1 /*
2 * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <stdint.h>
8 #include <string.h>
9 #include <sys/queue.h>
10 #include "freertos/FreeRTOS.h"
11 #include "freertos/task.h"
12 #include "freertos/semphr.h"
13 #include "esp_heap_caps.h"
14 #include "esp_intr_alloc.h"
15 #include "esp_timer.h"
16 #include "esp_err.h"
17 #include "esp_rom_gpio.h"
18 #include "hal/usbh_hal.h"
19 #include "hal/usb_types_private.h"
20 #include "soc/gpio_pins.h"
21 #include "soc/gpio_sig_map.h"
22 #include "driver/periph_ctrl.h"
23 #include "hcd.h"
24 #include "usb_private.h"
25 #include "usb/usb_types_ch9.h"
26
27 // ----------------------------------------------------- Macros --------------------------------------------------------
28
29 // --------------------- Constants -------------------------
30
31 #define INIT_DELAY_MS 30 //A delay of at least 25ms to enter Host mode. Make it 30ms to be safe
32 #define DEBOUNCE_DELAY_MS 250 //A debounce delay of 250ms
33 #define RESET_HOLD_MS 30 //Spec requires at least 10ms. Make it 30ms to be safe
34 #define RESET_RECOVERY_MS 30 //Reset recovery delay of 10ms (make it 30 ms to be safe) to allow for connected device to recover (and for port enabled interrupt to occur)
35 #define RESUME_HOLD_MS 30 //Spec requires at least 20ms, Make it 30ms to be safe
36 #define RESUME_RECOVERY_MS 20 //Resume recovery of at least 10ms. Make it 20 ms to be safe. This will include the 3 LS bit times of the EOP
37
38 #define CTRL_EP_MAX_MPS_LS 8 //Largest Maximum Packet Size for Low Speed control endpoints
39 #define CTRL_EP_MAX_MPS_FS 64 //Largest Maximum Packet Size for Full Speed control endpoints
40
41 #define NUM_PORTS 1 //The controller only has one port.
42
43 // ----------------------- Configs -------------------------
44
45 typedef struct {
46 int in_mps;
47 int non_periodic_out_mps;
48 int periodic_out_mps;
49 } fifo_mps_limits_t;
50
51 /**
52 * @brief Default FIFO sizes (see 2.1.2.4 for programming guide)
53 *
54 * RXFIFO
55 * - Recommended: ((LPS/4) * 2) + 2
56 * - Actual: Whatever leftover size: USBH_HAL_FIFO_TOTAL_USABLE_LINES(200) - 48 - 48 = 104
57 * - Worst case can accommodate two packets of 204 bytes, or one packet of 408
58 * NPTXFIFO
59 * - Recommended: (LPS/4) * 2
60 * - Actual: Assume LPS is 64, and 3 packets: (64/4) * 3 = 48
61 * - Worst case can accommodate three packets of 64 bytes or one packet of 192
62 * PTXFIFO
63 * - Recommended: (LPS/4) * 2
64 * - Actual: Assume LPS is 64, and 3 packets: (64/4) * 3 = 48
65 * - Worst case can accommodate three packets of 64 bytes or one packet of 192
66 */
67 const usbh_hal_fifo_config_t fifo_config_default = {
68 .rx_fifo_lines = 104,
69 .nptx_fifo_lines = 48,
70 .ptx_fifo_lines = 48,
71 };
72
73 const fifo_mps_limits_t mps_limits_default = {
74 .in_mps = 408,
75 .non_periodic_out_mps = 192,
76 .periodic_out_mps = 192,
77 };
78
79 /**
80 * @brief FIFO sizes that bias to giving RX FIFO more capacity
81 *
82 * RXFIFO
83 * - Recommended: ((LPS/4) * 2) + 2
84 * - Actual: Whatever leftover size: USBH_HAL_FIFO_TOTAL_USABLE_LINES(200) - 32 - 16 = 152
85 * - Worst case can accommodate two packets of 300 bytes or one packet of 600 bytes
86 * NPTXFIFO
87 * - Recommended: (LPS/4) * 2
88 * - Actual: Assume LPS is 64, and 1 packets: (64/4) * 1 = 16
89 * - Worst case can accommodate one packet of 64 bytes
90 * PTXFIFO
91 * - Recommended: (LPS/4) * 2
92 * - Actual: Assume LPS is 64, and 3 packets: (64/4) * 2 = 32
93 * - Worst case can accommodate two packets of 64 bytes or one packet of 128
94 */
95 const usbh_hal_fifo_config_t fifo_config_bias_rx = {
96 .rx_fifo_lines = 152,
97 .nptx_fifo_lines = 16,
98 .ptx_fifo_lines = 32,
99 };
100
101 const fifo_mps_limits_t mps_limits_bias_rx = {
102 .in_mps = 600,
103 .non_periodic_out_mps = 64,
104 .periodic_out_mps = 128,
105 };
106
107 /**
108 * @brief FIFO sizes that bias to giving Periodic TX FIFO more capacity (i.e., ISOC OUT)
109 *
110 * RXFIFO
111 * - Recommended: ((LPS/4) * 2) + 2
112 * - Actual: Assume LPS is 64, and 2 packets: ((64/4) * 2) + 2 = 34
113 * - Worst case can accommodate two packets of 64 bytes or one packet of 128
114 * NPTXFIFO
115 * - Recommended: (LPS/4) * 2
116 * - Actual: Assume LPS is 64, and 1 packets: (64/4) * 1 = 16
117 * - Worst case can accommodate one packet of 64 bytes
118 * PTXFIFO
119 * - Recommended: (LPS/4) * 2
120 * - Actual: Whatever leftover size: USBH_HAL_FIFO_TOTAL_USABLE_LINES(200) - 34 - 16 = 150
121 * - Worst case can accommodate two packets of 300 bytes or one packet of 600 bytes
122 */
123 const usbh_hal_fifo_config_t fifo_config_bias_ptx = {
124 .rx_fifo_lines = 34,
125 .nptx_fifo_lines = 16,
126 .ptx_fifo_lines = 150,
127 };
128
129 const fifo_mps_limits_t mps_limits_bias_ptx = {
130 .in_mps = 128,
131 .non_periodic_out_mps = 64,
132 .periodic_out_mps = 600,
133 };
134
135 #define FRAME_LIST_LEN USB_HAL_FRAME_LIST_LEN_32
136 #define NUM_BUFFERS 2
137
138 #define XFER_LIST_LEN_CTRL 3 //One descriptor for each stage
139 #define XFER_LIST_LEN_BULK 2 //One descriptor for transfer, one to support an extra zero length packet
140 #define XFER_LIST_LEN_INTR 32
141 #define XFER_LIST_LEN_ISOC FRAME_LIST_LEN //Same length as the frame list makes it easier to schedule. Must be power of 2
142
143 // ------------------------ Flags --------------------------
144
145 /**
146 * @brief Bit masks for the HCD to use in the URBs reserved_flags field
147 *
148 * The URB object has a reserved_flags member for host stack's internal use. The following flags will be set in
149 * reserved_flags in order to keep track of state of an URB within the HCD.
