1 
2 // Copyright 2020 Espressif Systems (Shanghai) PTE LTD
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //     http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 
16 /**
17  * @file DWARF Exception Frames parser
18  *
19  * This file performs parsing and execution of DWARF except frames described in
20  * section `.eh_frame` and `.eh_frame_hdr`. This is currently used on RISC-V
21  * boards to implement a complete backtracing when a panic occurs.
22  *
23  * More information about the sections structure and DWARF instructions can be
24  * found in the official documentation:
25  * http://dwarfstd.org/Download.php
26  */
27 
28 #include "eh_frame_parser.h"
29 #include "esp_private/panic_internal.h"
30 #include <string.h>
31 
32 #if CONFIG_ESP_SYSTEM_USE_EH_FRAME
33 
34 #include "eh_frame_parser_impl.h"
35 
36 /**
37  * @brief Dimension of an array (number of elements)
38  */
39 #ifndef DIM
40 #define DIM(array) (sizeof(array)/sizeof(*array))
41 #endif
42 
43 /**
44  * @brief DWARF Exception Header Encoding
45  * This is used to know how the data in .eh_frame and .eh_frame_hdr sections
46  * are encoded.
47  */
48 /* DWARF Exception Exception Header value format. */
49 #define DW_EH_PE_omit	 0xff /*!< No value is present */
50 #define DW_EH_PE_uleb128 0x01 /*!< Unsigned value encoded in LEB128 (Little Endian Base 128). */
51 #define DW_EH_PE_udata2	 0x02 /*!< Unsigned 16-bit value. */
52 #define DW_EH_PE_udata4	 0x03 /*!< Unsigned 32-bit value. */
53 #define DW_EH_PE_udata8	 0x04 /*!< Unsigned 64-bit value. */
54 #define DW_EH_PE_sleb128 0x09 /*!< Signed value encoded in LEB128 (Little Endian Base 128). */
55 #define DW_EH_PE_sdata2	 0x0A /*!< Signed 16-bit value. */
56 #define DW_EH_PE_sdata4	 0x0B /*!< Signed 32-bit value. */
57 #define DW_EH_PE_sdata8	 0x0C /*!< Signed 64-bit value. */
58 
59 /* DWARF Exception Exception Header value application.
60  * These values are in fact represented in the high nibble of a given data.
61  * For example:
62  * 0x3A describes the values as signed 16-bit offsets relative to .eh_frame_hdr section.
63  * 0x11 describes the values as unsigned value encoded in LEB128, relative to their location ion memory. */
64 #define DW_EH_PE_absptr  0x00 /*!< The value itself is a pointer, it is not an offset. */
65 #define DW_EH_PE_pcrel   0x01 /*!< The value is an offset, relative to its location in memory.  */
66 #define DW_EH_PE_datarel 0x03 /*!< The value is an offset, relative to .eh_frame_hdr section. */
67 
68 /* Macros simplifying testing relative offset data encoding. */
69 #define ESP_ENCODING_PC_REL(ENCODING)        (((ENCODING >> 4) & 0xf) == DW_EH_PE_pcrel)
70 #define ESP_ENCODING_FRAME_HDR_REL(ENCODING) (((ENCODING >> 4) & 0xf) == DW_EH_PE_datarel)
71 
72 /**
73  * @brief Call Frame Information (CIE) fields information.
74  * As the size of CIE is variable, the simplest way to described it is to
75  * have a pointer at the beginning of CIE structure and access the fields
76  * thanks to the index macros defined here.
77  */
78 #define ESP_CIE_VARIABLE_FIELDS_IDX (9)  /*!< Offset, in bytes, where variable length fields start. */
79 
80 /**
81  * @brief Frame Description Entry (FDE) fields index.
82  * For the same reasons as above, we prefer defining these macros rather than
83  * having a structure.
84  */
85 #define ESP_FDE_LENGTH_IDX          (0)  /*!< Length, in bytes, of the FDE excluding this field. 4 bytes field. */
86 #define ESP_FDE_CIE_IDX             (1)  /*!< Nearest preceding Common Information Entry (CIE) offset. 4 bytes field. */
87 #define ESP_FDE_INITLOC_IDX         (2)  /*!< Initial location (of the function) the FDE describes. Variable size (encoding in CIE). */
88 #define ESP_FDE_RANGELEN_IDX        (3)  /*!< Size, in bytes, of the function described by this FDE location the FDE describes. Variable size (encoding in CIE). */
89 #define ESP_FDE_AUGMENTATION_IDX    (4)  /*!< Augmentation data length. Unsigned LEB128. */
90 
91 /**
92  * @brief Pointers to both .eh_frame_hdr and .eh_frame sections.
93  */
94 #define EH_FRAME_HDR_ADDR   (&__eh_frame_hdr)
95 #define EH_FRAME_ADDR       (&__eh_frame)
96 
97 /**
98  * @brief Structure of .eh_frame_hdr section header.
99  */
100 typedef struct {
101     uint8_t version; /*!< Structure version, must be 1.*/
102     uint8_t eh_frame_ptr_enc; /*!< eh_frame_ptr entry encoding. */
103     uint8_t fde_count_enc;  /*!< fde_count entry encoding. */
104     uint8_t table_enc;  /*!< table entries encoding. */
105     /* The rest of the structure has variable length. Thus, we cannot define
106      * them here. Here are their names:
107      * - eh_frame_ptr : encoded pointer to the .eh_frame section.
108      * - fde_Count : number of entries in the array of table_entry.
