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3587   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3588   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
3589 }
3590 
3591 /**
3592   * @brief  Set the input channel polarity.
3593   * @rmtoll CCER         CC1P          LL_TIM_IC_SetPolarity\n
3594   *         CCER         CC1NP         LL_TIM_IC_SetPolarity\n
3595   *         CCER         CC2P          LL_TIM_IC_SetPolarity\n
3596   *         CCER         CC2NP         LL_TIM_IC_SetPolarity\n
3597   *         CCER         CC3P          LL_TIM_IC_SetPolarity\n
3598   *         CCER         CC3NP         LL_TIM_IC_SetPolarity\n
3599   *         CCER         CC4P          LL_TIM_IC_SetPolarity\n
3600   *         CCER         CC4NP         LL_TIM_IC_SetPolarity
3601   * @param  TIMx Timer instance
3602   * @param  Channel This parameter can be one of the following values:
3603   *         @arg @ref LL_TIM_CHANNEL_CH1
3604   *         @arg @ref LL_TIM_CHANNEL_CH2
3605   *         @arg @ref LL_TIM_CHANNEL_CH3
3606   *         @arg @ref LL_TIM_CHANNEL_CH4
3607   * @param  ICPolarity This parameter can be one of the following values:
3608   *         @arg @ref LL_TIM_IC_POLARITY_RISING
3609   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
3610   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
3611   * @retval None
3612   */
LL_TIM_IC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPolarity)3613 __STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
3614 {
3615   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3616   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
3617              ICPolarity << SHIFT_TAB_CCxP[iChannel]);
3618 }
3619 
3620 /**
3621   * @brief  Get the current input channel polarity.
3622   * @rmtoll CCER         CC1P          LL_TIM_IC_GetPolarity\n
3623   *         CCER         CC1NP         LL_TIM_IC_GetPolarity\n
3624   *         CCER         CC2P          LL_TIM_IC_GetPolarity\n
3625   *         CCER         CC2NP         LL_TIM_IC_GetPolarity\n
3626   *         CCER         CC3P          LL_TIM_IC_GetPolarity\n
3627   *         CCER         CC3NP         LL_TIM_IC_GetPolarity\n
3628   *         CCER         CC4P          LL_TIM_IC_GetPolarity\n
3629   *         CCER         CC4NP         LL_TIM_IC_GetPolarity
3630   * @param  TIMx Timer instance
3631   * @param  Channel This parameter can be one of the following values:
3632   *         @arg @ref LL_TIM_CHANNEL_CH1
3633   *         @arg @ref LL_TIM_CHANNEL_CH2
3634   *         @arg @ref LL_TIM_CHANNEL_CH3
3635   *         @arg @ref LL_TIM_CHANNEL_CH4
3636   * @retval Returned value can be one of the following values:
3637   *         @arg @ref LL_TIM_IC_POLARITY_RISING
3638   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
3639   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
3640   */
LL_TIM_IC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)3641 __STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
3642 {
3643   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3644   return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
3645           SHIFT_TAB_CCxP[iChannel]);
3646 }
3647 
3648 /**
3649   * @brief  Connect the TIMx_CH1, CH2 and CH3 pins  to the TI1 input (XOR combination).
3650   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3651   *       a timer instance provides an XOR input.
3652   * @rmtoll CR2          TI1S          LL_TIM_IC_EnableXORCombination
3653   * @param  TIMx Timer instance
3654   * @retval None
3655   */
LL_TIM_IC_EnableXORCombination(TIM_TypeDef * TIMx)3656 __STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
3657 {
3658   SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
3659 }
3660 
3661 /**
3662   * @brief  Disconnect the TIMx_CH1, CH2 and CH3 pins  from the TI1 input.
3663   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3664   *       a timer instance provides an XOR input.
3665   * @rmtoll CR2          TI1S          LL_TIM_IC_DisableXORCombination
3666   * @param  TIMx Timer instance
3667   * @retval None
3668   */
LL_TIM_IC_DisableXORCombination(TIM_TypeDef * TIMx)3669 __STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
3670 {
3671   CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
3672 }
3673 
3674 /**
3675   * @brief  Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
3676   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3677   * a timer instance provides an XOR input.
3678   * @rmtoll CR2          TI1S          LL_TIM_IC_IsEnabledXORCombination
3679   * @param  TIMx Timer instance
3680   * @retval State of bit (1 or 0).
3681   */
LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef * TIMx)3682 __STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef *TIMx)
3683 {
3684   return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
3685 }
3686 
3687 /**
3688   * @brief  Get captured value for input channel 1.
3689   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3690   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3691   *       whether or not a timer instance supports a 32 bits counter.
3692   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
3693   *       input channel 1 is supported by a timer instance.
3694   * @note If dithering is activated, pay attention to the returned value interpretation.
3695   * @rmtoll CCR1         CCR1          LL_TIM_IC_GetCaptureCH1
3696   * @param  TIMx Timer instance
3697   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3698   */
LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef * TIMx)3699 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef *TIMx)
3700 {
3701   return (uint32_t)(READ_REG(TIMx->CCR1));
3702 }
3703 
3704 /**
3705   * @brief  Get captured value for input channel 2.
3706   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3707   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3708   *       whether or not a timer instance supports a 32 bits counter.
3709   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
3710   *       input channel 2 is supported by a timer instance.
3711   * @note If dithering is activated, pay attention to the returned value interpretation.
3712   * @rmtoll CCR2         CCR2          LL_TIM_IC_GetCaptureCH2
3713   * @param  TIMx Timer instance
3714   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3715   */
LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef * TIMx)3716 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef *TIMx)
3717 {
3718   return (uint32_t)(READ_REG(TIMx->CCR2));
3719 }
3720 
3721 /**
3722   * @brief  Get captured value for input channel 3.
3723   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3724   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3725   *       whether or not a timer instance supports a 32 bits counter.
3726   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
3727   *       input channel 3 is supported by a timer instance.
3728   * @note If dithering is activated, pay attention to the returned value interpretation.
3729   * @rmtoll CCR3         CCR3          LL_TIM_IC_GetCaptureCH3
3730   * @param  TIMx Timer instance
3731   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3732   */
LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef * TIMx)3733 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef *TIMx)
3734 {
3735   return (uint32_t)(READ_REG(TIMx->CCR3));
3736 }
3737 
3738 /**
3739   * @brief  Get captured value for input channel 4.
3740   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3741   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3742   *       whether or not a timer instance supports a 32 bits counter.
3743   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
3744   *       input channel 4 is supported by a timer instance.
3745   * @note If dithering is activated, pay attention to the returned value interpretation.
3746   * @rmtoll CCR4         CCR4          LL_TIM_IC_GetCaptureCH4
3747   * @param  TIMx Timer instance
3748   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3749   */
LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef * TIMx)3750 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef *TIMx)
3751 {
3752   return (uint32_t)(READ_REG(TIMx->CCR4));
3753 }
3754 
3755 /**
3756   * @}
3757   */
3758 
3759 /** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
3760   * @{
3761   */
3762 /**
3763   * @brief  Enable external clock mode 2.
3764   * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
3765   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3766   *       whether or not a timer instance supports external clock mode2.
3767   * @rmtoll SMCR         ECE           LL_TIM_EnableExternalClock
3768   * @param  TIMx Timer instance
3769   * @retval None
3770   */
LL_TIM_EnableExternalClock(TIM_TypeDef * TIMx)3771 __STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
3772 {
3773   SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3774 }
3775 
3776 /**
3777   * @brief  Disable external clock mode 2.
3778   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3779   *       whether or not a timer instance supports external clock mode2.
3780   * @rmtoll SMCR         ECE           LL_TIM_DisableExternalClock
3781   * @param  TIMx Timer instance
3782   * @retval None
3783   */
LL_TIM_DisableExternalClock(TIM_TypeDef * TIMx)3784 __STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
3785 {
3786   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3787 }
3788 
3789 /**
3790   * @brief  Indicate whether external clock mode 2 is enabled.
3791   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3792   *       whether or not a timer instance supports external clock mode2.
3793   * @rmtoll SMCR         ECE           LL_TIM_IsEnabledExternalClock
3794   * @param  TIMx Timer instance
3795   * @retval State of bit (1 or 0).
3796   */
LL_TIM_IsEnabledExternalClock(const TIM_TypeDef * TIMx)3797 __STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(const TIM_TypeDef *TIMx)
3798 {
3799   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
3800 }
3801 
3802 /**
3803   * @brief  Set the clock source of the counter clock.
3804   * @note when selected clock source is external clock mode 1, the timer input
3805   *       the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
3806   *       function. This timer input must be configured by calling
3807   *       the @ref LL_TIM_IC_Config() function.
3808   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
3809   *       whether or not a timer instance supports external clock mode1.
3810   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3811   *       whether or not a timer instance supports external clock mode2.
3812   * @rmtoll SMCR         SMS           LL_TIM_SetClockSource\n
3813   *         SMCR         ECE           LL_TIM_SetClockSource
3814   * @param  TIMx Timer instance
3815   * @param  ClockSource This parameter can be one of the following values:
3816   *         @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
3817   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
3818   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
3819   * @retval None
3820   */
LL_TIM_SetClockSource(TIM_TypeDef * TIMx,uint32_t ClockSource)3821 __STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
3822 {
3823   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
3824 }
3825 
3826 /**
3827   * @brief  Set the encoder interface mode.
3828   * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
3829   *       whether or not a timer instance supports the encoder mode.
3830   * @rmtoll SMCR         SMS           LL_TIM_SetEncoderMode
3831   * @param  TIMx Timer instance
3832   * @param  EncoderMode This parameter can be one of the following values:
3833   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI1
3834   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI2
3835   *         @arg @ref LL_TIM_ENCODERMODE_X4_TI12
3836   *         @arg @ref LL_TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X2
3837   *         @arg @ref LL_TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X1
3838   *         @arg @ref LL_TIM_ENCODERMODE_DIRECTIONALCLOCK_X2
3839   *         @arg @ref LL_TIM_ENCODERMODE_DIRECTIONALCLOCK_X1_TI12
3840   *         @arg @ref LL_TIM_ENCODERMODE_X1_TI1
3841   *         @arg @ref LL_TIM_ENCODERMODE_X1_TI2
3842   * @retval None
3843   */
LL_TIM_SetEncoderMode(TIM_TypeDef * TIMx,uint32_t EncoderMode)3844 __STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
3845 {
3846   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
3847 }
3848 
3849 /**
3850   * @}
3851   */
3852 
3853 /** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
3854   * @{
3855   */
3856 /**
3857   * @brief  Set the trigger output (TRGO) used for timer synchronization .
3858   * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
3859   *       whether or not a timer instance can operate as a master timer.
3860   * @rmtoll CR2          MMS           LL_TIM_SetTriggerOutput
3861   * @param  TIMx Timer instance
3862   * @param  TimerSynchronization This parameter can be one of the following values:
3863   *         @arg @ref LL_TIM_TRGO_RESET
3864   *         @arg @ref LL_TIM_TRGO_ENABLE
3865   *         @arg @ref LL_TIM_TRGO_UPDATE
3866   *         @arg @ref LL_TIM_TRGO_CC1IF
3867   *         @arg @ref LL_TIM_TRGO_OC1REF
3868   *         @arg @ref LL_TIM_TRGO_OC2REF
3869   *         @arg @ref LL_TIM_TRGO_OC3REF
3870   *         @arg @ref LL_TIM_TRGO_OC4REF
3871   *         @arg @ref LL_TIM_TRGO_ENCODERCLK
3872   * @retval None
3873   */
LL_TIM_SetTriggerOutput(TIM_TypeDef * TIMx,uint32_t TimerSynchronization)3874 __STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
3875 {
3876   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
3877 }
3878 
3879 /**
3880   * @brief  Set the trigger output 2 (TRGO2) used for ADC synchronization .
3881   * @note Macro IS_TIM_TRGO2_INSTANCE(TIMx) can be used to check
3882   *       whether or not a timer instance can be used for ADC synchronization.
3883   * @rmtoll CR2          MMS2          LL_TIM_SetTriggerOutput2
3884   * @param  TIMx Timer Instance
3885   * @param  ADCSynchronization This parameter can be one of the following values:
3886   *         @arg @ref LL_TIM_TRGO2_RESET
3887   *         @arg @ref LL_TIM_TRGO2_ENABLE
3888   *         @arg @ref LL_TIM_TRGO2_UPDATE
3889   *         @arg @ref LL_TIM_TRGO2_CC1F
3890   *         @arg @ref LL_TIM_TRGO2_OC1
3891   *         @arg @ref LL_TIM_TRGO2_OC2
3892   *         @arg @ref LL_TIM_TRGO2_OC3
3893   *         @arg @ref LL_TIM_TRGO2_OC4
3894   *         @arg @ref LL_TIM_TRGO2_OC5
3895   *         @arg @ref LL_TIM_TRGO2_OC6
3896   *         @arg @ref LL_TIM_TRGO2_OC4_RISINGFALLING
3897   *         @arg @ref LL_TIM_TRGO2_OC6_RISINGFALLING
3898   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_RISING
3899   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_FALLING
3900   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_RISING
3901   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_FALLING
3902   * @retval None
3903   */
LL_TIM_SetTriggerOutput2(TIM_TypeDef * TIMx,uint32_t ADCSynchronization)3904 __STATIC_INLINE void LL_TIM_SetTriggerOutput2(TIM_TypeDef *TIMx, uint32_t ADCSynchronization)
3905 {
3906   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS2, ADCSynchronization);
3907 }
3908 
3909 /**
3910   * @brief  Set the synchronization mode of a slave timer.
3911   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3912   *       a timer instance can operate as a slave timer.
3913   * @rmtoll SMCR         SMS           LL_TIM_SetSlaveMode
3914   * @param  TIMx Timer instance
3915   * @param  SlaveMode This parameter can be one of the following values:
3916   *         @arg @ref LL_TIM_SLAVEMODE_DISABLED
3917   *         @arg @ref LL_TIM_SLAVEMODE_RESET
3918   *         @arg @ref LL_TIM_SLAVEMODE_GATED
3919   *         @arg @ref LL_TIM_SLAVEMODE_TRIGGER
3920   *         @arg @ref LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER
3921   *         @arg @ref LL_TIM_SLAVEMODE_COMBINED_GATEDRESET
3922   * @retval None
3923   */
LL_TIM_SetSlaveMode(TIM_TypeDef * TIMx,uint32_t SlaveMode)3924 __STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
3925 {
3926   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
3927 }
3928 
3929 /**
3930   * @brief  Set the selects the trigger input to be used to synchronize the counter.
3931   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3932   *       a timer instance can operate as a slave timer.
3933   * @rmtoll SMCR         TS            LL_TIM_SetTriggerInput
3934   * @param  TIMx Timer instance
3935   * @param  TriggerInput This parameter can be one of the following values:
3936   *         @arg @ref LL_TIM_TS_ITR0
3937   *         @arg @ref LL_TIM_TS_ITR1
3938   *         @arg @ref LL_TIM_TS_ITR2
3939   *         @arg @ref LL_TIM_TS_ITR3
3940   *         @arg @ref LL_TIM_TS_ITR4
3941   *         @arg @ref LL_TIM_TS_ITR5
3942   *         @arg @ref LL_TIM_TS_ITR6
3943   *         @arg @ref LL_TIM_TS_ITR7
3944   *         @arg @ref LL_TIM_TS_ITR8
3945   *         @arg @ref LL_TIM_TS_ITR11
3946   *         @arg @ref LL_TIM_TS_TI1F_ED
3947   *         @arg @ref LL_TIM_TS_TI1FP1
3948   *         @arg @ref LL_TIM_TS_TI2FP2
3949   *         @arg @ref LL_TIM_TS_ETRF
3950   * @retval None
3951   */
LL_TIM_SetTriggerInput(TIM_TypeDef * TIMx,uint32_t TriggerInput)3952 __STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
3953 {
3954   MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
3955 }
3956 
3957 /**
3958   * @brief  Enable the Master/Slave mode.
3959   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3960   *       a timer instance can operate as a slave timer.
3961   * @rmtoll SMCR         MSM           LL_TIM_EnableMasterSlaveMode
3962   * @param  TIMx Timer instance
3963   * @retval None
3964   */
LL_TIM_EnableMasterSlaveMode(TIM_TypeDef * TIMx)3965 __STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
3966 {
3967   SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3968 }
3969 
3970 /**
3971   * @brief  Disable the Master/Slave mode.
3972   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3973   *       a timer instance can operate as a slave timer.
