1 /*
2 * Copyright (c) 2015, Freescale Semiconductor, Inc.
3 * Copyright 2016-2022 NXP
4 * All rights reserved.
5 *
6 * SPDX-License-Identifier: BSD-3-Clause
7 */
8
9 #include "fsl_dspi_edma.h"
10
11 /***********************************************************************************************************************
12 * Definitions
13 ***********************************************************************************************************************/
14
15 /* Component ID definition, used by tools. */
16 #ifndef FSL_COMPONENT_ID
17 #define FSL_COMPONENT_ID "platform.drivers.dspi_edma"
18 #endif
19
20 /*!
21 * @brief Structure definition for dspi_master_edma_private_handle_t. The structure is private.
22 */
23 typedef struct _dspi_master_edma_private_handle
24 {
25 SPI_Type *base; /*!< DSPI peripheral base address. */
26 dspi_master_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */
27 } dspi_master_edma_private_handle_t;
28
29 /*!
30 * @brief Structure definition for dspi_slave_edma_private_handle_t. The structure is private.
31 */
32 typedef struct _dspi_slave_edma_private_handle
33 {
34 SPI_Type *base; /*!< DSPI peripheral base address. */
35 dspi_slave_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */
36 } dspi_slave_edma_private_handle_t;
37
38 /***********************************************************************************************************************
39 * Prototypes
40 ***********************************************************************************************************************/
41 /*!
42 * @brief EDMA_DspiMasterCallback after the DSPI master transfer completed by using EDMA.
43 * This is not a public API.
44 */
45 static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle,
46 void *g_dspiEdmaPrivateHandle,
47 bool transferDone,
48 uint32_t tcds);
49
50 /*!
51 * @brief EDMA_DspiSlaveCallback after the DSPI slave transfer completed by using EDMA.
52 * This is not a public API.
53 */
54 static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle,
55 void *g_dspiEdmaPrivateHandle,
56 bool transferDone,
57 uint32_t tcds);
58
59 /***********************************************************************************************************************
60 * Variables
61 ***********************************************************************************************************************/
62
63 /*! @brief Pointers to dspi edma handles for each instance. */
64 static dspi_master_edma_private_handle_t s_dspiMasterEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT];
65 static dspi_slave_edma_private_handle_t s_dspiSlaveEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT];
66
67 /***********************************************************************************************************************
68 * Code
69 ***********************************************************************************************************************/
70
71 /*!
72 * brief Initializes the DSPI master eDMA handle.
73 *
74 * This function initializes the DSPI eDMA handle which can be used for other DSPI transactional APIs. Usually, for a
75 * specified DSPI instance, call this API once to get the initialized handle.
76 *
77 * Note that DSPI eDMA has separated (RX and TX as two sources) or shared (RX and TX are the same source) DMA request
78 * source.
79 * (1) For the separated DMA request source, enable and set the RX DMAMUX source for edmaRxRegToRxDataHandle and
80 * TX DMAMUX source for edmaIntermediaryToTxRegHandle.
81 * (2) For the shared DMA request source, enable and set the RX/RX DMAMUX source for the edmaRxRegToRxDataHandle.
82 *
83 * param base DSPI peripheral base address.
84 * param handle DSPI handle pointer to dspi_master_edma_handle_t.
85 * param callback DSPI callback.
86 * param userData A callback function parameter.
87 * param edmaRxRegToRxDataHandle edmaRxRegToRxDataHandle pointer to edma_handle_t.
88 * param edmaTxDataToIntermediaryHandle edmaTxDataToIntermediaryHandle pointer to edma_handle_t.
89 * param edmaIntermediaryToTxRegHandle edmaIntermediaryToTxRegHandle pointer to edma_handle_t.
90 */
DSPI_MasterTransferCreateHandleEDMA(SPI_Type * base,dspi_master_edma_handle_t * handle,dspi_master_edma_transfer_callback_t callback,void * userData,edma_handle_t * edmaRxRegToRxDataHandle,edma_handle_t * edmaTxDataToIntermediaryHandle,edma_handle_t * edmaIntermediaryToTxRegHandle)91 void DSPI_MasterTransferCreateHandleEDMA(SPI_Type *base,
92 dspi_master_edma_handle_t *handle,
93 dspi_master_edma_transfer_callback_t callback,
94 void *userData,
95 edma_handle_t *edmaRxRegToRxDataHandle,
96 edma_handle_t *edmaTxDataToIntermediaryHandle,
97 edma_handle_t *edmaIntermediaryToTxRegHandle)
98 {
99 assert(NULL != handle);
100 assert(NULL != edmaRxRegToRxDataHandle);
101 #if (!(defined(FSL_FEATURE_DSPI_HAS_GASKET) && FSL_FEATURE_DSPI_HAS_GASKET))
102 assert(NULL != edmaTxDataToIntermediaryHandle);
103 #endif
104 assert(NULL != edmaIntermediaryToTxRegHandle);
105
106 /* Zero the handle. */
107 (void)memset(handle, 0, sizeof(*handle));
108
109 uint32_t instance = DSPI_GetInstance(base);
110
111 s_dspiMasterEdmaPrivateHandle[instance].base = base;
112 s_dspiMasterEdmaPrivateHandle[instance].handle = handle;
113
114 handle->callback = callback;
115 handle->userData = userData;
116
117 handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle;
118 handle->edmaTxDataToIntermediaryHandle = edmaTxDataToIntermediaryHandle;
119 handle->edmaIntermediaryToTxRegHandle = edmaIntermediaryToTxRegHandle;
120 }
121
122 /*!
123 * brief DSPI master transfer data using eDMA.
124 *
125 * This function transfers data using eDMA. This is a non-blocking function, which returns right away. When all data
126 * is transferred, the callback function is called.
127 *
128 * note The max transfer size of each transfer depends on whether the instance's Tx/Rx shares the same DMA request. If
129 * FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(x) is true, then the max transfer size is 32767 datawidth of data,
130 * otherwise is 511.
131 *
132 * param base DSPI peripheral base address.
133 * param handle A pointer to the dspi_master_edma_handle_t structure which stores the transfer state.
134 * param transfer A pointer to the dspi_transfer_t structure.
135 * return status of status_t.
