1 /*
2 * Copyright (c) 2020 Markus Fuchs <markus.fuchs@de.sauter-bc.com>
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <zephyr/init.h>
8 #include <zephyr/kernel.h>
9 #include <zephyr/device.h>
10 #include <zephyr/sys/__assert.h>
11 #include <zephyr/crypto/crypto.h>
12 #include <zephyr/drivers/clock_control/stm32_clock_control.h>
13 #include <zephyr/drivers/clock_control.h>
14 #include <zephyr/drivers/reset.h>
15 #include <zephyr/sys/byteorder.h>
16 #include <soc.h>
17
18 #include "crypto_stm32_priv.h"
19
20 #define LOG_LEVEL CONFIG_CRYPTO_LOG_LEVEL
21 #include <zephyr/logging/log.h>
22 LOG_MODULE_REGISTER(crypto_stm32);
23
24 #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_cryp)
25 #define DT_DRV_COMPAT st_stm32_cryp
26 #elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_aes)
27 #define DT_DRV_COMPAT st_stm32_aes
28 #else
29 #error No STM32 HW Crypto Accelerator in device tree
30 #endif
31
32 #define CRYP_SUPPORT (CAP_RAW_KEY | CAP_SEPARATE_IO_BUFS | CAP_SYNC_OPS | \
33 CAP_NO_IV_PREFIX)
34 #define BLOCK_LEN_BYTES 16
35 #define BLOCK_LEN_WORDS (BLOCK_LEN_BYTES / sizeof(uint32_t))
36 #define CRYPTO_MAX_SESSION CONFIG_CRYPTO_STM32_MAX_SESSION
37
38 #if defined(CRYP_KEYSIZE_192B)
39 #define STM32_CRYPTO_KEYSIZE_192B_SUPPORT
40 #endif
41
42 #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_cryp)
43 #define STM32_CRYPTO_TYPEDEF CRYP_TypeDef
44 #elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_aes)
45 #define STM32_CRYPTO_TYPEDEF AES_TypeDef
46 #endif
47
48 struct crypto_stm32_session crypto_stm32_sessions[CRYPTO_MAX_SESSION];
49
50 typedef HAL_StatusTypeDef status_t;
51
52 /**
53 * @brief Function pointer type for AES encryption/decryption operations.
54 *
55 * This type defines a function pointer for generic AES operations.
56 *
57 * @param hcryp Pointer to a CRYP_HandleTypeDef structure that contains
58 * the configuration information for the CRYP module.
59 * @param in_data Pointer to input data (plaintext for encryption or ciphertext for decryption).
60 * @param size Length of the input data in bytes.
61 * @param out_data Pointer to output data (ciphertext for encryption or plaintext for
62 * decryption).
63 * @param timeout Timeout duration in milliseconds.
64 *
65 * @retval status_t HAL status of the operation.
66 */
67 typedef status_t (*hal_cryp_aes_op_func_t)(CRYP_HandleTypeDef *hcryp, uint8_t *in_data,
68 uint16_t size, uint8_t *out_data, uint32_t timeout);
69
70 #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
71 #define hal_ecb_encrypt_op HAL_CRYP_AESECB_Encrypt
72 #define hal_ecb_decrypt_op HAL_CRYP_AESECB_Decrypt
73 #define hal_cbc_encrypt_op HAL_CRYP_AESCBC_Encrypt
74 #define hal_cbc_decrypt_op HAL_CRYP_AESCBC_Decrypt
75 #define hal_ctr_encrypt_op HAL_CRYP_AESCTR_Encrypt
76 #define hal_ctr_decrypt_op HAL_CRYP_AESCTR_Decrypt
77 #else
78 #define hal_ecb_encrypt_op hal_encrypt
79 #define hal_ecb_decrypt_op hal_decrypt
80 #define hal_cbc_encrypt_op hal_encrypt
81 #define hal_cbc_decrypt_op hal_decrypt
82 #define hal_ctr_encrypt_op hal_encrypt
83 #define hal_ctr_decrypt_op hal_decrypt
84 #endif
85
86 /* L4 HAL driver uses uint8_t pointers for input/output data while the generic HAL driver uses
87 * uint32_t pointers.