109      * - table_entry array : sorted array of table_entry. */
110 } __attribute__((packed)) fde_header;
111 
112 /**
113  * @brief .eh_frame_hdr table's entry format.
114  * Each entry of the table contains 2 32-bit encoded addresses.
115  * Encoding is defined in the previous structure. Check table_enc field.
116  */
117 typedef struct {
118     uint32_t fun_addr; /*!< Address of the function described. */
119     uint32_t fde_addr; /*!< Address of the FDE for the function.*/
120 } table_entry;
121 
122 /**
123  * @brief DWARF state constant macros.
124  */
125 #define ESP_EH_FRAME_STACK_SIZE (2) /*!< DWARF virtual machine can save the push the current on a virtual
126                                          stack. we mimic the stack with an array. While testing, a stack
127                                          size of 2 was enough. */
128 
129 /**
130  * @brief
131  * Structure representing the state of the DWARF virtual machine.
132  */
133 typedef struct {
134     /* Stack for DWARF state registers.
135      * For caller saved registers, save their CFA address (value in previous call frame).
136      * As these registers will be used to define offset in the CFA, they will always be
137      * multiple of CPU word (4-bytes in our case). Thus, it will save the offset in word-size, not
138      * in bytes. Plus, the highest bit will be used to mark that this register is NOY
139      * ESP_EH_FRAME_REG_SAME. (0x80000000 is a valid value then, meaning that the register value
140      * is CFA + 0 offset) */
141     uint32_t regs_offset[ESP_EH_FRAME_STACK_SIZE][EXECUTION_FRAME_MAX_REGS];
142     /* reg_offset represents the state of registers when PC reaches the following location. */
143     uint32_t location;
144     /* Index of the registers offset to use (1 for saved offset, 0 else). */
145     uint8_t offset_idx;
146 } dwarf_regs;
147 
148 /**
149  * @brief DWARF's register state.
150  * When a DWARF register is set to ESP_EH_FRAME_REG_SAME, the CPU register corresponding to this
151  * virtual register will be unchanged after executing DWARF instructions.
152  * Please see esp_eh_frame_restore_caller_state() for more details.
153  */
154 #define ESP_EH_FRAME_REG_SAME (0)
155 
156 /**
157  * @brief Set a register's offset (relative to CFA).
158  * The highest bit is set to 1 to mark that this register needs to be retrived because it has been
159  * altered.
160  */
161 #define ESP_EH_FRAME_SET_REG_OFFSET(offset)     (0x80000000 | offset)
162 
163 /**
164  * @brief Get a register's offset (relative to CFA).
165  */
166 #define ESP_EH_FRAME_GET_REG_OFFSET(offset)     (0x7fffffff & offset)
167 
168 /**
169  * @brief Get a register's CFA offset.
170  */
171 #define ESP_EH_FRAME_IS_CFA_RELATIVE(reg)       ((reg >> 31) == 1)
172 
173 /**
174  * @brief Test whether an offset is small enough to be stored
175  * in our 32-bit register.
176  * Note: the highest bit is used.
177  */
178 #define ESP_EH_FRAME_CFA_OFFSET_VALID(offset)   (offset < 0x80000000)
179 
180 /**
181  * @brief Index of Call Frame Address (CFA) in DWARF registers array.
182  */
183 #define ESP_ESH_FRAME_CFA_IDX                   (EXECUTION_FRAME_SP_REG)
184 
185 /**
186  * @brief Macros to get and set CFA's relative register and offset.
187  * Indeed, CFA is defined by two values: register and offset. CFA is then
188  * calculated by adding the offset to the register value.
189  * `register` will be stored in the lowest 8 bits.
190  * `offset` will be stored in the highest 24 bits.
191  *
192  * NOTE: with this implementation, CFA will be affected by
193  * DW_CFA_REMEMBER_STATE and DW_CFA_RESTORE_STATE instructions.
194  */
195 #if EXECUTION_FRAME_MAX_REGS > 255
196     #error "Too many registers defined for the target ExecutionFrame"
197 #endif
198 #define ESP_EH_FRAME_CFA_REG_VALID(reg)         (reg < EXECUTION_FRAME_MAX_REGS)
199 #define ESP_EH_FRAME_CFA_OFF_VALID(off)         (((off) >> 24) == 0)
200 #define ESP_EH_FRAME_CFA(state)                 ((state)->regs_offset[(state)->offset_idx][ESP_ESH_FRAME_CFA_IDX])
201 
202 #define ESP_EH_FRAME_NEW_CFA(reg, off)          (((off) << 8) | ((reg) & 0xff))
203 #define ESP_EH_FRAME_SET_CFA_REG(value, reg)    (((value) & ~0xff) | ((reg) & 0xff))
204 #define ESP_EH_FRAME_SET_CFA_OFF(value, off)    (((value) & 0xff) | ((off) << 8))
205 #define ESP_EH_FRAME_GET_CFA_REG(value)         ((value) & 0xff)
206 #define ESP_EH_FRAME_GET_CFA_OFF(value)         ((value) >> 8)
207 
208 
209 /**
210  * @brief Unsupported opcode value to return when exeucting 0-opcode type instructions.
211  */
212 #define ESP_EH_FRAME_UNSUPPORTED_OPCODE ((uint32_t) -1)
213 
214 /**
215  * @brief Macros defining the DWARF instructions code.