136 */
DSPI_MasterTransferEDMA(SPI_Type * base,dspi_master_edma_handle_t * handle,dspi_transfer_t * transfer)137 status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_transfer_t *transfer)
138 {
139 assert(NULL != handle);
140 assert(NULL != transfer);
141
142 /* If the transfer count is zero, then return immediately.*/
143 if (transfer->dataSize == 0U)
144 {
145 return kStatus_InvalidArgument;
146 }
147
148 /* If both send buffer and receive buffer is null */
149 if ((NULL == (transfer->txData)) && (NULL == (transfer->rxData)))
150 {
151 return kStatus_InvalidArgument;
152 }
153
154 /* Check that we're not busy.*/
155 if (handle->state == (uint8_t)kDSPI_Busy)
156 {
157 return kStatus_DSPI_Busy;
158 }
159
160 handle->state = (uint8_t)kDSPI_Busy;
161
162 uint32_t instance = DSPI_GetInstance(base);
163 uint16_t wordToSend = 0;
164 uint8_t dummyData = DSPI_GetDummyDataInstance(base);
165 uint8_t dataAlreadyFed = 0;
166 uint8_t dataFedMax = 2;
167 uint32_t tmpMCR = 0;
168 size_t tmpRemainingSendByteCount = 0;
169
170 uint32_t rxAddr = DSPI_GetRxRegisterAddress(base);
171 uint32_t txAddr = DSPI_MasterGetTxRegisterAddress(base);
172
173 edma_tcd_t *softwareTCD = (edma_tcd_t *)((uint32_t)(&handle->dspiSoftwareTCD[1]) & (~0x1FU));
174
175 edma_transfer_config_t transferConfigA = {0};
176 edma_transfer_config_t transferConfigB = {0};
177
178 handle->txBuffIfNull = ((uint32_t)dummyData << 8U) | dummyData;
179
180 dspi_command_data_config_t commandStruct;
181 DSPI_StopTransfer(base);
182 DSPI_FlushFifo(base, true, true);
183 DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
184
185 commandStruct.whichPcs =
186 (uint8_t)((uint32_t)1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
187 commandStruct.isEndOfQueue = false;
188 commandStruct.clearTransferCount = false;
189 commandStruct.whichCtar = (uint8_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
190 commandStruct.isPcsContinuous =
191 (0U != (transfer->configFlags & (uint32_t)kDSPI_MasterPcsContinuous)) ? true : false;
192 handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct));
193
194 commandStruct.isEndOfQueue = true;
195 commandStruct.isPcsContinuous =
196 (0U != (transfer->configFlags & (uint32_t)kDSPI_MasterActiveAfterTransfer)) ? true : false;
197 handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
198
199 handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1U;
200
201 tmpMCR = base->MCR;
202 if ((0U != (tmpMCR & SPI_MCR_DIS_RXF_MASK)) || (0U != (tmpMCR & SPI_MCR_DIS_TXF_MASK)))
203 {
204 handle->fifoSize = 1U;
205 }
206 else
207 {
208 handle->fifoSize = (uint8_t)FSL_FEATURE_DSPI_FIFO_SIZEn(base);
209 }
210 handle->txData = transfer->txData;
211 handle->rxData = transfer->rxData;
212 handle->remainingSendByteCount = transfer->dataSize;
213 handle->remainingReceiveByteCount = transfer->dataSize;
214 handle->totalByteCount = transfer->dataSize;
215
216 /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer
217 * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame
218 */
219 if (transfer->dataSize > DSPI_EDMA_MAX_TRANSFER_SIZE(base, (handle->bitsPerFrame)))
220 {
221 handle->state = (uint8_t)kDSPI_Idle;
222 return kStatus_DSPI_OutOfRange;
223 }
224
225 /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */
226 if ((0U != (transfer->dataSize & 0x1U)) && (handle->bitsPerFrame > 8U))
227 {
228 handle->state = (uint8_t)kDSPI_Idle;
229 return kStatus_InvalidArgument;
230 }
231
232 DSPI_DisableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable);
233
234 EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiMasterCallback,
235 &s_dspiMasterEdmaPrivateHandle[instance]);
236
237 /*
238 (1)For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_B-> channel_C.
239 channel_A minor link to channel_B , channel_B minor link to channel_C.
240
241 Already pushed 1 or 2 data in SPI_PUSHR , then start the DMA tansfer.
242 channel_A:SPI_POPR to rxData,
243 channel_B:next txData to handle->command (low 16 bits),
244 channel_C:handle->command (32 bits) to SPI_PUSHR, and use the scatter/gather to transfer the last data
245 (handle->lastCommand to SPI_PUSHR).
246
247 (2)For DSPI instances with separate RX and TX DMA requests:
248 Rx DMA request -> channel_A
249 Tx DMA request -> channel_C -> channel_B .
250 channel_C major link to channel_B.
251 So need prepare the first data in "intermediary" before the DMA
252 transfer and then channel_B is used to prepare the next data to "intermediary"
253
254 channel_A:SPI_POPR to rxData,
255 channel_C: handle->command (32 bits) to SPI_PUSHR,
256 channel_B: next txData to handle->command (low 16 bits), and use the scatter/gather to prepare the last data
257 (handle->lastCommand to handle->Command).
258 */
259
260 /*If dspi has separate dma request , prepare the first data in "intermediary" .
261 else (dspi has shared dma request) , send first 2 data if there is fifo or send first 1 data if there is no fifo*/
262 if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
263 {
264 /* For DSPI instances with separate RX/TX DMA requests, we'll use the TX DMA request to
265 * trigger the TX DMA channel and RX DMA request to trigger the RX DMA channel
266 */
267
268 /*Prepare the firt data*/
269 if (handle->bitsPerFrame > 8U)
270 {
271 /* If it's the last word */
272 if (handle->remainingSendByteCount <= 2U)
273 {
274 if (NULL != handle->txData)
275 {
276 wordToSend = *(handle->txData);
277 ++handle->txData; /* increment to next data byte */
278 wordToSend |= (uint16_t)(*(handle->txData)) << 8U;
279 }
280 else
281 {
282 wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData);
283 }
284 handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
285 handle->command = handle->lastCommand;
286 }
287 else /* For all words except the last word , frame > 8bits */
288 {
289 if (NULL != handle->txData)
290 {
291 wordToSend = *(handle->txData);
292 ++handle->txData; /* increment to next data byte */
293 wordToSend |= (uint16_t)(*(handle->txData)) << 8U;
294 ++handle->txData; /* increment to next data byte */
295 }
296 else
297 {
298 wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData);
299 }
300 handle->command = (handle->command & 0xffff0000U) | wordToSend;
301 }
302 }
303 else /* Optimized for bits/frame less than or equal to one byte. */
304 {
305 if (NULL != handle->txData)
306 {
307 wordToSend = *(handle->txData);
308 ++handle->txData; /* increment to next data word*/
309 }
310 else
311 {
312 wordToSend = dummyData;
313 }
314
315 if (handle->remainingSendByteCount == 1U)
316 {
317 handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
318 handle->command = handle->lastCommand;
319 }
320 else
321 {
322 handle->command = (handle->command & 0xffff0000U) | wordToSend;
323 }
324 }
325 }
326
327 else /*dspi has shared dma request*/
328 {
329 /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to
330 * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel.
