1 /*
2 * Copyright (c) 2015, Freescale Semiconductor, Inc.
3 * Copyright 2016-2022 NXP
4 * All rights reserved.
5 *
6 * SPDX-License-Identifier: BSD-3-Clause
7 */
8 #ifndef FSL_PWM_H_
9 #define FSL_PWM_H_
10
11 #include "fsl_common.h"
12
13 /*!
14 * @addtogroup pwm_driver
15 * @{
16 */
17
18 /*******************************************************************************
19 * Definitions
20 ******************************************************************************/
21 /*! @name Driver version */
22 /*! @{ */
23 #define FSL_PWM_DRIVER_VERSION (MAKE_VERSION(2, 8, 4)) /*!< Version 2.8.4 */
24 /*! @} */
25
26 /*! Number of bits per submodule for software output control */
27 #define PWM_SUBMODULE_SWCONTROL_WIDTH 2
28 /*! Because setting the pwm duty cycle doesn't support PWMX, getting the pwm duty cycle also doesn't support PWMX. */
29 #define PWM_SUBMODULE_CHANNEL 2
30
31 /*! @brief List of PWM submodules */
32 typedef enum _pwm_submodule
33 {
34 kPWM_Module_0 = 0U, /*!< Submodule 0 */
35 kPWM_Module_1, /*!< Submodule 1 */
36 kPWM_Module_2, /*!< Submodule 2 */
37 #if defined(FSL_FEATURE_PWM_SUBMODULE_COUNT) && (FSL_FEATURE_PWM_SUBMODULE_COUNT > 3U)
38 kPWM_Module_3 /*!< Submodule 3 */
39 #endif /* FSL_FEATURE_PWM_SUBMODULE_COUNT */
40 } pwm_submodule_t;
41
42 /*! @brief List of PWM channels in each module */
43 typedef enum _pwm_channels
44 {
45 kPWM_PwmB = 0U,
46 kPWM_PwmA,
47 kPWM_PwmX
48 } pwm_channels_t;
49
50 /*! @brief List of PWM value registers */
51 typedef enum _pwm_value_register
52 {
53 kPWM_ValueRegister_0 = 0U, /*!< PWM Value0 register */
54 kPWM_ValueRegister_1, /*!< PWM Value1 register */
55 kPWM_ValueRegister_2, /*!< PWM Value2 register */
56 kPWM_ValueRegister_3, /*!< PWM Value3 register */
57 kPWM_ValueRegister_4, /*!< PWM Value4 register */
58 kPWM_ValueRegister_5 /*!< PWM Value5 register */
59 } pwm_value_register_t;
60
61 /*! @brief List of PWM value registers mask */
62 enum _pwm_value_register_mask
63 {
64 kPWM_ValueRegisterMask_0 = (1U << 0), /*!< PWM Value0 register mask */
65 kPWM_ValueRegisterMask_1 = (1U << 1), /*!< PWM Value1 register mask */
66 kPWM_ValueRegisterMask_2 = (1U << 2), /*!< PWM Value2 register mask */
67 kPWM_ValueRegisterMask_3 = (1U << 3), /*!< PWM Value3 register mask */
68 kPWM_ValueRegisterMask_4 = (1U << 4), /*!< PWM Value4 register mask */
69 kPWM_ValueRegisterMask_5 = (1U << 5) /*!< PWM Value5 register mask */
70 };
71
72 /*! @brief PWM clock source selection.*/
73 typedef enum _pwm_clock_source
74 {
75 kPWM_BusClock = 0U, /*!< The IPBus clock is used as the clock */
76 kPWM_ExternalClock, /*!< EXT_CLK is used as the clock */
77 kPWM_Submodule0Clock /*!< Clock of the submodule 0 (AUX_CLK) is used as the source clock */
78 } pwm_clock_source_t;
79
80 /*! @brief PWM prescaler factor selection for clock source*/
81 typedef enum _pwm_clock_prescale
82 {
83 kPWM_Prescale_Divide_1 = 0U, /*!< PWM clock frequency = fclk/1 */
84 kPWM_Prescale_Divide_2, /*!< PWM clock frequency = fclk/2 */
85 kPWM_Prescale_Divide_4, /*!< PWM clock frequency = fclk/4 */
86 kPWM_Prescale_Divide_8, /*!< PWM clock frequency = fclk/8 */
87 kPWM_Prescale_Divide_16, /*!< PWM clock frequency = fclk/16 */
88 kPWM_Prescale_Divide_32, /*!< PWM clock frequency = fclk/32 */
89 kPWM_Prescale_Divide_64, /*!< PWM clock frequency = fclk/64 */
90 kPWM_Prescale_Divide_128 /*!< PWM clock frequency = fclk/128 */
91 } pwm_clock_prescale_t;
92
93 /*! @brief Options that can trigger a PWM FORCE_OUT */
94 typedef enum _pwm_force_output_trigger
95 {
96 kPWM_Force_Local = 0U, /*!< The local force signal, CTRL2[FORCE], from the submodule is used to force updates */
97 kPWM_Force_Master, /*!< The master force signal from submodule 0 is used to force updates */
98 kPWM_Force_LocalReload, /*!< The local reload signal from this submodule is used to force updates without regard to
99 the state of LDOK */
100 kPWM_Force_MasterReload, /*!< The master reload signal from submodule 0 is used to force updates if LDOK is set */
101 kPWM_Force_LocalSync, /*!< The local sync signal from this submodule is used to force updates */
102 kPWM_Force_MasterSync, /*!< The master sync signal from submodule0 is used to force updates */
103 kPWM_Force_External, /*!< The external force signal, EXT_FORCE, from outside the PWM module causes updates */
104 kPWM_Force_ExternalSync /*!< The external sync signal, EXT_SYNC, from outside the PWM module causes updates */
105 } pwm_force_output_trigger_t;
106
107 /*! @brief PWM channel output status */
108 typedef enum _pwm_output_state
109 {
110 kPWM_HighState = 0, /*!< The output state of PWM channel is high */
111 kPWM_LowState, /*!< The output state of PWM channel is low */
112 kPWM_NormalState, /*!< The output state of PWM channel is normal */
113 kPWM_InvertState, /*!< The output state of PWM channel is invert */
114 kPWM_MaskState /*!< The output state of PWM channel is mask */
115 } pwm_output_state_t;
116
117 /*! @brief PWM counter initialization options */
118 typedef enum _pwm_init_source
119 {
120 kPWM_Initialize_LocalSync = 0U, /*!< Local sync causes initialization */
121 kPWM_Initialize_MasterReload, /*!< Master reload from submodule 0 causes initialization */
122 kPWM_Initialize_MasterSync, /*!< Master sync from submodule 0 causes initialization */
123 kPWM_Initialize_ExtSync /*!< EXT_SYNC causes initialization */
124 } pwm_init_source_t;
125
126 /*! @brief PWM load frequency selection */
127 typedef enum _pwm_load_frequency
128 {
129 kPWM_LoadEveryOportunity = 0U, /*!< Every PWM opportunity */
130 kPWM_LoadEvery2Oportunity, /*!< Every 2 PWM opportunities */
131 kPWM_LoadEvery3Oportunity, /*!< Every 3 PWM opportunities */
132 kPWM_LoadEvery4Oportunity, /*!< Every 4 PWM opportunities */
133 kPWM_LoadEvery5Oportunity, /*!< Every 5 PWM opportunities */
134 kPWM_LoadEvery6Oportunity, /*!< Every 6 PWM opportunities */
135 kPWM_LoadEvery7Oportunity, /*!< Every 7 PWM opportunities */
136 kPWM_LoadEvery8Oportunity, /*!< Every 8 PWM opportunities */
137 kPWM_LoadEvery9Oportunity, /*!< Every 9 PWM opportunities */
138 kPWM_LoadEvery10Oportunity, /*!< Every 10 PWM opportunities */
139 kPWM_LoadEvery11Oportunity, /*!< Every 11 PWM opportunities */
140 kPWM_LoadEvery12Oportunity, /*!< Every 12 PWM opportunities */
141 kPWM_LoadEvery13Oportunity, /*!< Every 13 PWM opportunities */
142 kPWM_LoadEvery14Oportunity, /*!< Every 14 PWM opportunities */
143 kPWM_LoadEvery15Oportunity, /*!< Every 15 PWM opportunities */
144 kPWM_LoadEvery16Oportunity /*!< Every 16 PWM opportunities */
145 } pwm_load_frequency_t;
146
147 /*! @brief List of PWM fault selections */
148 typedef enum _pwm_fault_input
149 {
150 kPWM_Fault_0 = 0U, /*!< Fault 0 input pin */
151 kPWM_Fault_1, /*!< Fault 1 input pin */
152 kPWM_Fault_2, /*!< Fault 2 input pin */
153 kPWM_Fault_3 /*!< Fault 3 input pin */
154 } pwm_fault_input_t;
155
