1 /*
2 * Copyright 2017-2021 NXP
3 * All rights reserved.
4 *
5 *
6 * SPDX-License-Identifier: BSD-3-Clause
7 */
8
9 #ifndef FSL_CSI_H_
10 #define FSL_CSI_H_
11
12 #include "fsl_common.h"
13
14 /*!
15 * @addtogroup csi_driver
16 * @{
17 */
18
19 /*******************************************************************************
20 * Definitions
21 ******************************************************************************/
22
23 /*! @name Driver version */
24 /*! @{ */
25 #define FSL_CSI_DRIVER_VERSION (MAKE_VERSION(2, 1, 5))
26 /*! @} */
27
28 #define CSI_REG_CR1(base) (base)->CR1
29 #define CSI_REG_CR2(base) (base)->CR2
30 #define CSI_REG_CR3(base) (base)->CR3
31 #define CSI_REG_CR18(base) (base)->CR18
32 #define CSI_REG_SR(base) (base)->SR
33 #define CSI_REG_DMASA_FB1(base) (base)->DMASA_FB1
34 #define CSI_REG_DMASA_FB2(base) (base)->DMASA_FB2
35 #define CSI_REG_IMAG_PARA(base) (base)->IMAG_PARA
36 #define CSI_REG_FBUF_PARA(base) (base)->FBUF_PARA
37
38 /*! @brief Size of the frame buffer queue used in CSI transactional function. */
39 #ifndef CSI_DRIVER_QUEUE_SIZE
40 #define CSI_DRIVER_QUEUE_SIZE 4U
41 #endif
42
43 /*! @brief Enable fragment capture function or not. */
44 #ifndef CSI_DRIVER_FRAG_MODE
45 #define CSI_DRIVER_FRAG_MODE 0U
46 #endif
47
48 /*
49 * The interrupt enable bits are in registers CSICR1[16:31], CSICR3[0:7],
50 * and CSICR18[2:9]. So merge them into an uint32_t value, place CSICR18 control
51 * bits to [8:15].
52 */
53 #define CSI_CR1_INT_EN_MASK 0xFFFF0000U
54 #define CSI_CR3_INT_EN_MASK 0x000000FFU
55 #define CSI_CR18_INT_EN_MASK 0x0000FF00U
56
57 #if ((~CSI_CR1_INT_EN_MASK) & \
58 (CSI_CR1_EOF_INT_EN_MASK | CSI_CR1_COF_INT_EN_MASK | CSI_CR1_SF_OR_INTEN_MASK | CSI_CR1_RF_OR_INTEN_MASK | \
59 CSI_CR1_SFF_DMA_DONE_INTEN_MASK | CSI_CR1_STATFF_INTEN_MASK | CSI_CR1_FB2_DMA_DONE_INTEN_MASK | \
60 CSI_CR1_FB1_DMA_DONE_INTEN_MASK | CSI_CR1_RXFF_INTEN_MASK | CSI_CR1_SOF_INTEN_MASK))
61 #error CSI_CR1_INT_EN_MASK could not cover all interrupt bits in CSICR1.
62 #endif
63
64 #if ((~CSI_CR3_INT_EN_MASK) & (CSI_CR3_ECC_INT_EN_MASK | CSI_CR3_HRESP_ERR_EN_MASK))
65 #error CSI_CR3_INT_EN_MASK could not cover all interrupt bits in CSICR3.
66 #endif
67
68 #if ((~CSI_CR18_INT_EN_MASK) & \
69 ((CSI_CR18_FIELD0_DONE_IE_MASK | CSI_CR18_DMA_FIELD1_DONE_IE_MASK | CSI_CR18_BASEADDR_CHANGE_ERROR_IE_MASK) \
70 << 6U))
71 #error CSI_CR18_INT_EN_MASK could not cover all interrupt bits in CSICR18.
72 #endif
73
74 /*! @brief Error codes for the CSI driver. */
75 enum
76 {
77 kStatus_CSI_NoEmptyBuffer = MAKE_STATUS(kStatusGroup_CSI, 0), /*!< No empty frame buffer in queue to load to CSI. */
78 kStatus_CSI_NoFullBuffer = MAKE_STATUS(kStatusGroup_CSI, 1), /*!< No full frame buffer in queue to read out. */
79 kStatus_CSI_QueueFull = MAKE_STATUS(kStatusGroup_CSI, 2), /*!< Queue is full, no room to save new empty buffer. */
80 kStatus_CSI_FrameDone = MAKE_STATUS(kStatusGroup_CSI, 3), /*!< New frame received and saved to queue. */
81 };
82
83 /*!