331 */
332
333 /* If bits/frame is greater than one byte */
334 if (handle->bitsPerFrame > 8U)
335 {
336 while ((uint32_t)kDSPI_TxFifoFillRequestFlag ==
337 (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
338 {
339 if (handle->remainingSendByteCount <= 2U)
340 {
341 if (NULL != handle->txData)
342 {
343 wordToSend = *(handle->txData);
344 ++handle->txData;
345 wordToSend |= (uint16_t)(*(handle->txData)) << 8U;
346 }
347 else
348 {
349 wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData);
350 }
351 handle->remainingSendByteCount = 0;
352 base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend;
353 }
354 /* For all words except the last word */
355 else
356 {
357 if (NULL != handle->txData)
358 {
359 wordToSend = *(handle->txData);
360 ++handle->txData;
361 wordToSend |= (uint16_t)(*(handle->txData)) << 8U;
362 ++handle->txData;
363 }
364 else
365 {
366 wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData);
367 }
368 handle->remainingSendByteCount -= 2U;
369 base->PUSHR = (handle->command & 0xffff0000U) | wordToSend;
370 }
371
372 /* Try to clear the TFFF; if the TX FIFO is full this will clear */
373 DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
374
375 dataAlreadyFed += 2U;
376
377 /* exit loop if send count is zero, else update local variables for next loop */
378 if ((handle->remainingSendByteCount == 0U) || (dataAlreadyFed == (dataFedMax * 2U)))
379 {
380 break;
381 }
382 } /* End of TX FIFO fill while loop */
383 }
384 else /* Optimized for bits/frame less than or equal to one byte. */
385 {
386 while ((uint32_t)kDSPI_TxFifoFillRequestFlag ==
387 (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
388 {
389 if (NULL != handle->txData)
390 {
391 wordToSend = *(handle->txData);
392 ++handle->txData;
393 }
394 else
395 {
396 wordToSend = dummyData;
397 }
398
399 if (handle->remainingSendByteCount == 1U)
400 {
401 base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend;
402 }
403 else
404 {
405 base->PUSHR = (handle->command & 0xffff0000U) | wordToSend;
406 }
407
408 /* Try to clear the TFFF; if the TX FIFO is full this will clear */
409 DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
410
411 --handle->remainingSendByteCount;
412
413 dataAlreadyFed++;
414
415 /* exit loop if send count is zero, else update local variables for next loop */
416 if ((handle->remainingSendByteCount == 0U) || (dataAlreadyFed == dataFedMax))
417 {
418 break;
419 }
420 } /* End of TX FIFO fill while loop */
421 }
422 }
423
424 /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer(rxData)*/
425 EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);
426
427 transferConfigA.srcAddr = (uint32_t)rxAddr;
428 transferConfigA.srcOffset = 0;
429
430 if (NULL != handle->rxData)
431 {
432 transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]);
433 transferConfigA.destOffset = 1;
434 }
435 else
436 {
437 transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull);
438 transferConfigA.destOffset = 0;
439 }
440
441 transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes;
442
443 if (handle->bitsPerFrame <= 8U)
444 {
445 transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes;
446 transferConfigA.minorLoopBytes = 1;
447 transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount;
448 }
449 else
450 {
451 transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes;
452 transferConfigA.minorLoopBytes = 2;
453 transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2U;
454 }
455
456 /* Store the initially configured eDMA minor byte transfer count into the DSPI handle */
457 handle->nbytes = (uint8_t)(transferConfigA.minorLoopBytes);
458
459 EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
460 (const edma_transfer_config_t *)(uint32_t)&transferConfigA, NULL);
461 EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
462 (uint32_t)kEDMA_MajorInterruptEnable);
463
464 if (handle->remainingSendByteCount == 0U)
465 {
466 EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
467 DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable);
468 DSPI_StartTransfer(base);
469 return kStatus_Success;
470 }
471
472 tmpRemainingSendByteCount = handle->remainingSendByteCount;
473 /*Calculate the last data : handle->lastCommand*/
474 if (((tmpRemainingSendByteCount > 0U) && (1U != (uint8_t)FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) ||
475 ((((tmpRemainingSendByteCount > 1U) && (handle->bitsPerFrame <= 8U)) ||
476 ((tmpRemainingSendByteCount > 2U) && (handle->bitsPerFrame > 8U))) &&
477 (1U == (uint8_t)FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))))
478 {
479 if (NULL != handle->txData)
480 {
481 uint32_t bufferIndex = 0;
482
483 if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
484 {
485 if (handle->bitsPerFrame <= 8U)
486 {
487 bufferIndex = handle->remainingSendByteCount - 1U;
488 }
489 else
490 {
491 bufferIndex = handle->remainingSendByteCount - 2U;
492 }
493 }
494 else
495 {
496 bufferIndex = handle->remainingSendByteCount;
497 }
498
499 uint32_t tmpLastCommand = handle->lastCommand;
500 const uint8_t *tmpTxData = handle->txData;
501
502 if (handle->bitsPerFrame <= 8U)
503 {
504 tmpLastCommand = (tmpLastCommand & 0xffff0000U) | tmpTxData[bufferIndex - 1U];
505 }
506 else
507 {
508 tmpLastCommand = (tmpLastCommand & 0xffff0000U) | ((uint32_t)tmpTxData[bufferIndex - 1U] << 8U) |
509 tmpTxData[bufferIndex - 2U];
510 }
511
512 handle->lastCommand = tmpLastCommand;
513 }
514 else
515 {
516 if (handle->bitsPerFrame <= 8U)
517 {
518 wordToSend = dummyData;
519 }
520 else
521 {
522 wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData);
523 }
524 handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
525 }
526 }
527
528 /* The feature of GASKET is that the SPI supports 8-bit or 16-bit writes to the PUSH TX FIFO,
529 * allowing a single write to the command word followed by multiple writes to the transmit word.
530 * The TX FIFO will save the last command word written, and convert a 8-bit/16-bit write to the
531 * transmit word into a 32-bit write that pushes both the command word and transmit word into
532 * the TX FIFO (PUSH TX FIFO Register In Master Mode)
533 * So, if this feature is supported, we can use use one channel to carry the receive data from
534 * receive regsiter to user data buffer, use the other channel to carry the data from user data buffer
535 * to transmit register,and use the scatter/gather function to prepare the last data.
536 * That is to say, if GASKET feature is supported, we can use only two channels for tansferring data.
537 */
538 #if defined(FSL_FEATURE_DSPI_HAS_GASKET) && FSL_FEATURE_DSPI_HAS_GASKET
539 /* For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data
540 * (handle->lastCommand) to PUSHR register.
541 */
542
543 EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel);
544
545 if ((1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) ||
546 ((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))))
547 {
548 transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand);
549 transferConfigB.destAddr = (uint32_t)txAddr;
550 transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes;
551 transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes;
552 transferConfigB.srcOffset = 0;
553 transferConfigB.destOffset = 0;
554 transferConfigB.minorLoopBytes = 4;
555 transferConfigB.majorLoopCounts = 1;
556
557 EDMA_TcdReset(softwareTCD);
558 EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigB, NULL);
559 }
560
561 /*User_Send_Buffer(txData) to PUSHR register. */
562 if (((handle->remainingSendByteCount > 2U) && (handle->bitsPerFrame <= 8U)) ||
563 ((handle->remainingSendByteCount > 4U) && (handle->bitsPerFrame > 8U)))
564 {
565 if (handle->txData)
566 {
567 if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
568 {
569 /* For DSPI with separate RX and TX DMA requests, one frame data has been carry
570 * to handle->command, so need to reduce the pointer of txData.