216  */
217 #define DW_GET_OPCODE(OP)       ((OP) >> 6)
218 #define DW_GET_PARAM(OP)        ((OP) & 0b111111)
219 #define DW_CFA_ADVANCE_LOC      (1)
220 #define DW_CFA_OFFSET           (2)
221 #define DW_CFA_RESTORE          (3)
222 /**
223  * @brief Constant for DWARF instructions code when high 2 bits are 0.
224  */
225 #define DW_CFA_0_OPCODE             (0)
226 #define DW_CFA_NOP                  (0x0)
227 #define DW_CFA_SET_LOC              (0x1)
228 #define DW_CFA_ADVANCE_LOC1         (0x2)
229 #define DW_CFA_ADVANCE_LOC2         (0x3)
230 #define DW_CFA_ADVANCE_LOC4         (0x4)
231 #define DW_CFA_OFFSET_EXTENDED      (0x5)
232 #define DW_CFA_RESTORE_EXTENDED     (0x6)
233 #define DW_CFA_UNDEFINED            (0x7)
234 #define DW_CFA_SAME_VALUE           (0x8)
235 #define DW_CFA_REGISTER             (0x9)
236 #define DW_CFA_REMEMBER_STATE       (0xA)
237 #define DW_CFA_RESTORE_STATE        (0xB)
238 #define DW_CFA_DEF_CFA              (0xC)
239 #define DW_CFA_DEF_CFA_REGISTER     (0xD)
240 #define DW_CFA_DEF_CFA_OFFSET       (0xE)
241 #define DW_CFA_DEF_CFA_EXPRESSION   (0xF)
242 #define DW_CFA_EXPRESSION           (0x10)
243 #define DW_CFA_OFFSET_EXTENDED_SF   (0x11)
244 #define DW_CFA_DEF_CFA_SF           (0x12)
245 #define DW_CFA_DEF_CFA_OFFSET_SF    (0x13)
246 #define DW_CFA_VAL_OFFSET           (0x14)
247 #define DW_CFA_VAL_OFFSET_SF        (0x15)
248 #define DW_CFA_VAL_EXPRESSION       (0x16)
249 #define DW_CFA_LO_USER              (0x1C)
250 
251 /**
252  * @brief Constants used for decoding (U)LEB128 integers.
253  */
254 #define DW_LEB128_HIGHEST_BIT(byte) (((byte) >> 7) & 1)
255 #define DW_LEB128_SIGN_BIT(byte)    (((byte) >> 6) & 1)
256 #define DW_LEB128_MAX_SHIFT         (31)
257 
258 
259 /**
260  * @brief Symbols defined by the linker.
261  * Retrieve the addresses of both .eh_frame_hdr and .eh_frame sections.
262  */
263 extern char __eh_frame_hdr;
264 extern char __eh_frame;
265 
266 /**
267  * @brief Decode multiple bytes encoded in LEB128.
268  *
269  * @param bytes bytes encoded in LEB128. They will not be modified.
270  * @param is_signed true if bytes represent a signed value, false else.
271  * @param size Size in bytes of the encoded value.
272  *
273  * @return Decoded bytes.
274  */
decode_leb128(const uint8_t * bytes,bool is_signed,uint32_t * lebsize)275 static uint32_t decode_leb128(const uint8_t* bytes, bool is_signed, uint32_t* lebsize)
276 {
277     uint32_t res = 0;
278     uint32_t shf = 0;
279     uint32_t size = 0;
280     uint8_t byte = 0;
281 
282     while(1) {
283         byte = bytes[size++];
284         res |= (byte & 0x7f) << shf;
285         shf += 7;
286         if (DW_LEB128_HIGHEST_BIT(byte) == 0)
287             break;
288     }
289 
290     if (is_signed && shf <= DW_LEB128_MAX_SHIFT && DW_LEB128_SIGN_BIT(byte)) {
291         res |= ((uint32_t) ~0 << shf);
292     }
293 
294     if (lebsize) {
295         *lebsize = size;
296     }
297 
298     return res;
299 }
300 
301 /**
302  * @brief Get the value of data encoded.
303  *
304  * @param data Pointer to the encoded data.
305  * @param encoding Encoding for the data to read.
306  * @param psize Reference to be filled with data size, in bytes.
307  *
308  * @return Decoded data read from the pointer.
309  */
esp_eh_frame_get_encoded(void * data,uint8_t encoding,uint32_t * psize)310 static uint32_t esp_eh_frame_get_encoded(void* data, uint8_t encoding, uint32_t* psize)
311 {
312     int32_t  svalue = 0;
313     uint32_t uvalue = 0;
314     uint32_t fvalue = 0;
315     uint32_t size = 0;
316     const uint32_t high = encoding >> 4;
317     const uint32_t low  = encoding & 0xf;
318 
319     assert(psize != NULL);
320 
321     if (encoding == DW_EH_PE_omit) {
322         *psize = size;
323         return uvalue;
324     }
325 
326     switch (low) {
327         case DW_EH_PE_udata2:
328             size = 2;
329             uvalue = *((uint16_t*) data);
330             break;
331         case DW_EH_PE_udata4:
332             size = 4;
333             uvalue = *((uint32_t*) data);
334             break;
335         case DW_EH_PE_sdata2:
336             size = 2;
337             svalue = *((int16_t*) data);
338             break;
339         case DW_EH_PE_sdata4:
340             size = 4;
341             svalue = *((int32_t*) data);
342             break;
343         default:
344             /* Unsupported yet. */
345             assert(false);
346             break;
347     }
348 
349     switch (high) {
350         case DW_EH_PE_absptr:
351             /* Do not change the values, as one of them will be 0, fvalue will
352              * contain the data no matter whether it is signed or unsigned. */
353             fvalue = svalue + uvalue;
354             break;
355         case DW_EH_PE_pcrel:
356             /* Relative to the address of the data.