84 * @brief CSI work mode.
85 *
86 * The CCIR656 interlace mode is not supported currently.
87 */
88 typedef enum _csi_work_mode
89 {
90 kCSI_GatedClockMode = CSI_CR1_GCLK_MODE(1U), /*!< HSYNC, VSYNC, and PIXCLK signals are used. */
91 kCSI_NonGatedClockMode = 0U, /*!< VSYNC, and PIXCLK signals are used. */
92 kCSI_CCIR656ProgressiveMode = CSI_CR1_CCIR_EN(1U), /*!< CCIR656 progressive mode. */
93 } csi_work_mode_t;
94
95 /*!
96 * @brief CSI data bus witdh.
97 */
98 typedef enum _csi_data_bus
99 {
100 kCSI_DataBus8Bit, /*!< 8-bit data bus. */
101 kCSI_DataBus16Bit, /*!< 16-bit data bus. */
102 kCSI_DataBus24Bit, /*!< 24-bit data bus. */
103 } csi_data_bus_t;
104
105 /*! @brief CSI signal polarity. */
106 enum _csi_polarity_flags
107 {
108 kCSI_HsyncActiveLow = 0U, /*!< HSYNC is active low. */
109 kCSI_HsyncActiveHigh = CSI_CR1_HSYNC_POL_MASK, /*!< HSYNC is active high. */
110 kCSI_DataLatchOnRisingEdge = CSI_CR1_REDGE_MASK, /*!< Pixel data latched at rising edge of pixel clock. */
111 kCSI_DataLatchOnFallingEdge = 0U, /*!< Pixel data latched at falling edge of pixel clock. */
112 kCSI_VsyncActiveHigh = 0U, /*!< VSYNC is active high. */
113 kCSI_VsyncActiveLow = CSI_CR1_SOF_POL_MASK, /*!< VSYNC is active low. */
114 };
115
116 /*! @brief Configuration to initialize the CSI module. */
117 typedef struct _csi_config
118 {
119 uint16_t width; /*!< Pixels of the input frame. */
120 uint16_t height; /*!< Lines of the input frame. */
121 uint32_t polarityFlags; /*!< Timing signal polarity flags, OR'ed value of @ref _csi_polarity_flags. */
122 uint8_t bytesPerPixel; /*!< Bytes per pixel, valid values are:
123 - 2: Used for RGB565, YUV422, and so on.
124 - 4: Used for XRGB8888, XYUV444, and so on.
125 */
126 uint16_t linePitch_Bytes; /*!< Frame buffer line pitch, must be 8-byte aligned. */
127 csi_work_mode_t workMode; /*!< CSI work mode. */
128 csi_data_bus_t dataBus; /*!< Data bus width. */
129 bool useExtVsync; /*!< In CCIR656 progressive mode, set true to use external VSYNC signal, set false
130 to use internal VSYNC signal decoded from SOF. */
131 } csi_config_t;
132
133 /*! @brief The CSI FIFO, used for FIFO operation. */
134 typedef enum _csi_fifo
135 {
136 kCSI_RxFifo = (1U << 0U), /*!< RXFIFO. */
137 kCSI_StatFifo = (1U << 1U), /*!< STAT FIFO. */
138 kCSI_AllFifo = 0x01 | 0x02, /*!< Both RXFIFO and STAT FIFO. */
139 } csi_fifo_t;
140
141 /*! @brief CSI feature interrupt source. */
142 enum _csi_interrupt_enable
143 {
144 kCSI_EndOfFrameInterruptEnable = CSI_CR1_EOF_INT_EN_MASK, /*!< End of frame interrupt enable. */
145 kCSI_ChangeOfFieldInterruptEnable = CSI_CR1_COF_INT_EN_MASK, /*!< Change of field interrupt enable. */
146 kCSI_StatFifoOverrunInterruptEnable = CSI_CR1_SF_OR_INTEN_MASK, /*!< STAT FIFO overrun interrupt enable. */
147 kCSI_RxFifoOverrunInterruptEnable = CSI_CR1_RF_OR_INTEN_MASK, /*!< RXFIFO overrun interrupt enable. */
148 kCSI_StatFifoDmaDoneInterruptEnable = CSI_CR1_SFF_DMA_DONE_INTEN_MASK, /*!< STAT FIFO DMA done interrupt enable. */
149 kCSI_StatFifoFullInterruptEnable = CSI_CR1_STATFF_INTEN_MASK, /*!< STAT FIFO full interrupt enable. */