156 /*! @brief List of PWM fault disable mapping selections */
157 typedef enum _pwm_fault_disable
158 {
159 kPWM_FaultDisable_0 = (1U << 0), /*!< Fault 0 disable mapping */
160 kPWM_FaultDisable_1 = (1U << 1), /*!< Fault 1 disable mapping */
161 kPWM_FaultDisable_2 = (1U << 2), /*!< Fault 2 disable mapping */
162 kPWM_FaultDisable_3 = (1U << 3) /*!< Fault 3 disable mapping */
163 } pwm_fault_disable_t;
164
165 /*! @brief List of PWM fault channels */
166 typedef enum _pwm_fault_channels
167 {
168 kPWM_faultchannel_0 = 0U,
169 kPWM_faultchannel_1
170 } pwm_fault_channels_t;
171
172 /*! @brief PWM capture edge select */
173 typedef enum _pwm_input_capture_edge
174 {
175 kPWM_Disable = 0U, /*!< Disabled */
176 kPWM_FallingEdge, /*!< Capture on falling edge only */
177 kPWM_RisingEdge, /*!< Capture on rising edge only */
178 kPWM_RiseAndFallEdge /*!< Capture on rising or falling edge */
179 } pwm_input_capture_edge_t;
180
181 /*! @brief PWM output options when a FORCE_OUT signal is asserted */
182 typedef enum _pwm_force_signal
183 {
184 kPWM_UsePwm = 0U, /*!< Generated PWM signal is used by the deadtime logic.*/
185 kPWM_InvertedPwm, /*!< Inverted PWM signal is used by the deadtime logic.*/
186 kPWM_SoftwareControl, /*!< Software controlled value is used by the deadtime logic. */
187 kPWM_UseExternal /*!< PWM_EXTA signal is used by the deadtime logic. */
188 } pwm_force_signal_t;
189
190 /*! @brief Options available for the PWM A & B pair operation */
191 typedef enum _pwm_chnl_pair_operation
192 {
193 kPWM_Independent = 0U, /*!< PWM A & PWM B operate as 2 independent channels */
194 kPWM_ComplementaryPwmA, /*!< PWM A & PWM B are complementary channels, PWM A generates the signal */
195 kPWM_ComplementaryPwmB /*!< PWM A & PWM B are complementary channels, PWM B generates the signal */
196 } pwm_chnl_pair_operation_t;
197
198 /*! @brief Options available on how to load the buffered-registers with new values */
199 typedef enum _pwm_register_reload
200 {
201 kPWM_ReloadImmediate = 0U, /*!< Buffered-registers get loaded with new values as soon as LDOK bit is set */
202 kPWM_ReloadPwmHalfCycle, /*!< Registers loaded on a PWM half cycle */
203 kPWM_ReloadPwmFullCycle, /*!< Registers loaded on a PWM full cycle */
204 kPWM_ReloadPwmHalfAndFullCycle /*!< Registers loaded on a PWM half & full cycle */
205 } pwm_register_reload_t;
206
207 /*! @brief Options available on how to re-enable the PWM output when recovering from a fault */
208 typedef enum _pwm_fault_recovery_mode
209 {
210 kPWM_NoRecovery = 0U, /*!< PWM output will stay inactive */
211 kPWM_RecoverHalfCycle, /*!< PWM output re-enabled at the first half cycle */
212 kPWM_RecoverFullCycle, /*!< PWM output re-enabled at the first full cycle */
213 kPWM_RecoverHalfAndFullCycle /*!< PWM output re-enabled at the first half or full cycle */
214 } pwm_fault_recovery_mode_t;
215
216 /*! @brief List of PWM interrupt options */
217 typedef enum _pwm_interrupt_enable
218 {
219 kPWM_CompareVal0InterruptEnable = (1U << 0), /*!< PWM VAL0 compare interrupt */
220 kPWM_CompareVal1InterruptEnable = (1U << 1), /*!< PWM VAL1 compare interrupt */
221 kPWM_CompareVal2InterruptEnable = (1U << 2), /*!< PWM VAL2 compare interrupt */
222 kPWM_CompareVal3InterruptEnable = (1U << 3), /*!< PWM VAL3 compare interrupt */
223 kPWM_CompareVal4InterruptEnable = (1U << 4), /*!< PWM VAL4 compare interrupt */
224 kPWM_CompareVal5InterruptEnable = (1U << 5), /*!< PWM VAL5 compare interrupt */
225 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX
226 kPWM_CaptureX0InterruptEnable = (1U << 6), /*!< PWM capture X0 interrupt */
227 kPWM_CaptureX1InterruptEnable = (1U << 7), /*!< PWM capture X1 interrupt */
228 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX */
229 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB
230 kPWM_CaptureB0InterruptEnable = (1U << 8), /*!< PWM capture B0 interrupt */
231 kPWM_CaptureB1InterruptEnable = (1U << 9), /*!< PWM capture B1 interrupt */
232 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB */
233 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA
234 kPWM_CaptureA0InterruptEnable = (1U << 10), /*!< PWM capture A0 interrupt */
235 kPWM_CaptureA1InterruptEnable = (1U << 11), /*!< PWM capture A1 interrupt */
236 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA */
237 kPWM_ReloadInterruptEnable = (1U << 12), /*!< PWM reload interrupt */
238 kPWM_ReloadErrorInterruptEnable = (1U << 13), /*!< PWM reload error interrupt */
239 kPWM_Fault0InterruptEnable = (1U << 16), /*!< PWM fault 0 interrupt */
240 kPWM_Fault1InterruptEnable = (1U << 17), /*!< PWM fault 1 interrupt */
241 kPWM_Fault2InterruptEnable = (1U << 18), /*!< PWM fault 2 interrupt */
242 kPWM_Fault3InterruptEnable = (1U << 19) /*!< PWM fault 3 interrupt */
243 } pwm_interrupt_enable_t;
244
245 /*! @brief List of PWM status flags */
246 typedef enum _pwm_status_flags
247 {
248 kPWM_CompareVal0Flag = (1U << 0), /*!< PWM VAL0 compare flag */
249 kPWM_CompareVal1Flag = (1U << 1), /*!< PWM VAL1 compare flag */
250 kPWM_CompareVal2Flag = (1U << 2), /*!< PWM VAL2 compare flag */
251 kPWM_CompareVal3Flag = (1U << 3), /*!< PWM VAL3 compare flag */
252 kPWM_CompareVal4Flag = (1U << 4), /*!< PWM VAL4 compare flag */
253 kPWM_CompareVal5Flag = (1U << 5), /*!< PWM VAL5 compare flag */
254 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX
255 kPWM_CaptureX0Flag = (1U << 6), /*!< PWM capture X0 flag */
256 kPWM_CaptureX1Flag = (1U << 7), /*!< PWM capture X1 flag */
257 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX */
258 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB
259 kPWM_CaptureB0Flag = (1U << 8), /*!< PWM capture B0 flag */
260 kPWM_CaptureB1Flag = (1U << 9), /*!< PWM capture B1 flag */
261 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB */
262 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA
263 kPWM_CaptureA0Flag = (1U << 10), /*!< PWM capture A0 flag */
264 kPWM_CaptureA1Flag = (1U << 11), /*!< PWM capture A1 flag */
265 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA */
266 kPWM_ReloadFlag = (1U << 12), /*!< PWM reload flag */
267 kPWM_ReloadErrorFlag = (1U << 13), /*!< PWM reload error flag */
268 kPWM_RegUpdatedFlag = (1U << 14), /*!< PWM registers updated flag */
269 kPWM_Fault0Flag = (1U << 16), /*!< PWM fault 0 flag */
270 kPWM_Fault1Flag = (1U << 17), /*!< PWM fault 1 flag */
271 kPWM_Fault2Flag = (1U << 18), /*!< PWM fault 2 flag */
272 kPWM_Fault3Flag = (1U << 19) /*!< PWM fault 3 flag */
273 } pwm_status_flags_t;
274
275 /*! @brief List of PWM DMA options */
276 typedef enum _pwm_dma_enable
277 {
278 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX
279 kPWM_CaptureX0DMAEnable = (1U << 0), /*!< PWM capture X0 DMA */
280 kPWM_CaptureX1DMAEnable = (1U << 1), /*!< PWM capture X1 DMA */
281 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX */
282 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB
283 kPWM_CaptureB0DMAEnable = (1U << 2), /*!< PWM capture B0 DMA */
284 kPWM_CaptureB1DMAEnable = (1U << 3), /*!< PWM capture B1 DMA */
285 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB */
286 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA
287 kPWM_CaptureA0DMAEnable = (1U << 4), /*!< PWM capture A0 DMA */
288 kPWM_CaptureA1DMAEnable = (1U << 5) /*!< PWM capture A1 DMA */
289 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA */
290 } pwm_dma_enable_t;
291
292 /*! @brief List of PWM capture DMA enable source select */
293 typedef enum _pwm_dma_source_select
294 {
295 kPWM_DMARequestDisable = 0U, /*!< Read DMA requests disabled */
296 kPWM_DMAWatermarksEnable, /*!< Exceeding a FIFO watermark sets the DMA read request */
297 kPWM_DMALocalSync, /*!< A local sync (VAL1 matches counter) sets the read DMA request */
298 kPWM_DMALocalReload /*!< A local reload (STS[RF] being set) sets the read DMA request */
299 } pwm_dma_source_select_t;
300
301 /*! @brief PWM FIFO Watermark AND Control */
302 typedef enum _pwm_watermark_control
303 {
304 kPWM_FIFOWatermarksOR = 0U, /*!< Selected FIFO watermarks are OR'ed together */
305 kPWM_FIFOWatermarksAND /*!< Selected FIFO watermarks are AND'ed together */
306 } pwm_watermark_control_t;
307
308 /*! @brief PWM operation mode */
309 typedef enum _pwm_mode
310 {
311 kPWM_SignedCenterAligned = 0U, /*!< Signed center-aligned */
312 kPWM_CenterAligned, /*!< Unsigned cente-aligned */
313 kPWM_SignedEdgeAligned, /*!< Signed edge-aligned */
314 kPWM_EdgeAligned /*!< Unsigned edge-aligned */
315 } pwm_mode_t;
316
317 /*! @brief PWM output pulse mode, high-true or low-true */
318 typedef enum _pwm_level_select
319 {
320 kPWM_HighTrue = 0U, /*!< High level represents "on" or "active" state */
321 kPWM_LowTrue /*!< Low level represents "on" or "active" state */
322 } pwm_level_select_t;
323
324 /*! @brief PWM output fault status */
325 typedef enum _pwm_fault_state
326 {
327 kPWM_PwmFaultState0 =
328 0U, /*!< Output is forced to logic 0 state prior to consideration of output polarity control. */
329 kPWM_PwmFaultState1, /*!< Output is forced to logic 1 state prior to consideration of output polarity control. */
330 kPWM_PwmFaultState2, /*!< Output is tristated. */
331 kPWM_PwmFaultState3 /*!< Output is tristated. */
332 } pwm_fault_state_t;
333
334 /*! @brief PWM reload source select */
335 typedef enum _pwm_reload_source_select
336 {
337 kPWM_LocalReload = 0U, /*!< The local reload signal is used to reload registers */
338 kPWM_MasterReload /*!< The master reload signal (from submodule 0) is used to reload */
339 } pwm_reload_source_select_t;
340
341 /*! @brief PWM fault clearing options */
342 typedef enum _pwm_fault_clear
343 {
344 kPWM_Automatic = 0U, /*!< Automatic fault clearing */
345 kPWM_ManualNormal, /*!< Manual fault clearing with no fault safety mode */
346 kPWM_ManualSafety /*!< Manual fault clearing with fault safety mode */
347 } pwm_fault_clear_t;
348
349 /*! @brief Options for submodule master control operation */
350 typedef enum _pwm_module_control
351 {
352 kPWM_Control_Module_0 = (1U << 0), /*!< Control submodule 0's start/stop,buffer reload operation */
353 kPWM_Control_Module_1 = (1U << 1), /*!< Control submodule 1's start/stop,buffer reload operation */
354 kPWM_Control_Module_2 = (1U << 2), /*!< Control submodule 2's start/stop,buffer reload operation */
355 kPWM_Control_Module_3 = (1U << 3) /*!< Control submodule 3's start/stop,buffer reload operation */
356 } pwm_module_control_t;
357
358 /*! @brief Structure for the user to define the PWM signal characteristics */
359 typedef struct _pwm_signal_param
360 {
361 pwm_channels_t pwmChannel; /*!< PWM channel being configured; PWM A or PWM B */
362 uint8_t dutyCyclePercent; /*!< PWM pulse width, value should be between 0 to 100
363 0=inactive signal(0% duty cycle)...
364 100=always active signal (100% duty cycle)*/
365 pwm_level_select_t level; /*!< PWM output active level select */
366 uint16_t deadtimeValue; /*!< The deadtime value; only used if channel pair is operating in complementary mode */
367 pwm_fault_state_t faultState; /*!< PWM output fault status */
368 bool pwmchannelenable; /*!< Enable PWM output */
369 } pwm_signal_param_t;
370
371 /*!
372 * @brief PWM config structure
373 *
374 * This structure holds the configuration settings for the PWM peripheral. To initialize this
375 * structure to reasonable defaults, call the PWM_GetDefaultConfig() function and pass a
376 * pointer to your config structure instance.
377 *
378 * The config struct can be made const so it resides in flash
379 */
380 typedef struct _pwm_config
381 {
382 bool enableDebugMode; /*!< true: PWM continues to run in debug mode;
383 false: PWM is paused in debug mode */
384 #if !defined(FSL_FEATURE_PWM_HAS_NO_WAITEN) || (!FSL_FEATURE_PWM_HAS_NO_WAITEN)
385 bool enableWait; /*!< true: PWM continues to run in WAIT mode;
386 false: PWM is paused in WAIT mode */
387 #endif /* FSL_FEATURE_PWM_HAS_NO_WAITEN */
388 pwm_init_source_t initializationControl; /*!< Option to initialize the counter */
389 pwm_clock_source_t clockSource; /*!< Clock source for the counter */
390 pwm_clock_prescale_t prescale; /*!< Pre-scaler to divide down the clock */
391 pwm_chnl_pair_operation_t pairOperation; /*!< Channel pair in indepedent or complementary mode */
392 pwm_register_reload_t reloadLogic; /*!< PWM Reload logic setup */
393 pwm_reload_source_select_t reloadSelect; /*!< Reload source select */
394 pwm_load_frequency_t reloadFrequency; /*!< Specifies when to reload, used when user's choice
395 is not immediate reload */
396 pwm_force_output_trigger_t forceTrigger; /*!< Specify which signal will trigger a FORCE_OUT */
397 } pwm_config_t;
398
399 /*! @brief Structure for the user to configure the fault input filter. */
400 typedef struct _pwm_fault_input_filter_param
401 {
402 uint8_t faultFilterCount; /*!< Fault filter count */
403 uint8_t faultFilterPeriod; /*!< Fault filter period;value of 0 will bypass the filter */
404 bool faultGlitchStretch; /*!< Fault Glitch Stretch Enable: A logic 1 means that input
405 fault signals will be stretched to at least 2 IPBus clock cycles */
406 } pwm_fault_input_filter_param_t;
407
408 /*! @brief Structure is used to hold the parameters to configure a PWM fault */
409 typedef struct _pwm_fault_param
410 {
411 pwm_fault_clear_t faultClearingMode; /*!< Fault clearing mode to use */
412 bool faultLevel; /*!< true: Logic 1 indicates fault;
413 false: Logic 0 indicates fault */
414 bool enableCombinationalPath; /*!< true: Combinational Path from fault input is enabled;
415 false: No combination path is available */
416 pwm_fault_recovery_mode_t recoverMode; /*!< Specify when to re-enable the PWM output */
417 } pwm_fault_param_t;
418
419 /*!