357              * svalue has been casted to an 32-bit value, so even if it was a
358              * 2-byte signed value, fvalue will be calculated correctly here. */
359             fvalue = (uint32_t) data + svalue + uvalue;
360             break;
361         case DW_EH_PE_datarel:
362             fvalue = (uint32_t) EH_FRAME_HDR_ADDR + svalue + uvalue;
363             break;
364     }
365 
366     *psize = size;
367     return fvalue;
368 }
369 
370 /**
371  * @brief Find entry in the table for the given return_address.
372  *
373  * @param sorted_table Pointer to the sorted table of entries.
374  * @param length Number of entries in the table.
375  * @param encoding Encoding for the addresses in the table
376  *                 (Check DWARF documentation for more info about encoding).
377  * @param return_address The address to find in the table. This address can be
378  * part of one in the function listed.
379  *
380  * @note The table is structured like this (after decoding the addresses):
381  *  Function address    FDE address   Index
382  * +-------------------------------+
383  * |0x403805a4           0x4038d014|    0
384  * +-------------------------------+
385  * |0x403805be           0x4038d034|    1
386  * +-------------------------------+
387  * |0x403805d8           0x4038d070|    2
388  * +-------------------------------+
389  * |..........           ..........|   ...
390  * +-------------------------------+
391  * |0x42020c48           0x4038ddb4| length-3
392  * +-------------------------------+
393  * |0x42020dca           0x4038dde4| length-2
394   *+-------------------------------+
395  * |0x42020f92           0x4038debc| length-1
396  * +-------------------------------+
397  *
398  * For example, if return_address passed is 0x403805b4, this function will
399  * return a pointer to the entry (0x403805a4, 0x4038d014).
400  *
401  * @return Pointer to the entry found, NULL if not found.
402  */
esp_eh_frame_find_entry(const table_entry * sorted_table,const uint32_t length,const uint32_t encoding,const uint32_t return_address)403 static const table_entry* esp_eh_frame_find_entry(const table_entry* sorted_table,
404                                                   const uint32_t length,
405                                                   const uint32_t encoding,
406                                                   const uint32_t return_address)
407 {
408     int32_t ra = 0;
409 
410     /* Used for decoding addresses in the table. */
411     uint32_t is_signed = (encoding & 0xf) >= 0x9;
412     uint32_t pc_relative = true;
413 
414     /* The following local variables are used for dichotomic search. */
415     uint32_t found = false;
416     uint32_t begin = 0;
417     uint32_t end = length;
418     uint32_t middle = (end + begin) / 2;
419 
420     /* If the addresses in the table are offsets relative to the eh_frame section,
421     * instead of decoding each of them, we can simply encode the return_address
422     * we have to find. If addresses are offsets relative to the programe counter,
423     * then we have no other choice than decoding each of them to compare them
424     * with return_address. */
425     if (ESP_ENCODING_FRAME_HDR_REL(encoding)) {
426         ra = return_address - (uint32_t) EH_FRAME_HDR_ADDR;
427         pc_relative = false;
428     }
429 
430     /* Perform dichotomic search. */
431     while (end != 0 && middle != (length - 1) && !found) {
432         const uint32_t fun_addr = sorted_table[middle].fun_addr;
433         const uint32_t nxt_addr = sorted_table[middle + 1].fun_addr;
434 
435         if (pc_relative) {
436             ra = return_address - (uint32_t) (sorted_table + middle);
437         }
438 
439         if (is_signed) {
440             /* Signed comparisons. */
441             const int32_t sfun_addr = (int32_t) fun_addr;
442             const int32_t snxt_addr = (int32_t) nxt_addr;
443             if (sfun_addr <= ra && snxt_addr > ra)
444                 found = true;
445             else if (snxt_addr <= ra)
446                 begin = middle + 1;
447             else
448                 end = middle;
449 
450         } else {
451             /* Unsigned comparisons. */
452             const uint32_t ura = (uint32_t) ra;
453             if (fun_addr <= ura && nxt_addr > ura)
454                 found = true;
455             else if (nxt_addr <= ura)
456                 begin = middle + 1;
457             else
458                 end = middle;
459         }
460 
461         middle = (end + begin) / 2;
462     }
463 
464     /* If 'end' reached the beginning of the array, it means the return_address
465      * passed was below the first address of the array, thus, it was wrong.
466      * Else, return the address found. */
467     return (end == 0) ? 0 : sorted_table + middle;
468 }
469 
470 /**
471  * @brief Decode an address according to the encoding passed.
472  *
473  * @param addr Pointer to the address to decode.
474  *             This pointer's value MUST be an address in .eh_frame_hdr section.
475  * @param encoding DWARF encoding byte.
476  *
477  * @return address dedoded (e.g. absolute address)
478  */
esp_eh_frame_decode_address(const uint32_t * addr,const uint32_t encoding)479 static inline uint32_t* esp_eh_frame_decode_address(const uint32_t* addr,
480                                                     const uint32_t encoding)
481 {
482     uint32_t* decoded = 0;
483 
484     if (ESP_ENCODING_FRAME_HDR_REL(encoding))
485         decoded = (uint32_t*) (*addr + (uint32_t) EH_FRAME_HDR_ADDR);
486     else if (ESP_ENCODING_PC_REL(encoding))
487         decoded = (uint32_t*) (*addr + (uint32_t) addr);
488     else
489         decoded = (uint32_t*) (*addr);
490 
491     return decoded;
492 }
493 
494 /**
495  * @brief Execute the DWARF instruction which high 2 bits are 0.