3974   * @rmtoll SMCR         MSM           LL_TIM_DisableMasterSlaveMode
3975   * @param  TIMx Timer instance
3976   * @retval None
3977   */
LL_TIM_DisableMasterSlaveMode(TIM_TypeDef * TIMx)3978 __STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
3979 {
3980   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3981 }
3982 
3983 /**
3984   * @brief Indicates whether the Master/Slave mode is enabled.
3985   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3986   * a timer instance can operate as a slave timer.
3987   * @rmtoll SMCR         MSM           LL_TIM_IsEnabledMasterSlaveMode
3988   * @param  TIMx Timer instance
3989   * @retval State of bit (1 or 0).
3990   */
LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef * TIMx)3991 __STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef *TIMx)
3992 {
3993   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
3994 }
3995 
3996 /**
3997   * @brief  Configure the external trigger (ETR) input.
3998   * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
3999   *       a timer instance provides an external trigger input.
4000   * @rmtoll SMCR         ETP           LL_TIM_ConfigETR\n
4001   *         SMCR         ETPS          LL_TIM_ConfigETR\n
4002   *         SMCR         ETF           LL_TIM_ConfigETR
4003   * @param  TIMx Timer instance
4004   * @param  ETRPolarity This parameter can be one of the following values:
4005   *         @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
4006   *         @arg @ref LL_TIM_ETR_POLARITY_INVERTED
4007   * @param  ETRPrescaler This parameter can be one of the following values:
4008   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV1
4009   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV2
4010   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV4
4011   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV8
4012   * @param  ETRFilter This parameter can be one of the following values:
4013   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1
4014   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
4015   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
4016   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
4017   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
4018   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
4019   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
4020   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
4021   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
4022   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
4023   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
4024   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
4025   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
4026   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
4027   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
4028   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
4029   * @retval None
4030   */
LL_TIM_ConfigETR(TIM_TypeDef * TIMx,uint32_t ETRPolarity,uint32_t ETRPrescaler,uint32_t ETRFilter)4031 __STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
4032                                       uint32_t ETRFilter)
4033 {
4034   MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
4035 }
4036 
4037 /**
4038   * @brief  Select the external trigger (ETR) input source.
4039   * @note Macro IS_TIM_ETRSEL_INSTANCE(TIMx) can be used to check whether or
4040   *       not a timer instance supports ETR source selection.
4041   * @rmtoll AF1          ETRSEL        LL_TIM_SetETRSource
4042   * @param  TIMx Timer instance
4043   * @param  ETRSource This parameter can be one of the following values:
4044   *
4045   *         TIM1: any combination of ETR_RMP where
4046   *
4047   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_GPIO
4048   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_COMP1
4049   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_COMP2        (*)
4050   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_MSIK
4051   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_HSI
4052   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_MSIS
4053   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC2_AWD2    (*)
4054   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC2_AWD3    (*)
4055   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC1_AWD1
4056   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC1_AWD2
4057   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC1_AWD3
4058   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC4_AWD1
4059   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC4_AWD2
4060   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC4_AWD3
4061   *            @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC2_AWD1    (*)
4062   *
4063   *         TIM2: any combination of ETR_RMP where
4064   *
4065   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_GPIO
4066   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_COMP1
4067   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_COMP2        (*)
4068   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_MSIK
4069   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_HSI
4070   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_MSIS
4071   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_DCMI_VSYNC   (*)
4072   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_LTDC_VSYNC   (*)
4073   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_TIM3_ETR
4074   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_TIM4_ETR
4075   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_TIM5_ETR
4076   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_LSE
4077   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_DSI_TE       (*)
4078   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_DCMI_HSYNC   (*)
4079   *            @arg @ref LL_TIM_TIM2_ETRSOURCE_LTDC_HSYNC   (*)
4080   *
4081   *         TIM3: any combination of ETR_RMP where
4082   *
4083   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_GPIO
4084   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_COMP1
4085   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_COMP2        (*)
4086   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_MSIK
4087   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_HSI
4088   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_MSIS
4089   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_DCMI_VSYNC   (*)
4090   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_LTDC_VSYNC   (*)
4091   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_TIM2_ETR
4092   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_TIM4_ETR
4093   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_DSI_TE       (*)
4094   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_ADC1_AWD1
4095   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_ADC1_AWD2
4096   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_ADC1_AWD3
4097   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_DCMI_HSYNC   (*)
4098   *            @arg @ref LL_TIM_TIM3_ETRSOURCE_LTDC_HSYNC   (*)
4099   *
4100   *         TIM4: any combination of ETR_RMP where
4101   *
4102   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_GPIO
4103   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_COMP1
4104   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_COMP2        (*)
4105   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_MSIK
4106   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_HSI
4107   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_MSIS
4108   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_DCMI_VSYNC   (*)
4109   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_LTDC_VSYNC   (*)
4110   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_TIM3_ETR
4111   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_TIM5_ETR
4112   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_DSI_TE       (*)
4113   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_ADC2_AWD1    (*)
4114   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_ADC2_AWD2    (*)
4115   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_ADC2_AWD3    (*)
4116   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_DCMI_HSYNC   (*)
4117   *            @arg @ref LL_TIM_TIM4_ETRSOURCE_LTDC_HSYNC   (*)
4118   *
4119   *         TIM5: any combination of ETR_RMP where
4120   *
4121   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_GPIO
4122   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_COMP1
4123   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_COMP2        (*)
4124   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_MSIK
4125   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_HSI
4126   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_MSIS
4127   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_DCMI_VSYNC   (*)
4128   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_LTDC_VSYNC   (*)
4129   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_TIM2_ETR
4130   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_TIM3_ETR
4131   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_DSI_TE       (*)
4132   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_DCMI_HSYNC   (*)
4133   *            @arg @ref LL_TIM_TIM5_ETRSOURCE_LTDC_HSYNC   (*)
4134   *
4135   *         TIM8: any combination of ETR_RMP where
4136   *
4137   *            . . ETR_RMP can be one of the following values
4138   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_GPIO
4139   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_COMP1
4140   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_COMP2       (*)
4141   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_MSIK
4142   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_HSI
4143   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_MSIS
4144   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC2_AWD2   (*)
4145   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC2_AWD3   (*)
4146   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC1_AWD1
4147   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC1_AWD2
4148   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC1_AWD3
4149   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC4_AWD1
4150   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC4_AWD2
4151   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC4_AWD3
4152   *            @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC2_AWD1   (*)
4153   *
4154   *         (*)  Value not defined in all devices. \n
4155   * @retval None
4156   */
LL_TIM_SetETRSource(TIM_TypeDef * TIMx,uint32_t ETRSource)4157 __STATIC_INLINE void LL_TIM_SetETRSource(TIM_TypeDef *TIMx, uint32_t ETRSource)
4158 {
4159   MODIFY_REG(TIMx->AF1, TIMx_AF1_ETRSEL, ETRSource);
4160 }
4161 
4162 /**
4163   * @brief  Enable SMS preload.
4164   * @note Macro IS_TIM_SMS_PRELOAD_INSTANCE(TIMx) can be used to check
4165   *       whether or not a timer instance supports the preload of SMS field in SMCR register.
4166   * @rmtoll SMCR         SMSPE           LL_TIM_EnableSMSPreload
4167   * @param  TIMx Timer instance
4168   * @retval None
4169   */
LL_TIM_EnableSMSPreload(TIM_TypeDef * TIMx)4170 __STATIC_INLINE void LL_TIM_EnableSMSPreload(TIM_TypeDef *TIMx)
4171 {
4172   SET_BIT(TIMx->SMCR, TIM_SMCR_SMSPE);
4173 }
4174 
4175 /**
4176   * @brief  Disable SMS preload.
4177   * @note Macro IS_TIM_SMS_PRELOAD_INSTANCE(TIMx) can be used to check
4178   *       whether or not a timer instance supports the preload of SMS field in SMCR register.
4179   * @rmtoll SMCR         SMSPE           LL_TIM_DisableSMSPreload
4180   * @param  TIMx Timer instance
4181   * @retval None
4182   */
LL_TIM_DisableSMSPreload(TIM_TypeDef * TIMx)4183 __STATIC_INLINE void LL_TIM_DisableSMSPreload(TIM_TypeDef *TIMx)
4184 {
4185   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_SMSPE);
4186 }
4187 
4188 /**
4189   * @brief  Indicate whether  SMS preload is enabled.
4190   * @note Macro IS_TIM_SMS_PRELOAD_INSTANCE(TIMx) can be used to check
4191   *       whether or not a timer instance supports the preload of SMS field in SMCR register.
4192   * @rmtoll SMCR         SMSPE           LL_TIM_IsEnabledSMSPreload
4193   * @param  TIMx Timer instance
4194   * @retval State of bit (1 or 0).
4195   */
LL_TIM_IsEnabledSMSPreload(const TIM_TypeDef * TIMx)4196 __STATIC_INLINE uint32_t LL_TIM_IsEnabledSMSPreload(const TIM_TypeDef *TIMx)
4197 {
4198   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_SMSPE) == (TIM_SMCR_SMSPE)) ? 1UL : 0UL);
4199 }
4200 
4201 /**
4202   * @brief  Set the preload source of SMS.
4203   * @note Macro IS_TIM_SMS_PRELOAD_INSTANCE(TIMx) can be used to check
4204   *       whether or not a timer instance supports the preload of SMS field in SMCR register.
4205   * @rmtoll SMCR         SMSPS        LL_TIM_SetSMSPreloadSource\n
4206   * @param  TIMx Timer instance
4207   * @param  PreloadSource This parameter can be one of the following values:
4208   *         @arg @ref LL_TIM_SMSPS_TIMUPDATE
4209   *         @arg @ref LL_TIM_SMSPS_INDEX
4210   * @retval None
4211   */
LL_TIM_SetSMSPreloadSource(TIM_TypeDef * TIMx,uint32_t PreloadSource)4212 __STATIC_INLINE void LL_TIM_SetSMSPreloadSource(TIM_TypeDef *TIMx, uint32_t PreloadSource)
4213 {
4214   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMSPS, PreloadSource);
4215 }
4216 
4217 /**
4218   * @brief  Get the preload source of SMS.
4219   * @note Macro IS_TIM_SMS_PRELOAD_INSTANCE(TIMx) can be used to check
4220   *       whether or not a timer instance supports the preload of SMS field in SMCR register.
4221   * @rmtoll SMCR         SMSPS        LL_TIM_GetSMSPreloadSource\n
4222   * @param  TIMx Timer instance
4223   * @retval Returned value can be one of the following values:
4224   *         @arg @ref LL_TIM_SMSPS_TIMUPDATE
4225   *         @arg @ref LL_TIM_SMSPS_INDEX
4226   */
LL_TIM_GetSMSPreloadSource(const TIM_TypeDef * TIMx)4227 __STATIC_INLINE uint32_t LL_TIM_GetSMSPreloadSource(const TIM_TypeDef *TIMx)
4228 {
4229   return (uint32_t)(READ_BIT(TIMx->SMCR, TIM_SMCR_SMSPS));
4230 }
4231 
4232 /**
4233   * @}
4234   */
4235 
4236 /** @defgroup TIM_LL_EF_Break_Function Break function configuration
4237   * @{
4238   */
4239 /**
4240   * @brief  Enable the break function.
4241   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4242   *       a timer instance provides a break input.
4243   * @rmtoll BDTR         BKE           LL_TIM_EnableBRK
4244   * @param  TIMx Timer instance
4245   * @retval None
4246   */
LL_TIM_EnableBRK(TIM_TypeDef * TIMx)4247 __STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
4248 {
4249   SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
4250 }
4251 
4252 /**
4253   * @brief  Disable the break function.
4254   * @rmtoll BDTR         BKE           LL_TIM_DisableBRK
4255   * @param  TIMx Timer instance
4256   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4257   *       a timer instance provides a break input.
4258   * @retval None
4259   */
LL_TIM_DisableBRK(TIM_TypeDef * TIMx)4260 __STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
4261 {
4262   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
4263 }
4264 
4265 /**
4266   * @brief  Configure the break input.
4267   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4268   *       a timer instance provides a break input.
4269   * @note Bidirectional mode is only supported by advanced timer instances.
4270   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
4271   *       a timer instance is an advanced-control timer.
4272   * @note In bidirectional mode (BKBID bit set), the Break input is configured both
4273   *        in input mode and in open drain output mode. Any active Break event will
4274   *        assert a low logic level on the Break input to indicate an internal break
4275   *        event to external devices.
4276   * @note When bidirectional mode isn't supported, BreakAFMode must be set to
4277   *       LL_TIM_BREAK_AFMODE_INPUT.
4278   * @rmtoll BDTR         BKP           LL_TIM_ConfigBRK\n
4279   *         BDTR         BKF           LL_TIM_ConfigBRK\n
4280   *         BDTR         BKBID         LL_TIM_ConfigBRK
4281   * @param  TIMx Timer instance
4282   * @param  BreakPolarity This parameter can be one of the following values:
4283   *         @arg @ref LL_TIM_BREAK_POLARITY_LOW
4284   *         @arg @ref LL_TIM_BREAK_POLARITY_HIGH
4285   * @param  BreakFilter This parameter can be one of the following values:
4286   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1
4287   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N2
4288   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N4
4289   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N8
4290   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N6
4291   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N8
4292   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N6
4293   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N8
4294   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N6
4295   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N8
4296   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N5
4297   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N6
4298   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N8
4299   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N5
4300   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N6
4301   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N8
4302   * @param  BreakAFMode This parameter can be one of the following values:
4303   *         @arg @ref LL_TIM_BREAK_AFMODE_INPUT
4304   *         @arg @ref LL_TIM_BREAK_AFMODE_BIDIRECTIONAL
4305   * @retval None
4306   */
LL_TIM_ConfigBRK(TIM_TypeDef * TIMx,uint32_t BreakPolarity,uint32_t BreakFilter,uint32_t BreakAFMode)4307 __STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity, uint32_t BreakFilter,
4308                                       uint32_t BreakAFMode)
4309 {
4310   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP | TIM_BDTR_BKF | TIM_BDTR_BKBID, BreakPolarity | BreakFilter | BreakAFMode);
4311 }
4312 
4313 /**
4314   * @brief  Disarm the break input (when it operates in bidirectional mode).
4315   * @note  The break input can be disarmed only when it is configured in
4316   *        bidirectional mode and when when MOE is reset.
4317   * @note  Purpose is to be able to have the input voltage back to high-state,
4318   *        whatever the time constant on the output .
4319   * @rmtoll BDTR         BKDSRM        LL_TIM_DisarmBRK
4320   * @param  TIMx Timer instance
4321   * @retval None
4322   */
LL_TIM_DisarmBRK(TIM_TypeDef * TIMx)4323 __STATIC_INLINE void LL_TIM_DisarmBRK(TIM_TypeDef *TIMx)
4324 {
4325   SET_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
4326 }
4327 
4328 /**
4329   * @brief  Enable the break 2 function.
4330   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
4331   *       a timer instance provides a second break input.
4332   * @rmtoll BDTR         BK2E          LL_TIM_EnableBRK2
4333   * @param  TIMx Timer instance
4334   * @retval None
4335   */
LL_TIM_EnableBRK2(TIM_TypeDef * TIMx)4336 __STATIC_INLINE void LL_TIM_EnableBRK2(TIM_TypeDef *TIMx)
4337 {
4338   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
4339 }
4340 
4341 /**
4342   * @brief  Disable the break  2 function.
4343   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
4344   *       a timer instance provides a second break input.
4345   * @rmtoll BDTR         BK2E          LL_TIM_DisableBRK2
4346   * @param  TIMx Timer instance
4347   * @retval None
4348   */
LL_TIM_DisableBRK2(TIM_TypeDef * TIMx)4349 __STATIC_INLINE void LL_TIM_DisableBRK2(TIM_TypeDef *TIMx)
4350 {
4351   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
4352 }
4353 
4354 /**
4355   * @brief  Configure the break 2 input.
4356   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
4357   *       a timer instance provides a second break input.
4358   * @note Bidirectional mode is only supported by advanced timer instances.
4359   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
4360   *       a timer instance is an advanced-control timer.
4361   * @note In bidirectional mode (BK2BID bit set), the Break 2 input is configured both
4362   *        in input mode and in open drain output mode. Any active Break event will
4363   *        assert a low logic level on the Break 2 input to indicate an internal break
4364   *        event to external devices.
4365   * @note When bidirectional mode isn't supported, Break2AFMode must be set to
4366   *       LL_TIM_BREAK2_AFMODE_INPUT.