571 */
572 transferConfigB.srcAddr =
573 (uint32_t)((uint8_t *)(handle->txData) - ((handle->bitsPerFrame <= 8U) ? (1U) : (2U)));
574 transferConfigB.srcOffset = 1;
575 }
576 else
577 {
578 /* For DSPI with shared RX and TX DMA requests, one or two frame data have been carry
579 * to PUSHR register, so no need to change the pointer of txData.
580 */
581 transferConfigB.srcAddr = (uint32_t)((uint8_t *)(handle->txData));
582 transferConfigB.srcOffset = 1;
583 }
584 }
585 else
586 {
587 transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull);
588 transferConfigB.srcOffset = 0;
589 }
590
591 transferConfigB.destAddr = (uint32_t)txAddr;
592 transferConfigB.destOffset = 0;
593
594 transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes;
595
596 if (handle->bitsPerFrame <= 8U)
597 {
598 transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes;
599 transferConfigB.minorLoopBytes = 1;
600
601 transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 1U;
602 }
603 else
604 {
605 transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes;
606 transferConfigB.minorLoopBytes = 2;
607 transferConfigB.majorLoopCounts = (handle->remainingSendByteCount / 2U) - 1U;
608 }
609
610 EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
611 handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, softwareTCD);
612 }
613 /* If only one word to transmit, only carry the lastcommand. */
614 else
615 {
616 EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
617 handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, NULL);
618 }
619
620 /*Start the EDMA channel_A , channel_C. */
621 EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
622 EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle);
623
624 /* Set the channel link.
625 * For DSPI instances with shared TX and RX DMA requests, setup channel minor link, first receive data from the
626 * receive register, and then carry transmit data to PUSHER register.
627 * For DSPI instance with separate TX and RX DMA requests, there is no need to set up channel link.
628 */
629 if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
630 {
631 /*Set channel priority*/
632 uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
633 uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel;
634 uint8_t t = 0;
635
636 if (channelPriorityLow > channelPriorityHigh)
637 {
638 t = channelPriorityLow;
639 channelPriorityLow = channelPriorityHigh;
640 channelPriorityHigh = t;
641 }
642
643 edma_channel_Preemption_config_t preemption_config_t;
644 preemption_config_t.enableChannelPreemption = true;
645 preemption_config_t.enablePreemptAbility = true;
646 preemption_config_t.channelPriority = channelPriorityLow;
647
648 EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
649 &preemption_config_t);
650
651 preemption_config_t.channelPriority = channelPriorityHigh;
652 EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
653 handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t);
654 /*if there is Rx DMA request , carry the 32bits data (handle->command) to user data first , then link to
655 channelC to carry the next data to PUSHER register.(txData to PUSHER) */
656 if (handle->remainingSendByteCount > 0U)
657 {
658 EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
659 kEDMA_MinorLink, handle->edmaIntermediaryToTxRegHandle->channel);
660 }
661 }
662
663 DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
664
665 /* Setup control info to PUSHER register. */
666 *((uint16_t *)&(base->PUSHR) + 1) = (handle->command >> 16U);
667 #else
668
669 /***channel_B *** used for carry the data from User_Send_Buffer to "intermediary" because the SPIx_PUSHR should
670 write the 32bits at once time . Then use channel_C to carry the "intermediary" to SPIx_PUSHR. Note that the
671 SPIx_PUSHR upper 16 bits are the "command" and the low 16bits are data */
672
673 EDMA_ResetChannel(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel);
674
675 /*For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data
676 * (handle->lastCommand) to handle->Command*/
677 if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
678 {
679 transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand);
680 transferConfigB.destAddr = (uint32_t) & (handle->command);
681 transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes;
682 transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes;
683 transferConfigB.srcOffset = 0;
684 transferConfigB.destOffset = 0;
685 transferConfigB.minorLoopBytes = 4;
686 transferConfigB.majorLoopCounts = 1;
687
688 EDMA_TcdReset(softwareTCD);
689 EDMA_TcdSetTransferConfig(softwareTCD, (const edma_transfer_config_t *)(uint32_t)&transferConfigB, NULL);
690 }
691
692 tmpRemainingSendByteCount = handle->remainingSendByteCount;
693 /*User_Send_Buffer(txData) to intermediary(handle->command)*/
694 if (((((tmpRemainingSendByteCount > 2U) && (handle->bitsPerFrame <= 8U)) ||
695 ((tmpRemainingSendByteCount > 4U) && (handle->bitsPerFrame > 8U))) &&
696 (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) ||
697 (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))
698 {
699 if (NULL != handle->txData)
700 {
701 transferConfigB.srcAddr = (uint32_t)(handle->txData);
702 transferConfigB.srcOffset = 1;
703 }
704 else
705 {
706 transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull);
707 transferConfigB.srcOffset = 0;
708 }
709
710 transferConfigB.destAddr = (uint32_t)(&handle->command);
711 transferConfigB.destOffset = 0;
712
713 transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes;
714
715 if (handle->bitsPerFrame <= 8U)
716 {
717 transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes;
718 transferConfigB.minorLoopBytes = 1;
719
720 if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
721 {
722 transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 2U;
723 }
724 else
725 {
726 /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
727 majorlink , the majorlink would not trigger the channel_C*/
728 transferConfigB.majorLoopCounts = handle->remainingSendByteCount + 1U;
729 }
730 }
731 else
732 {
733 transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes;
734 transferConfigB.minorLoopBytes = 2;
735 if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
736 {
737 transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2U - 2U;
738 }
739 else
740 {
741 /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
742 * majorlink*/
743 transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2U + 1U;
744 }
745 }
746
747 if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
748 {
749 EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
750 handle->edmaTxDataToIntermediaryHandle->channel,
751 (const edma_transfer_config_t *)(uint32_t)&transferConfigB, softwareTCD);
752 EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base,
753 handle->edmaIntermediaryToTxRegHandle->channel, false);
754 }
755 else
756 {
757 EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
758 handle->edmaTxDataToIntermediaryHandle->channel,
759 (const edma_transfer_config_t *)(uint32_t)&transferConfigB, NULL);
760 }
761 }
762 else
763 {
764 EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
765 handle->edmaTxDataToIntermediaryHandle->channel,