150 */
151 #define URB_HCD_STATE_IDLE 0 //The URB is not enqueued in an HCD pipe
152 #define URB_HCD_STATE_PENDING 1 //The URB is enqueued and pending execution
153 #define URB_HCD_STATE_INFLIGHT 2 //The URB is currently in flight
154 #define URB_HCD_STATE_DONE 3 //The URB has completed execution or is retired, and is waiting to be dequeued
155
156 #define URB_HCD_STATE_SET(reserved_flags, state) (reserved_flags = (reserved_flags & ~URB_HCD_STATE_MASK) | state)
157 #define URB_HCD_STATE_GET(reserved_flags) (reserved_flags & URB_HCD_STATE_MASK)
158
159 // -------------------- Convenience ------------------------
160
161 #define HCD_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&hcd_lock)
162 #define HCD_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&hcd_lock)
163 #define HCD_ENTER_CRITICAL() portENTER_CRITICAL(&hcd_lock)
164 #define HCD_EXIT_CRITICAL() portEXIT_CRITICAL(&hcd_lock)
165
166 #define HCD_CHECK(cond, ret_val) ({ \
167 if (!(cond)) { \
168 return (ret_val); \
169 } \
170 })
171 #define HCD_CHECK_FROM_CRIT(cond, ret_val) ({ \
172 if (!(cond)) { \
173 HCD_EXIT_CRITICAL(); \
174 return ret_val; \
175 } \
176 })
177
178 // ------------------------------------------------------ Types --------------------------------------------------------
179
180 typedef struct pipe_obj pipe_t;
181 typedef struct port_obj port_t;
182
183 /**
184 * @brief Object representing a single buffer of a pipe's multi buffer implementation
185 */
186 typedef struct {
187 void *xfer_desc_list;
188 urb_t *urb;
189 union {
190 struct {
191 uint32_t data_stg_in: 1; //Data stage of the control transfer is IN
192 uint32_t data_stg_skip: 1; //Control transfer has no data stage
193 uint32_t cur_stg: 2; //Index of the current stage (e.g., 0 is setup stage, 2 is status stage)
194 uint32_t reserved28: 28;
195 } ctrl; //Control transfer related
196 struct {
197 uint32_t zero_len_packet: 1; //Added a zero length packet, so transfer consists of 2 QTDs
198 uint32_t reserved31: 31;
199 } bulk; //Bulk transfer related
200 struct {
201 uint32_t num_qtds: 8; //Number of transfer descriptors filled (excluding zero length packet)
202 uint32_t zero_len_packet: 1; //Added a zero length packet, so true number descriptors is num_qtds + 1
203 uint32_t reserved23: 23;
204 } intr; //Interrupt transfer related
205 struct {
206 uint32_t num_qtds: 8; //Number of transfer descriptors filled (including NULL descriptors)
207 uint32_t interval: 8; //Interval (in number of SOF i.e., ms)
208 uint32_t start_idx: 8; //Index of the first transfer descriptor in the list
209 uint32_t next_start_idx: 8; //Index for the first descriptor of the next buffer
210 } isoc;
211 uint32_t val;
212 } flags;
213 union {
214 struct {
215 uint32_t executing: 1; //The buffer is currently executing
216 uint32_t was_canceled: 1; //Buffer was done due to a cancellation (i.e., a halt request)
217 uint32_t reserved6: 6;
218 uint32_t stop_idx: 8; //The descriptor index when the channel was halted
219 hcd_pipe_event_t pipe_event: 8; //The pipe event when the buffer was done
220 uint32_t reserved8: 8;
221 };
222 uint32_t val;
223 } status_flags; //Status flags for the buffer
224 } dma_buffer_block_t;
225
226 /**
227 * @brief Object representing a pipe in the HCD layer
228 */
229 struct pipe_obj {
230 //URB queueing related
231 TAILQ_HEAD(tailhead_urb_pending, urb_s) pending_urb_tailq;
232 TAILQ_HEAD(tailhead_urb_done, urb_s) done_urb_tailq;
233 int num_urb_pending;
234 int num_urb_done;
235 //Multi-buffer control
236 dma_buffer_block_t *buffers[NUM_BUFFERS]; //Double buffering scheme
237 union {
238 struct {
239 uint32_t buffer_num_to_fill: 2; //Number of buffers that can be filled
240 uint32_t buffer_num_to_exec: 2; //Number of buffers that are filled and need to be executed
241 uint32_t buffer_num_to_parse: 2;//Number of buffers completed execution and waiting to be parsed
242 uint32_t reserved2: 2;
243 uint32_t wr_idx: 1; //Index of the next buffer to fill. Bit width must allow NUM_BUFFERS to wrap automatically
244 uint32_t rd_idx: 1; //Index of the current buffer in-flight. Bit width must allow NUM_BUFFERS to wrap automatically
245 uint32_t fr_idx: 1; //Index of the next buffer to parse. Bit width must allow NUM_BUFFERS to wrap automatically
246 uint32_t buffer_is_executing: 1;//One of the buffers is in flight
247 uint32_t reserved20: 20;
248 };
249 uint32_t val;
250 } multi_buffer_control;
251 //HAL related
252 usbh_hal_chan_t *chan_obj;
253 usbh_hal_ep_char_t ep_char;
254 //Port related
255 port_t *port; //The port to which this pipe is routed through
256 TAILQ_ENTRY(pipe_obj) tailq_entry; //TailQ entry for port's list of pipes
257 //Pipe status/state/events related
258 hcd_pipe_state_t state;