88 */
89 #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
90 #define CAST_VEC(x) (uint8_t *)(x)
91 #else
92 #define CAST_VEC(x) (uint32_t *)(x)
93 #endif
94
copy_words_adjust_endianness(uint8_t * dst_buf,int dst_len,const uint8_t * src_buf,int src_len)95 static int copy_words_adjust_endianness(uint8_t *dst_buf, int dst_len, const uint8_t *src_buf,
96 int src_len)
97 {
98 if ((dst_len < src_len) || ((dst_len % 4) != 0)) {
99 LOG_ERR("Buffer length error");
100 return -EINVAL;
101 }
102
103 memcpy(dst_buf, src_buf, src_len);
104
105 #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
106 for (int i = 0; i < dst_len; i += sizeof(uint32_t)) {
107 sys_mem_swap(&dst_buf[i], sizeof(uint32_t));
108 }
109 #endif
110
111 return 0;
112 }
113
do_aes(struct cipher_ctx * ctx,hal_cryp_aes_op_func_t fn,uint8_t * in_buf,int in_len,uint8_t * out_buf)114 static int do_aes(struct cipher_ctx *ctx, hal_cryp_aes_op_func_t fn, uint8_t *in_buf, int in_len,
115 uint8_t *out_buf)
116 {
117 status_t status;
118
119 struct crypto_stm32_data *data = CRYPTO_STM32_DATA(ctx->device);
120 struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
121
122 k_sem_take(&data->device_sem, K_FOREVER);
123
124 #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
125 /* Device is initialized from the configuration in the encryption/decryption function
126 * called bellow.
127 */
128 memcpy(&data->hcryp.Init, &session->config, sizeof(session->config));
129 #else
130 status = HAL_CRYP_SetConfig(&data->hcryp, &session->config);
131 if (status != HAL_OK) {
132 LOG_ERR("Configuration error");
133 k_sem_give(&data->device_sem);
134 return -EIO;
135 }
136 #endif
137
138 status = fn(&data->hcryp, in_buf, in_len, out_buf, HAL_MAX_DELAY);
139 if (status != HAL_OK) {
140 LOG_ERR("Encryption/decryption error");
141 k_sem_give(&data->device_sem);
142 return -EIO;
143 }
144
145 k_sem_give(&data->device_sem);
146
147 return 0;
148 }
149
150 #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
hal_encrypt(CRYP_HandleTypeDef * hcryp,uint8_t * pPlainData,uint16_t Size,uint8_t * pCypherData,uint32_t Timeout)151 static status_t hal_encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size,
152 uint8_t *pCypherData, uint32_t Timeout)
153 {
154 return HAL_CRYP_Encrypt(hcryp, (uint32_t *)pPlainData, Size, (uint32_t *)pCypherData,
155 Timeout);
156 }
157
hal_decrypt(CRYP_HandleTypeDef * hcryp,uint8_t * pCypherData,uint16_t Size,uint8_t * pPlainData,uint32_t Timeout)158 static status_t hal_decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size,
159 uint8_t *pPlainData, uint32_t Timeout)
160 {
161 return HAL_CRYP_Decrypt(hcryp, (uint32_t *)pCypherData, Size, (uint32_t *)pPlainData,
162 Timeout);
163 }
164 #endif
165
crypto_stm32_ecb_encrypt(struct cipher_ctx * ctx,struct cipher_pkt * pkt)166 static int crypto_stm32_ecb_encrypt(struct cipher_ctx *ctx,
167 struct cipher_pkt *pkt)
168 {
169 int ret;
170
171 /* For security reasons, ECB mode should not be used to encrypt
172 * more than one block. Use CBC mode instead.