4367   * @rmtoll BDTR         BK2P          LL_TIM_ConfigBRK2\n
4368   *         BDTR         BK2F          LL_TIM_ConfigBRK2\n
4369   *         BDTR         BK2BID        LL_TIM_ConfigBRK2
4370   * @param  TIMx Timer instance
4371   * @param  Break2Polarity This parameter can be one of the following values:
4372   *         @arg @ref LL_TIM_BREAK2_POLARITY_LOW
4373   *         @arg @ref LL_TIM_BREAK2_POLARITY_HIGH
4374   * @param  Break2Filter This parameter can be one of the following values:
4375   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1
4376   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N2
4377   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N4
4378   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N8
4379   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N6
4380   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N8
4381   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N6
4382   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N8
4383   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N6
4384   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N8
4385   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N5
4386   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N6
4387   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N8
4388   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N5
4389   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N6
4390   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N8
4391   * @param  Break2AFMode This parameter can be one of the following values:
4392   *         @arg @ref LL_TIM_BREAK2_AFMODE_INPUT
4393   *         @arg @ref LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL
4394   * @retval None
4395   */
LL_TIM_ConfigBRK2(TIM_TypeDef * TIMx,uint32_t Break2Polarity,uint32_t Break2Filter,uint32_t Break2AFMode)4396 __STATIC_INLINE void LL_TIM_ConfigBRK2(TIM_TypeDef *TIMx, uint32_t Break2Polarity, uint32_t Break2Filter,
4397                                        uint32_t Break2AFMode)
4398 {
4399   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BK2P | TIM_BDTR_BK2F | TIM_BDTR_BK2BID, Break2Polarity | Break2Filter | Break2AFMode);
4400 }
4401 
4402 /**
4403   * @brief  Disarm the break 2 input (when it operates in bidirectional mode).
4404   * @note  The break 2 input can be disarmed only when it is configured in
4405   *        bidirectional mode and when when MOE is reset.
4406   * @note  Purpose is to be able to have the input voltage back to high-state,
4407   *        whatever the time constant on the output.
4408   * @rmtoll BDTR         BK2DSRM       LL_TIM_DisarmBRK2
4409   * @param  TIMx Timer instance
4410   * @retval None
4411   */
LL_TIM_DisarmBRK2(TIM_TypeDef * TIMx)4412 __STATIC_INLINE void LL_TIM_DisarmBRK2(TIM_TypeDef *TIMx)
4413 {
4414   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
4415 }
4416 
4417 /**
4418   * @brief  Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
4419   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4420   *       a timer instance provides a break input.
4421   * @rmtoll BDTR         OSSI          LL_TIM_SetOffStates\n
4422   *         BDTR         OSSR          LL_TIM_SetOffStates
4423   * @param  TIMx Timer instance
4424   * @param  OffStateIdle This parameter can be one of the following values:
4425   *         @arg @ref LL_TIM_OSSI_DISABLE
4426   *         @arg @ref LL_TIM_OSSI_ENABLE
4427   * @param  OffStateRun This parameter can be one of the following values:
4428   *         @arg @ref LL_TIM_OSSR_DISABLE
4429   *         @arg @ref LL_TIM_OSSR_ENABLE
4430   * @retval None
4431   */
LL_TIM_SetOffStates(TIM_TypeDef * TIMx,uint32_t OffStateIdle,uint32_t OffStateRun)4432 __STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
4433 {
4434   MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
4435 }
4436 
4437 /**
4438   * @brief  Enable automatic output (MOE can be set by software or automatically when a break input is active).
4439   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4440   *       a timer instance provides a break input.
4441   * @rmtoll BDTR         AOE           LL_TIM_EnableAutomaticOutput
4442   * @param  TIMx Timer instance
4443   * @retval None
4444   */
LL_TIM_EnableAutomaticOutput(TIM_TypeDef * TIMx)4445 __STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
4446 {
4447   SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
4448 }
4449 
4450 /**
4451   * @brief  Disable automatic output (MOE can be set only by software).
4452   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4453   *       a timer instance provides a break input.
4454   * @rmtoll BDTR         AOE           LL_TIM_DisableAutomaticOutput
4455   * @param  TIMx Timer instance
4456   * @retval None
4457   */
LL_TIM_DisableAutomaticOutput(TIM_TypeDef * TIMx)4458 __STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
4459 {
4460   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
4461 }
4462 
4463 /**
4464   * @brief  Indicate whether automatic output is enabled.
4465   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4466   *       a timer instance provides a break input.
4467   * @rmtoll BDTR         AOE           LL_TIM_IsEnabledAutomaticOutput
4468   * @param  TIMx Timer instance
4469   * @retval State of bit (1 or 0).
4470   */
LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef * TIMx)4471 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef *TIMx)
4472 {
4473   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
4474 }
4475 
4476 /**
4477   * @brief  Enable the outputs (set the MOE bit in TIMx_BDTR register).
4478   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
4479   *       software and is reset in case of break or break2 event
4480   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4481   *       a timer instance provides a break input.
4482   * @rmtoll BDTR         MOE           LL_TIM_EnableAllOutputs
4483   * @param  TIMx Timer instance
4484   * @retval None
4485   */
LL_TIM_EnableAllOutputs(TIM_TypeDef * TIMx)4486 __STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
4487 {
4488   SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
4489 }
4490 
4491 /**
4492   * @brief  Disable the outputs (reset the MOE bit in TIMx_BDTR register).
4493   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
4494   *       software and is reset in case of break or break2 event.
4495   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4496   *       a timer instance provides a break input.
4497   * @rmtoll BDTR         MOE           LL_TIM_DisableAllOutputs
4498   * @param  TIMx Timer instance
4499   * @retval None
4500   */
LL_TIM_DisableAllOutputs(TIM_TypeDef * TIMx)4501 __STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
4502 {
4503   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
4504 }
4505 
4506 /**
4507   * @brief  Indicates whether outputs are enabled.
4508   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4509   *       a timer instance provides a break input.
4510   * @rmtoll BDTR         MOE           LL_TIM_IsEnabledAllOutputs
4511   * @param  TIMx Timer instance
4512   * @retval State of bit (1 or 0).
4513   */
LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef * TIMx)4514 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef *TIMx)
4515 {
4516   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
4517 }
4518 
4519 /**
4520   * @brief  Enable the signals connected to the designated timer break input.
4521   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
4522   *       or not a timer instance allows for break input selection.
4523   * @rmtoll AF1          BKINE         LL_TIM_EnableBreakInputSource\n
4524   *         AF1          BKCMP1E       LL_TIM_EnableBreakInputSource\n
4525   *         AF1          BKCMP2E       LL_TIM_EnableBreakInputSource\n
4526   *         AF1          BKDF1BK0E     LL_TIM_EnableBreakInputSource\n
4527   *         AF2          BK2INE        LL_TIM_EnableBreakInputSource\n
4528   *         AF2          BK2CMP1E      LL_TIM_EnableBreakInputSource\n
4529   *         AF2          BK2CMP2E      LL_TIM_EnableBreakInputSource\n
4530   *         AF2          BK2DF1BK1E    LL_TIM_EnableBreakInputSource
4531   * @param  TIMx Timer instance
4532   * @param  BreakInput This parameter can be one of the following values:
4533   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
4534   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
4535   * @param  Source This parameter can be one of the following values:
4536   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
4537   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
4538   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2 (*)
4539   *         @arg @ref LL_TIM_BKIN_SOURCE_MDF1
4540   *
4541   *         (*)  Value not defined in all devices.
4542   * @retval None
4543   */
LL_TIM_EnableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)4544 __STATIC_INLINE void LL_TIM_EnableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
4545 {
4546   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
4547   SET_BIT(*pReg, Source);
4548 }
4549 
4550 /**
4551   * @brief  Disable the signals connected to the designated timer break input.
4552   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
4553   *       or not a timer instance allows for break input selection.
4554   * @rmtoll AF1          BKINE         LL_TIM_DisableBreakInputSource\n
4555   *         AF1          BKCMP1E       LL_TIM_DisableBreakInputSource\n
4556   *         AF1          BKCMP2E       LL_TIM_DisableBreakInputSource\n
4557   *         AF1          BKDF1BK0E     LL_TIM_DisableBreakInputSource\n
4558   *         AF2          BK2INE        LL_TIM_DisableBreakInputSource\n
4559   *         AF2          BK2CMP1E      LL_TIM_DisableBreakInputSource\n
4560   *         AF2          BK2CMP2E      LL_TIM_DisableBreakInputSource\n
4561   *         AF2          BK2DF1BK1E    LL_TIM_DisableBreakInputSource
4562   * @param  TIMx Timer instance
4563   * @param  BreakInput This parameter can be one of the following values:
4564   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
4565   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
4566   * @param  Source This parameter can be one of the following values:
4567   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
4568   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
4569   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2 (*)
4570   *         @arg @ref LL_TIM_BKIN_SOURCE_MDF1
4571   *
4572   *         (*)  Value not defined in all devices.
4573   * @retval None
4574   */
LL_TIM_DisableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)4575 __STATIC_INLINE void LL_TIM_DisableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
4576 {
4577   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
4578   CLEAR_BIT(*pReg, Source);
4579 }
4580 
4581 /**
4582   * @brief  Set the polarity of the break signal for the timer break input.
4583   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
4584   *       or not a timer instance allows for break input selection.
4585   * @rmtoll AF1          BKINP         LL_TIM_SetBreakInputSourcePolarity\n
4586   *         AF1          BKCMP1P       LL_TIM_SetBreakInputSourcePolarity\n
4587   *         AF1          BKCMP2P       LL_TIM_SetBreakInputSourcePolarity\n
4588   *         AF2          BK2INP        LL_TIM_SetBreakInputSourcePolarity\n
4589   *         AF2          BK2CMP1P      LL_TIM_SetBreakInputSourcePolarity\n
4590   *         AF2          BK2CMP2P      LL_TIM_SetBreakInputSourcePolarity
4591   * @param  TIMx Timer instance
4592   * @param  BreakInput This parameter can be one of the following values:
4593   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
4594   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
4595   * @param  Source This parameter can be one of the following values:
4596   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
4597   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
4598   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2 (*)
4599   * @param  Polarity This parameter can be one of the following values:
4600   *         @arg @ref LL_TIM_BKIN_POLARITY_LOW
4601   *         @arg @ref LL_TIM_BKIN_POLARITY_HIGH
4602   *
4603   *         (*)  Value not defined in all devices.
4604   * @retval None
4605   */
LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source,uint32_t Polarity)4606 __STATIC_INLINE void LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source,
4607                                                         uint32_t Polarity)
4608 {
4609   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
4610   MODIFY_REG(*pReg, (TIMx_AF1_BKINP << TIM_POSITION_BRK_SOURCE), (Polarity << TIM_POSITION_BRK_SOURCE));
4611 }
4612 /**
4613   * @brief  Enable asymmetrical deadtime.
4614   * @note Macro IS_TIM_DEADTIME_ASYMMETRICAL_INSTANCE(TIMx) can be used to check whether or not
4615   *       a timer instance provides asymmetrical deadtime.
4616   * @rmtoll DTR2          DTAE          LL_TIM_EnableAsymmetricalDeadTime
4617   * @param  TIMx Timer instance
4618   * @retval None
4619   */
LL_TIM_EnableAsymmetricalDeadTime(TIM_TypeDef * TIMx)4620 __STATIC_INLINE void LL_TIM_EnableAsymmetricalDeadTime(TIM_TypeDef *TIMx)
4621 {
4622   SET_BIT(TIMx->DTR2, TIM_DTR2_DTAE);
4623 }
4624 
4625 /**
4626   * @brief  Disable asymmetrical dead-time.
4627   * @note Macro IS_TIM_DEADTIME_ASYMMETRICAL_INSTANCE(TIMx) can be used to check whether or not
4628   *       a timer instance provides asymmetrical deadtime.
4629   * @rmtoll DTR2          DTAE          LL_TIM_DisableAsymmetricalDeadTime
4630   * @param  TIMx Timer instance
4631   * @retval None
4632   */
LL_TIM_DisableAsymmetricalDeadTime(TIM_TypeDef * TIMx)4633 __STATIC_INLINE void LL_TIM_DisableAsymmetricalDeadTime(TIM_TypeDef *TIMx)
4634 {
4635   CLEAR_BIT(TIMx->DTR2, TIM_DTR2_DTAE);
4636 }
4637 
4638 /**
4639   * @brief  Indicates whether asymmetrical deadtime is activated.
4640   * @note Macro IS_TIM_DEADTIME_ASYMMETRICAL_INSTANCE(TIMx) can be used to check whether or not
4641   *       a timer instance provides asymmetrical deadtime.
4642   * @rmtoll DTR2          DTAE          LL_TIM_IsEnabledAsymmetricalDeadTime
4643   * @param  TIMx Timer instance
4644   * @retval State of bit (1 or 0).
4645   */
LL_TIM_IsEnabledAsymmetricalDeadTime(const TIM_TypeDef * TIMx)4646 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAsymmetricalDeadTime(const TIM_TypeDef *TIMx)
4647 {
4648   return ((READ_BIT(TIMx->DTR2, TIM_DTR2_DTAE) == (TIM_DTR2_DTAE)) ? 1UL : 0UL);
4649 }
4650 
4651 /**
4652   * @brief  Set the falling edge dead-time delay (delay inserted between the falling edge of the OCxREF signal and the
4653   *         rising edge of OCxN signals).
4654   * @note Macro IS_TIM_DEADTIME_ASYMMETRICAL_INSTANCE(TIMx) can be used to check whether or not
4655   *       asymmetrical dead-time insertion feature is supported by a timer instance.
4656   * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
4657   * @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed
4658   *       (LOCK bits in TIMx_BDTR register).
4659   * @rmtoll DTR2         DTGF           LL_TIM_SetFallingDeadTime
4660   * @param  TIMx Timer instance
4661   * @param  DeadTime between Min_Data=0 and Max_Data=255
4662   * @retval None
4663   */
LL_TIM_SetFallingDeadTime(TIM_TypeDef * TIMx,uint32_t DeadTime)4664 __STATIC_INLINE void LL_TIM_SetFallingDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
4665 {
4666   MODIFY_REG(TIMx->DTR2, TIM_DTR2_DTGF, DeadTime);
4667 }
4668 
4669 /**
4670   * @brief  Get the falling edge dead-time delay (delay inserted between the falling edge of the OCxREF signal and
4671   *         the rising edge of OCxN signals).
4672   * @note Macro IS_TIM_DEADTIME_ASYMMETRICAL_INSTANCE(TIMx) can be used to check whether or not
4673   *       asymmetrical dead-time insertion feature is supported by a timer instance.
4674   * @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed
4675   *       (LOCK bits in TIMx_BDTR register).
4676   * @rmtoll DTR2          DTGF           LL_TIM_GetFallingDeadTime
4677   * @param  TIMx Timer instance
4678   * @retval Returned value can be between Min_Data=0 and Max_Data=255:
4679   */
LL_TIM_GetFallingDeadTime(const TIM_TypeDef * TIMx)4680 __STATIC_INLINE uint32_t LL_TIM_GetFallingDeadTime(const TIM_TypeDef *TIMx)
4681 {
4682   return (uint32_t)(READ_BIT(TIMx->DTR2, TIM_DTR2_DTGF));
4683 }
4684 
4685 /**
4686   * @brief  Enable deadtime preload.
4687   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4688   *       a timer instance provides deadtime preload.
4689   * @rmtoll DTR2          DTPE          LL_TIM_EnableDeadTimePreload
4690   * @param  TIMx Timer instance
4691   * @retval None
4692   */
LL_TIM_EnableDeadTimePreload(TIM_TypeDef * TIMx)4693 __STATIC_INLINE void LL_TIM_EnableDeadTimePreload(TIM_TypeDef *TIMx)
4694 {
4695   SET_BIT(TIMx->DTR2, TIM_DTR2_DTPE);
4696 }
4697 
4698 /**
4699   * @brief  Disable dead-time preload.
4700   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4701   *       a timer instance provides deadtime preload.
4702   * @rmtoll DTR2          DTPE          LL_TIM_DisableDeadTimePreload
4703   * @param  TIMx Timer instance
4704   * @retval None
4705   */
LL_TIM_DisableDeadTimePreload(TIM_TypeDef * TIMx)4706 __STATIC_INLINE void LL_TIM_DisableDeadTimePreload(TIM_TypeDef *TIMx)
4707 {
4708   CLEAR_BIT(TIMx->DTR2, TIM_DTR2_DTPE);
4709 }
4710 
4711 /**
4712   * @brief  Indicates whether deadtime preload is activated.