259 hcd_pipe_event_t last_event;
260 volatile TaskHandle_t task_waiting_pipe_notif; //Task handle used for internal pipe events. Set by waiter, cleared by notifier
261 union {
262 struct {
263 uint32_t waiting_halt: 1;
264 uint32_t pipe_cmd_processing: 1;
265 uint32_t has_urb: 1; //Indicates there is at least one URB either pending, inflight, or done
266 uint32_t persist: 1; //indicates that this pipe should persist through a run-time port reset
267 uint32_t reset_lock: 1; //Indicates that this pipe is undergoing a run-time reset
268 uint32_t reserved27: 27;
269 };
270 uint32_t val;
271 } cs_flags;
272 //Pipe callback and context
273 hcd_pipe_callback_t callback;
274 void *callback_arg;
275 void *context;
276 };
277
278 /**
279 * @brief Object representing a port in the HCD layer
280 */
281 struct port_obj {
282 usbh_hal_context_t *hal;
283 void *frame_list;
284 //Pipes routed through this port
285 TAILQ_HEAD(tailhead_pipes_idle, pipe_obj) pipes_idle_tailq;
286 TAILQ_HEAD(tailhead_pipes_queued, pipe_obj) pipes_active_tailq;
287 int num_pipes_idle;
288 int num_pipes_queued;
289 //Port status, state, and events
290 hcd_port_state_t state;
291 usb_speed_t speed;
292 hcd_port_event_t last_event;
293 volatile TaskHandle_t task_waiting_port_notif; //Task handle used for internal port events. Set by waiter, cleared by notifier
294 union {
295 struct {
296 uint32_t event_pending: 1; //The port has an event that needs to be handled
297 uint32_t event_processing: 1; //The port is current processing (handling) an event
298 uint32_t cmd_processing: 1; //Used to indicate command handling is ongoing
299 uint32_t disable_requested: 1;
300 uint32_t conn_dev_ena: 1; //Used to indicate the port is connected to a device that has been reset
301 uint32_t periodic_scheduling_enabled: 1;
302 uint32_t reserved26: 26;
303 };
304 uint32_t val;
305 } flags;
306 bool initialized;
307 //FIFO biasing related
308 const usbh_hal_fifo_config_t *fifo_config;
309 const fifo_mps_limits_t *fifo_mps_limits;
310 //Port callback and context
311 hcd_port_callback_t callback;
312 void *callback_arg;
313 SemaphoreHandle_t port_mux;
314 void *context;
315 };
316
317 /**
318 * @brief Object representing the HCD
319 */
320 typedef struct {
321 //Ports (Hardware only has one)
322 port_t *port_obj;
323 intr_handle_t isr_hdl;
324 } hcd_obj_t;
325
326 static portMUX_TYPE hcd_lock = portMUX_INITIALIZER_UNLOCKED;
327 static hcd_obj_t *s_hcd_obj = NULL; //Note: "s_" is for the static pointer
328
329 // ------------------------------------------------- Forward Declare ---------------------------------------------------
330
331 // ------------------- Buffer Control ----------------------
332
333 /**
334 * @brief Check if an inactive buffer can be filled with a pending URB
335 *
336 * @param pipe Pipe object
337 * @return true There are one or more pending URBs, and the inactive buffer is yet to be filled
338 * @return false Otherwise
339 */
_buffer_can_fill(pipe_t * pipe)340 static inline bool _buffer_can_fill(pipe_t *pipe)
341 {
342 //We can only fill if there are pending URBs and at least one unfilled buffer
343 if (pipe->num_urb_pending > 0 && pipe->multi_buffer_control.buffer_num_to_fill > 0) {
344 return true;
345 } else {
346 return false;
347 }
348 }
349
350 /**
351 * @brief Fill an empty buffer with
352 *
353 * This function will:
354 * - Remove an URB from the pending tailq
355 * - Fill that URB into the inactive buffer
356 *
357 * @note _buffer_can_fill() must return true before calling this function
358 *
359 * @param pipe Pipe object
360 */
361 static void _buffer_fill(pipe_t *pipe);
362
363 /**
364 * @brief Check if there are more filled buffers than can be executed
365 *
366 * @param pipe Pipe object
367 * @return true There are more filled buffers to be executed
368 * @return false No more buffers to execute
369 */
_buffer_can_exec(pipe_t * pipe)370 static inline bool _buffer_can_exec(pipe_t *pipe)
371 {
372 //We can only execute if there is not already a buffer executing and if there are filled buffers awaiting execution
373 if (!pipe->multi_buffer_control.buffer_is_executing && pipe->multi_buffer_control.buffer_num_to_exec > 0) {
374 return true;
375 } else {
376 return false;
377 }
378 }
379
380 /**
381 * @brief Execute the next filled buffer
382 *
383 * - Must have called _buffer_can_exec() before calling this function
384 * - Will start the execution of the buffer
385 *
386 * @param pipe Pipe object
387 */
388 static void _buffer_exec(pipe_t *pipe);
389
390 /**
391 * @brief Check if a buffer as completed execution
392 *
393 * This should only be called after receiving a USBH_HAL_CHAN_EVENT_CPLT event to check if a buffer is actually
394 * done.