766 (const edma_transfer_config_t *)(uint32_t)&transferConfigB, NULL);
767 }
768
769 /***channel_C ***carry the "intermediary" to SPIx_PUSHR. used the edma Scatter Gather function on channel_C to
770 handle the last data */
771
772 edma_transfer_config_t transferConfigC = {0};
773
774 EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel);
775
776 tmpRemainingSendByteCount = handle->remainingSendByteCount;
777 /*For DSPI instances with shared RX/TX DMA requests: use the scatter/gather to prepare the last data
778 * (handle->lastCommand) to SPI_PUSHR*/
779 if (((1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) && (tmpRemainingSendByteCount > 0U)))
780 {
781 transferConfigC.srcAddr = (uint32_t) & (handle->lastCommand);
782 transferConfigC.destAddr = (uint32_t)txAddr;
783 transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes;
784 transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes;
785 transferConfigC.srcOffset = 0;
786 transferConfigC.destOffset = 0;
787 transferConfigC.minorLoopBytes = 4;
788 transferConfigC.majorLoopCounts = 1;
789
790 EDMA_TcdReset(softwareTCD);
791 EDMA_TcdSetTransferConfig(softwareTCD, (const edma_transfer_config_t *)(uint32_t)&transferConfigC, NULL);
792 }
793
794 tmpRemainingSendByteCount = handle->remainingSendByteCount;
795 if (((tmpRemainingSendByteCount > 1U) && (handle->bitsPerFrame <= 8U)) ||
796 ((tmpRemainingSendByteCount > 2U) && (handle->bitsPerFrame > 8U)) ||
797 (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))
798 {
799 transferConfigC.srcAddr = (uint32_t)(&(handle->command));
800 transferConfigC.destAddr = (uint32_t)txAddr;
801
802 transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes;
803 transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes;
804 transferConfigC.srcOffset = 0;
805 transferConfigC.destOffset = 0;
806 transferConfigC.minorLoopBytes = 4;
807 if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
808 {
809 if (handle->bitsPerFrame <= 8U)
810 {
811 transferConfigC.majorLoopCounts = handle->remainingSendByteCount - 1U;
812 }
813 else
814 {
815 transferConfigC.majorLoopCounts = (handle->remainingSendByteCount / 2U) - 1U;
816 }
817
818 EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
819 handle->edmaIntermediaryToTxRegHandle->channel,
820 (const edma_transfer_config_t *)(uint32_t)&transferConfigC, softwareTCD);
821 }
822 else
823 {
824 transferConfigC.majorLoopCounts = 1;
825
826 EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
827 handle->edmaIntermediaryToTxRegHandle->channel,
828 (const edma_transfer_config_t *)(uint32_t)&transferConfigC, NULL);
829 }
830
831 EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base,
832 handle->edmaIntermediaryToTxRegHandle->channel, false);
833 }
834 else
835 {
836 EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
837 handle->edmaIntermediaryToTxRegHandle->channel,
838 (const edma_transfer_config_t *)(uint32_t)&transferConfigC, NULL);
839 }
840
841 /*Start the EDMA channel_A , channel_B , channel_C transfer*/
842 EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
843 EDMA_StartTransfer(handle->edmaTxDataToIntermediaryHandle);
844 EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle);
845
846 /*Set channel priority*/
847 uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
848 uint8_t channelPriorityMid = handle->edmaTxDataToIntermediaryHandle->channel;
849 uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel;
850 uint8_t t = 0;
851 if (channelPriorityLow > channelPriorityMid)
852 {
853 t = channelPriorityLow;
854 channelPriorityLow = channelPriorityMid;
855 channelPriorityMid = t;
856 }
857
858 if (channelPriorityLow > channelPriorityHigh)
859 {
860 t = channelPriorityLow;
861 channelPriorityLow = channelPriorityHigh;
862 channelPriorityHigh = t;
863 }
864
865 if (channelPriorityMid > channelPriorityHigh)
866 {
867 t = channelPriorityMid;
868 channelPriorityMid = channelPriorityHigh;
869 channelPriorityHigh = t;
870 }
871 edma_channel_Preemption_config_t preemption_config_t;
872 preemption_config_t.enableChannelPreemption = true;
873 preemption_config_t.enablePreemptAbility = true;
874 preemption_config_t.channelPriority = channelPriorityLow;
875
876 if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
877 {
878 EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
879 (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
880
881 preemption_config_t.channelPriority = channelPriorityMid;
882 EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base,
883 handle->edmaTxDataToIntermediaryHandle->channel,
884 (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
885
886 preemption_config_t.channelPriority = channelPriorityHigh;
887 EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
888 handle->edmaIntermediaryToTxRegHandle->channel,
889 (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
890 }
891 else
892 {
893 EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
894 handle->edmaIntermediaryToTxRegHandle->channel,
895 (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
896
897 preemption_config_t.channelPriority = channelPriorityMid;
898 EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base,
899 handle->edmaTxDataToIntermediaryHandle->channel,
900 (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
901
902 preemption_config_t.channelPriority = channelPriorityHigh;
903 EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
904 (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
905 }
906
907 /*Set the channel link.*/
908 if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
909 {
910 /*if there is Tx DMA request , carry the 32bits data (handle->command) to PUSHR first , then link to channelB
911 to prepare the next 32bits data (txData to handle->command) */
912 if (handle->remainingSendByteCount > 1U)
913 {
914 EDMA_SetChannelLink(handle->edmaIntermediaryToTxRegHandle->base,
915 handle->edmaIntermediaryToTxRegHandle->channel, kEDMA_MajorLink,
916 handle->edmaTxDataToIntermediaryHandle->channel);
917 }
918
919 DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable);
920 }
921 else
922 {
923 if (handle->remainingSendByteCount > 0U)
924 {
925 EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
926 kEDMA_MinorLink, handle->edmaTxDataToIntermediaryHandle->channel);
927
928 EDMA_SetChannelLink(handle->edmaTxDataToIntermediaryHandle->base,
929 handle->edmaTxDataToIntermediaryHandle->channel, kEDMA_MinorLink,
930 handle->edmaIntermediaryToTxRegHandle->channel);
931 }
932
933 DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable);
934 }
935 #endif
936 DSPI_StartTransfer(base);
937
938 return kStatus_Success;
939 }
940
941 /*!
942 * brief Transfers a block of data using a eDMA method.
943 *
944 * This function transfers data using eDNA, the transfer mechanism is half-duplex. This is a non-blocking function,
945 * which returns right away. When all data is transferred, the callback function is called.
946 *
947 * param base DSPI base pointer
948 * param handle A pointer to the dspi_master_edma_handle_t structure which stores the transfer state.
949 * param transfer A pointer to the dspi_half_duplex_transfer_t structure.
950 * return status of status_t.