420 * @brief Structure is used to hold parameters to configure the capture capability of a signal pin
421 */
422 typedef struct _pwm_input_capture_param
423 {
424 bool captureInputSel; /*!< true: Use the edge counter signal as source
425 false: Use the raw input signal from the pin as source */
426 uint8_t edgeCompareValue; /*!< Compare value, used only if edge counter is used as source */
427 pwm_input_capture_edge_t edge0; /*!< Specify which edge causes a capture for input circuitry 0 */
428 pwm_input_capture_edge_t edge1; /*!< Specify which edge causes a capture for input circuitry 1 */
429 bool enableOneShotCapture; /*!< true: Use one-shot capture mode;
430 false: Use free-running capture mode */
431 uint8_t fifoWatermark; /*!< Watermark level for capture FIFO. The capture flags in
432 the status register will set if the word count in the FIFO
433 is greater than this watermark level */
434 } pwm_input_capture_param_t;
435
436 /*******************************************************************************
437 * API
438 ******************************************************************************/
439
440 #if defined(__cplusplus)
441 extern "C" {
442 #endif
443
444 /*!
445 * @name Initialization and deinitialization
446 * @{
447 */
448
449 /*!
450 * @brief Ungates the PWM submodule clock and configures the peripheral for basic operation.
451 *
452 * @note This API should be called at the beginning of the application using the PWM driver.
453 *
454 * @param base PWM peripheral base address
455 * @param subModule PWM submodule to configure
456 * @param config Pointer to user's PWM config structure.
457 *
458 * @return kStatus_Success means success; else failed.
459 */
460 status_t PWM_Init(PWM_Type *base, pwm_submodule_t subModule, const pwm_config_t *config);
461
462 /*!
463 * @brief Gate the PWM submodule clock
464 *
465 * @param base PWM peripheral base address
466 * @param subModule PWM submodule to deinitialize
467 */
468 void PWM_Deinit(PWM_Type *base, pwm_submodule_t subModule);
469
470 /*!
471 * @brief Fill in the PWM config struct with the default settings
472 *
473 * The default values are:
474 * @code
475 * config->enableDebugMode = false;
476 * config->enableWait = false;
477 * config->reloadSelect = kPWM_LocalReload;
478 * config->clockSource = kPWM_BusClock;
479 * config->prescale = kPWM_Prescale_Divide_1;
480 * config->initializationControl = kPWM_Initialize_LocalSync;
481 * config->forceTrigger = kPWM_Force_Local;
482 * config->reloadFrequency = kPWM_LoadEveryOportunity;
483 * config->reloadLogic = kPWM_ReloadImmediate;
484 * config->pairOperation = kPWM_Independent;
485 * @endcode
486 * @param config Pointer to user's PWM config structure.
487 */
488 void PWM_GetDefaultConfig(pwm_config_t *config);
489
490 /*! @}*/
491
492 /*!
493 * @name Module PWM output
494 * @{
495 */
496 /*!
497 * @brief Sets up the PWM signals for a PWM submodule.
498 *
499 * The function initializes the submodule according to the parameters passed in by the user. The function
500 * also sets up the value compare registers to match the PWM signal requirements.
501 * If the dead time insertion logic is enabled, the pulse period is reduced by the
502 * dead time period specified by the user.
503 *
504 * @param base PWM peripheral base address
505 * @param subModule PWM submodule to configure
506 * @param chnlParams Array of PWM channel parameters to configure the channel(s), PWMX submodule is not supported.
507 * @param numOfChnls Number of channels to configure, this should be the size of the array passed in.
508 * Array size should not be more than 2 as each submodule has 2 pins to output PWM
509 * @param mode PWM operation mode, options available in enumeration ::pwm_mode_t
510 * @param pwmFreq_Hz PWM signal frequency in Hz
511 * @param srcClock_Hz PWM source clock of correspond submodule in Hz. If source clock of submodule1,2,3 is from
512 * submodule0 AUX_CLK, its source clock is submodule0 source clock divided with submodule0
513 * prescaler value instead of submodule0 source clock.
514 *
515 * @return Returns kStatus_Fail if there was error setting up the signal; kStatus_Success otherwise
516 */
517 status_t PWM_SetupPwm(PWM_Type *base,
518 pwm_submodule_t subModule,
519 const pwm_signal_param_t *chnlParams,
520 uint8_t numOfChnls,
521 pwm_mode_t mode,
522 uint32_t pwmFreq_Hz,
523 uint32_t srcClock_Hz);
524
525 /*!
526 * @brief Set PWM phase shift for PWM channel running on channel PWM_A, PWM_B which with 50% duty cycle.
527 *
528 * @param base PWM peripheral base address
529 * @param subModule PWM submodule to configure
530 * @param pwmChannel PWM channel to configure
531 * @param pwmFreq_Hz PWM signal frequency in Hz
532 * @param srcClock_Hz PWM main counter clock in Hz.
533 * @param shiftvalue Phase shift value, range in 0 ~ 50
534 * @param doSync true: Set LDOK bit for the submodule list;
535 * false: LDOK bit don't set, need to call PWM_SetPwmLdok to sync update.
536 *
537 * @return Returns kStatus_Fail if there was error setting up the signal; kStatus_Success otherwise
538 */
539 status_t PWM_SetupPwmPhaseShift(PWM_Type *base,
540 pwm_submodule_t subModule,
541 pwm_channels_t pwmChannel,
542 uint32_t pwmFreq_Hz,
543 uint32_t srcClock_Hz,
544 uint8_t shiftvalue,
545 bool doSync);
546
547 /*!
548 * @brief Updates the PWM signal's dutycycle.
549 *
550 * The function updates the PWM dutycyle to the new value that is passed in.
551 * If the dead time insertion logic is enabled then the pulse period is reduced by the
552 * dead time period specified by the user.
553 *
554 * @param base PWM peripheral base address
555 * @param subModule PWM submodule to configure
556 * @param pwmSignal Signal (PWM A or PWM B) to update
557 * @param currPwmMode The current PWM mode set during PWM setup
558 * @param dutyCyclePercent New PWM pulse width, value should be between 0 to 100
559 * 0=inactive signal(0% duty cycle)...
560 * 100=active signal (100% duty cycle)
561 */
562 void PWM_UpdatePwmDutycycle(PWM_Type *base,
563 pwm_submodule_t subModule,
564 pwm_channels_t pwmSignal,
565 pwm_mode_t currPwmMode,
566 uint8_t dutyCyclePercent);
567
568 /*!
569 * @brief Updates the PWM signal's dutycycle with 16-bit accuracy.
570 *
571 * The function updates the PWM dutycyle to the new value that is passed in.
572 * If the dead time insertion logic is enabled then the pulse period is reduced by the
573 * dead time period specified by the user.
574 *
575 * @param base PWM peripheral base address
576 * @param subModule PWM submodule to configure
577 * @param pwmSignal Signal (PWM A or PWM B) to update
578 * @param currPwmMode The current PWM mode set during PWM setup
579 * @param dutyCycle New PWM pulse width, value should be between 0 to 65535
580 * 0=inactive signal(0% duty cycle)...
581 * 65535=active signal (100% duty cycle)
582 */
583 void PWM_UpdatePwmDutycycleHighAccuracy(
584 PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmSignal, pwm_mode_t currPwmMode, uint16_t dutyCycle);
585
586 /*!
587 * @brief Update the PWM signal's period and dutycycle for a PWM submodule.
588 *
589 * The function updates PWM signal period generated by a specific submodule according to the parameters
590 * passed in by the user. This function can also set dutycycle weather you want to keep original dutycycle
591 * or update new dutycycle. Call this function in local sync control mode because PWM period is depended by
592 * INIT and VAL1 register of each submodule. In master sync initialization control mode, call this function
593 * to update INIT and VAL1 register of all submodule because PWM period is depended by INIT and VAL1 register
594 * in submodule0. If the dead time insertion logic is enabled, the pulse period is reduced by the dead time
595 * period specified by the user. PWM signal will not be generated if its period is less than dead time duration.
596 *
597 * @param base PWM peripheral base address
598 * @param subModule PWM submodule to configure
599 * @param pwmSignal Signal (PWM A or PWM B) to update
600 * @param currPwmMode The current PWM mode set during PWM setup, options available in enumeration ::pwm_mode_t
601 * @param pulseCnt New PWM period, value should be between 0 to 65535
602 * 0=minimum PWM period...
603 * 65535=maximum PWM period
604 * @param dutyCycle New PWM pulse width of channel, value should be between 0 to 65535
605 * 0=inactive signal(0% duty cycle)...
606 * 65535=active signal (100% duty cycle)
607 * You can keep original duty cycle or update new duty cycle
608 */
609 void PWM_UpdatePwmPeriodAndDutycycle(PWM_Type *base,
610 pwm_submodule_t subModule,
611 pwm_channels_t pwmSignal,
612 pwm_mode_t currPwmMode,
613 uint16_t pulseCnt,
614 uint16_t dutyCycle);
615
616 /*! @}*/
617
618 /*!