4713   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
4714   *       a timer instance provides deadtime preload.
4715   * @rmtoll DTR2          DTPE          LL_TIM_IsEnabledDeadTimePreload
4716   * @param  TIMx Timer instance
4717   * @retval State of bit (1 or 0).
4718   */
LL_TIM_IsEnabledDeadTimePreload(const TIM_TypeDef * TIMx)4719 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDeadTimePreload(const TIM_TypeDef *TIMx)
4720 {
4721   return ((READ_BIT(TIMx->DTR2, TIM_DTR2_DTPE) == (TIM_DTR2_DTPE)) ? 1UL : 0UL);
4722 }
4723 
4724 /**
4725   * @}
4726   */
4727 
4728 /** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
4729   * @{
4730   */
4731 /**
4732   * @brief  Configures the timer DMA burst feature.
4733   * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
4734   *       not a timer instance supports the DMA burst mode.
4735   * @rmtoll DCR          DBL           LL_TIM_ConfigDMABurst\n
4736   *         DCR          DBA           LL_TIM_ConfigDMABurst
4737   * @param  TIMx Timer instance
4738   * @param  DMABurstBaseAddress This parameter can be one of the following values:
4739   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
4740   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
4741   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
4742   *         @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
4743   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SR
4744   *         @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
4745   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
4746   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
4747   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
4748   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
4749   *         @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
4750   *         @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
4751   *         @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
4752   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
4753   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
4754   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
4755   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
4756   *         @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
4757   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR5
4758   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR6
4759   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR3
4760   *         @arg @ref LL_TIM_DMABURST_BASEADDR_DTR2
4761   *         @arg @ref LL_TIM_DMABURST_BASEADDR_ECR
4762   *         @arg @ref LL_TIM_DMABURST_BASEADDR_TISEL
4763   *         @arg @ref LL_TIM_DMABURST_BASEADDR_AF1
4764   *         @arg @ref LL_TIM_DMABURST_BASEADDR_AF2
4765   *         @arg @ref LL_TIM_DMABURST_BASEADDR_OR1
4766   * @param  DMABurstLength This parameter can be one of the following values:
4767   *         @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
4768   *         @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
4769   *         @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
4770   *         @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
4771   *         @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
4772   *         @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
4773   *         @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
4774   *         @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
4775   *         @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
4776   *         @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
4777   *         @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
4778   *         @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
4779   *         @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
4780   *         @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
4781   *         @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
4782   *         @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
4783   *         @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
4784   *         @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
4785   *         @arg @ref LL_TIM_DMABURST_LENGTH_19TRANSFERS
4786   *         @arg @ref LL_TIM_DMABURST_LENGTH_20TRANSFERS
4787   *         @arg @ref LL_TIM_DMABURST_LENGTH_21TRANSFERS
4788   *         @arg @ref LL_TIM_DMABURST_LENGTH_22TRANSFERS
4789   *         @arg @ref LL_TIM_DMABURST_LENGTH_23TRANSFERS
4790   *         @arg @ref LL_TIM_DMABURST_LENGTH_24TRANSFERS
4791   *         @arg @ref LL_TIM_DMABURST_LENGTH_25TRANSFERS
4792   *         @arg @ref LL_TIM_DMABURST_LENGTH_26TRANSFERS
4793   * @param  DMABurstSource This parameter can be one of the following values:
4794   *         @arg @ref LL_TIM_DMA_UPDATE
4795   *         @arg @ref LL_TIM_DMA_CC1
4796   *         @arg @ref LL_TIM_DMA_CC2
4797   *         @arg @ref LL_TIM_DMA_CC3
4798   *         @arg @ref LL_TIM_DMA_CC4
4799   *         @arg @ref LL_TIM_DMA_COM
4800   *         @arg @ref LL_TIM_DMA_TRIGGER
4801   * @retval None
4802   */
LL_TIM_ConfigDMABurst(TIM_TypeDef * TIMx,uint32_t DMABurstBaseAddress,uint32_t DMABurstLength,uint32_t DMABurstSource)4803 __STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength,
4804                                            uint32_t DMABurstSource)
4805 {
4806   MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA | TIM_DCR_DBSS),
4807              (DMABurstBaseAddress | DMABurstLength | DMABurstSource));
4808 }
4809 
4810 /**
4811   * @}
4812   */
4813 
4814 /** @defgroup TIM_LL_EF_Encoder Encoder configuration
4815   * @{
4816   */
4817 
4818 /**
4819   * @brief  Enable encoder index.
4820   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4821   *       a timer instance provides an index input.
4822   * @rmtoll ECR         IE           LL_TIM_EnableEncoderIndex
4823   * @param  TIMx Timer instance
4824   * @retval None
4825   */
LL_TIM_EnableEncoderIndex(TIM_TypeDef * TIMx)4826 __STATIC_INLINE void LL_TIM_EnableEncoderIndex(TIM_TypeDef *TIMx)
4827 {
4828   SET_BIT(TIMx->ECR, TIM_ECR_IE);
4829 }
4830 
4831 /**
4832   * @brief  Disable encoder index.
4833   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4834   *       a timer instance provides an index input.
4835   * @rmtoll ECR         IE           LL_TIM_DisableEncoderIndex
4836   * @param  TIMx Timer instance
4837   * @retval None
4838   */
LL_TIM_DisableEncoderIndex(TIM_TypeDef * TIMx)4839 __STATIC_INLINE void LL_TIM_DisableEncoderIndex(TIM_TypeDef *TIMx)
4840 {
4841   CLEAR_BIT(TIMx->ECR, TIM_ECR_IE);
4842 }
4843 
4844 /**
4845   * @brief  Indicate whether encoder index is enabled.
4846   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4847   *       a timer instance provides an index input.
4848   * @rmtoll ECR         IE           LL_TIM_IsEnabledEncoderIndex
4849   * @param  TIMx Timer instance
4850   * @retval State of bit (1 or 0).
4851   */
LL_TIM_IsEnabledEncoderIndex(const TIM_TypeDef * TIMx)4852 __STATIC_INLINE uint32_t LL_TIM_IsEnabledEncoderIndex(const TIM_TypeDef *TIMx)
4853 {
4854   return ((READ_BIT(TIMx->ECR, TIM_ECR_IE) == (TIM_ECR_IE)) ? 1U : 0U);
4855 }
4856 
4857 /**
4858   * @brief  Set index direction
4859   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4860   *       a timer instance provides an index input.
4861   * @rmtoll ECR          IDIR           LL_TIM_SetIndexDirection
4862   * @param  TIMx Timer instance
4863   * @param  IndexDirection This parameter can be one of the following values:
4864   *         @arg @ref LL_TIM_INDEX_UP_DOWN
4865   *         @arg @ref LL_TIM_INDEX_UP
4866   *         @arg @ref LL_TIM_INDEX_DOWN
4867   * @retval None
4868   */
LL_TIM_SetIndexDirection(TIM_TypeDef * TIMx,uint32_t IndexDirection)4869 __STATIC_INLINE void LL_TIM_SetIndexDirection(TIM_TypeDef *TIMx, uint32_t IndexDirection)
4870 {
4871   MODIFY_REG(TIMx->ECR, TIM_ECR_IDIR, IndexDirection);
4872 }
4873 
4874 /**
4875   * @brief  Get actual index direction
4876   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4877   *       a timer instance provides an index input.
4878   * @rmtoll ECR          IDIR           LL_TIM_GetIndexDirection
4879   * @param  TIMx Timer instance
4880   * @retval Returned value can be one of the following values:
4881   *         @arg @ref LL_TIM_INDEX_UP_DOWN
4882   *         @arg @ref LL_TIM_INDEX_UP
4883   *         @arg @ref LL_TIM_INDEX_DOWN
4884   */
LL_TIM_GetIndexDirection(const TIM_TypeDef * TIMx)4885 __STATIC_INLINE uint32_t LL_TIM_GetIndexDirection(const TIM_TypeDef *TIMx)
4886 {
4887   return (uint32_t)(READ_BIT(TIMx->ECR, TIM_ECR_IDIR));
4888 }
4889 
4890 /**
4891   * @brief  Set index blanking
4892   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4893   *       a timer instance provides an index input.
4894   * @rmtoll ECR          IBLK           LL_TIM_SetIndexblanking
4895   * @param  TIMx Timer instance
4896   * @param  Indexblanking This parameter can be one of the following values:
4897   *         @arg @ref LL_TIM_INDEX_BLANK_ALWAYS
4898   *         @arg @ref LL_TIM_INDEX_BLANK_TI3
4899   *         @arg @ref LL_TIM_INDEX_BLANK_TI4
4900   * @retval None
4901   */
LL_TIM_SetIndexblanking(TIM_TypeDef * TIMx,uint32_t Indexblanking)4902 __STATIC_INLINE void LL_TIM_SetIndexblanking(TIM_TypeDef *TIMx, uint32_t Indexblanking)
4903 {
4904   MODIFY_REG(TIMx->ECR, TIM_ECR_IBLK, Indexblanking);
4905 }
4906 
4907 /**
4908   * @brief  Get actual index blanking
4909   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4910   *       a timer instance provides an index input.
4911   * @rmtoll ECR          IBLK           LL_TIM_GetIndexblanking
4912   * @param  TIMx Timer instance
4913   * @retval Returned value can be one of the following values:
4914   *         @arg @ref LL_TIM_INDEX_BLANK_ALWAYS
4915   *         @arg @ref LL_TIM_INDEX_BLANK_TI3
4916   *         @arg @ref LL_TIM_INDEX_BLANK_TI4
4917   */
LL_TIM_GetIndexblanking(const TIM_TypeDef * TIMx)4918 __STATIC_INLINE uint32_t LL_TIM_GetIndexblanking(const TIM_TypeDef *TIMx)
4919 {
4920   return (uint32_t)(READ_BIT(TIMx->ECR, TIM_ECR_IBLK));
4921 }
4922 
4923 
4924 /**
4925   * @brief  Enable first index.
4926   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4927   *       a timer instance provides an index input.
4928   * @rmtoll ECR          FIDX          LL_TIM_EnableFirstIndex
4929   * @param  TIMx Timer instance
4930   * @retval None
4931   */
LL_TIM_EnableFirstIndex(TIM_TypeDef * TIMx)4932 __STATIC_INLINE void LL_TIM_EnableFirstIndex(TIM_TypeDef *TIMx)
4933 {
4934   SET_BIT(TIMx->ECR, TIM_ECR_FIDX);
4935 }
4936 
4937 /**
4938   * @brief  Disable first index.
4939   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4940   *       a timer instance provides an index input.
4941   * @rmtoll ECR          FIDX          LL_TIM_DisableFirstIndex
4942   * @param  TIMx Timer instance
4943   * @retval None
4944   */
LL_TIM_DisableFirstIndex(TIM_TypeDef * TIMx)4945 __STATIC_INLINE void LL_TIM_DisableFirstIndex(TIM_TypeDef *TIMx)
4946 {
4947   CLEAR_BIT(TIMx->ECR, TIM_ECR_FIDX);
4948 }
4949 
4950 /**
4951   * @brief  Indicates whether first index is enabled.
4952   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4953   *       a timer instance provides an index input.
4954   * @rmtoll ECR          FIDX          LL_TIM_IsEnabledFirstIndex
4955   * @param  TIMx Timer instance
4956   * @retval State of bit (1 or 0).
4957   */
LL_TIM_IsEnabledFirstIndex(const TIM_TypeDef * TIMx)4958 __STATIC_INLINE uint32_t LL_TIM_IsEnabledFirstIndex(const TIM_TypeDef *TIMx)
4959 {
4960   return ((READ_BIT(TIMx->ECR, TIM_ECR_FIDX) == (TIM_ECR_FIDX)) ? 1UL : 0UL);
4961 }
4962 
4963 /**
4964   * @brief  Set index positioning
4965   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4966   *       a timer instance provides an index input.
4967   * @rmtoll ECR          IPOS           LL_TIM_SetIndexPositionning
4968   * @param  TIMx Timer instance
4969   * @param  IndexPositionning This parameter can be one of the following values:
4970   *         @arg @ref LL_TIM_INDEX_POSITION_DOWN_DOWN
4971   *         @arg @ref LL_TIM_INDEX_POSITION_DOWN_UP
4972   *         @arg @ref LL_TIM_INDEX_POSITION_UP_DOWN
4973   *         @arg @ref LL_TIM_INDEX_POSITION_UP_UP
4974   *         @arg @ref LL_TIM_INDEX_POSITION_DOWN
4975   *         @arg @ref LL_TIM_INDEX_POSITION_UP
4976   * @retval None
4977   */
LL_TIM_SetIndexPositionning(TIM_TypeDef * TIMx,uint32_t IndexPositionning)4978 __STATIC_INLINE void LL_TIM_SetIndexPositionning(TIM_TypeDef *TIMx, uint32_t IndexPositionning)
4979 {
4980   MODIFY_REG(TIMx->ECR, TIM_ECR_IPOS, IndexPositionning);
4981 }
4982 
4983 /**
4984   * @brief  Get actual index positioning
4985   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
4986   *       a timer instance provides an index input.
4987   * @rmtoll ECR          IPOS           LL_TIM_GetIndexPositionning
4988   * @param  TIMx Timer instance
4989   * @retval Returned value can be one of the following values:
4990   *         @arg @ref LL_TIM_INDEX_POSITION_DOWN_DOWN
4991   *         @arg @ref LL_TIM_INDEX_POSITION_DOWN_UP
4992   *         @arg @ref LL_TIM_INDEX_POSITION_UP_DOWN
4993   *         @arg @ref LL_TIM_INDEX_POSITION_UP_UP
4994   *         @arg @ref LL_TIM_INDEX_POSITION_DOWN
4995   *         @arg @ref LL_TIM_INDEX_POSITION_UP
4996   */
LL_TIM_GetIndexPositionning(const TIM_TypeDef * TIMx)4997 __STATIC_INLINE uint32_t LL_TIM_GetIndexPositionning(const TIM_TypeDef *TIMx)
4998 {
4999   return (uint32_t)(READ_BIT(TIMx->ECR, TIM_ECR_IPOS));
5000 }
5001 
5002 /**
5003   * @brief  Configure encoder index.
5004   * @note Macro IS_TIM_INDEX_INSTANCE(TIMx) can be used to check whether or not
5005   *       a timer instance provides an index input.
5006   * @rmtoll ECR          IDIR          LL_TIM_ConfigIDX\n
5007   *         ECR          IBLK          LL_TIM_ConfigIDX\n
5008   *         ECR          FIDX          LL_TIM_ConfigIDX\n
5009   *         ECR          IPOS          LL_TIM_ConfigIDX
5010   * @param  TIMx Timer instance
5011   * @param  Configuration This parameter must be a combination of all the following values:
5012   *         @arg @ref LL_TIM_INDEX_UP or @ref LL_TIM_INDEX_DOWN or @ref LL_TIM_INDEX_UP_DOWN
5013   *         @arg @ref LL_TIM_INDEX_BLANK_ALWAYS or @ref LL_TIM_INDEX_BLANK_TI3 or @ref LL_TIM_INDEX_BLANK_TI4
5014   *         @arg @ref LL_TIM_INDEX_ALL or @ref LL_TIM_INDEX_FIRST_ONLY
5015   *         @arg @ref LL_TIM_INDEX_POSITION_DOWN_DOWN or ... or @ref LL_TIM_INDEX_POSITION_UP
5016   * @retval None
5017   */
LL_TIM_ConfigIDX(TIM_TypeDef * TIMx,uint32_t Configuration)5018 __STATIC_INLINE void LL_TIM_ConfigIDX(TIM_TypeDef *TIMx, uint32_t Configuration)
5019 {
5020   MODIFY_REG(TIMx->ECR, TIM_ECR_IDIR | TIM_ECR_IBLK | TIM_ECR_FIDX | TIM_ECR_IPOS, Configuration);
5021 }
5022 
5023 /**
5024   * @}
5025   */
5026 
5027 /** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
5028   * @{
5029   */
5030 /**
5031   * @brief  Remap TIM inputs (input channel, internal/external triggers).
5032   * @note Macro IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
5033   *       a some timer inputs can be remapped.