951 */
DSPI_MasterHalfDuplexTransferEDMA(SPI_Type * base,dspi_master_edma_handle_t * handle,dspi_half_duplex_transfer_t * xfer)952 status_t DSPI_MasterHalfDuplexTransferEDMA(SPI_Type *base,
953 dspi_master_edma_handle_t *handle,
954 dspi_half_duplex_transfer_t *xfer)
955 {
956 assert(NULL != xfer);
957 assert(NULL != handle);
958 dspi_transfer_t tempXfer = {0};
959 status_t status;
960
961 if (true == xfer->isTransmitFirst)
962 {
963 tempXfer.txData = xfer->txData;
964 tempXfer.rxData = NULL;
965 tempXfer.dataSize = xfer->txDataSize;
966 }
967 else
968 {
969 tempXfer.txData = NULL;
970 tempXfer.rxData = xfer->rxData;
971 tempXfer.dataSize = xfer->rxDataSize;
972 }
973 /* If the pcs pin keep assert between transmit and receive. */
974 if (true == xfer->isPcsAssertInTransfer)
975 {
976 tempXfer.configFlags = (xfer->configFlags) | (uint32_t)kDSPI_MasterActiveAfterTransfer;
977 }
978 else
979 {
980 tempXfer.configFlags = (xfer->configFlags) & (~(uint32_t)kDSPI_MasterActiveAfterTransfer);
981 }
982
983 status = DSPI_MasterTransferBlocking(base, &tempXfer);
984 if (status != kStatus_Success)
985 {
986 return status;
987 }
988
989 if (true == xfer->isTransmitFirst)
990 {
991 tempXfer.txData = NULL;
992 tempXfer.rxData = xfer->rxData;
993 tempXfer.dataSize = xfer->rxDataSize;
994 }
995 else
996 {
997 tempXfer.txData = xfer->txData;
998 tempXfer.rxData = NULL;
999 tempXfer.dataSize = xfer->txDataSize;
1000 }
1001 tempXfer.configFlags = xfer->configFlags;
1002
1003 status = DSPI_MasterTransferEDMA(base, handle, &tempXfer);
1004
1005 return status;
1006 }
EDMA_DspiMasterCallback(edma_handle_t * edmaHandle,void * g_dspiEdmaPrivateHandle,bool transferDone,uint32_t tcds)1007 static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle,
1008 void *g_dspiEdmaPrivateHandle,
1009 bool transferDone,
1010 uint32_t tcds)
1011 {
1012 assert(NULL != edmaHandle);
1013 assert(NULL != g_dspiEdmaPrivateHandle);
1014
1015 dspi_master_edma_private_handle_t *dspiEdmaPrivateHandle;
1016
1017 dspiEdmaPrivateHandle = (dspi_master_edma_private_handle_t *)g_dspiEdmaPrivateHandle;
1018
1019 DSPI_DisableDMA((dspiEdmaPrivateHandle->base), (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable);
1020
1021 dspiEdmaPrivateHandle->handle->state = (uint8_t)kDSPI_Idle;
1022
1023 if (NULL != dspiEdmaPrivateHandle->handle->callback)
1024 {
1025 dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle,
1026 kStatus_Success, dspiEdmaPrivateHandle->handle->userData);
1027 }
1028 }
1029
1030 /*!
1031 * brief DSPI master aborts a transfer which is using eDMA.
1032 *
1033 * This function aborts a transfer which is using eDMA.
1034 *
1035 * param base DSPI peripheral base address.
1036 * param handle A pointer to the dspi_master_edma_handle_t structure which stores the transfer state.
1037 */
DSPI_MasterTransferAbortEDMA(SPI_Type * base,dspi_master_edma_handle_t * handle)1038 void DSPI_MasterTransferAbortEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle)
1039 {
1040 assert(NULL != handle);
1041
1042 DSPI_StopTransfer(base);
1043
1044 DSPI_DisableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable);
1045
1046 EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle);
1047 EDMA_AbortTransfer(handle->edmaTxDataToIntermediaryHandle);
1048 EDMA_AbortTransfer(handle->edmaIntermediaryToTxRegHandle);
1049
1050 handle->state = (uint8_t)kDSPI_Idle;
1051 }
1052
1053 /*!
1054 * brief Gets the master eDMA transfer count.
1055 *
1056 * This function gets the master eDMA transfer count.
1057 *
1058 * param base DSPI peripheral base address.
1059 * param handle A pointer to the dspi_master_edma_handle_t structure which stores the transfer state.
1060 * param count A number of bytes transferred by the non-blocking transaction.
1061 * return status of status_t.
1062 */
DSPI_MasterTransferGetCountEDMA(SPI_Type * base,dspi_master_edma_handle_t * handle,size_t * count)1063 status_t DSPI_MasterTransferGetCountEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, size_t *count)
1064 {
1065 assert(NULL != handle);
1066
1067 if (NULL == count)
1068 {
1069 return kStatus_InvalidArgument;
1070 }
1071
1072 /* Catch when there is not an active transfer. */
1073 if (handle->state != (uint8_t)kDSPI_Busy)
1074 {
1075 *count = 0;
1076 return kStatus_NoTransferInProgress;
1077 }
1078
1079 size_t bytes;
1080
1081 bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base,
1082 handle->edmaRxRegToRxDataHandle->channel);
1083
1084 *count = handle->totalByteCount - bytes;
1085
1086 return kStatus_Success;
1087 }
1088
1089 /*!
1090 * brief Initializes the DSPI slave eDMA handle.
1091 *
1092 * This function initializes the DSPI eDMA handle which can be used for other DSPI transactional APIs. Usually, for a
1093 * specified DSPI instance, call this API once to get the initialized handle.
1094 *
1095 * Note that DSPI eDMA has separated (RN and TX in 2 sources) or shared (RX and TX are the same source) DMA request
1096 * source.
1097 * (1)For the separated DMA request source, enable and set the RX DMAMUX source for edmaRxRegToRxDataHandle and
1098 * TX DMAMUX source for edmaTxDataToTxRegHandle.
1099 * (2)For the shared DMA request source, enable and set the RX/RX DMAMUX source for the edmaRxRegToRxDataHandle.
1100 *
1101 * param base DSPI peripheral base address.
1102 * param handle DSPI handle pointer to dspi_slave_edma_handle_t.
1103 * param callback DSPI callback.
1104 * param userData A callback function parameter.
1105 * param edmaRxRegToRxDataHandle edmaRxRegToRxDataHandle pointer to edma_handle_t.
1106 * param edmaTxDataToTxRegHandle edmaTxDataToTxRegHandle pointer to edma_handle_t.
1107 */
DSPI_SlaveTransferCreateHandleEDMA(SPI_Type * base,dspi_slave_edma_handle_t * handle,dspi_slave_edma_transfer_callback_t callback,void * userData,edma_handle_t * edmaRxRegToRxDataHandle,edma_handle_t * edmaTxDataToTxRegHandle)1108 void DSPI_SlaveTransferCreateHandleEDMA(SPI_Type *base,
1109 dspi_slave_edma_handle_t *handle,
1110 dspi_slave_edma_transfer_callback_t callback,
1111 void *userData,
1112 edma_handle_t *edmaRxRegToRxDataHandle,
1113 edma_handle_t *edmaTxDataToTxRegHandle)
1114 {
1115 assert(NULL != handle);
1116 assert(NULL != edmaRxRegToRxDataHandle);
1117 assert(NULL != edmaTxDataToTxRegHandle);
1118
1119 /* Zero the handle. */
1120 (void)memset(handle, 0, sizeof(*handle));
1121
1122 uint32_t instance = DSPI_GetInstance(base);
1123
1124 s_dspiSlaveEdmaPrivateHandle[instance].base = base;
1125 s_dspiSlaveEdmaPrivateHandle[instance].handle = handle;
1126
1127 handle->callback = callback;
1128 handle->userData = userData;
1129
1130 handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle;
1131 handle->edmaTxDataToTxRegHandle = edmaTxDataToTxRegHandle;
1132 }
1133
1134 /*!
1135 * brief DSPI slave transfer data using eDMA.
1136 *
1137 * This function transfers data using eDMA. This is a non-blocking function, which returns right away. When all data
1138 * is transferred, the callback function is called.
1139 * Note that the slave eDMA transfer doesn't support transfer_size is 1 when the bitsPerFrame is greater
1140 * than eight.