619 * @brief Sets up the PWM input capture
620 *
621 * Each PWM submodule has 3 pins that can be configured for use as input capture pins. This function
622 * sets up the capture parameters for each pin and enables the pin for input capture operation.
623 *
624 * @param base PWM peripheral base address
625 * @param subModule PWM submodule to configure
626 * @param pwmChannel Channel in the submodule to setup
627 * @param inputCaptureParams Parameters passed in to set up the input pin
628 */
629 void PWM_SetupInputCapture(PWM_Type *base,
630 pwm_submodule_t subModule,
631 pwm_channels_t pwmChannel,
632 const pwm_input_capture_param_t *inputCaptureParams);
633
634 /*!
635 * @brief Sets up the PWM fault input filter.
636 *
637 * @param base PWM peripheral base address
638 * @param faultInputFilterParams Parameters passed in to set up the fault input filter.
639 */
640 void PWM_SetupFaultInputFilter(PWM_Type *base, const pwm_fault_input_filter_param_t *faultInputFilterParams);
641
642 /*!
643 * @brief Sets up the PWM fault protection.
644 *
645 * PWM has 4 fault inputs.
646 *
647 * @param base PWM peripheral base address
648 * @param faultNum PWM fault to configure.
649 * @param faultParams Pointer to the PWM fault config structure
650 */
651 void PWM_SetupFaults(PWM_Type *base, pwm_fault_input_t faultNum, const pwm_fault_param_t *faultParams);
652
653 /*!
654 * @brief Fill in the PWM fault config struct with the default settings
655 *
656 * The default values are:
657 * @code
658 * config->faultClearingMode = kPWM_Automatic;
659 * config->faultLevel = false;
660 * config->enableCombinationalPath = true;
661 * config->recoverMode = kPWM_NoRecovery;
662 * @endcode
663 * @param config Pointer to user's PWM fault config structure.
664 */
665 void PWM_FaultDefaultConfig(pwm_fault_param_t *config);
666
667 /*!
668 * @brief Selects the signal to output on a PWM pin when a FORCE_OUT signal is asserted.
669 *
670 * The user specifies which channel to configure by supplying the submodule number and whether
671 * to modify PWM A or PWM B within that submodule.
672 *
673 * @param base PWM peripheral base address
674 * @param subModule PWM submodule to configure
675 * @param pwmChannel Channel to configure
676 * @param mode Signal to output when a FORCE_OUT is triggered
677 */
678 void PWM_SetupForceSignal(PWM_Type *base,
679 pwm_submodule_t subModule,
680 pwm_channels_t pwmChannel,
681 pwm_force_signal_t mode);
682
683 /*!
684 * @name Interrupts Interface
685 * @{
686 */
687
688 /*!
689 * @brief Enables the selected PWM interrupts
690 *
691 * @param base PWM peripheral base address
692 * @param subModule PWM submodule to configure
693 * @param mask The interrupts to enable. This is a logical OR of members of the
694 * enumeration ::pwm_interrupt_enable_t
695 */
696 void PWM_EnableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask);
697
698 /*!
699 * @brief Disables the selected PWM interrupts
700 *
701 * @param base PWM peripheral base address
702 * @param subModule PWM submodule to configure
703 * @param mask The interrupts to enable. This is a logical OR of members of the
704 * enumeration ::pwm_interrupt_enable_t
705 */
706 void PWM_DisableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask);
707
708 /*!
709 * @brief Gets the enabled PWM interrupts
710 *
711 * @param base PWM peripheral base address
712 * @param subModule PWM submodule to configure
713 *
714 * @return The enabled interrupts. This is the logical OR of members of the
715 * enumeration ::pwm_interrupt_enable_t
716 */
717 uint32_t PWM_GetEnabledInterrupts(PWM_Type *base, pwm_submodule_t subModule);
718
719 /*! @}*/
720
721 /*!
722 * @name DMA Interface
723 * @{
724 */
725
726 /*!
727 * @brief Capture DMA Enable Source Select.
728 *
729 * @param base PWM peripheral base address
730 * @param subModule PWM submodule to configure
731 * @param pwm_watermark_control PWM FIFO watermark and control
732 */
PWM_DMAFIFOWatermarkControl(PWM_Type * base,pwm_submodule_t subModule,pwm_watermark_control_t pwm_watermark_control)733 static inline void PWM_DMAFIFOWatermarkControl(PWM_Type *base,
734 pwm_submodule_t subModule,
735 pwm_watermark_control_t pwm_watermark_control)
736 {
737 uint16_t reg = base->SM[subModule].DMAEN;
738 if (pwm_watermark_control == kPWM_FIFOWatermarksOR)
739 {
740 reg &= ~((uint16_t)PWM_DMAEN_FAND_MASK);
741 }
742 else
743 {
744 reg |= ((uint16_t)PWM_DMAEN_FAND_MASK);
745 }
746 base->SM[subModule].DMAEN = reg;
747 }
748
749 /*!
750 * @brief Capture DMA Enable Source Select.
751 *
752 * @param base PWM peripheral base address
753 * @param subModule PWM submodule to configure
754 * @param pwm_dma_source_select PWM capture DMA enable source select
755 */
PWM_DMACaptureSourceSelect(PWM_Type * base,pwm_submodule_t subModule,pwm_dma_source_select_t pwm_dma_source_select)756 static inline void PWM_DMACaptureSourceSelect(PWM_Type *base,
757 pwm_submodule_t subModule,
758 pwm_dma_source_select_t pwm_dma_source_select)
759 {
760 uint16_t reg = base->SM[subModule].DMAEN;
761
762 reg &= ~((uint16_t)PWM_DMAEN_CAPTDE_MASK);
763 reg |= (((uint16_t)pwm_dma_source_select << (uint16_t)PWM_DMAEN_CAPTDE_SHIFT) & (uint16_t)PWM_DMAEN_CAPTDE_MASK);
764
765 base->SM[subModule].DMAEN = reg;
766 }
767
768 /*!
769 * @brief Enables or disables the selected PWM DMA Capture read request.
770 *
771 * @param base PWM peripheral base address
772 * @param subModule PWM submodule to configure
773 * @param mask The DMA to enable or disable. This is a logical OR of members of the
774 * enumeration ::pwm_dma_enable_t
775 * @param activate true: Enable DMA read request; false: Disable DMA read request
776 */
PWM_EnableDMACapture(PWM_Type * base,pwm_submodule_t subModule,uint16_t mask,bool activate)777 static inline void PWM_EnableDMACapture(PWM_Type *base, pwm_submodule_t subModule, uint16_t mask, bool activate)
778 {
779 uint16_t reg = base->SM[subModule].DMAEN;
780 if (activate)
781 {
782 reg |= (uint16_t)(mask);
783 }
784 else
785 {
786 reg &= ~((uint16_t)(mask));
787 }
788 base->SM[subModule].DMAEN = reg;
789 }
790
791 /*!
792 * @brief Enables or disables the PWM DMA write request.
793 *
794 * @param base PWM peripheral base address
795 * @param subModule PWM submodule to configure
796 * @param activate true: Enable DMA write request; false: Disable DMA write request
797 */
PWM_EnableDMAWrite(PWM_Type * base,pwm_submodule_t subModule,bool activate)798 static inline void PWM_EnableDMAWrite(PWM_Type *base, pwm_submodule_t subModule, bool activate)
799 {
800 uint16_t reg = base->SM[subModule].DMAEN;
801 if (activate)
802 {
803 reg |= ((uint16_t)PWM_DMAEN_VALDE_MASK);
804 }
805 else
806 {
807 reg &= ~((uint16_t)PWM_DMAEN_VALDE_MASK);
808 }
809 base->SM[subModule].DMAEN = reg;
810 }
811
812 /*! @}*/
813
814 /*!
815 * @name Status Interface
816 * @{
817 */
818
819 /*!
820 * @brief Gets the PWM status flags
821 *
822 * @param base PWM peripheral base address
823 * @param subModule PWM submodule to configure
824 *
825 * @return The status flags. This is the logical OR of members of the
826 * enumeration ::pwm_status_flags_t
827 */
828 uint32_t PWM_GetStatusFlags(PWM_Type *base, pwm_submodule_t subModule);
829
830 /*!
831 * @brief Clears the PWM status flags
832 *
833 * @param base PWM peripheral base address
834 * @param subModule PWM submodule to configure
835 * @param mask The status flags to clear. This is a logical OR of members of the
836 * enumeration ::pwm_status_flags_t
837 */
838 void PWM_ClearStatusFlags(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask);
839
840 /*! @}*/
841
842 /*!