395 *
396 * @param pipe Pipe object
397 * @return true Buffer complete
398 * @return false Buffer not complete
399 */
_buffer_check_done(pipe_t * pipe)400 static inline bool _buffer_check_done(pipe_t *pipe)
401 {
402 if (pipe->ep_char.type != USB_PRIV_XFER_TYPE_CTRL) {
403 return true;
404 }
405 //Only control transfers need to be continued
406 dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx];
407 return (buffer_inflight->flags.ctrl.cur_stg == 2);
408 }
409
410 /**
411 * @brief Continue execution of a buffer
412 *
413 * This should only be called after checking if a buffer has completed execution using _buffer_check_done()
414 *
415 * @param pipe Pipe object
416 */
417 static void _buffer_exec_cont(pipe_t *pipe);
418
419 /**
420 * @brief Marks the last executed buffer as complete
421 *
422 * This should be called on a pipe that has confirmed that a buffer is completed via _buffer_check_done()
423 *
424 * @param pipe Pipe object
425 * @param stop_idx Descriptor index when the buffer stopped execution
426 * @param pipe_event Pipe event that caused the buffer to be complete. Use HCD_PIPE_EVENT_NONE for halt request of disconnections
427 * @param canceled Whether the buffer was done due to a canceled (i.e., halt request). Must set pipe_event to HCD_PIPE_EVENT_NONE
428 */
_buffer_done(pipe_t * pipe,int stop_idx,hcd_pipe_event_t pipe_event,bool canceled)429 static inline void _buffer_done(pipe_t *pipe, int stop_idx, hcd_pipe_event_t pipe_event, bool canceled)
430 {
431 //Store the stop_idx and pipe_event for later parsing
432 dma_buffer_block_t *buffer_done = pipe->buffers[pipe->multi_buffer_control.rd_idx];
433 buffer_done->status_flags.executing = 0;
434 buffer_done->status_flags.was_canceled = canceled;
435 buffer_done->status_flags.stop_idx = stop_idx;
436 buffer_done->status_flags.pipe_event = pipe_event;
437 pipe->multi_buffer_control.rd_idx++;
438 pipe->multi_buffer_control.buffer_num_to_exec--;
439 pipe->multi_buffer_control.buffer_num_to_parse++;
440 pipe->multi_buffer_control.buffer_is_executing = 0;
441 }
442
443 /**
444 * @brief Checks if a pipe has one or more completed buffers to parse
445 *
446 * @param pipe Pipe object
447 * @return true There are one or more buffers to parse
448 * @return false There are no more buffers to parse
449 */
_buffer_can_parse(pipe_t * pipe)450 static inline bool _buffer_can_parse(pipe_t *pipe)
451 {
452 if (pipe->multi_buffer_control.buffer_num_to_parse > 0) {
453 return true;
454 } else {
455 return false;
456 }
457 }
458
459 /**
460 * @brief Parse a completed buffer
461 *
462 * This function will:
463 * - Parse the results of an URB from a completed buffer
464 * - Put the URB into the done tailq
465 *
466 * @note This function should only be called on the completion of a buffer
467 *
468 * @param pipe Pipe object
469 * @param stop_idx (For INTR pipes only) The index of the descriptor that follows the last descriptor of the URB. Set to 0 otherwise
470 */
471 static void _buffer_parse(pipe_t *pipe);
472
473 /**
474 * @brief Marks all buffers pending execution as completed, then parses those buffers
475 *
476 * @note This should only be called on pipes do not have any currently executing buffers.