173 */
174 if (pkt->in_len > 16) {
175 LOG_ERR("Cannot encrypt more than 1 block");
176 return -EINVAL;
177 }
178
179 ret = do_aes(ctx, hal_ecb_encrypt_op, pkt->in_buf, pkt->in_len, pkt->out_buf);
180 if (ret == 0) {
181 pkt->out_len = 16;
182 }
183
184 return ret;
185 }
186
crypto_stm32_ecb_decrypt(struct cipher_ctx * ctx,struct cipher_pkt * pkt)187 static int crypto_stm32_ecb_decrypt(struct cipher_ctx *ctx,
188 struct cipher_pkt *pkt)
189 {
190 int ret;
191
192 /* For security reasons, ECB mode should not be used to encrypt
193 * more than one block. Use CBC mode instead.
194 */
195 if (pkt->in_len > 16) {
196 LOG_ERR("Cannot encrypt more than 1 block");
197 return -EINVAL;
198 }
199
200 ret = do_aes(ctx, hal_ecb_decrypt_op, pkt->in_buf, pkt->in_len, pkt->out_buf);
201 if (ret == 0) {
202 pkt->out_len = 16;
203 }
204
205 return ret;
206 }
207
crypto_stm32_cbc_encrypt(struct cipher_ctx * ctx,struct cipher_pkt * pkt,uint8_t * iv)208 static int crypto_stm32_cbc_encrypt(struct cipher_ctx *ctx,
209 struct cipher_pkt *pkt, uint8_t *iv)
210 {
211 int ret;
212 uint32_t vec[BLOCK_LEN_WORDS];
213 int out_offset = 0;
214
215 struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
216
217 (void)copy_words_adjust_endianness((uint8_t *)vec, sizeof(vec), iv, BLOCK_LEN_BYTES);
218
219 session->config.pInitVect = CAST_VEC(vec);
220
221 if ((ctx->flags & CAP_NO_IV_PREFIX) == 0U) {
222 /* Prefix IV to ciphertext unless CAP_NO_IV_PREFIX is set. */
223 memcpy(pkt->out_buf, iv, 16);
224 out_offset = 16;
225 }
226
227 ret = do_aes(ctx, hal_cbc_encrypt_op, pkt->in_buf, pkt->in_len, pkt->out_buf + out_offset);
228 if (ret == 0) {
229 pkt->out_len = pkt->in_len + out_offset;
230 }
231
232 return ret;
233 }
234
crypto_stm32_cbc_decrypt(struct cipher_ctx * ctx,struct cipher_pkt * pkt,uint8_t * iv)235 static int crypto_stm32_cbc_decrypt(struct cipher_ctx *ctx,
236 struct cipher_pkt *pkt, uint8_t *iv)
237 {
238 int ret;
239 uint32_t vec[BLOCK_LEN_WORDS];
240 int in_offset = 0;
241
242 struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
243
244 (void)copy_words_adjust_endianness((uint8_t *)vec, sizeof(vec), iv, BLOCK_LEN_BYTES);
245
246 session->config.pInitVect = CAST_VEC(vec);
247
248 if ((ctx->flags & CAP_NO_IV_PREFIX) == 0U) {
249 in_offset = 16;
250 }
251
252 ret = do_aes(ctx, hal_cbc_decrypt_op, pkt->in_buf + in_offset, pkt->in_len, pkt->out_buf);
253 if (ret == 0) {
254 pkt->out_len = pkt->in_len - in_offset;
255 }
256
257 return ret;
258 }
259
crypto_stm32_ctr_encrypt(struct cipher_ctx * ctx,struct cipher_pkt * pkt,uint8_t * iv)260 static int crypto_stm32_ctr_encrypt(struct cipher_ctx *ctx,
261 struct cipher_pkt *pkt, uint8_t *iv)
262 {
263 int ret;
264 uint32_t ctr[BLOCK_LEN_WORDS] = {0};
265 int ivlen = BLOCK_LEN_BYTES - (ctx->mode_params.ctr_info.ctr_len >> 3);
266
267 struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
268
269 if (copy_words_adjust_endianness((uint8_t *)ctr, sizeof(ctr), iv, ivlen) != 0) {