496  *
497  * @param opcode low 6 bits of the instruction code.
498  * @param operands pointer to the possible operands.
499  * @param state state of the DWARF machine. Its registers may be modified.
500  *
501  * @return Number of operands used for executing the instruction.
502  */
esp_eh_frame_execute_opcode_0(const uint32_t opcode,const uint8_t * operands,dwarf_regs * state)503 static inline uint32_t esp_eh_frame_execute_opcode_0(const uint32_t opcode, const uint8_t* operands,
504                                                      dwarf_regs* state)
505 {
506     uint32_t operand1 = 0;
507     uint32_t used_operands = 0;
508     uint32_t operand2 = 0;
509     uint32_t used_operands2 = 0;
510 
511     switch(opcode) {
512         case DW_CFA_NOP:
513             break;
514         case DW_CFA_ADVANCE_LOC1:
515             /* Advance location with a 1-byte delta. */
516             used_operands = 1;
517             state->location += *operands;
518             break;
519         case DW_CFA_ADVANCE_LOC2:
520             /* Advance location with a 2-byte delta. */
521             used_operands = 2;
522             state->location += *((const uint16_t*) operands);
523             break;
524         case DW_CFA_ADVANCE_LOC4:
525             /* Advance location with a 4-byte delta. */
526             used_operands = 4;
527             state->location += *((const uint32_t*) operands);
528             break;
529         case DW_CFA_REMEMBER_STATE:
530             assert(state->offset_idx == 0);
531             memcpy(state->regs_offset[1], state->regs_offset[0],
532                    EXECUTION_FRAME_MAX_REGS * sizeof(uint32_t));
533             state->offset_idx++;
534             break;
535         case DW_CFA_RESTORE_STATE:
536             assert(state->offset_idx == 1);
537             /* Drop the saved state. */
538             state->offset_idx--;
539             break;
540         case DW_CFA_DEF_CFA:
541             /* CFA changes according to a register and an offset.
542              * This instruction appears when the assembly code saves the
543              * SP in the middle of a routine, before modifying it.
544              * For example (on RISC-V):
545              * addi s0, sp, 80
546              * addi sp, sp, -10
547              * ... */
548             /* Operand1 is the register containing the CFA value. */
549             operand1 = decode_leb128(operands, false, &used_operands);
550             /* Offset for the register's value. */
551             operand2 = decode_leb128(operands + used_operands, false, &used_operands2);
552             /* Calculate the number of bytes  */
553             used_operands += used_operands2;
554             /* Assert that the register and the offset are valid. */
555             assert(ESP_EH_FRAME_CFA_REG_VALID(operand1));
556             assert(ESP_EH_FRAME_CFA_OFF_VALID(operand2));
557             ESP_EH_FRAME_CFA(state) = ESP_EH_FRAME_NEW_CFA(operand1, operand2);
558             break;
559         case DW_CFA_DEF_CFA_REGISTER:
560             /* Define the register of the current frame address (CFA).
561              * Its operand is in the next bytes, its type is ULEB128. */
562             operand1 = decode_leb128(operands, false, &used_operands);
563             /* Check whether the value is valid or not. */
564             assert(ESP_EH_FRAME_CFA_OFF_VALID(operand1));
565             /* Offset will be unchanged, only register changes. */
566             ESP_EH_FRAME_CFA(state) = ESP_EH_FRAME_SET_CFA_REG(ESP_EH_FRAME_CFA(state), operand1);
567             break;
568         case DW_CFA_DEF_CFA_OFFSET:
569             /* Same as above but for the offset. The register of CFA remains unchanged. */
570             operand1 = decode_leb128(operands, false, &used_operands);
571             assert(ESP_EH_FRAME_CFA_OFF_VALID(operand1));
572             ESP_EH_FRAME_CFA(state) = ESP_EH_FRAME_SET_CFA_OFF(ESP_EH_FRAME_CFA(state), operand1);
573             break;
574         default:
575             panic_print_str("\r\nUnsupported DWARF opcode 0: 0x");
576             panic_print_hex(opcode);
577             panic_print_str("\r\n");
578             used_operands = ESP_EH_FRAME_UNSUPPORTED_OPCODE;
579             break;
580     }
581 
582     return used_operands;
583 }
584 
585 
586 /**
587  * @brief Execute DWARF instructions.
588  *
589  * @param instructions Array of instructions to execute.
590  * @param instructions_length Length of the array of instructions.
591  * @param frame Execution frame of the crashed task. This will only be used to
592  *              get the PC where the task crashed.
593  * @param state DWARF machine state. The registers contained in the state will
594  *              modified accordingly to the instructions.
595  *
596  * @return true if the execution went fine, false if an unsupported instruction was met.