1141 *
1142 * note The max transfer size of each transfer depends on whether the instance's Tx/Rx shares the same DMA request. If
1143 * FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(x) is true, then the max transfer size is 32767 datawidth of data,
1144 * otherwise is 511.
1145 *
1146 * param base DSPI peripheral base address.
1147 * param handle A pointer to the dspi_slave_edma_handle_t structure which stores the transfer state.
1148 * param transfer A pointer to the dspi_transfer_t structure.
1149 * return status of status_t.
1150 */
DSPI_SlaveTransferEDMA(SPI_Type * base,dspi_slave_edma_handle_t * handle,dspi_transfer_t * transfer)1151 status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, dspi_transfer_t *transfer)
1152 {
1153 assert(NULL != handle);
1154 assert(NULL != transfer);
1155
1156 /* If send/receive length is zero */
1157 if (transfer->dataSize == 0U)
1158 {
1159 return kStatus_InvalidArgument;
1160 }
1161
1162 /* If both send buffer and receive buffer is null */
1163 if ((NULL == (transfer->txData)) && (NULL == (transfer->rxData)))
1164 {
1165 return kStatus_InvalidArgument;
1166 }
1167
1168 /* Check that we're not busy.*/
1169 if (handle->state == (uint8_t)kDSPI_Busy)
1170 {
1171 return kStatus_DSPI_Busy;
1172 }
1173
1174 handle->state = (uint8_t)kDSPI_Busy;
1175
1176 uint32_t instance = DSPI_GetInstance(base);
1177 uint8_t whichCtar = (uint8_t)((transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT);
1178 handle->bitsPerFrame =
1179 (((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1U;
1180
1181 /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer
1182 * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame
1183 */
1184 if (transfer->dataSize > DSPI_EDMA_MAX_TRANSFER_SIZE(base, (handle->bitsPerFrame)))
1185 {
1186 handle->state = (uint8_t)kDSPI_Idle;
1187 return kStatus_DSPI_OutOfRange;
1188 }
1189
1190 /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */
1191 if ((0U != (transfer->dataSize & 0x1U)) && (handle->bitsPerFrame > 8U))
1192 {
1193 handle->state = (uint8_t)kDSPI_Idle;
1194 return kStatus_InvalidArgument;
1195 }
1196
1197 EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiSlaveCallback, &s_dspiSlaveEdmaPrivateHandle[instance]);
1198
1199 /* Store transfer information */
1200 handle->txData = transfer->txData;
1201 handle->rxData = transfer->rxData;
1202 handle->remainingSendByteCount = transfer->dataSize;
1203 handle->remainingReceiveByteCount = transfer->dataSize;
1204 handle->totalByteCount = transfer->dataSize;
1205
1206 uint32_t wordToSend = 0;
1207 uint8_t dummyData = DSPI_GetDummyDataInstance(base);
1208 uint8_t dataAlreadyFed = 0;
1209 uint8_t dataFedMax = 2;
1210
1211 uint32_t rxAddr = DSPI_GetRxRegisterAddress(base);
1212 uint32_t txAddr = DSPI_SlaveGetTxRegisterAddress(base);
1213
1214 edma_transfer_config_t transferConfigA = {0};
1215 edma_transfer_config_t transferConfigC = {0};
1216
1217 DSPI_StopTransfer(base);
1218
1219 DSPI_FlushFifo(base, true, true);
1220 DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
1221
1222 DSPI_DisableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable);
1223
1224 DSPI_StartTransfer(base);
1225
1226 /*if dspi has separate dma request , need not prepare data first .
1227 else (dspi has shared dma request) , send first 2 data into fifo if there is fifo or send first 1 data to
1228 slaveGetTxRegister if there is no fifo*/
1229 if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
1230 {
1231 /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to
1232 * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel.
1233 */
1234 /* If bits/frame is greater than one byte */
1235 if (handle->bitsPerFrame > 8U)
1236 {
1237 while ((uint32_t)kDSPI_TxFifoFillRequestFlag ==
1238 (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
1239 {
1240 if (NULL != handle->txData)
1241 {
1242 wordToSend = *(handle->txData);
1243 ++handle->txData; /* Increment to next data byte */
1244
1245 wordToSend |= (unsigned)(*(handle->txData)) << 8U;
1246 ++handle->txData; /* Increment to next data byte */
1247 }
1248 else
1249 {
1250 wordToSend = ((uint32_t)dummyData << 8U) | dummyData;
1251 }
1252 handle->remainingSendByteCount -= 2U; /* decrement remainingSendByteCount by 2 */
1253 base->PUSHR_SLAVE = wordToSend;
1254
1255 /* Try to clear the TFFF; if the TX FIFO is full this will clear */
1256 DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
1257
1258 dataAlreadyFed += 2U;
1259
1260 /* Exit loop if send count is zero, else update local variables for next loop */
1261 if ((handle->remainingSendByteCount == 0U) || (dataAlreadyFed == (dataFedMax * 2U)))
1262 {
1263 break;
1264 }
1265 } /* End of TX FIFO fill while loop */
1266 }
1267 else /* Optimized for bits/frame less than or equal to one byte. */
1268 {
1269 while ((uint32_t)kDSPI_TxFifoFillRequestFlag ==
1270 (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
1271 {
1272 if (NULL != handle->txData)
1273 {
1274 wordToSend = *(handle->txData);
1275 /* Increment to next data word*/
1276 ++handle->txData;
1277 }
1278 else
1279 {
1280 wordToSend = dummyData;
1281 }
1282
1283 base->PUSHR_SLAVE = wordToSend;
1284
1285 /* Try to clear the TFFF; if the TX FIFO is full this will clear */
1286 DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
1287 /* Decrement remainingSendByteCount*/
1288 --handle->remainingSendByteCount;
1289
1290 dataAlreadyFed++;
1291
1292 /* Exit loop if send count is zero, else update local variables for next loop */
1293 if ((handle->remainingSendByteCount == 0U) || (dataAlreadyFed == dataFedMax))
1294 {
1295 break;
1296 }
1297 } /* End of TX FIFO fill while loop */
1298 }
1299 }
1300
1301 /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer*/
1302 if (handle->remainingReceiveByteCount > 0U)
1303 {
1304 EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);
1305
1306 transferConfigA.srcAddr = (uint32_t)rxAddr;
1307 transferConfigA.srcOffset = 0;
1308
1309 if (NULL != handle->rxData)
1310 {
1311 transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]);
1312 transferConfigA.destOffset = 1;
1313 }
1314 else
1315 {
1316 transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull);
1317 transferConfigA.destOffset = 0;
1318 }
1319
1320 transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes;
1321
1322 if (handle->bitsPerFrame <= 8U)
1323 {
1324 transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes;
1325 transferConfigA.minorLoopBytes = 1;
1326 transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount;
1327 }
1328 else
1329 {
1330 transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes;
1331 transferConfigA.minorLoopBytes = 2;
1332 transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2U;
1333 }
1334
1335 /* Store the initially configured eDMA minor byte transfer count into the DSPI handle */