270 return -EIO;
271 }
272
273 session->config.pInitVect = CAST_VEC(ctr);
274
275 ret = do_aes(ctx, hal_ctr_encrypt_op, pkt->in_buf, pkt->in_len, pkt->out_buf);
276 if (ret == 0) {
277 pkt->out_len = pkt->in_len;
278 }
279
280 return ret;
281 }
282
crypto_stm32_ctr_decrypt(struct cipher_ctx * ctx,struct cipher_pkt * pkt,uint8_t * iv)283 static int crypto_stm32_ctr_decrypt(struct cipher_ctx *ctx,
284 struct cipher_pkt *pkt, uint8_t *iv)
285 {
286 int ret;
287 uint32_t ctr[BLOCK_LEN_WORDS] = {0};
288 int ivlen = BLOCK_LEN_BYTES - (ctx->mode_params.ctr_info.ctr_len >> 3);
289
290 struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
291
292 if (copy_words_adjust_endianness((uint8_t *)ctr, sizeof(ctr), iv, ivlen) != 0) {
293 return -EIO;
294 }
295
296 session->config.pInitVect = CAST_VEC(ctr);
297
298 ret = do_aes(ctx, hal_ctr_decrypt_op, pkt->in_buf, pkt->in_len, pkt->out_buf);
299 if (ret == 0) {
300 pkt->out_len = pkt->in_len;
301 }
302
303 return ret;
304 }
305
crypto_stm32_get_unused_session_index(const struct device * dev)306 static int crypto_stm32_get_unused_session_index(const struct device *dev)
307 {
308 int i;
309
310 struct crypto_stm32_data *data = CRYPTO_STM32_DATA(dev);
311
312 k_sem_take(&data->session_sem, K_FOREVER);
313
314 for (i = 0; i < CRYPTO_MAX_SESSION; i++) {
315 if (!crypto_stm32_sessions[i].in_use) {
316 crypto_stm32_sessions[i].in_use = true;
317 k_sem_give(&data->session_sem);
318 return i;
319 }
320 }
321
322 k_sem_give(&data->session_sem);
323
324 return -1;
325 }
326
crypto_stm32_session_setup(const struct device * dev,struct cipher_ctx * ctx,enum cipher_algo algo,enum cipher_mode mode,enum cipher_op op_type)327 static int crypto_stm32_session_setup(const struct device *dev,
328 struct cipher_ctx *ctx,
329 enum cipher_algo algo,
330 enum cipher_mode mode,
331 enum cipher_op op_type)
332 {
333 int ctx_idx, ret;
334 struct crypto_stm32_session *session;
335
336 if (ctx->flags & ~(CRYP_SUPPORT)) {
337 LOG_ERR("Unsupported flag");
338 return -EINVAL;
339 }
340
341 if (algo != CRYPTO_CIPHER_ALGO_AES) {
342 LOG_ERR("Unsupported algo");
343 return -EINVAL;
344 }
345
346 /* The CRYP peripheral supports the AES ECB, CBC, CTR, CCM and GCM
347 * modes of operation, of which ECB, CBC, CTR and CCM are supported
348 * through the crypto API. However, in CCM mode, although the STM32Cube
349 * HAL driver follows the documentation (cf. RM0090, par. 23.3) by
350 * padding incomplete input data blocks in software prior encryption,
351 * incorrect authentication tags are returned for input data which is
352 * not a multiple of 128 bits. Therefore, CCM mode is not supported by
353 * this driver.
354 */
355 if ((mode != CRYPTO_CIPHER_MODE_ECB) &&
356 (mode != CRYPTO_CIPHER_MODE_CBC) &&
357 (mode != CRYPTO_CIPHER_MODE_CTR)) {
358 LOG_ERR("Unsupported mode");
359 return -EINVAL;
360 }
361
362 /* The STM32F4 CRYP peripheral supports key sizes of 128, 192 and 256
363 * bits.