597  */
esp_eh_frame_execute(const uint8_t * instructions,const uint32_t instructions_length,const ExecutionFrame * frame,dwarf_regs * state)598 static bool esp_eh_frame_execute(const uint8_t* instructions, const uint32_t instructions_length,
599                                  const ExecutionFrame* frame, dwarf_regs* state)
600 {
601     for (uint32_t i = 0; i < instructions_length; i++) {
602         const uint8_t instr = instructions[i];
603         const uint8_t param = DW_GET_PARAM(instr);
604         uint32_t operand1 = 0;
605         uint32_t size = 0;
606         uint32_t used_operands = 0;
607 
608         /* Decode the instructions. According to DWARF documentation, there are three
609          * types of Call Frame Instructions. The upper 2 bits defines the type. */
610         switch (DW_GET_OPCODE(instr)) {
611             case DW_CFA_0_OPCODE:
612                 used_operands = esp_eh_frame_execute_opcode_0(param, &instructions[i + 1], state);
613                 /* Exit the function if an unsupported opcode was met. */
614                 if (used_operands == ESP_EH_FRAME_UNSUPPORTED_OPCODE) {
615                     return false;
616                 }
617                 i += used_operands;
618                 break;
619             case DW_CFA_ADVANCE_LOC:
620                 /* Move the location forward. This instruction will mark when to stop:
621                  * once we reach the instruction where the PC left, we can break out of the loop
622                  * The delta is part of the lowest 6 bits.
623                  */
624                 state->location += param;
625                 break;
626             case DW_CFA_OFFSET:
627                 operand1 = decode_leb128(&instructions[i + 1], false, &size);
628                 assert(ESP_EH_FRAME_CFA_OFFSET_VALID(operand1));
629                 state->regs_offset[state->offset_idx][param] = ESP_EH_FRAME_SET_REG_OFFSET(operand1);
630                 i += size;
631                 break;
632 
633             case DW_CFA_RESTORE:
634                 state->regs_offset[state->offset_idx][param] = ESP_EH_FRAME_REG_SAME;
635                 break;
636             default:
637                 /* Illegal opcode */
638                 assert(false);
639                 break;
640         }
641 
642         /* As the state->location can also be modified by 0-opcode instructions (in the function)
643          * and also because we need to break the loop (and not only the switch), let's put this
644          * check here, after the execution of the instruction, outside of the switch block. */
645         if (state->location >= EXECUTION_FRAME_PC(*frame))
646             break;
647     }
648 
649     /* Everything went fine, no unsupported opcode was met, return true. */
650     return true;
651 }
652 
653 /**
654  * @brief Initialize the DWARF registers state by parsing and executing CIE instructions.
655  *
656  * @param cie Pointer to the CIE data.
657  * @param frame Pointer to the execution frame.
658  * @param state DWARF machine state (DWARF registers).
659  *
660  * @return index of the DWARF register containing the return address.
661  */
esp_eh_frame_initialize_state(const uint8_t * cie,ExecutionFrame * frame,dwarf_regs * state)662 static uint32_t esp_eh_frame_initialize_state(const uint8_t* cie, ExecutionFrame* frame, dwarf_regs* state)
663 {
664     char c = 0;
665     uint32_t size = 0;
666 
667     /* The first word in the CIE structure is the length of the structure,
668      * excluding this field itself. */
669     const uint32_t length = ((uint32_t*) cie)[0];
670 
671     /* ID of the CIE, should be 0 for .eh_frame (which is our case) */
672     const uint32_t id = ((uint32_t*) cie)[1];
673     assert(id == 0);
674 
675     /* Ignore CIE version (1 byte). */
676 
677     /* The following data in the structure have variable length as they are
678      * encoded in (U)LEB128. Thus, let's use a byte pointer to parse them. */
679     uint8_t* cie_data = (uint8_t*) cie + ESP_CIE_VARIABLE_FIELDS_IDX;
680 
681     /* Next field is a null-terminated UTF-8 string. Ignore it, look for the end. */
682     while((c = *cie_data++) != 0);
683 
684     /* Field alignement factor shall be 1. It is encoded in ULEB128. */
685     const uint32_t code_align = decode_leb128(cie_data, false, &size);
686     assert(code_align == 1);
687     /* Jump to the next field */
688     cie_data += size;
689 
690     /* Same goes for data alignement factor. Shall be equal to -4. */
691     const int32_t data_align = decode_leb128(cie_data, true, &size);
692     cie_data += size;
693     assert(data_align == -4);
694 
695     /* Field describing the index of the DWARF register which will contain
696      * the return address. */
697     const uint32_t ra_reg = decode_leb128(cie_data, false, &size);
698     cie_data += size;
699 
700     /* Augmentation data length is encoded in ULEB128. It represents the,
701      * length of the augmentation data. Jump after it to retrieve the
702      * instructions to execute. */
703     const uint32_t augmentation_len = decode_leb128(cie_data, false, &size);
704     cie_data += size + augmentation_len;
705 
706     /* Calculate the instructions length in order to prevent any out of bounds
707      * bug. Subtract the offset of this field (minus sizeof(uint32_t) because
708      * `length` field is not part of the structure length) to the total length
709      * of the structure. */
710     const uint32_t instructions_length = length - (cie_data - sizeof(uint32_t) - cie);
711 
712     /* Execute the instructions contained in CIE structure. Their goal is to
713      * initialize the DWARF registers. Usually it binds the CFA (virtual stack
714      * pointer), to its hardware equivalent. It will also bind a hardware
715      * register to the virtual return address register. For example, x86
716      * doesn't have a return address register, the address to return to
717      * it stored on the stack when `call` instruction is used. DWARF will
718      * use `eip` (instruction pointer, a.k.a. program counter) as a
719      * register containing the return address register. */
720     esp_eh_frame_execute(cie_data, instructions_length, frame, state);
721 
722     return ra_reg;
723 }
724 
725 /**
726  * @brief Modify the execution frame and DWARF VM state for restoring caller's context.