5034   * @rmtoll TIM1_TISEL    TI1SEL      LL_TIM_SetRemap\n
5035   *         TIM2_TISEL    TI1SEL      LL_TIM_SetRemap\n
5036   *         TIM2_TISEL    TI2SEL      LL_TIM_SetRemap\n
5037   *         TIM2_TISEL    TI4SEL      LL_TIM_SetRemap\n
5038   *         TIM3_TISEL    TI1SEL      LL_TIM_SetRemap\n
5039   *         TIM3_TISEL    TI2SEL      LL_TIM_SetRemap\n
5040   *         TIM4_TISEL    TI1SEL      LL_TIM_SetRemap\n
5041   *         TIM4_TISEL    TI2SEL      LL_TIM_SetRemap\n
5042   *         TIM5_TISEL    TI1SEL      LL_TIM_SetRemap\n
5043   *         TIM5_TISEL    TI2SEL      LL_TIM_SetRemap\n
5044   *         TIM8_TISEL    TI1SEL      LL_TIM_SetRemap\n
5045   *         TIM15_TISEL   TI1SEL      LL_TIM_SetRemap\n
5046   *         TIM15_TISEL   TI2SEL      LL_TIM_SetRemap\n
5047   *         TIM16_TISEL   TI1SEL      LL_TIM_SetRemap\n
5048   *         TIM17_TISEL   TI1SEL      LL_TIM_SetRemap\n
5049   *
5050   * @param  TIMx Timer instance
5051   * @param  Remap Remap param depends on the TIMx. Description available only
5052   *         in CHM version of the User Manual (not in .pdf).
5053   *         Otherwise see Reference Manual description of TISEL registers.
5054   *
5055   *         Below description summarizes "Timer Instance" and "Remap" param combinations:
5056   *
5057   *         TIM1: one of the following values:
5058   *            @arg LL_TIM_TIM1_TI1_RMP_GPIO:                TIM1 TI1 is connected to GPIO
5059   *            @arg LL_TIM_TIM1_TI1_RMP_COMP1:               TIM1 TI1 is connected to COMP1 output
5060   *            @arg LL_TIM_TIM1_TI1_RMP_COMP2:               TIM1 TI1 is connected to COMP2 output (*)
5061   *
5062   *         TIM2: one of the following values:
5063   *            @arg LL_TIM_TIM2_TI1_RMP_GPIO:                TIM2 TI1 is connected to GPIO
5064   *            @arg LL_TIM_TIM2_TI1_RMP_COMP1:               TIM2 TI1 is connected to COMP1 output
5065   *            @arg LL_TIM_TIM2_TI1_RMP_COMP2:               TIM2 TI1 is connected to COMP2 output (*)
5066   *            @arg LL_TIM_TIM2_TI2_RMP_GPIO:                TIM2 TI2 is connected to GPIO
5067   *            @arg LL_TIM_TIM2_TI2_RMP_COMP1:               TIM2 TI2 is connected to COMP1 output
5068   *            @arg LL_TIM_TIM2_TI2_RMP_COMP2:               TIM2 TI2 is connected to COMP2 output (*)
5069   *            @arg LL_TIM_TIM2_TI4_RMP_GPIO:                TIM2 TI4 is connected to GPIO
5070   *            @arg LL_TIM_TIM2_TI4_RMP_COMP1:               TIM2 TI4 is connected to COMP1 output
5071   *            @arg LL_TIM_TIM2_TI4_RMP_COMP2:               TIM2 TI4 is connected to COMP2 output (*)
5072   *
5073   *         TIM3: one of the following values:
5074   *            @arg LL_TIM_TIM3_TI1_RMP_GPIO:                TIM3 TI1 is connected to GPIO
5075   *            @arg LL_TIM_TIM3_TI1_RMP_COMP1:               TIM3 TI1 is connected to COMP1 output
5076   *            @arg LL_TIM_TIM3_TI1_RMP_COMP2:               TIM3 TI1 is connected to COMP2 output (*)
5077   *            @arg LL_TIM_TIM3_TI2_RMP_GPIO:                TIM3 TI2 is connected to GPIO
5078   *            @arg LL_TIM_TIM3_TI2_RMP_COMP1:               TIM3 TI2 is connected to COMP1 output
5079   *            @arg LL_TIM_TIM3_TI2_RMP_COMP2:               TIM3 TI2 is connected to COMP2 output (*)
5080   *
5081   *         TIM4: one of the following values:
5082   *            @arg LL_TIM_TIM4_TI1_RMP_GPIO:                TIM4 TI1 is connected to GPIO
5083   *            @arg LL_TIM_TIM4_TI1_RMP_COMP1:               TIM4 TI1 is connected to COMP1 output
5084   *            @arg LL_TIM_TIM4_TI1_RMP_COMP2:               TIM4 TI1 is connected to COMP2 output (*)
5085   *            @arg LL_TIM_TIM4_TI2_RMP_GPIO:                TIM4 TI2 is connected to GPIO
5086   *            @arg LL_TIM_TIM4_TI2_RMP_COMP1:               TIM4 TI2 is connected to COMP1 output
5087   *            @arg LL_TIM_TIM4_TI2_RMP_COMP2:               TIM4 TI2 is connected to COMP2 output (*)
5088   *
5089   *         TIM5: one of the following values:
5090   *            @arg LL_TIM_TIM5_TI1_RMP_GPIO:                TIM5 TI1 is connected to GPIO
5091   *            @arg LL_TIM_TIM5_TI1_RMP_LSI:                 TIM5 TI1 is connected to LSI
5092   *            @arg LL_TIM_TIM5_TI1_RMP_LSE:                 TIM5 TI1 is connected to LSE
5093   *            @arg LL_TIM_TIM5_TI1_RMP_RTC:                 TIM5 TI1 is connected to RTC Wakeup
5094   *            @arg LL_TIM_TIM5_TI1_RMP_COMP1:               TIM5 TI1 is connected to COMP1 output
5095   *            @arg LL_TIM_TIM5_TI1_RMP_COMP2:               TIM5 TI1 is connected to COMP2 output (*)
5096   *            @arg LL_TIM_TIM5_TI2_RMP_GPIO:                TIM5 TI2 is connected to GPIO
5097   *            @arg LL_TIM_TIM5_TI2_RMP_COMP1:               TIM5 TI2 is connected to COMP1 output
5098   *            @arg LL_TIM_TIM5_TI2_RMP_COMP2:               TIM5 TI2 is connected to COMP2 output (*)
5099   *
5100   *         TIM8: one of the following values:
5101   *            @arg TIM_TIM8_TI1_RMP_GPIO:               TIM8 TI1 is connected to GPIO
5102   *            @arg TIM_TIM8_TI1_RMP_COMP2:              TIM8 TI1 is connected to COMP2 output (*)
5103   *
5104   *         TIM15: one of the following values:
5105   *            @arg LL_TIM_TIM15_TI1_RMP_GPIO:              TIM15 TI1 is connected to GPIO
5106   *            @arg LL_TIM_TIM15_TI1_RMP_LSE:               TIM15 TI1 is connected to LSE
5107   *            @arg LL_TIM_TIM15_TI1_RMP_COMP1:             TIM15 TI1 is connected to COMP1 output
5108   *            @arg LL_TIM_TIM15_TI1_RMP_COMP2:             TIM15 TI1 is connected to COMP2 output (*)
5109   *            @arg LL_TIM_TIM15_TI2_RMP_GPIO:              TIM15 TI2 is connected to GPIO
5110   *            @arg LL_TIM_TIM15_TI2_RMP_COMP2:             TIM15 TI2 is connected to COMP2 output (*)
5111   *
5112   *         TIM16: one of the following values:
5113   *            @arg LL_TIM_TIM16_TI1_RMP_GPIO:              TIM16 TI1 is connected to GPIO
5114   *            @arg LL_TIM_TIM16_TI1_RMP_MCO:               TIM16 TI1 is connected to MCO
5115   *            @arg LL_TIM_TIM16_TI1_RMP_HSE_DIV32:         TIM16 TI1 is connected to HSE DIV32
5116   *            @arg LL_TIM_TIM16_TI1_RMP_RTC:               TIM16 TI1 is connected to RTC
5117   *            @arg LL_TIM_TIM16_TI1_RMP_LSE:               TIM16 TI1 is connected to LSE
5118   *            @arg LL_TIM_TIM16_TI1_RMP_LSI:               TIM16 TI1 is connected to LSI
5119   *            @arg LL_TIM_TIM16_TI1_RMP_MSIS_1024:         TIM16 TI1 is connected to MSIS/1024
5120   *            @arg LL_TIM_TIM16_TI1_RMP_MSIS_4:            TIM16 TI1 is connected to MSIS/4
5121   *            @arg LL_TIM_TIM16_TI1_RMP_HSI_256:           TIM16 TI1 is connected to HSI/256
5122   *
5123   *         TIM17: one of the following values:
5124   *            @arg LL_TIM_TIM17_TI1_RMP_GPIO:              TIM17 TI1 is connected to GPIO
5125   *            @arg LL_TIM_TIM17_TI1_RMP_MCO:               TIM17 TI1 is connected to MCO
5126   *            @arg LL_TIM_TIM17_TI1_RMP_HSE_DIV32:         TIM17 TI1 is connected to HSE DIV32
5127   *            @arg LL_TIM_TIM17_TI1_RMP_RTC:               TIM17 TI1 is connected to RTC
5128   *            @arg LL_TIM_TIM17_TI1_RMP_LSE:               TIM17 TI1 is connected to LSE
5129   *            @arg LL_TIM_TIM17_TI1_RMP_LSI:               TIM17 TI1 is connected to LSI
5130   *            @arg LL_TIM_TIM17_TI1_RMP_MSIS_1024:         TIM17 TI1 is connected to MSIS/1024
5131   *            @arg LL_TIM_TIM17_TI1_RMP_MSIS_4:            TIM17 TI1 is connected to MSIS/4
5132   *            @arg LL_TIM_TIM17_TI1_RMP_HSI_256:           TIM17 TI1 is connected to HSI/256
5133   *
5134   *         (*)  Value not defined in all devices. \n
5135   * @retval None
5136   */
LL_TIM_SetRemap(TIM_TypeDef * TIMx,uint32_t Remap)5137 __STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
5138 {
5139   MODIFY_REG(TIMx->TISEL, (TIM_TISEL_TI1SEL | TIM_TISEL_TI2SEL | TIM_TISEL_TI3SEL | TIM_TISEL_TI4SEL), Remap);
5140 }
5141 
5142 /**
5143   * @brief  Enable request for HSE/32 clock used for TISEL remap.
5144   * @note Only TIM16 and TIM17 support HSE/32 remap
5145   * @note  The Cut1.x contains a limitation when using HSE/32 as input capture for TIM16
5146   * @note  Bug ID 56: On TIM16, the HSE/32 input capture requires the set of HSE32EN bit of TIM17 Option Register
5147   * @rmtoll OR1         HSE32EN           LL_TIM_EnableHSE32
5148   * @param  TIMx Timer instance
5149   * @retval None
5150   */
LL_TIM_EnableHSE32(TIM_TypeDef * TIMx)5151 __STATIC_INLINE void LL_TIM_EnableHSE32(TIM_TypeDef *TIMx)
5152 {
5153   SET_BIT(TIMx->OR1, TIM_OR1_HSE32EN);
5154 }
5155 
5156 /**
5157   * @brief  Disable request for HSE/32 clock used for TISEL remap.
5158   * @note Only TIM16 and TIM17 support HSE/32 remap
5159   * @rmtoll OR1         HSE32EN           LL_TIM_DisableHSE32
5160   * @param  TIMx Timer instance
5161   * @retval None
5162   */
LL_TIM_DisableHSE32(TIM_TypeDef * TIMx)5163 __STATIC_INLINE void LL_TIM_DisableHSE32(TIM_TypeDef *TIMx)
5164 {
5165   CLEAR_BIT(TIMx->OR1, TIM_OR1_HSE32EN);
5166 }
5167 
5168 /**
5169   * @brief  Indicate whether request for HSE/32 clock is enabled.
5170   * @note Only TIM16 and TIM17 support HSE/32 remap
5171   * @rmtoll OR1         HSE32EN           LL_TIM_IsEnabledHSE32
5172   * @param  TIMx Timer instance
5173   * @retval State of bit (1 or 0).
5174   */
LL_TIM_IsEnabledHSE32(const TIM_TypeDef * TIMx)5175 __STATIC_INLINE uint32_t LL_TIM_IsEnabledHSE32(const TIM_TypeDef *TIMx)
5176 {
5177   return ((READ_BIT(TIMx->OR1, TIM_OR1_HSE32EN) == (TIM_OR1_HSE32EN)) ? 1UL : 0UL);
5178 }
5179 
5180 /**
5181   * @}
5182   */
5183 
5184 /** @defgroup TIM_LL_EF_OCREF_Clear OCREF_Clear_Management
5185   * @{
5186   */
5187 /**
5188   * @brief  Set the OCREF clear input source
5189   * @note The OCxREF signal of a given channel can be cleared when a high level is applied on the OCREF_CLR_INPUT
5190   * @note This function can only be used in Output compare and PWM modes.
5191   * @rmtoll SMCR          OCCS                LL_TIM_SetOCRefClearInputSource
5192   * @rmtoll AF2           OCRSEL              LL_TIM_SetOCRefClearInputSource
5193   * @param  TIMx Timer instance
5194   * @param  OCRefClearInputSource This parameter can be one of the following values:
5195   *         @arg @ref LL_TIM_OCREF_CLR_INT_ETR
5196   *         @arg @ref LL_TIM_OCREF_CLR_INT_COMP1
5197   *         @arg @ref LL_TIM_OCREF_CLR_INT_COMP2 (*)
5198   *
5199   *         (*)  Value not defined in all devices. \n
5200   *         @arg @ref LL_TIM_OCREF_CLR_INT_COMP2
5201   * @retval None
5202   */
LL_TIM_SetOCRefClearInputSource(TIM_TypeDef * TIMx,uint32_t OCRefClearInputSource)5203 __STATIC_INLINE void LL_TIM_SetOCRefClearInputSource(TIM_TypeDef *TIMx, uint32_t OCRefClearInputSource)
5204 {
5205   MODIFY_REG(TIMx->SMCR, TIM_SMCR_OCCS,
5206              ((OCRefClearInputSource & OCREF_CLEAR_SELECT_MSK) >> OCREF_CLEAR_SELECT_POS) << TIM_SMCR_OCCS_Pos);
5207   MODIFY_REG(TIMx->AF2, TIM1_AF2_OCRSEL, OCRefClearInputSource);
5208 }
5209 /**
5210   * @}
5211   */
5212 
5213 /** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
5214   * @{
5215   */
5216 /**
5217   * @brief  Clear the update interrupt flag (UIF).
5218   * @rmtoll SR           UIF           LL_TIM_ClearFlag_UPDATE
5219   * @param  TIMx Timer instance
5220   * @retval None
5221   */
LL_TIM_ClearFlag_UPDATE(TIM_TypeDef * TIMx)5222 __STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
5223 {
5224   WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
5225 }
5226 
5227 /**
5228   * @brief  Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
5229   * @rmtoll SR           UIF           LL_TIM_IsActiveFlag_UPDATE
5230   * @param  TIMx Timer instance
5231   * @retval State of bit (1 or 0).
5232   */
LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef * TIMx)5233 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef *TIMx)
5234 {
5235   return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
5236 }
5237 
5238 /**
5239   * @brief  Clear the Capture/Compare 1 interrupt flag (CC1F).
5240   * @rmtoll SR           CC1IF         LL_TIM_ClearFlag_CC1
5241   * @param  TIMx Timer instance
5242   * @retval None
5243   */
LL_TIM_ClearFlag_CC1(TIM_TypeDef * TIMx)5244 __STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
5245 {
5246   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
5247 }
5248 
5249 /**
5250   * @brief  Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
5251   * @rmtoll SR           CC1IF         LL_TIM_IsActiveFlag_CC1
5252   * @param  TIMx Timer instance
5253   * @retval State of bit (1 or 0).
5254   */
LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef * TIMx)5255 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef *TIMx)
5256 {
5257   return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
5258 }
5259 
5260 /**
5261   * @brief  Clear the Capture/Compare 2 interrupt flag (CC2F).
5262   * @rmtoll SR           CC2IF         LL_TIM_ClearFlag_CC2
5263   * @param  TIMx Timer instance
5264   * @retval None
5265   */
LL_TIM_ClearFlag_CC2(TIM_TypeDef * TIMx)5266 __STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
5267 {
5268   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
5269 }
5270 
5271 /**
5272   * @brief  Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
5273   * @rmtoll SR           CC2IF         LL_TIM_IsActiveFlag_CC2
5274   * @param  TIMx Timer instance
5275   * @retval State of bit (1 or 0).