477 *
478 * @param pipe Pipe object
479 * @param canceled Whether this flush is due to cancellation
480 * @return true One or more buffers were flushed
481 * @return false There were no buffers that needed to be flushed
482 */
483 static bool _buffer_flush_all(pipe_t *pipe, bool canceled);
484
485 // ------------------------ Pipe ---------------------------
486
487 /**
488 * @brief Decode a HAL channel error to the corresponding pipe event
489 *
490 * @param chan_error The HAL channel error
491 * @return hcd_pipe_event_t The corresponding pipe error event
492 */
493 static inline hcd_pipe_event_t pipe_decode_error_event(usbh_hal_chan_error_t chan_error);
494
495 /**
496 * @brief Halt a pipe
497 *
498 * - Attempts to halt a pipe. Pipe must be active in order to be halted
499 * - If the underlying channel has an ongoing transfer, a halt will be requested, then the function will block until the
500 * channel indicates it is halted
501 * - If the channel is no on-going transfer, the pipe will simply be marked has halted (thus preventing any further URBs
502 * from being enqueued)
503 *
504 * @note This function can block
505 * @param pipe Pipe object
506 * @return esp_err_t
507 */
508 static esp_err_t _pipe_cmd_halt(pipe_t *pipe);
509
510 /**
511 * @brief Flush a pipe
512 *
513 * - Flushing a pipe causes all of its pending URBs to be become done, thus allowing them to be dequeued
514 * - The pipe must be halted in order to be flushed
515 * - The pipe callback will be run if one or more URBs become done
516 *
517 * @param pipe Pipe object
518 * @return esp_err_t
519 */
520 static esp_err_t _pipe_cmd_flush(pipe_t *pipe);
521
522 /**
523 * @brief Clear a pipe from its halt
524 *
525 * - Pipe must be halted in order to be cleared
526 * - Clearing a pipe makes it active again
527 * - If there are any enqueued URBs, they will executed
528 *
529 * @param pipe Pipe object
530 * @return esp_err_t
531 */
532 static esp_err_t _pipe_cmd_clear(pipe_t *pipe);
533
534 // ------------------------ Port ---------------------------
535
536 /**
537 * @brief Prepare persistent pipes for reset
538 *
539 * This function checks if all pipes are reset persistent and proceeds to free their underlying HAL channels for the
540 * persistent pipes. This should be called before a run time reset
541 *
542 * @param port Port object
543 * @return true All pipes are persistent and their channels are freed
544 * @return false Not all pipes are persistent
545 */
546 static bool _port_persist_all_pipes(port_t *port);
547
548 /**
549 * @brief Recovers all persistent pipes after a reset
550 *
551 * This function will recover all persistent pipes after a reset and reallocate their underlying HAl channels. This
552 * function should be called after a reset.
553 *
554 * @param port Port object
555 */
556 static void _port_recover_all_pipes(port_t *port);
557
558 /**
559 * @brief Checks if all pipes are in the halted state
560 *
561 * @param port Port object
562 * @return true All pipes are halted
563 * @return false Not all pipes are halted
564 */
565 static bool _port_check_all_pipes_halted(port_t *port);
566
567 /**
568 * @brief Debounce port after a connection or disconnection event
569 *
570 * This function should be called after a port connection or disconnect event. This function will execute a debounce
571 * delay then check the actual connection/disconnections state.
572 *
573 * @note This function can block
574 * @param port Port object
575 * @return true A device is connected
576 * @return false No device connected
577 */
578 static bool _port_debounce(port_t *port);
579
580 /**
581 * @brief Power ON the port
582 *
583 * @param port Port object
584 * @return esp_err_t
585 */
586 static esp_err_t _port_cmd_power_on(port_t *port);
587
588 /**
589 * @brief Power OFF the port
590 *
591 * - If a device is currently connected, this function will cause a disconnect event
592 *
593 * @param port Port object
594 * @return esp_err_t
595 */
596 static esp_err_t _port_cmd_power_off(port_t *port);
597
598 /**
599 * @brief Reset the port
600 *
601 * - This function issues a reset signal using the timings specified by the USB2.0 spec
602 *
603 * @note This function can block
604 * @param port Port object
605 * @return esp_err_t
606 */
607 static esp_err_t _port_cmd_reset(port_t *port);
608
609 /**
610 * @brief Suspend the port
611 *
612 * - Port must be enabled in order to to be suspended
613 * - All pipes must be halted for the port to be suspended
614 * - Suspending the port stops Keep Alive/SOF from being sent to the connected device
615 *
616 * @param port Port object
617 * @return esp_err_t
618 */
619 static esp_err_t _port_cmd_bus_suspend(port_t *port);
620
621 /**
622 * @brief Resume the port
623 *
624 * - Port must be suspended in order to be resumed
625 *
626 * @note This function can block
627 * @param port Port object
628 * @return esp_err_t
629 */
630 static esp_err_t _port_cmd_bus_resume(port_t *port);
631
632 /**
633 * @brief Disable the port
634 *
635 * - All pipes must be halted for the port to be disabled
636 * - The port must be enabled or suspended in order to be disabled
637 *
638 * @note This function can block
639 * @param port Port object
640 * @return esp_err_t
641 */
642 static esp_err_t _port_cmd_disable(port_t *port);
643
644 // ----------------------- Events --------------------------
645
646 /**
647 * @brief Wait for an internal event from a port
648 *
649 * @note For each port, there can only be one thread/task waiting for an internal port event
650 * @note This function is blocking (will exit and re-enter the critical section to do so)
651 *
652 * @param port Port object
653 */
654 static void _internal_port_event_wait(port_t *port);
655
656 /**