364 */
365 if ((ctx->keylen != 16U) &&
366 #if defined(STM32_CRYPTO_KEYSIZE_192B_SUPPORT)
367 (ctx->keylen != 24U) &&
368 #endif
369 (ctx->keylen != 32U)) {
370 LOG_ERR("%u key size is not supported", ctx->keylen);
371 return -EINVAL;
372 }
373
374 ctx_idx = crypto_stm32_get_unused_session_index(dev);
375 if (ctx_idx < 0) {
376 LOG_ERR("No free session for now");
377 return -ENOSPC;
378 }
379 session = &crypto_stm32_sessions[ctx_idx];
380 memset(&session->config, 0, sizeof(session->config));
381
382 #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
383 struct crypto_stm32_data *data = CRYPTO_STM32_DATA(dev);
384
385 if (data->hcryp.State == HAL_CRYP_STATE_RESET) {
386 if (HAL_CRYP_Init(&data->hcryp) != HAL_OK) {
387 LOG_ERR("Initialization error");
388 session->in_use = false;
389 return -EIO;
390 }
391 }
392 #endif
393
394 switch (ctx->keylen) {
395 case 16U:
396 session->config.KeySize = CRYP_KEYSIZE_128B;
397 break;
398 #if defined(STM32_CRYPTO_KEYSIZE_192B_SUPPORT)
399 case 24U:
400 session->config.KeySize = CRYP_KEYSIZE_192B;
401 break;
402 #endif
403 case 32U:
404 session->config.KeySize = CRYP_KEYSIZE_256B;
405 break;
406 }
407
408 if (op_type == CRYPTO_CIPHER_OP_ENCRYPT) {
409 switch (mode) {
410 case CRYPTO_CIPHER_MODE_ECB:
411 #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
412 session->config.Algorithm = CRYP_AES_ECB;
413 #endif
414 ctx->ops.block_crypt_hndlr = crypto_stm32_ecb_encrypt;
415 break;
416 case CRYPTO_CIPHER_MODE_CBC:
417 #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
418 session->config.Algorithm = CRYP_AES_CBC;
419 #endif
420 ctx->ops.cbc_crypt_hndlr = crypto_stm32_cbc_encrypt;
421 break;
422 case CRYPTO_CIPHER_MODE_CTR:
423 #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
424 session->config.Algorithm = CRYP_AES_CTR;
425 #endif
426 ctx->ops.ctr_crypt_hndlr = crypto_stm32_ctr_encrypt;
427 break;
428 default:
429 break;
430 }
431 } else {
432 switch (mode) {
433 case CRYPTO_CIPHER_MODE_ECB:
434 #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
435 session->config.Algorithm = CRYP_AES_ECB;
436 #endif
437 ctx->ops.block_crypt_hndlr = crypto_stm32_ecb_decrypt;
438 break;
439 case CRYPTO_CIPHER_MODE_CBC:
440 #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
441 session->config.Algorithm = CRYP_AES_CBC;
442 #endif
443 ctx->ops.cbc_crypt_hndlr = crypto_stm32_cbc_decrypt;
444 break;
445 case CRYPTO_CIPHER_MODE_CTR:
446 #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
447 session->config.Algorithm = CRYP_AES_CTR;
448 #endif
449 ctx->ops.ctr_crypt_hndlr = crypto_stm32_ctr_decrypt;
450 break;
451 default:
452 break;
453 }
454 }
455
456 ret = copy_words_adjust_endianness((uint8_t *)session->key, CRYPTO_STM32_AES_MAX_KEY_LEN,
457 ctx->key.bit_stream, ctx->keylen);
458 if (ret != 0) {
459 return -EIO;
460 }
461
462 session->config.pKey = CAST_VEC(session->key);
463 session->config.DataType = CRYP_DATATYPE_8B;
464
465 #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