843 * @name Timer Start and Stop
844 * @{
845 */
846
847 /*!
848 * @brief Starts the PWM counter for a single or multiple submodules.
849 *
850 * Sets the Run bit which enables the clocks to the PWM submodule. This function can start multiple
851 * submodules at the same time.
852 *
853 * @param base PWM peripheral base address
854 * @param subModulesToStart PWM submodules to start. This is a logical OR of members of the
855 * enumeration ::pwm_module_control_t
856 */
PWM_StartTimer(PWM_Type * base,uint8_t subModulesToStart)857 static inline void PWM_StartTimer(PWM_Type *base, uint8_t subModulesToStart)
858 {
859 base->MCTRL |= PWM_MCTRL_RUN(subModulesToStart);
860 }
861
862 /*!
863 * @brief Stops the PWM counter for a single or multiple submodules.
864 *
865 * Clears the Run bit which resets the submodule's counter. This function can stop multiple
866 * submodules at the same time.
867 *
868 * @param base PWM peripheral base address
869 * @param subModulesToStop PWM submodules to stop. This is a logical OR of members of the
870 * enumeration ::pwm_module_control_t
871 */
PWM_StopTimer(PWM_Type * base,uint8_t subModulesToStop)872 static inline void PWM_StopTimer(PWM_Type *base, uint8_t subModulesToStop)
873 {
874 base->MCTRL &= ~(PWM_MCTRL_RUN(subModulesToStop));
875 }
876
877 /*! @}*/
878
879 /*!
880 * @brief Set the PWM VALx registers.
881 *
882 * This function allows the user to write value into VAL registers directly. And it will destroying the PWM clock period
883 * set by the PWM_SetupPwm()/PWM_SetupPwmPhaseShift() functions.
884 * Due to VALx registers are bufferd, the new value will not active uless call PWM_SetPwmLdok() and the reload point is
885 * reached.
886 *
887 * @param base PWM peripheral base address
888 * @param subModule PWM submodule to configure
889 * @param valueRegister VALx register that will be writen new value
890 * @param value Value that will been write into VALx register
891 */
PWM_SetVALxValue(PWM_Type * base,pwm_submodule_t subModule,pwm_value_register_t valueRegister,uint16_t value)892 static inline void PWM_SetVALxValue(PWM_Type *base,
893 pwm_submodule_t subModule,
894 pwm_value_register_t valueRegister,
895 uint16_t value)
896 {
897 switch (valueRegister)
898 {
899 case kPWM_ValueRegister_0:
900 base->SM[subModule].VAL0 = value;
901 break;
902 case kPWM_ValueRegister_1:
903 base->SM[subModule].VAL1 = value;
904 break;
905 case kPWM_ValueRegister_2:
906 base->SM[subModule].VAL2 = value;
907 break;
908 case kPWM_ValueRegister_3:
909 base->SM[subModule].VAL3 = value;
910 break;
911 case kPWM_ValueRegister_4:
912 base->SM[subModule].VAL4 = value;
913 break;
914 case kPWM_ValueRegister_5:
915 base->SM[subModule].VAL5 = value;
916 break;
917 default:
918 assert(false);
919 break;
920 }
921 }
922
923 /*!
924 * @brief Get the PWM VALx registers.
925 *
926 * @param base PWM peripheral base address
927 * @param subModule PWM submodule to configure
928 * @param valueRegister VALx register that will be read value
929 * @return The VALx register value
930 */
PWM_GetVALxValue(PWM_Type * base,pwm_submodule_t subModule,pwm_value_register_t valueRegister)931 static inline uint16_t PWM_GetVALxValue(PWM_Type *base, pwm_submodule_t subModule, pwm_value_register_t valueRegister)
932 {
933 uint16_t temp = 0U;
934
935 switch (valueRegister)
936 {
937 case kPWM_ValueRegister_0:
938 temp = base->SM[subModule].VAL0;
939 break;
940 case kPWM_ValueRegister_1:
941 temp = base->SM[subModule].VAL1;
942 break;
943 case kPWM_ValueRegister_2:
944 temp = base->SM[subModule].VAL2;
945 break;
946 case kPWM_ValueRegister_3:
947 temp = base->SM[subModule].VAL3;
948 break;
949 case kPWM_ValueRegister_4:
950 temp = base->SM[subModule].VAL4;
951 break;
952 case kPWM_ValueRegister_5:
953 temp = base->SM[subModule].VAL5;
954 break;
955 default:
956 assert(false);
957 break;
958 }
959
960 return temp;
961 }
962
963 /*!
964 * @brief Enables or disables the PWM output trigger.
965 *
966 * This function allows the user to enable or disable the PWM trigger. The PWM has 2 triggers. Trigger 0
967 * is activated when the counter matches VAL 0, VAL 2, or VAL 4 register. Trigger 1 is activated
968 * when the counter matches VAL 1, VAL 3, or VAL 5 register.
969 *
970 * @param base PWM peripheral base address
971 * @param subModule PWM submodule to configure
972 * @param valueRegister Value register that will activate the trigger
973 * @param activate true: Enable the trigger; false: Disable the trigger
974 */
PWM_OutputTriggerEnable(PWM_Type * base,pwm_submodule_t subModule,pwm_value_register_t valueRegister,bool activate)975 static inline void PWM_OutputTriggerEnable(PWM_Type *base,
976 pwm_submodule_t subModule,
977 pwm_value_register_t valueRegister,
978 bool activate)
979 {
980 if (activate)
981 {
982 base->SM[subModule].TCTRL |= ((uint16_t)1U << (uint16_t)valueRegister);
983 }
984 else
985 {
986 base->SM[subModule].TCTRL &= ~((uint16_t)1U << (uint16_t)valueRegister);
987 }
988 }
989
990 /*!
991 * @brief Enables the PWM output trigger.
992 *
993 * This function allows the user to enable one or more (VAL0-5) PWM trigger.
994 *
995 * @param base PWM peripheral base address
996 * @param subModule PWM submodule to configure
997 * @param valueRegisterMask Value register mask that will activate one or more (VAL0-5) trigger
998 * enumeration ::_pwm_value_register_mask
999 */
PWM_ActivateOutputTrigger(PWM_Type * base,pwm_submodule_t subModule,uint16_t valueRegisterMask)1000 static inline void PWM_ActivateOutputTrigger(PWM_Type *base, pwm_submodule_t subModule, uint16_t valueRegisterMask)
1001 {
1002 base->SM[subModule].TCTRL |= (PWM_TCTRL_OUT_TRIG_EN_MASK & (valueRegisterMask));
1003 }
1004
1005 /*!
1006 * @brief Disables the PWM output trigger.
1007 *
1008 * This function allows the user to disables one or more (VAL0-5) PWM trigger.
1009 *
1010 * @param base PWM peripheral base address
1011 * @param subModule PWM submodule to configure
1012 * @param valueRegisterMask Value register mask that will Deactivate one or more (VAL0-5) trigger
1013 * enumeration ::_pwm_value_register_mask
1014 */
PWM_DeactivateOutputTrigger(PWM_Type * base,pwm_submodule_t subModule,uint16_t valueRegisterMask)1015 static inline void PWM_DeactivateOutputTrigger(PWM_Type *base, pwm_submodule_t subModule, uint16_t valueRegisterMask)
1016 {
1017 base->SM[subModule].TCTRL &= ~(PWM_TCTRL_OUT_TRIG_EN_MASK & (valueRegisterMask));
1018 }
1019
1020 /*!
1021 * @brief Sets the software control output for a pin to high or low.
1022 *
1023 * The user specifies which channel to modify by supplying the submodule number and whether
1024 * to modify PWM A or PWM B within that submodule.
1025 *
1026 * @param base PWM peripheral base address
1027 * @param subModule PWM submodule to configure
1028 * @param pwmChannel Channel to configure
1029 * @param value true: Supply a logic 1, false: Supply a logic 0.
1030 */
PWM_SetupSwCtrlOut(PWM_Type * base,pwm_submodule_t subModule,pwm_channels_t pwmChannel,bool value)1031 static inline void PWM_SetupSwCtrlOut(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, bool value)
1032 {
1033 if (value)
1034 {
1035 base->SWCOUT |=
1036 ((uint16_t)1U << (((uint16_t)subModule * (uint16_t)PWM_SUBMODULE_SWCONTROL_WIDTH) + (uint16_t)pwmChannel));
1037 }
1038 else
1039 {
1040 base->SWCOUT &=
1041 ~((uint16_t)1U << (((uint16_t)subModule * (uint16_t)PWM_SUBMODULE_SWCONTROL_WIDTH) + (uint16_t)pwmChannel));
1042 }
1043 }
1044
1045 /*!