150 kCSI_RxBuffer1DmaDoneInterruptEnable = CSI_CR1_FB2_DMA_DONE_INTEN_MASK, /*!< RX frame buffer 1 DMA transfer done. */
151 kCSI_RxBuffer0DmaDoneInterruptEnable = CSI_CR1_FB1_DMA_DONE_INTEN_MASK, /*!< RX frame buffer 0 DMA transfer done. */
152 kCSI_RxFifoFullInterruptEnable = CSI_CR1_RXFF_INTEN_MASK, /*!< RXFIFO full interrupt enable. */
153 kCSI_StartOfFrameInterruptEnable = CSI_CR1_SOF_INTEN_MASK, /*!< Start of frame (SOF) interrupt enable. */
154
155 kCSI_EccErrorInterruptEnable = CSI_CR3_ECC_INT_EN_MASK, /*!< ECC error detection interrupt enable. */
156 kCSI_AhbResErrorInterruptEnable = CSI_CR3_HRESP_ERR_EN_MASK, /*!< AHB response Error interrupt enable. */
157
158 /*! The DMA output buffer base address changes before DMA completed. */
159 kCSI_BaseAddrChangeErrorInterruptEnable = CSI_CR18_BASEADDR_CHANGE_ERROR_IE_MASK << 6U,
160
161 kCSI_Field0DoneInterruptEnable = CSI_CR18_FIELD0_DONE_IE_MASK << 6U, /*!< Field 0 done interrupt enable. */
162 kCSI_Field1DoneInterruptEnable = CSI_CR18_DMA_FIELD1_DONE_IE_MASK << 6U, /*!< Field 1 done interrupt enable. */
163 };
164
165 /*!
166 * @brief CSI status flags.
167 *
168 * The following status register flags can be cleared:
169 * - kCSI_EccErrorFlag
170 * - kCSI_AhbResErrorFlag
171 * - kCSI_ChangeOfFieldFlag
172 * - kCSI_StartOfFrameFlag
173 * - kCSI_EndOfFrameFlag
174 * - kCSI_RxBuffer1DmaDoneFlag
175 * - kCSI_RxBuffer0DmaDoneFlag
176 * - kCSI_StatFifoDmaDoneFlag
177 * - kCSI_StatFifoOverrunFlag
178 * - kCSI_RxFifoOverrunFlag
179 * - kCSI_Field0DoneFlag
180 * - kCSI_Field1DoneFlag
181 * - kCSI_BaseAddrChangeErrorFlag
182 */
183 enum _csi_flags
184 {
185 kCSI_RxFifoDataReadyFlag = CSI_SR_DRDY_MASK, /*!< RXFIFO data ready. */
186 kCSI_EccErrorFlag = CSI_SR_ECC_INT_MASK, /*!< ECC error detected. */
187 kCSI_AhbResErrorFlag = CSI_SR_HRESP_ERR_INT_MASK, /*!< Hresponse (AHB bus response) Error. */
188 kCSI_ChangeOfFieldFlag = CSI_SR_COF_INT_MASK, /*!< Change of field. */
189 kCSI_Field0PresentFlag = CSI_SR_F1_INT_MASK, /*!< Field 0 present in CCIR mode. */
190 kCSI_Field1PresentFlag = CSI_SR_F2_INT_MASK, /*!< Field 1 present in CCIR mode. */
191 kCSI_StartOfFrameFlag = CSI_SR_SOF_INT_MASK, /*!< Start of frame (SOF) detected. */
192 kCSI_EndOfFrameFlag = CSI_SR_EOF_INT_MASK, /*!< End of frame (EOF) detected. */
193 kCSI_RxFifoFullFlag = CSI_SR_RxFF_INT_MASK, /*!< RXFIFO full (Number of data reaches trigger level). */
194 kCSI_RxBuffer1DmaDoneFlag = CSI_SR_DMA_TSF_DONE_FB2_MASK, /*!< RX frame buffer 1 DMA transfer done. */
195 kCSI_RxBuffer0DmaDoneFlag = CSI_SR_DMA_TSF_DONE_FB1_MASK, /*!< RX frame buffer 0 DMA transfer done. */
196 kCSI_StatFifoFullFlag = CSI_SR_STATFF_INT_MASK, /*!< STAT FIFO full (Reach trigger level). */
197 kCSI_StatFifoDmaDoneFlag = CSI_SR_DMA_TSF_DONE_SFF_MASK, /*!< STAT FIFO DMA transfer done. */
198 kCSI_StatFifoOverrunFlag = CSI_SR_SF_OR_INT_MASK, /*!< STAT FIFO overrun. */
199 kCSI_RxFifoOverrunFlag = CSI_SR_RF_OR_INT_MASK, /*!< RXFIFO overrun. */
200 kCSI_Field0DoneFlag = CSI_SR_DMA_FIELD0_DONE_MASK, /*!< Field 0 transfer done. */
201 kCSI_Field1DoneFlag = CSI_SR_DMA_FIELD1_DONE_MASK, /*!< Field 1 transfer done. */