1336 handle->nbytes = (uint8_t)(transferConfigA.minorLoopBytes);
1337
1338 EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
1339 (const edma_transfer_config_t *)(uint32_t)&transferConfigA, NULL);
1340 EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
1341 (uint32_t)kEDMA_MajorInterruptEnable);
1342 }
1343
1344 if (handle->remainingSendByteCount > 0U)
1345 {
1346 /***channel_C *** used for carry the data from User_Send_Buffer to Tx_Data_Register(PUSHR_SLAVE)*/
1347 EDMA_ResetChannel(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel);
1348
1349 transferConfigC.destAddr = (uint32_t)txAddr;
1350 transferConfigC.destOffset = 0;
1351
1352 if (NULL != handle->txData)
1353 {
1354 transferConfigC.srcAddr = (uint32_t)(&(handle->txData[0]));
1355 transferConfigC.srcOffset = 1;
1356 }
1357 else
1358 {
1359 transferConfigC.srcAddr = (uint32_t)(&handle->txBuffIfNull);
1360 transferConfigC.srcOffset = 0;
1361 if (handle->bitsPerFrame <= 8U)
1362 {
1363 handle->txBuffIfNull = dummyData;
1364 }
1365 else
1366 {
1367 handle->txBuffIfNull = ((uint32_t)dummyData << 8U) | dummyData;
1368 }
1369 }
1370
1371 transferConfigC.srcTransferSize = kEDMA_TransferSize1Bytes;
1372
1373 if (handle->bitsPerFrame <= 8U)
1374 {
1375 transferConfigC.destTransferSize = kEDMA_TransferSize1Bytes;
1376 transferConfigC.minorLoopBytes = 1;
1377 transferConfigC.majorLoopCounts = handle->remainingSendByteCount;
1378 }
1379 else
1380 {
1381 transferConfigC.destTransferSize = kEDMA_TransferSize2Bytes;
1382 transferConfigC.minorLoopBytes = 2;
1383 transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2U;
1384 }
1385
1386 EDMA_SetTransferConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
1387 (const edma_transfer_config_t *)(uint32_t)&transferConfigC, NULL);
1388
1389 EDMA_StartTransfer(handle->edmaTxDataToTxRegHandle);
1390 }
1391
1392 EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
1393
1394 /*Set channel priority*/
1395 uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
1396 uint8_t channelPriorityHigh = handle->edmaTxDataToTxRegHandle->channel;
1397 uint8_t t = 0;
1398
1399 if (channelPriorityLow > channelPriorityHigh)
1400 {
1401 t = channelPriorityLow;
1402 channelPriorityLow = channelPriorityHigh;
1403 channelPriorityHigh = t;
1404 }
1405
1406 edma_channel_Preemption_config_t preemption_config_t;
1407 preemption_config_t.enableChannelPreemption = true;
1408 preemption_config_t.enablePreemptAbility = true;
1409 preemption_config_t.channelPriority = channelPriorityLow;
1410
1411 if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
1412 {
1413 EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
1414 (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
1415
1416 preemption_config_t.channelPriority = channelPriorityHigh;
1417 EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
1418 (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
1419 }
1420 else
1421 {
1422 EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
1423 (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
1424
1425 preemption_config_t.channelPriority = channelPriorityHigh;
1426 EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
1427 (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
1428 }
1429
1430 /*Set the channel link.
1431 For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_C.
1432 For DSPI instances with separate RX and TX DMA requests:
1433 Rx DMA request -> channel_A
1434 Tx DMA request -> channel_C */
1435 if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
1436 {
1437 if (handle->remainingSendByteCount > 0U)
1438 {
1439 EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
1440 kEDMA_MinorLink, handle->edmaTxDataToTxRegHandle->channel);
1441 }
1442 DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable);
1443 }
1444 else
1445 {
1446 DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable);
1447 }
1448
1449 return kStatus_Success;
1450 }
1451
EDMA_DspiSlaveCallback(edma_handle_t * edmaHandle,void * g_dspiEdmaPrivateHandle,bool transferDone,uint32_t tcds)1452 static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle,
1453 void *g_dspiEdmaPrivateHandle,
1454 bool transferDone,
1455 uint32_t tcds)
1456 {
1457 assert(NULL != edmaHandle);
1458 assert(NULL != g_dspiEdmaPrivateHandle);
1459
1460 dspi_slave_edma_private_handle_t *dspiEdmaPrivateHandle;
1461
1462 dspiEdmaPrivateHandle = (dspi_slave_edma_private_handle_t *)g_dspiEdmaPrivateHandle;
1463
1464 DSPI_DisableDMA((dspiEdmaPrivateHandle->base), (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable);
1465
1466 dspiEdmaPrivateHandle->handle->state = (uint8_t)kDSPI_Idle;
1467
1468 if (NULL != dspiEdmaPrivateHandle->handle->callback)
1469 {
1470 dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle,
1471 kStatus_Success, dspiEdmaPrivateHandle->handle->userData);
1472 }
1473 }
1474
1475 /*!
1476 * brief DSPI slave aborts a transfer which is using eDMA.
1477 *
1478 * This function aborts a transfer which is using eDMA.
1479 *
1480 * param base DSPI peripheral base address.
1481 * param handle A pointer to the dspi_slave_edma_handle_t structure which stores the transfer state.
1482 */
DSPI_SlaveTransferAbortEDMA(SPI_Type * base,dspi_slave_edma_handle_t * handle)1483 void DSPI_SlaveTransferAbortEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle)
1484 {
1485 assert(NULL != handle);
1486
1487 DSPI_StopTransfer(base);
1488
1489 DSPI_DisableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable);
1490
1491 EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle);
1492 EDMA_AbortTransfer(handle->edmaTxDataToTxRegHandle);
1493
1494 handle->state = (uint8_t)kDSPI_Idle;
1495 }
1496
1497 /*!
1498 * brief Gets the slave eDMA transfer count.
1499 *
1500 * This function gets the slave eDMA transfer count.
1501 *
1502 * param base DSPI peripheral base address.
1503 * param handle A pointer to the dspi_slave_edma_handle_t structure which stores the transfer state.
1504 * param count A number of bytes transferred so far by the non-blocking transaction.
1505 * return status of status_t.
1506 */
DSPI_SlaveTransferGetCountEDMA(SPI_Type * base,dspi_slave_edma_handle_t * handle,size_t * count)1507 status_t DSPI_SlaveTransferGetCountEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, size_t *count)
1508 {
1509 assert(NULL != handle);
1510
1511 if (NULL == count)
1512 {
1513 return kStatus_InvalidArgument;
1514 }
1515
1516 /* Catch when there is not an active transfer. */
1517 if (handle->state != (uint8_t)kDSPI_Busy)
1518 {
1519 *count = 0;
1520 return kStatus_NoTransferInProgress;
1521 }
1522
1523 size_t bytes;
1524
1525 bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base,
1526 handle->edmaRxRegToRxDataHandle->channel);
1527
1528 *count = handle->totalByteCount - bytes;
1529
1530 return kStatus_Success;
1531 }
1532