1046 * @brief Sets or clears the PWM LDOK bit on a single or multiple submodules
1047 *
1048 * Set LDOK bit to load buffered values into CTRL[PRSC] and the INIT, FRACVAL and VAL registers. The
1049 * values are loaded immediately if kPWM_ReloadImmediate option was choosen during config. Else the
1050 * values are loaded at the next PWM reload point.
1051 * This function can issue the load command to multiple submodules at the same time.
1052 *
1053 * @param base PWM peripheral base address
1054 * @param subModulesToUpdate PWM submodules to update with buffered values. This is a logical OR of
1055 * members of the enumeration ::pwm_module_control_t
1056 * @param value true: Set LDOK bit for the submodule list; false: Clear LDOK bit
1057 */
PWM_SetPwmLdok(PWM_Type * base,uint8_t subModulesToUpdate,bool value)1058 static inline void PWM_SetPwmLdok(PWM_Type *base, uint8_t subModulesToUpdate, bool value)
1059 {
1060 if (value)
1061 {
1062 base->MCTRL |= PWM_MCTRL_LDOK(subModulesToUpdate);
1063 }
1064 else
1065 {
1066 base->MCTRL |= PWM_MCTRL_CLDOK(subModulesToUpdate);
1067 }
1068 }
1069
1070 /*!
1071 * @brief Set PWM output fault status
1072 *
1073 * These bits determine the fault state for the PWM_A output in fault conditions
1074 * and STOP mode. It may also define the output state in WAIT and DEBUG modes
1075 * depending on the settings of CTRL2[WAITEN] and CTRL2[DBGEN].
1076 * This function can update PWM output fault status.
1077 *
1078 * @param base PWM peripheral base address
1079 * @param subModule PWM submodule to configure
1080 * @param pwmChannel Channel to configure
1081 * @param faultState PWM output fault status
1082 */
PWM_SetPwmFaultState(PWM_Type * base,pwm_submodule_t subModule,pwm_channels_t pwmChannel,pwm_fault_state_t faultState)1083 static inline void PWM_SetPwmFaultState(PWM_Type *base,
1084 pwm_submodule_t subModule,
1085 pwm_channels_t pwmChannel,
1086 pwm_fault_state_t faultState)
1087 {
1088 uint16_t reg = base->SM[subModule].OCTRL;
1089 switch (pwmChannel)
1090 {
1091 case kPWM_PwmA:
1092 reg &= ~((uint16_t)PWM_OCTRL_PWMAFS_MASK);
1093 reg |= (((uint16_t)faultState << (uint16_t)PWM_OCTRL_PWMAFS_SHIFT) & (uint16_t)PWM_OCTRL_PWMAFS_MASK);
1094 break;
1095 case kPWM_PwmB:
1096 reg &= ~((uint16_t)PWM_OCTRL_PWMBFS_MASK);
1097 reg |= (((uint16_t)faultState << (uint16_t)PWM_OCTRL_PWMBFS_SHIFT) & (uint16_t)PWM_OCTRL_PWMBFS_MASK);
1098 break;
1099 case kPWM_PwmX:
1100 reg &= ~((uint16_t)PWM_OCTRL_PWMXFS_MASK);
1101 reg |= (((uint16_t)faultState << (uint16_t)PWM_OCTRL_PWMXFS_SHIFT) & (uint16_t)PWM_OCTRL_PWMXFS_MASK);
1102 break;
1103 default:
1104 assert(false);
1105 break;
1106 }
1107 base->SM[subModule].OCTRL = reg;
1108 }
1109
1110 /*!
1111 * @brief Set PWM fault disable mapping
1112 *
1113 * Each of the four bits of this read/write field is one-to-one associated
1114 * with the four FAULTx inputs of fault channel 0/1. The PWM output will be turned
1115 * off if there is a logic 1 on an FAULTx input and a 1 in the corresponding
1116 * bit of this field. A reset sets all bits in this field.
1117 *
1118 * @param base PWM peripheral base address
1119 * @param subModule PWM submodule to configure
1120 * @param pwmChannel PWM channel to configure
1121 * @param pwm_fault_channels PWM fault channel to configure
1122 * @param value Fault disable mapping mask value
1123 * enumeration ::pwm_fault_disable_t
1124 */
PWM_SetupFaultDisableMap(PWM_Type * base,pwm_submodule_t subModule,pwm_channels_t pwmChannel,pwm_fault_channels_t pwm_fault_channels,uint16_t value)1125 static inline void PWM_SetupFaultDisableMap(PWM_Type *base,
1126 pwm_submodule_t subModule,
1127 pwm_channels_t pwmChannel,
1128 pwm_fault_channels_t pwm_fault_channels,
1129 uint16_t value)
1130 {
1131 uint16_t reg = base->SM[subModule].DISMAP[pwm_fault_channels];
1132 switch (pwmChannel)
1133 {
1134 case kPWM_PwmA:
1135 reg &= ~((uint16_t)PWM_DISMAP_DIS0A_MASK);
1136 reg |= (((uint16_t)(value) << (uint16_t)PWM_DISMAP_DIS0A_SHIFT) & (uint16_t)PWM_DISMAP_DIS0A_MASK);
1137 break;
1138 case kPWM_PwmB:
1139 reg &= ~((uint16_t)PWM_DISMAP_DIS0B_MASK);
1140 reg |= (((uint16_t)(value) << (uint16_t)PWM_DISMAP_DIS0B_SHIFT) & (uint16_t)PWM_DISMAP_DIS0B_MASK);
1141 break;
1142 case kPWM_PwmX:
1143 reg &= ~((uint16_t)PWM_DISMAP_DIS0X_MASK);
1144 reg |= (((uint16_t)(value) << (uint16_t)PWM_DISMAP_DIS0X_SHIFT) & (uint16_t)PWM_DISMAP_DIS0X_MASK);
1145 break;
1146 default:
1147 assert(false);
1148 break;
1149 }
1150 base->SM[subModule].DISMAP[pwm_fault_channels] = reg;
1151 }
1152
1153 /*!
1154 * @brief Set PWM output enable
1155 *
1156 * This feature allows the user to enable the PWM Output.
1157 *
1158 * @param base PWM peripheral base address
1159 * @param pwmChannel PWM channel to configure
1160 * @param subModule PWM submodule to configure
1161 */
PWM_OutputEnable(PWM_Type * base,pwm_channels_t pwmChannel,pwm_submodule_t subModule)1162 static inline void PWM_OutputEnable(PWM_Type *base, pwm_channels_t pwmChannel, pwm_submodule_t subModule)
1163 {
1164 /* Set PWM output */
1165 switch (pwmChannel)
1166 {
1167 case kPWM_PwmA:
1168 base->OUTEN |= ((uint16_t)1U << ((uint16_t)PWM_OUTEN_PWMA_EN_SHIFT + (uint16_t)subModule));
1169 break;
1170 case kPWM_PwmB:
1171 base->OUTEN |= ((uint16_t)1U << ((uint16_t)PWM_OUTEN_PWMB_EN_SHIFT + (uint16_t)subModule));
1172 break;
1173 case kPWM_PwmX:
1174 base->OUTEN |= ((uint16_t)1U << ((uint16_t)PWM_OUTEN_PWMX_EN_SHIFT + (uint16_t)subModule));
1175 break;
1176 default:
1177 assert(false);
1178 break;
1179 }
1180 }
1181
1182 /*!
1183 * @brief Set PWM output disable
1184 *
1185 *This feature allows the user to disable the PWM output.
1186 *
1187 * @param base PWM peripheral base address
1188 * @param pwmChannel PWM channel to configure
1189 * @param subModule PWM submodule to configure
1190 */
PWM_OutputDisable(PWM_Type * base,pwm_channels_t pwmChannel,pwm_submodule_t subModule)1191 static inline void PWM_OutputDisable(PWM_Type *base, pwm_channels_t pwmChannel, pwm_submodule_t subModule)
1192 {
1193 switch (pwmChannel)
1194 {
1195 case kPWM_PwmA:
1196 base->OUTEN &= ~((uint16_t)1U << ((uint16_t)PWM_OUTEN_PWMA_EN_SHIFT + (uint16_t)subModule));
1197 break;
1198 case kPWM_PwmB:
1199 base->OUTEN &= ~((uint16_t)1U << ((uint16_t)PWM_OUTEN_PWMB_EN_SHIFT + (uint16_t)subModule));
1200 break;
1201 case kPWM_PwmX:
1202 base->OUTEN &= ~((uint16_t)1U << ((uint16_t)PWM_OUTEN_PWMX_EN_SHIFT + (uint16_t)subModule));
1203 break;
1204 default:
1205 assert(false);
1206 break;
1207 }
1208 }
1209
1210 /*!