727  *
728  * @param fde Pointer to the Frame Description Entry for the current program counter (defined by frame's MEPC register)
729  * @param frame Snapshot of the CPU registers when the CPU stopped its normal execution.
730  * @param state DWARF VM registers.
731  *
732  * @return Return Address of the current context. Frame has been restored to the previous context
733  * (before calling the function program counter is currently going throught).
734  */
esp_eh_frame_restore_caller_state(const uint32_t * fde,ExecutionFrame * frame,dwarf_regs * state)735 static uint32_t esp_eh_frame_restore_caller_state(const uint32_t* fde,
736                                                   ExecutionFrame* frame,
737                                                   dwarf_regs* state)
738 {
739     /* Length of the whole Frame Description Entry (FDE), excluding this field. */
740     const uint32_t length = fde[ESP_FDE_LENGTH_IDX];
741 
742     /* The addresses in FDE are relative to the location of each field.
743      * Thus, to get the absolute address of the function it is pointing to,
744      * we have to compute:
745      * fun_addr = &fde[IDX] +/- fde[IDX]
746      */
747     const uint8_t* cie = (uint8_t*) ((uint32_t) &fde[ESP_FDE_CIE_IDX] - fde[ESP_FDE_CIE_IDX]);
748     const uint32_t initial_location = ((uint32_t) &fde[ESP_FDE_INITLOC_IDX] + fde[ESP_FDE_INITLOC_IDX]);
749     const uint32_t range_length = fde[ESP_FDE_RANGELEN_IDX];
750     const uint8_t augmentation = *((uint8_t*) (fde + ESP_FDE_AUGMENTATION_IDX));
751 
752     /* The length, in byte, of the instructions is the size of the FDE header minus
753      * the above fields' length. */
754     const uint32_t instructions_length = length - 3 * sizeof(uint32_t) - sizeof(uint8_t);
755     const uint8_t* instructions = ((uint8_t*) (fde + ESP_FDE_AUGMENTATION_IDX)) + 1;
756 
757     /* Make sure this FDE is the correct one for the PC given. */
758     assert(initial_location <= EXECUTION_FRAME_PC(*frame) &&
759            EXECUTION_FRAME_PC(*frame) < initial_location + range_length);
760 
761     /* Augmentation not supported. */
762     assert(augmentation == 0);
763 
764     /* Initialize the DWARF state by executing the CIE's instructions. */
765     const uint32_t ra_reg = esp_eh_frame_initialize_state(cie, frame, state);
766     state->location = initial_location;
767 
768     /**
769      * Execute the DWARf instructions is order to create rules that will be executed later to retrieve
770      * the registers former value.
771      */
772     bool success = esp_eh_frame_execute(instructions, instructions_length, frame, state);
773     if (!success) {
774         /* An error occured (unsupported opcode), return PC as the return address.
775          * This will be tested by the caller, and the backtrace will be finished. */
776         return EXECUTION_FRAME_PC(*frame);
777     }
778 
779     /* Execute the rules calculated previously. Start with the CFA. */
780     const uint32_t cfa_val = ESP_EH_FRAME_CFA(state);
781     const uint32_t cfa_reg = ESP_EH_FRAME_GET_CFA_REG(cfa_val);
782     const uint32_t cfa_off = ESP_EH_FRAME_GET_CFA_OFF(cfa_val);
783     const uint32_t cfa_addr = EXECUTION_FRAME_REG(frame, cfa_reg) + cfa_off;
784 
785     /* Restore the registers that need to be restored. */
786     for (uint32_t i = 0; i < DIM(state->regs_offset[0]); i++) {
787         uint32_t value_addr = state->regs_offset[state->offset_idx][i];
788         /* Check that the value changed and that we are not treating the CFA register (if it is part of the array). */
789         if (i != ESP_ESH_FRAME_CFA_IDX && value_addr != ESP_EH_FRAME_REG_SAME) {
790             /* value_addr contains a description of how to find its address:
791              * it has an offset relative to the CFA, which will point to the actual former value.
792              * In fact, the register's previous value (in the context of the caller) is on the stack,
793              * this is what value_addr will point to. */
794             value_addr = cfa_addr - ESP_EH_FRAME_GET_REG_OFFSET(value_addr) * sizeof(uint32_t);
795             EXECUTION_FRAME_REG(frame, i) = *((uint32_t*) value_addr);
796         }
797     }
798 
799     /* Restore the stack pointer according to DWARF CFA register. */
800     EXECUTION_FRAME_SP(*frame) = cfa_addr;
801 
802     /* If the frame was not available, it would be possible to retrieve the return address
803      * register thanks to CIE structure.
804      * The return address points to the address the PC needs to jump to. It
805      * does NOT point to the instruction where the routine call occured.
806      * This can cause problems with functions without epilogue (i.e. function
807      * which last instruction is a function call). This happens when compiler
808      * optimization are ON or when a function is marked as "noreturn".
809      *
810      * Thus, in order to point to the call/jal instruction, we need to
811      * subtract at least 1 byte but not more than an instruction size.
812      */
813     return EXECUTION_FRAME_REG(frame, ra_reg) - 2;
814 }
815 
816 /**
817  * @brief Test whether the DWARF information for the given PC are missing or not.
818  *
819  * @param fde FDE associated to this PC. This FDE is the one found thanks to
820  *            `esp_eh_frame_find_entry()`.
821  * @param pc PC to get information from.
822  *
823  * @return true is DWARF information are missing, false else.