657 * @brief Notify (from an ISR context) the thread/task waiting for the internal port event
658 *
659 * @param port Port object
660 * @return true A yield is required
661 * @return false Whether a yield is required or not
662 */
663 static bool _internal_port_event_notify_from_isr(port_t *port);
664
665 /**
666 * @brief Wait for an internal event from a particular pipe
667 *
668 * @note For each pipe, there can only be one thread/task waiting for an internal port event
669 * @note This function is blocking (will exit and re-enter the critical section to do so)
670 *
671 * @param pipe Pipe object
672 */
673 static void _internal_pipe_event_wait(pipe_t *pipe);
674
675 /**
676 * @brief Notify (from an ISR context) the thread/task waiting for an internal pipe event
677 *
678 * @param pipe Pipe object
679 * @param from_isr Whether this is called from an ISR or not
680 * @return true A yield is required
681 * @return false Whether a yield is required or not. Always false when from_isr is also false
682 */
683 static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr);
684
685 // ----------------------------------------------- Interrupt Handling --------------------------------------------------
686
687 // ------------------- Internal Event ----------------------
688
_internal_port_event_wait(port_t * port)689 static void _internal_port_event_wait(port_t *port)
690 {
691 //There must NOT be another thread/task already waiting for an internal event
692 assert(port->task_waiting_port_notif == NULL);
693 port->task_waiting_port_notif = xTaskGetCurrentTaskHandle();
694 /* We need to loop as task notifications can come from anywhere. If we this
695 was a port event notification, task_waiting_port_notif will have been cleared
696 by the notifier. */
697 while (port->task_waiting_port_notif != NULL) {
698 HCD_EXIT_CRITICAL();
699 //Wait to be notified from ISR
700 ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
701 HCD_ENTER_CRITICAL();
702 }
703 }
704
_internal_port_event_notify_from_isr(port_t * port)705 static bool _internal_port_event_notify_from_isr(port_t *port)
706 {
707 //There must be a thread/task waiting for an internal event
708 assert(port->task_waiting_port_notif != NULL);
709 TaskHandle_t task_to_unblock = port->task_waiting_port_notif;
710 //Clear task_waiting_port_notif to indicate to the waiter that the unblock was indeed an port event notification
711 port->task_waiting_port_notif = NULL;
712 //Unblock the thread/task waiting for the notification
713 BaseType_t xTaskWoken = pdFALSE;
714 //Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways
715 vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken);
716 return (xTaskWoken == pdTRUE);
717 }
718
_internal_pipe_event_wait(pipe_t * pipe)719 static void _internal_pipe_event_wait(pipe_t *pipe)
720 {
721 //There must NOT be another thread/task already waiting for an internal event
722 assert(pipe->task_waiting_pipe_notif == NULL);
723 pipe->task_waiting_pipe_notif = xTaskGetCurrentTaskHandle();
724 /* We need to loop as task notifications can come from anywhere. If we this
725 was a pipe event notification, task_waiting_pipe_notif will have been cleared
726 by the notifier. */
727 while (pipe->task_waiting_pipe_notif != NULL) {
728 //Wait to be unblocked by notified
729 HCD_EXIT_CRITICAL();
730 ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
731 HCD_ENTER_CRITICAL();
732 }
733 }
734
_internal_pipe_event_notify(pipe_t * pipe,bool from_isr)735 static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr)
736 {
737 //There must be a thread/task waiting for an internal event
738 assert(pipe->task_waiting_pipe_notif != NULL);
739 TaskHandle_t task_to_unblock = pipe->task_waiting_pipe_notif;
740 //Clear task_waiting_pipe_notif to indicate to the waiter that the unblock was indeed an pipe event notification
741 pipe->task_waiting_pipe_notif = NULL;
742 bool ret;
743 if (from_isr) {
744 BaseType_t xTaskWoken = pdFALSE;
745 //Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways
746 //Unblock the thread/task waiting for the pipe notification
747 vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken);
748 ret = (xTaskWoken == pdTRUE);
749 } else {
750 HCD_EXIT_CRITICAL();
751 xTaskNotifyGive(task_to_unblock);
752 HCD_ENTER_CRITICAL();
753 ret = false;
754 }
755 return ret;
756 }
757
758 // ----------------- Interrupt Handlers --------------------
759
760 /**
761 * @brief Handle a HAL port interrupt and obtain the corresponding port event
762 *
763 * @param[in] port Port object
764 * @param[in] hal_port_event The HAL port event
765 * @param[out] yield Set to true if a yield is required as a result of handling the interrupt
766 * @return hcd_port_event_t Returns a port event, or HCD_PORT_EVENT_NONE if no port event occurred
767 */
_intr_hdlr_hprt(port_t * port,usbh_hal_port_event_t hal_port_event,bool * yield)768 static hcd_port_event_t _intr_hdlr_hprt(port_t *port, usbh_hal_port_event_t hal_port_event, bool *yield)
769 {
770 hcd_port_event_t port_event = HCD_PORT_EVENT_NONE;
771 switch (hal_port_event) {
772 case USBH_HAL_PORT_EVENT_CONN: {
773 //Don't update state immediately, we still need to debounce.
774 port_event = HCD_PORT_EVENT_CONNECTION;
775 break;
776 }
777 case USBH_HAL_PORT_EVENT_DISCONN: {
778 port->state = HCD_PORT_STATE_RECOVERY;
779 port_event = HCD_PORT_EVENT_DISCONNECTION;
780 port->flags.conn_dev_ena = 0;
781 break;
782 }
783 case USBH_HAL_PORT_EVENT_ENABLED: {
784 usbh_hal_port_enable(port->hal); //Initialize remaining host port registers
785 port->speed = (usbh_hal_port_get_conn_speed(port->hal) == USB_PRIV_SPEED_FULL) ? USB_SPEED_FULL : USB_SPEED_LOW;
786 port->state = HCD_PORT_STATE_ENABLED;
787 port->flags.conn_dev_ena = 1;
788 //This was triggered by a command, so no event needs to be propagated.