202 kCSI_BaseAddrChangeErrorFlag = CSI_SR_BASEADDR_CHHANGE_ERROR_MASK, /*!< The DMA output buffer base address
203 changes before DMA completed. */
204 };
205
206 /* Forward declaration of the handle typedef. */
207 typedef struct _csi_handle csi_handle_t;
208
209 /*!
210 * @brief CSI transfer callback function.
211 *
212 * When a new frame is received and saved to the frame buffer queue, the callback
213 * is called and the pass the status @ref kStatus_CSI_FrameDone to upper layer.
214 */
215 typedef void (*csi_transfer_callback_t)(CSI_Type *base, csi_handle_t *handle, status_t status, void *userData);
216
217 typedef struct
218 {
219 uint32_t addr[CSI_DRIVER_QUEUE_SIZE];
220 int head;
221 int tail;
222 } buf_queue_t;
223
224 /*!
225 * @brief CSI handle structure.
226 *
227 * Please see the user guide for the details of the CSI driver queue mechanism.
228 */
229 struct _csi_handle
230 {
231 buf_queue_t emptyBufferQueue;
232 buf_queue_t fullBufferQueue;
233
234 volatile uint8_t activeBufferNum; /*!< How many frame buffers are in progress currently. */
235 volatile uint8_t dmaDoneBufferIdx; /*!< Index of the current full-filled framebuffer. */
236
237 volatile bool transferStarted; /*!< User has called @ref CSI_TransferStart to start frame receiving. */
238
239 csi_transfer_callback_t callback; /*!< Callback function. */
240 void *userData; /*!< CSI callback function parameter.*/
241 };
242
243 #if CSI_DRIVER_FRAG_MODE
244
245 /*! @brief Input pixel format when CSI works in fragment mode. */
246 typedef enum _csi_frag_input_pixel_format
247 {
248 kCSI_FragInputRGB565 = 0, /*!< Input pixel format is RGB565. */
249 kCSI_FragInputYUYV, /*!< Input pixel format is YUV422 (Y-U-Y-V). */
250 kCSI_FragInputUYVY, /*!< Input pixel format is YUV422 (U-Y-V-Y). */
251 } csi_frag_input_pixel_format_t;
252
253 /*! @brief Configuration for CSI module to work in fragment mode. */
254 typedef struct _csi_frag_config
255 {
256 uint16_t width; /*!< Pixels of the input frame. */
257 uint16_t height; /*!< Lines of the input frame. */
258 uint32_t polarityFlags; /*!< Timing signal polarity flags, OR'ed value of @ref _csi_polarity_flags. */
259 csi_work_mode_t workMode; /*!< CSI work mode. */
260 csi_data_bus_t dataBus; /*!< Data bus width. */
261 bool useExtVsync; /*!< In CCIR656 progressive mode, set true to use external VSYNC signal, set false
262 to use internal VSYNC signal decoded from SOF. */
263 csi_frag_input_pixel_format_t inputFormat; /*!< Input pixel format. */
264
265 uint32_t dmaBufferAddr0; /*!< Buffer 0 used for CSI DMA, must be double word aligned. */
266 uint32_t dmaBufferAddr1; /*!< Buffer 1 used for CSI DMA, must be double word aligned. */
267 uint16_t dmaBufferLine; /*!< Lines of each DMA buffer. The size of DMA buffer 0 and
268 buffer 1 must be the same. Camera frame height must be
269 dividable by this value. */
270 bool isDmaBufferCachable; /*!< Is DMA buffer cachable or not. */
271 } csi_frag_config_t;
272
273 /* Forward declaration of the handle typedef. */
274 typedef struct _csi_frag_handle csi_frag_handle_t;
275
276 /*!