824  */
esp_eh_frame_missing_info(const uint32_t * fde,uint32_t pc)825 static bool esp_eh_frame_missing_info(const uint32_t* fde, uint32_t pc) {
826     if (fde == NULL) {
827         return true;
828     }
829 
830     /* Get the range of this FDE entry. It is possible that there are some
831      * gaps between DWARF entries, in that case, the FDE entry found has
832      * indeed an initial_location very close to PC but doesn't reach it.
833      * For example, if FDE initial_location is 0x40300000 and its length is
834      * 0x100, but PC value is 0x40300200, then some DWARF information
835      * are missing as there is a gap.
836      * End the backtrace. */
837     const uint32_t initial_location = ((uint32_t) &fde[ESP_FDE_INITLOC_IDX] + fde[ESP_FDE_INITLOC_IDX]);
838     const uint32_t range_length = fde[ESP_FDE_RANGELEN_IDX];
839 
840     return (initial_location + range_length) <= pc;
841 }
842 
843 /**
844  * @brief When one step of the backtrace is generated, output it to the serial.
845  * This function can be overriden as it is defined as weak.
846  *
847  * @param pc Program counter of the backtrace step.
848  * @param sp Stack pointer of the backtrace step.
849  */
esp_eh_frame_generated_step(uint32_t pc,uint32_t sp)850 void __attribute__((weak)) esp_eh_frame_generated_step(uint32_t pc, uint32_t sp)
851 {
852     panic_print_str(" 0x");
853     panic_print_hex(pc);
854     panic_print_str(":0x");
855     panic_print_hex(sp);
856 }
857 
858 /**
859  * @brief Print backtrace for the given execution frame.
860  *
861  * @param frame_or Snapshot of the CPU registers when the CPU stopped its normal execution.
862  */
esp_eh_frame_print_backtrace(const void * frame_or)863 void esp_eh_frame_print_backtrace(const void *frame_or)
864 {
865     assert(frame_or != NULL);
866 
867     static dwarf_regs state = { 0 };
868     ExecutionFrame frame = *((ExecutionFrame*) frame_or);
869     uint32_t size = 0;
870     uint8_t* enc_values = NULL;
871     bool end_of_backtrace = false;
872 
873     /* Start parsing the .eh_frame_hdr section. */
874     fde_header* header = (fde_header*) EH_FRAME_HDR_ADDR;
875     assert(header->version == 1);
876 
877     /* Make enc_values point to the end of the structure, where the encoded
878      * values start. */
879     enc_values = (uint8_t*) (header + 1);
880 
881     /* Retrieve the encoded value eh_frame_ptr. Get the size of the data also. */
882     const uint32_t eh_frame_ptr = esp_eh_frame_get_encoded(enc_values, header->eh_frame_ptr_enc, &size);
883     assert(eh_frame_ptr == (uint32_t) EH_FRAME_ADDR);
884     enc_values += size;
885 
886     /* Same for the number of entries in the sorted table. */
887     const uint32_t fde_count = esp_eh_frame_get_encoded(enc_values, header->fde_count_enc, &size);
888     enc_values += size;
889 
890     /* enc_values points now at the beginning of the sorted table. */
891     /* Only support 4-byte entries. */
892     const uint32_t table_enc = header->table_enc;
893     assert(((table_enc >> 4) == 0x3) || ((table_enc >> 4) == 0xB));
894 
895     const table_entry* sorted_table = (const table_entry*) enc_values;
896 
897     panic_print_str("Backtrace:");
898     while (!end_of_backtrace) {
899 
900         /* Output one step of the backtrace. */
901         esp_eh_frame_generated_step(EXECUTION_FRAME_PC(frame), EXECUTION_FRAME_SP(frame));
902 
903         const table_entry* from_fun = esp_eh_frame_find_entry(sorted_table, fde_count,
904                                                               table_enc, EXECUTION_FRAME_PC(frame));
905 
906         /* Get absolute address of FDE entry describing the function where PC left of. */
907         uint32_t* fde = NULL;
908 
909         if (from_fun != NULL) {
910             fde = esp_eh_frame_decode_address(&from_fun->fde_addr, table_enc);
911         }
912 
913         if (esp_eh_frame_missing_info(fde, EXECUTION_FRAME_PC(frame))) {
914             /* Address was not found in the list. */
915             panic_print_str("\r\nBacktrace ended abruptly: cannot find DWARF information for"
916                             " instruction at address 0x");
917             panic_print_hex(EXECUTION_FRAME_PC(frame));
918             panic_print_str("\r\n");
919             break;
920         }
921 
922         /* Clean and set the DWARF register structure. */
923         memset(&state, 0, sizeof(dwarf_regs));
924 
925         const uint32_t prev_sp = EXECUTION_FRAME_SP(frame);
926 
927         /* Retrieve the return address of the frame. The frame's registers will be modified.
928          * The frame we get then is the caller's one. */
929         uint32_t ra = esp_eh_frame_restore_caller_state(fde, &frame, &state);
930 
931         /* End of backtrace is reached if the stack and the PC don't change anymore. */
932         end_of_backtrace = (EXECUTION_FRAME_SP(frame) == prev_sp) && (EXECUTION_FRAME_PC(frame) == ra);
933 
934         /* Go back to the caller: update stack pointer and program counter. */
935         EXECUTION_FRAME_PC(frame) = ra;
936     }
937 
938     panic_print_str("\r\n");
939 }
940 #endif //ESP_SYSTEM_USE_EH_FRAME
941