5276   */
LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef * TIMx)5277 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef *TIMx)
5278 {
5279   return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
5280 }
5281 
5282 /**
5283   * @brief  Clear the Capture/Compare 3 interrupt flag (CC3F).
5284   * @rmtoll SR           CC3IF         LL_TIM_ClearFlag_CC3
5285   * @param  TIMx Timer instance
5286   * @retval None
5287   */
LL_TIM_ClearFlag_CC3(TIM_TypeDef * TIMx)5288 __STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
5289 {
5290   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
5291 }
5292 
5293 /**
5294   * @brief  Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
5295   * @rmtoll SR           CC3IF         LL_TIM_IsActiveFlag_CC3
5296   * @param  TIMx Timer instance
5297   * @retval State of bit (1 or 0).
5298   */
LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef * TIMx)5299 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef *TIMx)
5300 {
5301   return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
5302 }
5303 
5304 /**
5305   * @brief  Clear the Capture/Compare 4 interrupt flag (CC4F).
5306   * @rmtoll SR           CC4IF         LL_TIM_ClearFlag_CC4
5307   * @param  TIMx Timer instance
5308   * @retval None
5309   */
LL_TIM_ClearFlag_CC4(TIM_TypeDef * TIMx)5310 __STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
5311 {
5312   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
5313 }
5314 
5315 /**
5316   * @brief  Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
5317   * @rmtoll SR           CC4IF         LL_TIM_IsActiveFlag_CC4
5318   * @param  TIMx Timer instance
5319   * @retval State of bit (1 or 0).
5320   */
LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef * TIMx)5321 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef *TIMx)
5322 {
5323   return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
5324 }
5325 
5326 /**
5327   * @brief  Clear the Capture/Compare 5 interrupt flag (CC5F).
5328   * @rmtoll SR           CC5IF         LL_TIM_ClearFlag_CC5
5329   * @param  TIMx Timer instance
5330   * @retval None
5331   */
LL_TIM_ClearFlag_CC5(TIM_TypeDef * TIMx)5332 __STATIC_INLINE void LL_TIM_ClearFlag_CC5(TIM_TypeDef *TIMx)
5333 {
5334   WRITE_REG(TIMx->SR, ~(TIM_SR_CC5IF));
5335 }
5336 
5337 /**
5338   * @brief  Indicate whether Capture/Compare 5 interrupt flag (CC5F) is set (Capture/Compare 5 interrupt is pending).
5339   * @rmtoll SR           CC5IF         LL_TIM_IsActiveFlag_CC5
5340   * @param  TIMx Timer instance
5341   * @retval State of bit (1 or 0).
5342   */
LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef * TIMx)5343 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef *TIMx)
5344 {
5345   return ((READ_BIT(TIMx->SR, TIM_SR_CC5IF) == (TIM_SR_CC5IF)) ? 1UL : 0UL);
5346 }
5347 
5348 /**
5349   * @brief  Clear the Capture/Compare 6 interrupt flag (CC6F).
5350   * @rmtoll SR           CC6IF         LL_TIM_ClearFlag_CC6
5351   * @param  TIMx Timer instance
5352   * @retval None
5353   */
LL_TIM_ClearFlag_CC6(TIM_TypeDef * TIMx)5354 __STATIC_INLINE void LL_TIM_ClearFlag_CC6(TIM_TypeDef *TIMx)
5355 {
5356   WRITE_REG(TIMx->SR, ~(TIM_SR_CC6IF));
5357 }
5358 
5359 /**
5360   * @brief  Indicate whether Capture/Compare 6 interrupt flag (CC6F) is set (Capture/Compare 6 interrupt is pending).
5361   * @rmtoll SR           CC6IF         LL_TIM_IsActiveFlag_CC6
5362   * @param  TIMx Timer instance
5363   * @retval State of bit (1 or 0).
5364   */
LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef * TIMx)5365 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef *TIMx)
5366 {
5367   return ((READ_BIT(TIMx->SR, TIM_SR_CC6IF) == (TIM_SR_CC6IF)) ? 1UL : 0UL);
5368 }
5369 
5370 /**
5371   * @brief  Clear the commutation interrupt flag (COMIF).
5372   * @rmtoll SR           COMIF         LL_TIM_ClearFlag_COM
5373   * @param  TIMx Timer instance
5374   * @retval None
5375   */
LL_TIM_ClearFlag_COM(TIM_TypeDef * TIMx)5376 __STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
5377 {
5378   WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
5379 }
5380 
5381 /**
5382   * @brief  Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
5383   * @rmtoll SR           COMIF         LL_TIM_IsActiveFlag_COM
5384   * @param  TIMx Timer instance
5385   * @retval State of bit (1 or 0).
5386   */
LL_TIM_IsActiveFlag_COM(const TIM_TypeDef * TIMx)5387 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(const TIM_TypeDef *TIMx)
5388 {
5389   return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
5390 }
5391 
5392 /**
5393   * @brief  Clear the trigger interrupt flag (TIF).
5394   * @rmtoll SR           TIF           LL_TIM_ClearFlag_TRIG
5395   * @param  TIMx Timer instance
5396   * @retval None
5397   */
LL_TIM_ClearFlag_TRIG(TIM_TypeDef * TIMx)5398 __STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
5399 {
5400   WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
5401 }
5402 
5403 /**
5404   * @brief  Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
5405   * @rmtoll SR           TIF           LL_TIM_IsActiveFlag_TRIG
5406   * @param  TIMx Timer instance
5407   * @retval State of bit (1 or 0).
5408   */
LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef * TIMx)5409 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef *TIMx)
5410 {
5411   return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
5412 }
5413 
5414 /**
5415   * @brief  Clear the break interrupt flag (BIF).
5416   * @rmtoll SR           BIF           LL_TIM_ClearFlag_BRK
5417   * @param  TIMx Timer instance
5418   * @retval None
5419   */
LL_TIM_ClearFlag_BRK(TIM_TypeDef * TIMx)5420 __STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
5421 {
5422   WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
5423 }
5424 
5425 /**
5426   * @brief  Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
5427   * @rmtoll SR           BIF           LL_TIM_IsActiveFlag_BRK
5428   * @param  TIMx Timer instance
5429   * @retval State of bit (1 or 0).
5430   */
LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef * TIMx)5431 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef *TIMx)
5432 {
5433   return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
5434 }
5435 
5436 /**
5437   * @brief  Clear the break 2 interrupt flag (B2IF).
5438   * @rmtoll SR           B2IF          LL_TIM_ClearFlag_BRK2
5439   * @param  TIMx Timer instance
5440   * @retval None
5441   */
LL_TIM_ClearFlag_BRK2(TIM_TypeDef * TIMx)5442 __STATIC_INLINE void LL_TIM_ClearFlag_BRK2(TIM_TypeDef *TIMx)
5443 {
5444   WRITE_REG(TIMx->SR, ~(TIM_SR_B2IF));
5445 }
5446 
5447 /**
5448   * @brief  Indicate whether break 2 interrupt flag (B2IF) is set (break 2 interrupt is pending).
5449   * @rmtoll SR           B2IF          LL_TIM_IsActiveFlag_BRK2
5450   * @param  TIMx Timer instance
5451   * @retval State of bit (1 or 0).
5452   */
LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef * TIMx)5453 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef *TIMx)
5454 {
5455   return ((READ_BIT(TIMx->SR, TIM_SR_B2IF) == (TIM_SR_B2IF)) ? 1UL : 0UL);
5456 }
5457 
5458 /**
5459   * @brief  Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
5460   * @rmtoll SR           CC1OF         LL_TIM_ClearFlag_CC1OVR
5461   * @param  TIMx Timer instance
5462   * @retval None
5463   */
LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef * TIMx)5464 __STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
5465 {
5466   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
5467 }
5468 
5469 /**
5470   * @brief  Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set
5471   *         (Capture/Compare 1 interrupt is pending).
5472   * @rmtoll SR           CC1OF         LL_TIM_IsActiveFlag_CC1OVR
5473   * @param  TIMx Timer instance
5474   * @retval State of bit (1 or 0).
5475   */
LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef * TIMx)5476 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef *TIMx)
5477 {
5478   return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
5479 }
5480 
5481 /**
5482   * @brief  Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
5483   * @rmtoll SR           CC2OF         LL_TIM_ClearFlag_CC2OVR
5484   * @param  TIMx Timer instance
5485   * @retval None
5486   */
LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef * TIMx)5487 __STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
5488 {
5489   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
5490 }
5491 
5492 /**
5493   * @brief  Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set
5494   *         (Capture/Compare 2 over-capture interrupt is pending).
5495   * @rmtoll SR           CC2OF         LL_TIM_IsActiveFlag_CC2OVR
5496   * @param  TIMx Timer instance
5497   * @retval State of bit (1 or 0).
5498   */
LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef * TIMx)5499 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef *TIMx)
5500 {
5501   return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
5502 }
5503 
5504 /**
5505   * @brief  Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
5506   * @rmtoll SR           CC3OF         LL_TIM_ClearFlag_CC3OVR
5507   * @param  TIMx Timer instance
5508   * @retval None
5509   */
LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef * TIMx)5510 __STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
5511 {
5512   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
5513 }
5514 
5515 /**
5516   * @brief  Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set
5517   *         (Capture/Compare 3 over-capture interrupt is pending).
5518   * @rmtoll SR           CC3OF         LL_TIM_IsActiveFlag_CC3OVR
5519   * @param  TIMx Timer instance
5520   * @retval State of bit (1 or 0).
5521   */
LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef * TIMx)5522 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef *TIMx)
5523 {
5524   return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
5525 }
5526 
5527 /**
5528   * @brief  Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
5529   * @rmtoll SR           CC4OF         LL_TIM_ClearFlag_CC4OVR
5530   * @param  TIMx Timer instance
5531   * @retval None
5532   */
LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef * TIMx)5533 __STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
5534 {
5535   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
5536 }
5537 
5538 /**
5539   * @brief  Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set
5540   *         (Capture/Compare 4 over-capture interrupt is pending).
5541   * @rmtoll SR           CC4OF         LL_TIM_IsActiveFlag_CC4OVR
5542   * @param  TIMx Timer instance
5543   * @retval State of bit (1 or 0).
5544   */
LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef * TIMx)5545 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef *TIMx)
5546 {
5547   return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
5548 }
5549 
5550 /**
5551   * @brief  Clear the system break interrupt flag (SBIF).
5552   * @rmtoll SR           SBIF          LL_TIM_ClearFlag_SYSBRK
5553   * @param  TIMx Timer instance
5554   * @retval None
5555   */
LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef * TIMx)5556 __STATIC_INLINE void LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef *TIMx)
5557 {
5558   WRITE_REG(TIMx->SR, ~(TIM_SR_SBIF));
5559 }
5560 
5561 /**
5562   * @brief  Indicate whether system break interrupt flag (SBIF) is set (system break interrupt is pending).
5563   * @rmtoll SR           SBIF          LL_TIM_IsActiveFlag_SYSBRK
5564   * @param  TIMx Timer instance
5565   * @retval State of bit (1 or 0).
5566   */
LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef * TIMx)5567 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef *TIMx)
5568 {
5569   return ((READ_BIT(TIMx->SR, TIM_SR_SBIF) == (TIM_SR_SBIF)) ? 1UL : 0UL);
5570 }
5571 
5572 /**
5573   * @brief  Clear the transition error interrupt flag (TERRF).
5574   * @note Macro IS_TIM_ENCODER_ERROR_INSTANCE(TIMx) can be used to check whether or not
5575   *       a timer instance provides encoder error management.
5576   * @rmtoll SR           TERRF           LL_TIM_ClearFlag_TERR
5577   * @param  TIMx Timer instance
5578   * @retval None
5579   */
LL_TIM_ClearFlag_TERR(TIM_TypeDef * TIMx)5580 __STATIC_INLINE void LL_TIM_ClearFlag_TERR(TIM_TypeDef *TIMx)
5581 {
5582   WRITE_REG(TIMx->SR, ~(TIM_SR_TERRF));
5583 }
5584 
5585 /**
5586   * @brief  Indicate whether transition error interrupt flag (TERRF) is set (transition error interrupt is pending).
5587   * @note Macro IS_TIM_ENCODER_ERROR_INSTANCE(TIMx) can be used to check whether or not
5588   *       a timer instance provides encoder error management.
5589   * @rmtoll SR           TERRF           LL_TIM_IsActiveFlag_TERR
5590   * @param  TIMx Timer instance
5591   * @retval State of bit (1 or 0).
5592   */
LL_TIM_IsActiveFlag_TERR(const TIM_TypeDef * TIMx)5593 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TERR(const TIM_TypeDef *TIMx)
5594 {
5595   return ((READ_BIT(TIMx->SR, TIM_SR_TERRF) == (TIM_SR_TERRF)) ? 1UL : 0UL);
5596 }
5597 
5598 /**
5599   * @brief  Clear the index error interrupt flag (IERRF).
5600   * @note Macro IS_TIM_ENCODER_ERROR_INSTANCE(TIMx) can be used to check whether or not
5601   *       a timer instance provides encoder error management.
5602   * @rmtoll SR           IERRF           LL_TIM_ClearFlag_IERR
5603   * @param  TIMx Timer instance
5604   * @retval None
5605   */
LL_TIM_ClearFlag_IERR(TIM_TypeDef * TIMx)5606 __STATIC_INLINE void LL_TIM_ClearFlag_IERR(TIM_TypeDef *TIMx)
5607 {
5608   WRITE_REG(TIMx->SR, ~(TIM_SR_IERRF));
5609 }
5610 
5611 /**
5612   * @brief  Indicate whether index error interrupt flag (IERRF) is set (index error interrupt is pending).
5613   * @note Macro IS_TIM_ENCODER_ERROR_INSTANCE(TIMx) can be used to check whether or not
5614   *       a timer instance provides encoder error management.
5615   * @rmtoll SR           IERRF           LL_TIM_IsActiveFlag_IERR
5616   * @param  TIMx Timer instance
5617   * @retval State of bit (1 or 0).
5618   */
LL_TIM_IsActiveFlag_IERR(const TIM_TypeDef * TIMx)5619 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_IERR(const TIM_TypeDef *TIMx)
5620 {
5621   return ((READ_BIT(TIMx->SR, TIM_SR_IERRF) == (TIM_SR_IERRF)) ? 1UL : 0UL);
5622 }
5623 
5624 /**
5625   * @brief  Clear the direction change interrupt flag (DIRF).
5626   * @note Macro IS_TIM_FUNCTINONAL_ENCODER_INTERRUPT_INSTANCE(TIMx) can be used to check whether or not
5627   *       a timer instance provides encoder interrupt management.
5628   * @rmtoll SR           DIRF           LL_TIM_ClearFlag_DIR
5629   * @param  TIMx Timer instance
5630   * @retval None
5631   */
LL_TIM_ClearFlag_DIR(TIM_TypeDef * TIMx)5632 __STATIC_INLINE void LL_TIM_ClearFlag_DIR(TIM_TypeDef *TIMx)
5633 {
5634   WRITE_REG(TIMx->SR, ~(TIM_SR_DIRF));
5635 }
5636 
5637 /**
5638   * @brief  Indicate whether direction change interrupt flag (DIRF) is set (direction change interrupt is pending).
5639   * @note Macro IS_TIM_FUNCTINONAL_ENCODER_INTERRUPT_INSTANCE(TIMx) can be used to check whether or not
5640   *       a timer instance provides encoder interrupt management.
5641   * @rmtoll SR           DIRF           LL_TIM_IsActiveFlag_DIR
5642   * @param  TIMx Timer instance
5643   * @retval State of bit (1 or 0).
5644   */
LL_TIM_IsActiveFlag_DIR(const TIM_TypeDef * TIMx)5645 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_DIR(const TIM_TypeDef *TIMx)
5646 {
5647   return ((READ_BIT(TIMx->SR, TIM_SR_DIRF) == (TIM_SR_DIRF)) ? 1UL : 0UL);
5648 }
5649 
5650 /**
5651   * @brief  Clear the index interrupt flag (IDXF).
5652   * @note Macro IS_TIM_FUNCTINONAL_ENCODER_INTERRUPT_INSTANCE(TIMx) can be used to check whether or not
5653   *       a timer instance provides encoder interrupt management.