277 * @brief CSI fragment transfer callback function.
278 *
279 * When a new frame is received and saved to the frame buffer queue, the callback
280 * is called and the pass the status @ref kStatus_CSI_FrameDone to upper layer.
281 */
282 typedef void (*csi_frag_transfer_callback_t)(CSI_Type *base,
283 csi_frag_handle_t *handle,
284 status_t status,
285 void *userData);
286
287 /*!
288 * @brief Function to copy data from CSI DMA buffer to user buffer.
289 */
290 typedef void (*csi_frag_copy_func_t)(void *pDest, const void *pSrc, size_t cnt);
291
292 /*! @brief Handle for CSI module to work in fragment mode. */
293 struct _csi_frag_handle
294 {
295 uint16_t width; /*!< Pixels of the input frame. */
296 uint16_t height; /*!< Lines of the input frame. */
297 uint16_t maxLinePerFrag; /*!< Max line saved per fragment. */
298 uint16_t linePerFrag; /*!< Actual line saved per fragment. */
299 uint16_t dmaBytePerLine; /*!< How many bytes DMA transfered each line. */
300 uint16_t datBytePerLine; /*!< How many bytes copied to user buffer each line. */
301 uint16_t dmaCurLine; /*!< Current line index in whole frame. */
302 uint16_t windowULX; /*!< X of windows upper left corner. */
303 uint16_t windowULY; /*!< Y of windows upper left corner. */
304 uint16_t windowLRX; /*!< X of windows lower right corner. */
305 uint16_t windowLRY; /*!< Y of windows lower right corner. */
306 uint32_t outputBuffer; /*!< Address of buffer to save the captured image. */
307 uint32_t datCurWriteAddr; /*!< Current write address to the user buffer. */
308 csi_frag_input_pixel_format_t inputFormat; /*!< Input pixel format. */
309
310 csi_frag_transfer_callback_t callback; /*!< Callback function. */
311 void *userData; /*!< CSI callback function parameter.*/
312 csi_frag_copy_func_t copyFunc; /*!< Function to copy data from CSI DMA buffer to user buffer. */
313 bool isDmaBufferCachable; /*!< Is DMA buffer cachable or not. */
314 };
315
316 /*! @brief Handle for CSI module to work in fragment mode. */
317 typedef struct _csi_frag_window
318 {
319 uint16_t windowULX; /*!< X of windows upper left corner. */
320 uint16_t windowULY; /*!< Y of windows upper left corner. */
321 uint16_t windowLRX; /*!< X of windows lower right corner. */
322 uint16_t windowLRY; /*!< Y of windows lower right corner. */
323 } csi_frag_window_t;
324
325 /*! @brief Handle for CSI module to work in fragment mode. */
326 typedef struct _csi_frag_capture_config
327 {
328 bool outputGrayScale; /*!< Output gray scale image or not, could only enable when input format is YUV. */
329 uint32_t buffer; /*!< Buffer to save the captured image. */
330 csi_frag_window_t *window; /*!< Capture window. Capture full frame if set this to NULL. When output format is gray,
331 the window width must be multiple value of 8. */
332 } csi_frag_capture_config_t;
333
334 #endif /* CSI_DRIVER_FRAG_MODE */
335
336 /*******************************************************************************
337 * API
338 ******************************************************************************/
339
340 #if defined(__cplusplus)
341 extern "C" {
342 #endif
343
344 /*!
345 * @name Initialization and deinitialization
346 * @{
347 */
348
349 /*!
350 * @brief Initialize the CSI.
351 *
352 * This function enables the CSI peripheral clock, and resets the CSI registers.
353 *
354 * @param base CSI peripheral base address.
355 * @param config Pointer to the configuration structure.