1211 * @brief Get the dutycycle value.
1212 *
1213 * @param base PWM peripheral base address
1214 * @param subModule PWM submodule to configure
1215 * @param pwmChannel PWM channel to configure
1216 *
1217 * @return Current channel dutycycle value.
1218 */
1219 uint8_t PWM_GetPwmChannelState(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel);
1220
1221 /*!
1222 * @brief Set PWM output in idle status (high or low).
1223 *
1224 * @note This API should call after PWM_SetupPwm() APIs, and PWMX submodule is not supported.
1225 *
1226 * @param base PWM peripheral base address
1227 * @param pwmChannel PWM channel to configure
1228 * @param subModule PWM submodule to configure
1229 * @param idleStatus True: PWM output is high in idle status; false: PWM output is low in idle status.
1230 *
1231 * @return kStatus_Fail if there was error setting up the signal; kStatus_Success if set output idle success
1232 */
1233 status_t PWM_SetOutputToIdle(PWM_Type *base, pwm_channels_t pwmChannel, pwm_submodule_t subModule, bool idleStatus);
1234
1235 /*!
1236 * @brief Set the pwm submodule prescaler.
1237 *
1238 * @param base PWM peripheral base address
1239 * @param subModule PWM submodule to configure
1240 * @param prescaler Set prescaler value
1241 */
1242 void PWM_SetClockMode(PWM_Type *base, pwm_submodule_t subModule, pwm_clock_prescale_t prescaler);
1243
1244 /*!
1245 * @brief This function enables-disables the forcing of the output of a given eFlexPwm channel to logic 0.
1246 *
1247 * @param base PWM peripheral base address
1248 * @param pwmChannel PWM channel to configure
1249 * @param subModule PWM submodule to configure
1250 * @param forcetozero True: Enable the pwm force output to zero; False: Disable the pwm output resumes normal
1251 * function.
1252 */
1253 void PWM_SetPwmForceOutputToZero(PWM_Type *base,
1254 pwm_submodule_t subModule,
1255 pwm_channels_t pwmChannel,
1256 bool forcetozero);
1257
1258 /*!
1259 * @brief This function set the output state of the PWM pin as requested for the current cycle.
1260 *
1261 * @param base PWM peripheral base address
1262 * @param subModule PWM submodule to configure
1263 * @param pwmChannel PWM channel to configure
1264 * @param outputstate Set pwm output state, see @ref pwm_output_state_t.
1265 */
1266 void PWM_SetChannelOutput(PWM_Type *base,
1267 pwm_submodule_t subModule,
1268 pwm_channels_t pwmChannel,
1269 pwm_output_state_t outputstate);
1270
1271 #if defined(FSL_FEATURE_PWM_HAS_PHASE_DELAY) && FSL_FEATURE_PWM_HAS_PHASE_DELAY
1272 /*!
1273 * @brief This function set the phase delay from the master sync signal of submodule 0.
1274 *
1275 * @param base PWM peripheral base address
1276 * @param subModule PWM submodule to configure
1277 * @param pwmChannel PWM channel to configure
1278 * @param delayCycles Number of cycles delayed from submodule 0.
1279 *
1280 * @return kStatus_Fail if the number of delay cycles is set larger than the period defined in submodule 0;
1281 * kStatus_Success if set phase delay success
1282 */
1283 status_t PWM_SetPhaseDelay(PWM_Type *base, pwm_channels_t pwmChannel, pwm_submodule_t subModule, uint16_t delayCycles);
1284 #endif
1285
1286 #if defined(FSL_FEATURE_PWM_HAS_INPUT_FILTER_CAPTURE) && FSL_FEATURE_PWM_HAS_INPUT_FILTER_CAPTURE
1287 /*!
1288 * @brief This function set the number of consecutive samples that must agree prior to the input filter.
1289 *
1290 * @param base PWM peripheral base address
1291 * @param subModule PWM submodule to configure
1292 * @param pwmChannel PWM channel to configure
1293 * @param filterSampleCount Number of consecutive samples.
1294 */
PWM_SetFilterSampleCount(PWM_Type * base,pwm_channels_t pwmChannel,pwm_submodule_t subModule,uint8_t filterSampleCount)1295 static inline void PWM_SetFilterSampleCount(PWM_Type *base,
1296 pwm_channels_t pwmChannel,
1297 pwm_submodule_t subModule,
1298 uint8_t filterSampleCount)
1299 {
1300 switch(pwmChannel)
1301 {
1302 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA
1303 case kPWM_PwmA:
1304 base->SM[subModule].CAPTFILTA &= ~((uint16_t)PWM_CAPTFILTA_CAPTA_FILT_CNT_MASK);
1305 base->SM[subModule].CAPTFILTA |= PWM_CAPTFILTA_CAPTA_FILT_CNT(filterSampleCount);
1306 break;
1307 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA */
1308 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB
1309 case kPWM_PwmB:
1310 base->SM[subModule].CAPTFILTB &= ~((uint16_t)PWM_CAPTFILTB_CAPTB_FILT_CNT_MASK);
1311 base->SM[subModule].CAPTFILTB |= PWM_CAPTFILTB_CAPTB_FILT_CNT(filterSampleCount);
1312 break;
1313 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB */
1314 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX
1315 case kPWM_PwmX:
1316 base->SM[subModule].CAPTFILTX &= ~((uint16_t)PWM_CAPTFILTX_CAPTX_FILT_CNT_MASK);
1317 base->SM[subModule].CAPTFILTX |= PWM_CAPTFILTX_CAPTX_FILT_CNT(filterSampleCount);
1318 break;
1319 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX */
1320 default:
1321 assert(false);
1322 break;
1323 }
1324 }
1325
1326 /*!
1327 * @brief This function set the sampling period of the fault pin input filter.
1328 *
1329 * @param base PWM peripheral base address
1330 * @param subModule PWM submodule to configure
1331 * @param pwmChannel PWM channel to configure
1332 * @param filterSamplePeriod Sampling period of input filter.
1333 */
PWM_SetFilterSamplePeriod(PWM_Type * base,pwm_channels_t pwmChannel,pwm_submodule_t subModule,uint8_t filterSamplePeriod)1334 static inline void PWM_SetFilterSamplePeriod(PWM_Type *base,
1335 pwm_channels_t pwmChannel,
1336 pwm_submodule_t subModule,
1337 uint8_t filterSamplePeriod)
1338 {
1339 switch(pwmChannel)
1340 {
1341 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA
1342 case kPWM_PwmA:
1343 base->SM[subModule].CAPTFILTA &= ~((uint16_t)PWM_CAPTFILTA_CAPTA_FILT_PER_MASK);
1344 base->SM[subModule].CAPTFILTA |= PWM_CAPTFILTA_CAPTA_FILT_PER(filterSamplePeriod);
1345 break;
1346 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELA */
1347 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB
1348 case kPWM_PwmB:
1349 base->SM[subModule].CAPTFILTB &= ~((uint16_t)PWM_CAPTFILTB_CAPTB_FILT_PER_MASK);
1350 base->SM[subModule].CAPTFILTB |= PWM_CAPTFILTB_CAPTB_FILT_PER(filterSamplePeriod);
1351 break;
1352 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELB */
1353 #if defined(FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX) && FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX
1354 case kPWM_PwmX:
1355 base->SM[subModule].CAPTFILTX &= ~((uint16_t)PWM_CAPTFILTX_CAPTX_FILT_PER_MASK);
1356 base->SM[subModule].CAPTFILTX |= PWM_CAPTFILTX_CAPTX_FILT_PER(filterSamplePeriod);
1357 break;
1358 #endif /* FSL_FEATURE_PWM_HAS_CAPTURE_ON_CHANNELX */
1359 default:
1360 assert(false);
1361 break;
1362 }
1363 }
1364 #endif
1365
1366 #if defined(__cplusplus)
1367 }
1368 #endif
1369
1370 /*! @}*/
1371
1372 #endif /* FSL_PWM_H_ */
1373