789 break;
790 }
791 case USBH_HAL_PORT_EVENT_DISABLED: {
792 port->flags.conn_dev_ena = 0;
793 //Disabled could be due to a disable request or reset request, or due to a port error
794 if (port->state != HCD_PORT_STATE_RESETTING) { //Ignore the disable event if it's due to a reset request
795 if (port->flags.disable_requested) {
796 //Disabled by request (i.e. by port command). Generate an internal event
797 port->state = HCD_PORT_STATE_DISABLED;
798 port->flags.disable_requested = 0;
799 *yield |= _internal_port_event_notify_from_isr(port);
800 } else {
801 //Disabled due to a port error
802 port->state = HCD_PORT_STATE_RECOVERY;
803 port_event = HCD_PORT_EVENT_ERROR;
804 }
805 }
806 break;
807 }
808 case USBH_HAL_PORT_EVENT_OVRCUR:
809 case USBH_HAL_PORT_EVENT_OVRCUR_CLR: { //Could occur if a quick overcurrent then clear happens
810 if (port->state != HCD_PORT_STATE_NOT_POWERED) {
811 //We need to power OFF the port to protect it
812 usbh_hal_port_toggle_power(port->hal, false);
813 port->state = HCD_PORT_STATE_RECOVERY;
814 port_event = HCD_PORT_EVENT_OVERCURRENT;
815 }
816 port->flags.conn_dev_ena = 0;
817 break;
818 }
819 default: {
820 abort();
821 break;
822 }
823 }
824 return port_event;
825 }
826
827 /**
828 * @brief Handles a HAL channel interrupt
829 *
830 * This function should be called on a HAL channel when it has an interrupt. Most HAL channel events will correspond to
831 * to a pipe event, but not always. This function will store the pipe event and return a pipe object pointer if a pipe
832 * event occurred, or return NULL otherwise.
833 *
834 * @param[in] chan_obj Pointer to HAL channel object with interrupt
835 * @param[out] yield Set to true if a yield is required as a result of handling the interrupt
836 * @return hcd_pipe_event_t The pipe event
837 */
_intr_hdlr_chan(pipe_t * pipe,usbh_hal_chan_t * chan_obj,bool * yield)838 static hcd_pipe_event_t _intr_hdlr_chan(pipe_t *pipe, usbh_hal_chan_t *chan_obj, bool *yield)
839 {
840 usbh_hal_chan_event_t chan_event = usbh_hal_chan_decode_intr(chan_obj);
841 hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
842
843 switch (chan_event) {
844 case USBH_HAL_CHAN_EVENT_CPLT: {
845 if (!_buffer_check_done(pipe)) {
846 _buffer_exec_cont(pipe);
847 break;
848 }
849 pipe->last_event = HCD_PIPE_EVENT_URB_DONE;
850 event = pipe->last_event;
851 //Mark the buffer as done
852 int stop_idx = usbh_hal_chan_get_qtd_idx(chan_obj);
853 _buffer_done(pipe, stop_idx, pipe->last_event, false);
854 //First check if there is another buffer we can execute. But we only want to execute if there's still a valid device
855 if (_buffer_can_exec(pipe) && pipe->port->flags.conn_dev_ena) {
856 //If the next buffer is filled and ready to execute, execute it
857 _buffer_exec(pipe);
858 }
859 //Handle the previously done buffer
860 _buffer_parse(pipe);
861 //Check to see if we can fill another buffer. But we only want to fill if there is still a valid device
862 if (_buffer_can_fill(pipe) && pipe->port->flags.conn_dev_ena) {
863 //Now that we've parsed a buffer, see if another URB can be filled in its place
864 _buffer_fill(pipe);
865 }
866 break;
867 }
868 case USBH_HAL_CHAN_EVENT_ERROR: {
869 //Get and store the pipe error event
870 usbh_hal_chan_error_t chan_error = usbh_hal_chan_get_error(chan_obj);
871 pipe->last_event = pipe_decode_error_event(chan_error);
872 event = pipe->last_event;
873 pipe->state = HCD_PIPE_STATE_HALTED;
874 //Mark the buffer as done with an error
875 int stop_idx = usbh_hal_chan_get_qtd_idx(chan_obj);
876 _buffer_done(pipe, stop_idx, pipe->last_event, false);
877 //Parse the buffer
878 _buffer_parse(pipe);
879 break;
880 }
881 case USBH_HAL_CHAN_EVENT_HALT_REQ: {
882 assert(pipe->cs_flags.waiting_halt);
883 //We've halted a transfer, so we need to trigger the pipe callback
884 pipe->last_event = HCD_PIPE_EVENT_URB_DONE;
885 event = pipe->last_event;
886 //Halt request event is triggered when packet is successful completed. But just treat all halted transfers as errors
887 pipe->state = HCD_PIPE_STATE_HALTED;
888 int stop_idx = usbh_hal_chan_get_qtd_idx(chan_obj);
889 _buffer_done(pipe, stop_idx, HCD_PIPE_EVENT_NONE, true);
890 //Parse the buffer
891 _buffer_parse(pipe);
892 //Notify the task waiting for the pipe halt
893 *yield |= _internal_pipe_event_notify(pipe, true);
894 break;
895 }
896 case USBH_HAL_CHAN_EVENT_NONE: {
897 break; //Nothing to do
898 }
899 default:
900 abort();
901 break;
902 }
903 return event;
904 }
905
906 /**
907 * @brief Main interrupt handler
908 *
909 * - Handle all HPRT (Host Port) related interrupts first as they may change the
910 * state of the driver (e.g., a disconnect event)
911 * - If any channels (pipes) have pending interrupts, handle them one by one
912 * - The HCD has not blocking functions, so the user's ISR callback is run to
913 * allow the users to send whatever OS primitives they need.