356 *
357 * @retval kStatus_Success Initialize successfully.
358 * @retval kStatus_InvalidArgument Initialize failed because of invalid argument.
359 */
360 status_t CSI_Init(CSI_Type *base, const csi_config_t *config);
361
362 /*!
363 * @brief De-initialize the CSI.
364 *
365 * This function disables the CSI peripheral clock.
366 *
367 * @param base CSI peripheral base address.
368 */
369 void CSI_Deinit(CSI_Type *base);
370
371 /*!
372 * @brief Reset the CSI.
373 *
374 * This function resets the CSI peripheral registers to default status.
375 *
376 * @param base CSI peripheral base address.
377 */
378 void CSI_Reset(CSI_Type *base);
379
380 /*!
381 * @brief Get the default configuration for to initialize the CSI.
382 *
383 * The default configuration value is:
384 *
385 * @code
386 config->width = 320U;
387 config->height = 240U;
388 config->polarityFlags = kCSI_HsyncActiveHigh | kCSI_DataLatchOnRisingEdge;
389 config->bytesPerPixel = 2U;
390 config->linePitch_Bytes = 320U * 2U;
391 config->workMode = kCSI_GatedClockMode;
392 config->dataBus = kCSI_DataBus8Bit;
393 config->useExtVsync = true;
394 @endcode
395 *
396 * @param config Pointer to the CSI configuration.
397 */
398 void CSI_GetDefaultConfig(csi_config_t *config);
399
400 /*! @} */
401
402 /*!
403 * @name Module operation
404 * @{
405 */
406
407 /*!
408 * @brief Clear the CSI FIFO.
409 *
410 * This function clears the CSI FIFO.
411 *
412 * @param base CSI peripheral base address.
413 * @param fifo The FIFO to clear.
414 */
415 void CSI_ClearFifo(CSI_Type *base, csi_fifo_t fifo);
416
417 /*!
418 * @brief Reflash the CSI FIFO DMA.
419 *
420 * This function reflashes the CSI FIFO DMA.
421 *
422 * For RXFIFO, there are two frame buffers. When the CSI module started, it saves
423 * the frames to frame buffer 0 then frame buffer 1, the two buffers will be
424 * written by turns. After reflash DMA using this function, the CSI is reset to
425 * save frame to buffer 0.
426 *
427 * @param base CSI peripheral base address.
428 * @param fifo The FIFO DMA to reflash.
429 */
430 void CSI_ReflashFifoDma(CSI_Type *base, csi_fifo_t fifo);
431
432 /*!
433 * @brief Enable or disable the CSI FIFO DMA request.
434 *
435 * @param base CSI peripheral base address.
436 * @param fifo The FIFO DMA reques to enable or disable.
437 * @param enable True to enable, false to disable.
438 */
439 void CSI_EnableFifoDmaRequest(CSI_Type *base, csi_fifo_t fifo, bool enable);
440
441 /*!
442 * @brief Start to receive data.
443 *
444 * @param base CSI peripheral base address.
445 */
CSI_Start(CSI_Type * base)446 static inline void CSI_Start(CSI_Type *base)
447 {
448 CSI_EnableFifoDmaRequest(base, kCSI_RxFifo, true);
449 CSI_REG_CR18(base) |= CSI_CR18_CSI_ENABLE_MASK;
450 }
451
452 /*!
453 * @brief Stop to receiving data.
454 *
455 * @param base CSI peripheral base address.
456 */
CSI_Stop(CSI_Type * base)457 static inline void CSI_Stop(CSI_Type *base)
458 {
459 CSI_REG_CR18(base) &= ~CSI_CR18_CSI_ENABLE_MASK;
460 CSI_EnableFifoDmaRequest(base, kCSI_RxFifo, false);
461 }
462
463 /*!
464 * @brief Set the RX frame buffer address.
465 *
466 * @param base CSI peripheral base address.
467 * @param index Buffer index.
468 * @param addr Frame buffer address to set.
469 */
470 void CSI_SetRxBufferAddr(CSI_Type *base, uint8_t index, uint32_t addr);
471 /*! @} */
472
473 /*!
474 * @name Interrupts
475 * @{
476 */
477
478 /*!
479 * @brief Enables CSI interrupt requests.
480 *
481 * @param base CSI peripheral base address.