466 session->config.DataWidthUnit = CRYP_DATAWIDTHUNIT_BYTE;
467 #endif
468
469 ctx->drv_sessn_state = session;
470 ctx->device = dev;
471
472 return 0;
473 }
474
crypto_stm32_session_free(const struct device * dev,struct cipher_ctx * ctx)475 static int crypto_stm32_session_free(const struct device *dev,
476 struct cipher_ctx *ctx)
477 {
478 int i;
479
480 struct crypto_stm32_data *data = CRYPTO_STM32_DATA(dev);
481 const struct crypto_stm32_config *cfg = CRYPTO_STM32_CFG(dev);
482 struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
483
484 session->in_use = false;
485
486 k_sem_take(&data->session_sem, K_FOREVER);
487
488 /* Disable peripheral only if there are no more active sessions. */
489 for (i = 0; i < CRYPTO_MAX_SESSION; i++) {
490 if (crypto_stm32_sessions[i].in_use) {
491 k_sem_give(&data->session_sem);
492 return 0;
493 }
494 }
495
496 #if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32l4_aes)
497 /* Deinitialize and reset peripheral. */
498 if (HAL_CRYP_DeInit(&data->hcryp) != HAL_OK) {
499 LOG_ERR("Deinitialization error");
500 k_sem_give(&data->session_sem);
501 return -EIO;
502 }
503 #endif
504
505 (void)reset_line_toggle_dt(&cfg->reset);
506
507 k_sem_give(&data->session_sem);
508
509 return 0;
510 }
511
crypto_stm32_query_caps(const struct device * dev)512 static int crypto_stm32_query_caps(const struct device *dev)
513 {
514 return CRYP_SUPPORT;
515 }
516
crypto_stm32_init(const struct device * dev)517 static int crypto_stm32_init(const struct device *dev)
518 {
519 const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
520 struct crypto_stm32_data *data = CRYPTO_STM32_DATA(dev);
521 const struct crypto_stm32_config *cfg = CRYPTO_STM32_CFG(dev);
522
523 if (!device_is_ready(clk)) {
524 LOG_ERR("clock control device not ready");
525 return -ENODEV;
526 }
527
528 if (clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken) != 0) {
529 LOG_ERR("clock op failed\n");
530 return -EIO;
531 }
532
533 k_sem_init(&data->device_sem, 1, 1);
534 k_sem_init(&data->session_sem, 1, 1);
535
536 if (HAL_CRYP_DeInit(&data->hcryp) != HAL_OK) {
537 LOG_ERR("Peripheral reset error");
538 return -EIO;
539 }
540
541 return 0;
542 }
543
544 static DEVICE_API(crypto, crypto_enc_funcs) = {
545 .cipher_begin_session = crypto_stm32_session_setup,
546 .cipher_free_session = crypto_stm32_session_free,
547 .cipher_async_callback_set = NULL,
548 .query_hw_caps = crypto_stm32_query_caps,
549 };
550
551 static struct crypto_stm32_data crypto_stm32_dev_data = {
552 .hcryp = {
553 .Instance = (STM32_CRYPTO_TYPEDEF *)DT_INST_REG_ADDR(0),
554 }
555 };
556
557 static const struct crypto_stm32_config crypto_stm32_dev_config = {
558 .reset = RESET_DT_SPEC_INST_GET(0),
559 .pclken = {
560 .enr = DT_INST_CLOCKS_CELL(0, bits),
561 .bus = DT_INST_CLOCKS_CELL(0, bus)
562 }
563 };
564
565 DEVICE_DT_INST_DEFINE(0, crypto_stm32_init, NULL,
566 &crypto_stm32_dev_data,
567 &crypto_stm32_dev_config, POST_KERNEL,
568 CONFIG_CRYPTO_INIT_PRIORITY, (void *)&crypto_enc_funcs);
569