5654   * @rmtoll SR           IDXF           LL_TIM_ClearFlag_IDX
5655   * @param  TIMx Timer instance
5656   * @retval None
5657   */
LL_TIM_ClearFlag_IDX(TIM_TypeDef * TIMx)5658 __STATIC_INLINE void LL_TIM_ClearFlag_IDX(TIM_TypeDef *TIMx)
5659 {
5660   WRITE_REG(TIMx->SR, ~(TIM_SR_IDXF));
5661 }
5662 
5663 /**
5664   * @brief  Indicate whether index interrupt flag (IDXF) is set (index interrupt is pending).
5665   * @note Macro IS_TIM_FUNCTINONAL_ENCODER_INTERRUPT_INSTANCE(TIMx) can be used to check whether or not
5666   *       a timer instance provides encoder interrupt management.
5667   * @rmtoll SR           IDXF           LL_TIM_IsActiveFlag_IDX
5668   * @param  TIMx Timer instance
5669   * @retval State of bit (1 or 0).
5670   */
LL_TIM_IsActiveFlag_IDX(const TIM_TypeDef * TIMx)5671 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_IDX(const TIM_TypeDef *TIMx)
5672 {
5673   return ((READ_BIT(TIMx->SR, TIM_SR_IDXF) == (TIM_SR_IDXF)) ? 1UL : 0UL);
5674 }
5675 /**
5676   * @}
5677   */
5678 
5679 /** @defgroup TIM_LL_EF_IT_Management IT-Management
5680   * @{
5681   */
5682 /**
5683   * @brief  Enable update interrupt (UIE).
5684   * @rmtoll DIER         UIE           LL_TIM_EnableIT_UPDATE
5685   * @param  TIMx Timer instance
5686   * @retval None
5687   */
LL_TIM_EnableIT_UPDATE(TIM_TypeDef * TIMx)5688 __STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
5689 {
5690   SET_BIT(TIMx->DIER, TIM_DIER_UIE);
5691 }
5692 
5693 /**
5694   * @brief  Disable update interrupt (UIE).
5695   * @rmtoll DIER         UIE           LL_TIM_DisableIT_UPDATE
5696   * @param  TIMx Timer instance
5697   * @retval None
5698   */
LL_TIM_DisableIT_UPDATE(TIM_TypeDef * TIMx)5699 __STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
5700 {
5701   CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
5702 }
5703 
5704 /**
5705   * @brief  Indicates whether the update interrupt (UIE) is enabled.
5706   * @rmtoll DIER         UIE           LL_TIM_IsEnabledIT_UPDATE
5707   * @param  TIMx Timer instance
5708   * @retval State of bit (1 or 0).
5709   */
LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef * TIMx)5710 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef *TIMx)
5711 {
5712   return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
5713 }
5714 
5715 /**
5716   * @brief  Enable capture/compare 1 interrupt (CC1IE).
5717   * @rmtoll DIER         CC1IE         LL_TIM_EnableIT_CC1
5718   * @param  TIMx Timer instance
5719   * @retval None
5720   */
LL_TIM_EnableIT_CC1(TIM_TypeDef * TIMx)5721 __STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
5722 {
5723   SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
5724 }
5725 
5726 /**
5727   * @brief  Disable capture/compare 1  interrupt (CC1IE).
5728   * @rmtoll DIER         CC1IE         LL_TIM_DisableIT_CC1
5729   * @param  TIMx Timer instance
5730   * @retval None
5731   */
LL_TIM_DisableIT_CC1(TIM_TypeDef * TIMx)5732 __STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
5733 {
5734   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
5735 }
5736 
5737 /**
5738   * @brief  Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
5739   * @rmtoll DIER         CC1IE         LL_TIM_IsEnabledIT_CC1
5740   * @param  TIMx Timer instance
5741   * @retval State of bit (1 or 0).
5742   */
LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef * TIMx)5743 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef *TIMx)
5744 {
5745   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
5746 }
5747 
5748 /**
5749   * @brief  Enable capture/compare 2 interrupt (CC2IE).
5750   * @rmtoll DIER         CC2IE         LL_TIM_EnableIT_CC2
5751   * @param  TIMx Timer instance
5752   * @retval None
5753   */
LL_TIM_EnableIT_CC2(TIM_TypeDef * TIMx)5754 __STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
5755 {
5756   SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
5757 }
5758 
5759 /**
5760   * @brief  Disable capture/compare 2  interrupt (CC2IE).
5761   * @rmtoll DIER         CC2IE         LL_TIM_DisableIT_CC2
5762   * @param  TIMx Timer instance
5763   * @retval None
5764   */
LL_TIM_DisableIT_CC2(TIM_TypeDef * TIMx)5765 __STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
5766 {
5767   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
5768 }
5769 
5770 /**
5771   * @brief  Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
5772   * @rmtoll DIER         CC2IE         LL_TIM_IsEnabledIT_CC2
5773   * @param  TIMx Timer instance
5774   * @retval State of bit (1 or 0).
5775   */
LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef * TIMx)5776 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef *TIMx)
5777 {
5778   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
5779 }
5780 
5781 /**
5782   * @brief  Enable capture/compare 3 interrupt (CC3IE).
5783   * @rmtoll DIER         CC3IE         LL_TIM_EnableIT_CC3
5784   * @param  TIMx Timer instance
5785   * @retval None
5786   */
LL_TIM_EnableIT_CC3(TIM_TypeDef * TIMx)5787 __STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
5788 {
5789   SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
5790 }
5791 
5792 /**
5793   * @brief  Disable capture/compare 3  interrupt (CC3IE).
5794   * @rmtoll DIER         CC3IE         LL_TIM_DisableIT_CC3
5795   * @param  TIMx Timer instance
5796   * @retval None
5797   */
LL_TIM_DisableIT_CC3(TIM_TypeDef * TIMx)5798 __STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
5799 {
5800   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
5801 }
5802 
5803 /**
5804   * @brief  Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
5805   * @rmtoll DIER         CC3IE         LL_TIM_IsEnabledIT_CC3
5806   * @param  TIMx Timer instance
5807   * @retval State of bit (1 or 0).
5808   */
LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef * TIMx)5809 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef *TIMx)
5810 {
5811   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
5812 }
5813 
5814 /**
5815   * @brief  Enable capture/compare 4 interrupt (CC4IE).
5816   * @rmtoll DIER         CC4IE         LL_TIM_EnableIT_CC4
5817   * @param  TIMx Timer instance
5818   * @retval None
5819   */
LL_TIM_EnableIT_CC4(TIM_TypeDef * TIMx)5820 __STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
5821 {
5822   SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
5823 }
5824 
5825 /**
5826   * @brief  Disable capture/compare 4  interrupt (CC4IE).
5827   * @rmtoll DIER         CC4IE         LL_TIM_DisableIT_CC4
5828   * @param  TIMx Timer instance
5829   * @retval None
5830   */
LL_TIM_DisableIT_CC4(TIM_TypeDef * TIMx)5831 __STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
5832 {
5833   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
5834 }
5835 
5836 /**
5837   * @brief  Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
5838   * @rmtoll DIER         CC4IE         LL_TIM_IsEnabledIT_CC4
5839   * @param  TIMx Timer instance
5840   * @retval State of bit (1 or 0).
5841   */
LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef * TIMx)5842 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef *TIMx)
5843 {
5844   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
5845 }
5846 
5847 /**
5848   * @brief  Enable commutation interrupt (COMIE).
5849   * @rmtoll DIER         COMIE         LL_TIM_EnableIT_COM
5850   * @param  TIMx Timer instance
5851   * @retval None
5852   */
LL_TIM_EnableIT_COM(TIM_TypeDef * TIMx)5853 __STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
5854 {
5855   SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
5856 }
5857 
5858 /**
5859   * @brief  Disable commutation interrupt (COMIE).
5860   * @rmtoll DIER         COMIE         LL_TIM_DisableIT_COM
5861   * @param  TIMx Timer instance
5862   * @retval None
5863   */
LL_TIM_DisableIT_COM(TIM_TypeDef * TIMx)5864 __STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
5865 {
5866   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
5867 }
5868 
5869 /**
5870   * @brief  Indicates whether the commutation interrupt (COMIE) is enabled.
5871   * @rmtoll DIER         COMIE         LL_TIM_IsEnabledIT_COM
5872   * @param  TIMx Timer instance
5873   * @retval State of bit (1 or 0).
5874   */
LL_TIM_IsEnabledIT_COM(const TIM_TypeDef * TIMx)5875 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(const TIM_TypeDef *TIMx)
5876 {
5877   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
5878 }
5879 
5880 /**
5881   * @brief  Enable trigger interrupt (TIE).
5882   * @rmtoll DIER         TIE           LL_TIM_EnableIT_TRIG
5883   * @param  TIMx Timer instance
5884   * @retval None
5885   */
LL_TIM_EnableIT_TRIG(TIM_TypeDef * TIMx)5886 __STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
5887 {
5888   SET_BIT(TIMx->DIER, TIM_DIER_TIE);
5889 }
5890 
5891 /**
5892   * @brief  Disable trigger interrupt (TIE).
5893   * @rmtoll DIER         TIE           LL_TIM_DisableIT_TRIG
5894   * @param  TIMx Timer instance
5895   * @retval None
5896   */
LL_TIM_DisableIT_TRIG(TIM_TypeDef * TIMx)5897 __STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
5898 {
5899   CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
5900 }
5901 
5902 /**
5903   * @brief  Indicates whether the trigger interrupt (TIE) is enabled.
5904   * @rmtoll DIER         TIE           LL_TIM_IsEnabledIT_TRIG
5905   * @param  TIMx Timer instance
5906   * @retval State of bit (1 or 0).
5907   */
LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef * TIMx)5908 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef *TIMx)
5909 {
5910   return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
5911 }
5912 
5913 /**
5914   * @brief  Enable break interrupt (BIE).
5915   * @rmtoll DIER         BIE           LL_TIM_EnableIT_BRK
5916   * @param  TIMx Timer instance
5917   * @retval None
5918   */
LL_TIM_EnableIT_BRK(TIM_TypeDef * TIMx)5919 __STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
5920 {
5921   SET_BIT(TIMx->DIER, TIM_DIER_BIE);
5922 }
5923 
5924 /**
5925   * @brief  Disable break interrupt (BIE).
5926   * @rmtoll DIER         BIE           LL_TIM_DisableIT_BRK
5927   * @param  TIMx Timer instance
5928   * @retval None
5929   */
LL_TIM_DisableIT_BRK(TIM_TypeDef * TIMx)5930 __STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
5931 {
5932   CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
5933 }
5934 
5935 /**
5936   * @brief  Indicates whether the break interrupt (BIE) is enabled.
5937   * @rmtoll DIER         BIE           LL_TIM_IsEnabledIT_BRK
5938   * @param  TIMx Timer instance
5939   * @retval State of bit (1 or 0).
5940   */
LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef * TIMx)5941 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef *TIMx)
5942 {
5943   return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
5944 }
5945 
5946 /**
5947   * @brief  Enable transition error interrupt (TERRIE).
5948   * @note Macro IS_TIM_ENCODER_ERROR_INSTANCE(TIMx) can be used to check whether or not
5949   *       a timer instance provides encoder error management.
5950   * @rmtoll DIER         TERRIE           LL_TIM_EnableIT_TERR
5951   * @param  TIMx Timer instance
5952   * @retval None
5953   */
LL_TIM_EnableIT_TERR(TIM_TypeDef * TIMx)5954 __STATIC_INLINE void LL_TIM_EnableIT_TERR(TIM_TypeDef *TIMx)
5955 {
5956   SET_BIT(TIMx->DIER, TIM_DIER_TERRIE);
5957 }
5958 
5959 /**
5960   * @brief  Disable transition error interrupt (TERRIE).
5961   * @note Macro IS_TIM_ENCODER_ERROR_INSTANCE(TIMx) can be used to check whether or not
5962   *       a timer instance provides encoder error management.
5963   * @rmtoll DIER         TERRIE           LL_TIM_DisableIT_TERR
5964   * @param  TIMx Timer instance
5965   * @retval None
5966   */
LL_TIM_DisableIT_TERR(TIM_TypeDef * TIMx)5967 __STATIC_INLINE void LL_TIM_DisableIT_TERR(TIM_TypeDef *TIMx)
5968 {
5969   CLEAR_BIT(TIMx->DIER, TIM_DIER_TERRIE);
5970 }
5971 
5972 /**
5973   * @brief  Indicates whether the transition error interrupt (TERRIE) is enabled.
5974   * @note Macro IS_TIM_ENCODER_ERROR_INSTANCE(TIMx) can be used to check whether or not
5975   *       a timer instance provides encoder error management.
5976   * @rmtoll DIER         TERRIE           LL_TIM_IsEnabledIT_TERR
5977   * @param  TIMx Timer instance
5978   * @retval State of bit (1 or 0).
5979   */
LL_TIM_IsEnabledIT_TERR(const TIM_TypeDef * TIMx)5980 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TERR(const TIM_TypeDef *TIMx)
5981 {
5982   return ((READ_BIT(TIMx->DIER, TIM_DIER_TERRIE) == (TIM_DIER_TERRIE)) ? 1UL : 0UL);
5983 }
5984 
5985 /**
5986   * @brief  Enable index error interrupt (IERRIE).
5987   * @note Macro IS_TIM_ENCODER_ERROR_INSTANCE(TIMx) can be used to check whether or not
5988   *       a timer instance provides encoder error management.
5989   * @rmtoll DIER         IERRIE           LL_TIM_EnableIT_IERR
5990   * @param  TIMx Timer instance
5991   * @retval None
5992   */
LL_TIM_EnableIT_IERR(TIM_TypeDef * TIMx)5993 __STATIC_INLINE void LL_TIM_EnableIT_IERR(TIM_TypeDef *TIMx)
5994 {
5995   SET_BIT(TIMx->DIER, TIM_DIER_IERRIE);
5996 }
5997 
5998 /**
5999   * @brief  Disable index error interrupt (IERRIE).
6000   * @note Macro IS_TIM_ENCODER_ERROR_INSTANCE(TIMx) can be used to check whether or not
6001   *       a timer instance provides encoder error management.
6002   * @rmtoll DIER         IERRIE           LL_TIM_DisableIT_IERR
6003   * @param  TIMx Timer instance
6004   * @retval None
6005   */
LL_TIM_DisableIT_IERR(TIM_TypeDef * TIMx)6006 __STATIC_INLINE void LL_TIM_DisableIT_IERR(TIM_TypeDef *TIMx)
6007 {
6008   CLEAR_BIT(TIMx->DIER, TIM_DIER_IERRIE);
6009 }
6010 
6011 /**
6012   * @brief  Indicates whether the index error interrupt (IERRIE) is enabled.
6013   * @note Macro IS_TIM_ENCODER_ERROR_INSTANCE(TIMx) can be used to check whether or not
6014   *       a timer instance provides encoder error management.
6015   * @rmtoll DIER         IERRIE           LL_TIM_IsEnabledIT_IERR
6016   * @param  TIMx Timer instance
6017   * @retval State of bit (1 or 0).
6018   */
LL_TIM_IsEnabledIT_IERR(const TIM_TypeDef * TIMx)6019 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_IERR(const TIM_TypeDef *TIMx)
6020 {
6021   return ((READ_BIT(TIMx->DIER, TIM_DIER_IERRIE) == (TIM_DIER_IERRIE)) ? 1UL : 0UL);
6022 }
6023 
6024 /**
6025   * @brief  Enable direction change interrupt (DIRIE).
6026   * @note Macro IS_TIM_FUNCTINONAL_ENCODER_INTERRUPT_INSTANCE(TIMx) can be used to check whether or not
6027   *       a timer instance provides encoder interrupt management.
6028   * @rmtoll DIER         DIRIE           LL_TIM_EnableIT_DIR
6029   * @param  TIMx Timer instance
6030   * @retval None
6031   */
LL_TIM_EnableIT_DIR(TIM_TypeDef * TIMx)6032 __STATIC_INLINE void LL_TIM_EnableIT_DIR(TIM_TypeDef *TIMx)
6033 {
6034   SET_BIT(TIMx->DIER, TIM_DIER_DIRIE);
6035 }
6036 
6037 /**
6038   * @brief  Disable direction change interrupt (DIRIE).
6039   * @note Macro IS_TIM_FUNCTINONAL_ENCODER_INTERRUPT_INSTANCE(TIMx) can be used to check whether or not
6040   *       a timer instance provides encoder interrupt management.