482 * @param mask The interrupts to enable, pass in as OR'ed value of @ref _csi_interrupt_enable.
483 */
484 void CSI_EnableInterrupts(CSI_Type *base, uint32_t mask);
485
486 /*!
487 * @brief Disable CSI interrupt requests.
488 *
489 * @param base CSI peripheral base address.
490 * @param mask The interrupts to disable, pass in as OR'ed value of @ref _csi_interrupt_enable.
491 */
492 void CSI_DisableInterrupts(CSI_Type *base, uint32_t mask);
493
494 /*! @} */
495
496 /*!
497 * @name Status
498 * @{
499 */
500
501 /*!
502 * @brief Gets the CSI status flags.
503 *
504 * @param base CSI peripheral base address.
505 * @return status flag, it is OR'ed value of @ref _csi_flags.
506 */
CSI_GetStatusFlags(CSI_Type * base)507 static inline uint32_t CSI_GetStatusFlags(CSI_Type *base)
508 {
509 return CSI_REG_SR(base);
510 }
511
512 /*!
513 * @brief Clears the CSI status flag.
514 *
515 * The flags to clear are passed in as OR'ed value of @ref _csi_flags. The following
516 * flags are cleared automatically by hardware:
517 *
518 * - @ref kCSI_RxFifoFullFlag,
519 * - @ref kCSI_StatFifoFullFlag,
520 * - @ref kCSI_Field0PresentFlag,
521 * - @ref kCSI_Field1PresentFlag,
522 * - @ref kCSI_RxFifoDataReadyFlag,
523 *
524 * @param base CSI peripheral base address.
525 * @param statusMask The status flags mask, OR'ed value of @ref _csi_flags.
526 */
CSI_ClearStatusFlags(CSI_Type * base,uint32_t statusMask)527 static inline void CSI_ClearStatusFlags(CSI_Type *base, uint32_t statusMask)
528 {
529 CSI_REG_SR(base) = statusMask;
530 }
531 /*! @} */
532
533 #if !CSI_DRIVER_FRAG_MODE
534 /*!
535 * @name Transactional
536 * @{
537 */
538
539 /*!
540 * @brief Initializes the CSI handle.
541 *
542 * This function initializes CSI handle, it should be called before any other
543 * CSI transactional functions.
544 *
545 * @param base CSI peripheral base address.
546 * @param handle Pointer to the handle structure.
547 * @param callback Callback function for CSI transfer.
548 * @param userData Callback function parameter.
549 *
550 * @retval kStatus_Success Handle created successfully.
551 */
552 status_t CSI_TransferCreateHandle(CSI_Type *base,
553 csi_handle_t *handle,
554 csi_transfer_callback_t callback,
555 void *userData);
556
557 /*!
558 * @brief Start the transfer using transactional functions.
559 *
560 * When the empty frame buffers have been submit to CSI driver using function
561 * @ref CSI_TransferSubmitEmptyBuffer, user could call this function to start
562 * the transfer. The incoming frame will be saved to the empty frame buffer,
563 * and user could be optionally notified through callback function.
564 *
565 * @param base CSI peripheral base address.
566 * @param handle Pointer to the handle structure.
567 *
568 * @retval kStatus_Success Started successfully.
569 * @retval kStatus_CSI_NoEmptyBuffer Could not start because no empty frame buffer in queue.
570 */
571 status_t CSI_TransferStart(CSI_Type *base, csi_handle_t *handle);
572
573 /*!
574 * @brief Stop the transfer using transactional functions.
575 *
576 * The driver does not clean the full frame buffers in queue. In other words, after
577 * calling this function, user still could get the full frame buffers in queue
578 * using function @ref CSI_TransferGetFullBuffer.
579 *
580 * @param base CSI peripheral base address.
581 * @param handle Pointer to the handle structure.
582 *
583 * @retval kStatus_Success Stoped successfully.
584 */
585 status_t CSI_TransferStop(CSI_Type *base, csi_handle_t *handle);
586
587 /*!
588 * @brief Submit empty frame buffer to queue.
589 *
590 * This function could be called before @ref CSI_TransferStart or after @ref
591 * CSI_TransferStart. If there is no room in queue to store the empty frame
592 * buffer, this function returns error.
593 *
594 * @param base CSI peripheral base address.
595 * @param handle Pointer to the handle structure.