6041   * @rmtoll DIER         DIRIE           LL_TIM_DisableIT_DIR
6042   * @param  TIMx Timer instance
6043   * @retval None
6044   */
LL_TIM_DisableIT_DIR(TIM_TypeDef * TIMx)6045 __STATIC_INLINE void LL_TIM_DisableIT_DIR(TIM_TypeDef *TIMx)
6046 {
6047   CLEAR_BIT(TIMx->DIER, TIM_DIER_DIRIE);
6048 }
6049 
6050 /**
6051   * @brief  Indicates whether the direction change interrupt (DIRIE) is enabled.
6052   * @note Macro IS_TIM_FUNCTINONAL_ENCODER_INTERRUPT_INSTANCE(TIMx) can be used to check whether or not
6053   *       a timer instance provides encoder interrupt management.
6054   * @rmtoll DIER         DIRIE           LL_TIM_IsEnabledIT_DIR
6055   * @param  TIMx Timer instance
6056   * @retval State of bit (1 or 0).
6057   */
LL_TIM_IsEnabledIT_DIR(const TIM_TypeDef * TIMx)6058 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_DIR(const TIM_TypeDef *TIMx)
6059 {
6060   return ((READ_BIT(TIMx->DIER, TIM_DIER_DIRIE) == (TIM_DIER_DIRIE)) ? 1UL : 0UL);
6061 }
6062 
6063 /**
6064   * @brief  Enable index interrupt (IDXIE).
6065   * @note Macro IS_TIM_FUNCTINONAL_ENCODER_INTERRUPT_INSTANCE(TIMx) can be used to check whether or not
6066   *       a timer instance provides encoder interrupt management.
6067   * @rmtoll DIER         IDXIE           LL_TIM_EnableIT_IDX
6068   * @param  TIMx Timer instance
6069   * @retval None
6070   */
LL_TIM_EnableIT_IDX(TIM_TypeDef * TIMx)6071 __STATIC_INLINE void LL_TIM_EnableIT_IDX(TIM_TypeDef *TIMx)
6072 {
6073   SET_BIT(TIMx->DIER, TIM_DIER_IDXIE);
6074 }
6075 
6076 /**
6077   * @brief  Disable index interrupt (IDXIE).
6078   * @note Macro IS_TIM_FUNCTINONAL_ENCODER_INTERRUPT_INSTANCE(TIMx) can be used to check whether or not
6079   *       a timer instance provides encoder interrupt management.
6080   * @rmtoll DIER         IDXIE           LL_TIM_DisableIT_IDX
6081   * @param  TIMx Timer instance
6082   * @retval None
6083   */
LL_TIM_DisableIT_IDX(TIM_TypeDef * TIMx)6084 __STATIC_INLINE void LL_TIM_DisableIT_IDX(TIM_TypeDef *TIMx)
6085 {
6086   CLEAR_BIT(TIMx->DIER, TIM_DIER_IDXIE);
6087 }
6088 
6089 /**
6090   * @brief  Indicates whether the index interrupt (IDXIE) is enabled.
6091   * @note Macro IS_TIM_FUNCTINONAL_ENCODER_INTERRUPT_INSTANCE(TIMx) can be used to check whether or not
6092   *       a timer instance provides encoder interrupt management.
6093   * @rmtoll DIER         IDXIE           LL_TIM_IsEnabledIT_IDX
6094   * @param  TIMx Timer instance
6095   * @retval State of bit (1 or 0).
6096   */
LL_TIM_IsEnabledIT_IDX(const TIM_TypeDef * TIMx)6097 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_IDX(const TIM_TypeDef *TIMx)
6098 {
6099   return ((READ_BIT(TIMx->DIER, TIM_DIER_IDXIE) == (TIM_DIER_IDXIE)) ? 1UL : 0UL);
6100 }
6101 
6102 /**
6103   * @}
6104   */
6105 
6106 /** @defgroup TIM_LL_EF_DMA_Management DMA Management
6107   * @{
6108   */
6109 /**
6110   * @brief  Enable update DMA request (UDE).
6111   * @rmtoll DIER         UDE           LL_TIM_EnableDMAReq_UPDATE
6112   * @param  TIMx Timer instance
6113   * @retval None
6114   */
LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef * TIMx)6115 __STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
6116 {
6117   SET_BIT(TIMx->DIER, TIM_DIER_UDE);
6118 }
6119 
6120 /**
6121   * @brief  Disable update DMA request (UDE).
6122   * @rmtoll DIER         UDE           LL_TIM_DisableDMAReq_UPDATE
6123   * @param  TIMx Timer instance
6124   * @retval None
6125   */
LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef * TIMx)6126 __STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
6127 {
6128   CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
6129 }
6130 
6131 /**
6132   * @brief  Indicates whether the update DMA request  (UDE) is enabled.
6133   * @rmtoll DIER         UDE           LL_TIM_IsEnabledDMAReq_UPDATE
6134   * @param  TIMx Timer instance
6135   * @retval State of bit (1 or 0).
6136   */
LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef * TIMx)6137 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef *TIMx)
6138 {
6139   return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
6140 }
6141 
6142 /**
6143   * @brief  Enable capture/compare 1 DMA request (CC1DE).
6144   * @rmtoll DIER         CC1DE         LL_TIM_EnableDMAReq_CC1
6145   * @param  TIMx Timer instance
6146   * @retval None
6147   */
LL_TIM_EnableDMAReq_CC1(TIM_TypeDef * TIMx)6148 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
6149 {
6150   SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
6151 }
6152 
6153 /**
6154   * @brief  Disable capture/compare 1  DMA request (CC1DE).
6155   * @rmtoll DIER         CC1DE         LL_TIM_DisableDMAReq_CC1
6156   * @param  TIMx Timer instance
6157   * @retval None
6158   */
LL_TIM_DisableDMAReq_CC1(TIM_TypeDef * TIMx)6159 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
6160 {
6161   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
6162 }
6163 
6164 /**
6165   * @brief  Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
6166   * @rmtoll DIER         CC1DE         LL_TIM_IsEnabledDMAReq_CC1
6167   * @param  TIMx Timer instance
6168   * @retval State of bit (1 or 0).
6169   */
LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef * TIMx)6170 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef *TIMx)
6171 {
6172   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
6173 }
6174 
6175 /**
6176   * @brief  Enable capture/compare 2 DMA request (CC2DE).
6177   * @rmtoll DIER         CC2DE         LL_TIM_EnableDMAReq_CC2
6178   * @param  TIMx Timer instance
6179   * @retval None
6180   */
LL_TIM_EnableDMAReq_CC2(TIM_TypeDef * TIMx)6181 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
6182 {
6183   SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
6184 }
6185 
6186 /**
6187   * @brief  Disable capture/compare 2  DMA request (CC2DE).
6188   * @rmtoll DIER         CC2DE         LL_TIM_DisableDMAReq_CC2
6189   * @param  TIMx Timer instance
6190   * @retval None
6191   */
LL_TIM_DisableDMAReq_CC2(TIM_TypeDef * TIMx)6192 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
6193 {
6194   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
6195 }
6196 
6197 /**
6198   * @brief  Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
6199   * @rmtoll DIER         CC2DE         LL_TIM_IsEnabledDMAReq_CC2
6200   * @param  TIMx Timer instance
6201   * @retval State of bit (1 or 0).
6202   */
LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef * TIMx)6203 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef *TIMx)
6204 {
6205   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
6206 }
6207 
6208 /**
6209   * @brief  Enable capture/compare 3 DMA request (CC3DE).
6210   * @rmtoll DIER         CC3DE         LL_TIM_EnableDMAReq_CC3
6211   * @param  TIMx Timer instance
6212   * @retval None
6213   */
LL_TIM_EnableDMAReq_CC3(TIM_TypeDef * TIMx)6214 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
6215 {
6216   SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
6217 }
6218 
6219 /**
6220   * @brief  Disable capture/compare 3  DMA request (CC3DE).
6221   * @rmtoll DIER         CC3DE         LL_TIM_DisableDMAReq_CC3
6222   * @param  TIMx Timer instance
6223   * @retval None
6224   */
LL_TIM_DisableDMAReq_CC3(TIM_TypeDef * TIMx)6225 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
6226 {
6227   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
6228 }
6229 
6230 /**
6231   * @brief  Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
6232   * @rmtoll DIER         CC3DE         LL_TIM_IsEnabledDMAReq_CC3
6233   * @param  TIMx Timer instance
6234   * @retval State of bit (1 or 0).
6235   */
LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef * TIMx)6236 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef *TIMx)
6237 {
6238   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
6239 }
6240 
6241 /**
6242   * @brief  Enable capture/compare 4 DMA request (CC4DE).
6243   * @rmtoll DIER         CC4DE         LL_TIM_EnableDMAReq_CC4
6244   * @param  TIMx Timer instance
6245   * @retval None
6246   */
LL_TIM_EnableDMAReq_CC4(TIM_TypeDef * TIMx)6247 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
6248 {
6249   SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
6250 }
6251 
6252 /**
6253   * @brief  Disable capture/compare 4  DMA request (CC4DE).
6254   * @rmtoll DIER         CC4DE         LL_TIM_DisableDMAReq_CC4
6255   * @param  TIMx Timer instance
6256   * @retval None
6257   */
LL_TIM_DisableDMAReq_CC4(TIM_TypeDef * TIMx)6258 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
6259 {
6260   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
6261 }
6262 
6263 /**
6264   * @brief  Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
6265   * @rmtoll DIER         CC4DE         LL_TIM_IsEnabledDMAReq_CC4
6266   * @param  TIMx Timer instance
6267   * @retval State of bit (1 or 0).
6268   */
LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef * TIMx)6269 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef *TIMx)
6270 {
6271   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
6272 }
6273 
6274 /**
6275   * @brief  Enable commutation DMA request (COMDE).
6276   * @rmtoll DIER         COMDE         LL_TIM_EnableDMAReq_COM
6277   * @param  TIMx Timer instance
6278   * @retval None
6279   */
LL_TIM_EnableDMAReq_COM(TIM_TypeDef * TIMx)6280 __STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
6281 {
6282   SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
6283 }
6284 
6285 /**
6286   * @brief  Disable commutation DMA request (COMDE).
6287   * @rmtoll DIER         COMDE         LL_TIM_DisableDMAReq_COM
6288   * @param  TIMx Timer instance
6289   * @retval None
6290   */
LL_TIM_DisableDMAReq_COM(TIM_TypeDef * TIMx)6291 __STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
6292 {
6293   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
6294 }
6295 
6296 /**
6297   * @brief  Indicates whether the commutation DMA request (COMDE) is enabled.
6298   * @rmtoll DIER         COMDE         LL_TIM_IsEnabledDMAReq_COM
6299   * @param  TIMx Timer instance
6300   * @retval State of bit (1 or 0).
6301   */
LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef * TIMx)6302 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef *TIMx)
6303 {
6304   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
6305 }
6306 
6307 /**
6308   * @brief  Enable trigger interrupt (TDE).
6309   * @rmtoll DIER         TDE           LL_TIM_EnableDMAReq_TRIG
6310   * @param  TIMx Timer instance
6311   * @retval None
6312   */
LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef * TIMx)6313 __STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
6314 {
6315   SET_BIT(TIMx->DIER, TIM_DIER_TDE);
6316 }
6317 
6318 /**
6319   * @brief  Disable trigger interrupt (TDE).
6320   * @rmtoll DIER         TDE           LL_TIM_DisableDMAReq_TRIG
6321   * @param  TIMx Timer instance
6322   * @retval None
6323   */
LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef * TIMx)6324 __STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
6325 {
6326   CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
6327 }
6328 
6329 /**
6330   * @brief  Indicates whether the trigger interrupt (TDE) is enabled.
6331   * @rmtoll DIER         TDE           LL_TIM_IsEnabledDMAReq_TRIG
6332   * @param  TIMx Timer instance
6333   * @retval State of bit (1 or 0).
6334   */
LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef * TIMx)6335 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef *TIMx)
6336 {
6337   return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
6338 }
6339 
6340 /**
6341   * @}
6342   */
6343 
6344 /** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
6345   * @{
6346   */
6347 /**
6348   * @brief  Generate an update event.
6349   * @rmtoll EGR          UG            LL_TIM_GenerateEvent_UPDATE
6350   * @param  TIMx Timer instance
6351   * @retval None
6352   */
LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef * TIMx)6353 __STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
6354 {
6355   SET_BIT(TIMx->EGR, TIM_EGR_UG);
6356 }
6357 
6358 /**
6359   * @brief  Generate Capture/Compare 1 event.
6360   * @rmtoll EGR          CC1G          LL_TIM_GenerateEvent_CC1
6361   * @param  TIMx Timer instance
6362   * @retval None
6363   */
LL_TIM_GenerateEvent_CC1(TIM_TypeDef * TIMx)6364 __STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
6365 {
6366   SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
6367 }
6368 
6369 /**
6370   * @brief  Generate Capture/Compare 2 event.
6371   * @rmtoll EGR          CC2G          LL_TIM_GenerateEvent_CC2
6372   * @param  TIMx Timer instance
6373   * @retval None
6374   */
LL_TIM_GenerateEvent_CC2(TIM_TypeDef * TIMx)6375 __STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
6376 {
6377   SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
6378 }
6379 
6380 /**
6381   * @brief  Generate Capture/Compare 3 event.
6382   * @rmtoll EGR          CC3G          LL_TIM_GenerateEvent_CC3
6383   * @param  TIMx Timer instance
6384   * @retval None
6385   */
LL_TIM_GenerateEvent_CC3(TIM_TypeDef * TIMx)6386 __STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
6387 {
6388   SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
6389 }
6390 
6391 /**
6392   * @brief  Generate Capture/Compare 4 event.
6393   * @rmtoll EGR          CC4G          LL_TIM_GenerateEvent_CC4
6394   * @param  TIMx Timer instance
6395   * @retval None
6396   */
LL_TIM_GenerateEvent_CC4(TIM_TypeDef * TIMx)6397 __STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
6398 {
6399   SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
6400 }
6401 
6402 /**
6403   * @brief  Generate commutation event.
6404   * @rmtoll EGR          COMG          LL_TIM_GenerateEvent_COM
6405   * @param  TIMx Timer instance
6406   * @retval None
6407   */
LL_TIM_GenerateEvent_COM(TIM_TypeDef * TIMx)6408 __STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
6409 {
6410   SET_BIT(TIMx->EGR, TIM_EGR_COMG);
6411 }
6412 
6413 /**
6414   * @brief  Generate trigger event.
6415   * @rmtoll EGR          TG            LL_TIM_GenerateEvent_TRIG
6416   * @param  TIMx Timer instance
6417   * @retval None
6418   */
LL_TIM_GenerateEvent_TRIG(TIM_TypeDef * TIMx)6419 __STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
6420 {
6421   SET_BIT(TIMx->EGR, TIM_EGR_TG);
6422 }
6423 
6424 /**
6425   * @brief  Generate break event.
6426   * @rmtoll EGR          BG            LL_TIM_GenerateEvent_BRK
6427   * @param  TIMx Timer instance
6428   * @retval None
6429   */
LL_TIM_GenerateEvent_BRK(TIM_TypeDef * TIMx)6430 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
6431 {
6432   SET_BIT(TIMx->EGR, TIM_EGR_BG);
6433 }
6434 
6435 /**
6436   * @brief  Generate break 2 event.
6437   * @rmtoll EGR          B2G           LL_TIM_GenerateEvent_BRK2
6438   * @param  TIMx Timer instance
6439   * @retval None
6440   */
LL_TIM_GenerateEvent_BRK2(TIM_TypeDef * TIMx)6441 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK2(TIM_TypeDef *TIMx)
6442 {
6443   SET_BIT(TIMx->EGR, TIM_EGR_B2G);
6444 }
6445 
6446 /**
6447   * @}
6448   */
6449 
6450 #if defined(USE_FULL_LL_DRIVER)
6451 /** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
6452   * @{
6453   */
6454 
6455 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx);
6456 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
6457 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct);
6458 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
6459 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
6460 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
6461 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
6462 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
6463 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
6464 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
6465 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
6466 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
6467 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
6468 /**
6469   * @}
6470   */
6471 #endif /* USE_FULL_LL_DRIVER */
6472 
6473 /**
6474   * @}
6475   */
6476 
6477 /**
6478   * @}
6479   */
6480 
6481 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM15 || TIM16 || TIM17 || TIM20 */
6482 
6483 /**
6484   * @}
6485   */
6486 
6487 #ifdef __cplusplus
6488 }
6489 #endif
6490 
6491 #endif /* __STM32U5xx_LL_TIM_H */
6492