596 * @param frameBuffer Empty frame buffer to submit.
597 *
598 * @retval kStatus_Success Started successfully.
599 * @retval kStatus_CSI_QueueFull Could not submit because there is no room in queue.
600 */
601 status_t CSI_TransferSubmitEmptyBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t frameBuffer);
602
603 /*!
604 * @brief Get one full frame buffer from queue.
605 *
606 * After the transfer started using function @ref CSI_TransferStart, the incoming
607 * frames will be saved to the empty frame buffers in queue. This function gets
608 * the full-filled frame buffer from the queue. If there is no full frame buffer
609 * in queue, this function returns error.
610 *
611 * @param base CSI peripheral base address.
612 * @param handle Pointer to the handle structure.
613 * @param frameBuffer Full frame buffer.
614 *
615 * @retval kStatus_Success Started successfully.
616 * @retval kStatus_CSI_NoFullBuffer There is no full frame buffer in queue.
617 */
618 status_t CSI_TransferGetFullBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t *frameBuffer);
619
620 /*!
621 * @brief CSI IRQ handle function.
622 *
623 * This function handles the CSI IRQ request to work with CSI driver transactional
624 * APIs.
625 *
626 * @param base CSI peripheral base address.
627 * @param handle CSI handle pointer.
628 */
629 void CSI_TransferHandleIRQ(CSI_Type *base, csi_handle_t *handle);
630 /*! @} */
631
632 #else
633
634 /*!
635 * @name Fragment mode
636 * @{
637 */
638
639 /*!
640 * @brief Initialize the CSI to work in fragment mode.
641 *
642 * This function enables the CSI peripheral clock, and resets the CSI registers.
643 *
644 * @param base CSI peripheral base address.
645 */
646 void CSI_FragModeInit(CSI_Type *base);
647
648 /*!
649 * @brief De-initialize the CSI.
650 *
651 * This function disables the CSI peripheral clock.
652 *
653 * @param base CSI peripheral base address.
654 */
655 void CSI_FragModeDeinit(CSI_Type *base);
656
657 /*!
658 * @brief Create handle for CSI work in fragment mode.
659 *
660 * @param base CSI peripheral base address.
661 * @param handle Pointer to the transactional handle.
662 * @param config Pointer to the configuration structure.
663 * @param callback Callback function for CSI transfer.
664 * @param userData Callback function parameter.
665 *
666 * @retval kStatus_Success Initialize successfully.
667 * @retval kStatus_InvalidArgument Initialize failed because of invalid argument.
668 */
669 status_t CSI_FragModeCreateHandle(CSI_Type *base,
670 csi_frag_handle_t *handle,
671 const csi_frag_config_t *config,
672 csi_frag_transfer_callback_t callback,
673 void *userData);
674
675 /*!
676 * @brief Start to capture a image.
677 *
678 * @param base CSI peripheral base address.
679 * @param handle Pointer to the transactional handle.
680 * @param config Pointer to the capture configuration.
681 *
682 * @retval kStatus_Success Initialize successfully.
683 * @retval kStatus_InvalidArgument Initialize failed because of invalid argument.
684 */
685 status_t CSI_FragModeTransferCaptureImage(CSI_Type *base,
686 csi_frag_handle_t *handle,
687 const csi_frag_capture_config_t *config);
688
689 /*!
690 * @brief Abort image capture.
691 *
692 * Abort image capture initialized by @ref CSI_FragModeTransferCaptureImage.
693 *
694 * @param base CSI peripheral base address.
695 * @param handle Pointer to the transactional handle.
696 */
697 void CSI_FragModeTransferAbortCaptureImage(CSI_Type *base, csi_frag_handle_t *handle);
698
699 /*!
700 * @brief CSI IRQ handle function.
701 *
702 * This function handles the CSI IRQ request to work with CSI driver fragment mode
703 * APIs.
704 *
705 * @param base CSI peripheral base address.
706 * @param handle CSI handle pointer.
707 */
708 void CSI_FragModeTransferHandleIRQ(CSI_Type *base, csi_frag_handle_t *handle);
709
710 /*! @} */
711
712 #endif /* CSI_DRIVER_FRAG_MODE */
713
714 #if defined(__cplusplus)
715 }
716 #endif
717
718 /*! @}*/
719
720 #endif /* FSL_CSI_H_ */
721