914 *
915 * @param arg Interrupt handler argument
916 */
intr_hdlr_main(void * arg)917 static void intr_hdlr_main(void *arg)
918 {
919 port_t *port = (port_t *) arg;
920 bool yield = false;
921
922 HCD_ENTER_CRITICAL_ISR();
923 usbh_hal_port_event_t hal_port_evt = usbh_hal_decode_intr(port->hal);
924 if (hal_port_evt == USBH_HAL_PORT_EVENT_CHAN) {
925 //Channel event. Cycle through each pending channel
926 usbh_hal_chan_t *chan_obj = usbh_hal_get_chan_pending_intr(port->hal);
927 while (chan_obj != NULL) {
928 pipe_t *pipe = (pipe_t *)usbh_hal_chan_get_context(chan_obj);
929 hcd_pipe_event_t event = _intr_hdlr_chan(pipe, chan_obj, &yield);
930 //Run callback if a pipe event has occurred and the pipe also has a callback
931 if (event != HCD_PIPE_EVENT_NONE && pipe->callback != NULL) {
932 HCD_EXIT_CRITICAL_ISR();
933 yield |= pipe->callback((hcd_pipe_handle_t)pipe, event, pipe->callback_arg, true);
934 HCD_ENTER_CRITICAL_ISR();
935 }
936 //Check for more channels with pending interrupts. Returns NULL if there are no more
937 chan_obj = usbh_hal_get_chan_pending_intr(port->hal);
938 }
939 } else if (hal_port_evt != USBH_HAL_PORT_EVENT_NONE) { //Port event
940 hcd_port_event_t port_event = _intr_hdlr_hprt(port, hal_port_evt, &yield);
941 if (port_event != HCD_PORT_EVENT_NONE) {
942 port->last_event = port_event;
943 port->flags.event_pending = 1;
944 if (port->callback != NULL) {
945 HCD_EXIT_CRITICAL_ISR();
946 yield |= port->callback((hcd_port_handle_t)port, port_event, port->callback_arg, true);
947 HCD_ENTER_CRITICAL_ISR();
948 }
949 }
950 }
951 HCD_EXIT_CRITICAL_ISR();
952
953 if (yield) {
954 portYIELD_FROM_ISR();
955 }
956 }
957
958 // --------------------------------------------- Host Controller Driver ------------------------------------------------
959
port_obj_alloc(void)960 static port_t *port_obj_alloc(void)
961 {
962 port_t *port = calloc(1, sizeof(port_t));
963 usbh_hal_context_t *hal = malloc(sizeof(usbh_hal_context_t));
964 void *frame_list = heap_caps_aligned_calloc(USBH_HAL_FRAME_LIST_MEM_ALIGN, FRAME_LIST_LEN,sizeof(uint32_t), MALLOC_CAP_DMA);
965 SemaphoreHandle_t port_mux = xSemaphoreCreateMutex();
966 if (port == NULL || hal == NULL || frame_list == NULL || port_mux == NULL) {
967 free(port);
968 free(hal);
969 free(frame_list);
970 if (port_mux != NULL) {
971 vSemaphoreDelete(port_mux);
972 }
973 return NULL;
974 }
975 port->hal = hal;
976 port->frame_list = frame_list;
977 port->port_mux = port_mux;
978 return port;
979 }
980
port_obj_free(port_t * port)981 static void port_obj_free(port_t *port)
982 {
983 if (port == NULL) {
984 return;
985 }
986 vSemaphoreDelete(port->port_mux);
987 free(port->frame_list);
988 free(port->hal);
989 free(port);
990 }
991
992 // ----------------------- Public --------------------------
993
hcd_install(const hcd_config_t * config)994 esp_err_t hcd_install(const hcd_config_t *config)
995 {
996 HCD_ENTER_CRITICAL();
997 HCD_CHECK_FROM_CRIT(s_hcd_obj == NULL, ESP_ERR_INVALID_STATE);
998 HCD_EXIT_CRITICAL();
999
1000 esp_err_t err_ret;
1001 //Allocate memory and resources for driver object and all port objects
1002 hcd_obj_t *p_hcd_obj_dmy = calloc(1, sizeof(hcd_obj_t));
1003 if (p_hcd_obj_dmy == NULL) {
1004 return ESP_ERR_NO_MEM;
1005 }
1006
1007 //Allocate resources for each port (there's only one)
1008 p_hcd_obj_dmy->port_obj = port_obj_alloc();
1009 esp_err_t intr_alloc_ret = esp_intr_alloc(ETS_USB_INTR_SOURCE,
1010 config->intr_flags | ESP_INTR_FLAG_INTRDISABLED, //The interrupt must be disabled until the port is initialized
1011 intr_hdlr_main,
1012 (void *)p_hcd_obj_dmy->port_obj,
1013 &p_hcd_obj_dmy->isr_hdl);
1014 if (p_hcd_obj_dmy->port_obj == NULL) {
1015 err_ret = ESP_ERR_NO_MEM;
1016 }
1017 if (intr_alloc_ret != ESP_OK) {
1018 err_ret = intr_alloc_ret;
1019 goto err;
1020 }
1021
1022 HCD_ENTER_CRITICAL();
1023 if (s_hcd_obj != NULL) {
1024 HCD_EXIT_CRITICAL();
1025 err_ret = ESP_ERR_INVALID_STATE;
1026 goto err;
1027 }
1028 s_hcd_obj = p_hcd_obj_dmy;
1029 HCD_EXIT_CRITICAL();
1030 return ESP_OK;
1031
1032 err:
1033 if (intr_alloc_ret == ESP_OK) {
1034 esp_intr_free(p_hcd_obj_dmy->isr_hdl);
1035 }
1036 port_obj_free(p_hcd_obj_dmy->port_obj);
1037 free(p_hcd_obj_dmy);
1038 return err_ret;
1039 }
1040
hcd_uninstall(void)1041 esp_err_t hcd_uninstall(void)
1042 {
1043 HCD_ENTER_CRITICAL();
1044 //Check that all ports have been disabled (there's only one port)
1045 if (s_hcd_obj == NULL || s_hcd_obj->port_obj->initialized) {
1046 HCD_EXIT_CRITICAL();
1047 return ESP_ERR_INVALID_STATE;
1048 }
1049 hcd_obj_t *p_hcd_obj_dmy = s_hcd_obj;
1050 s_hcd_obj = NULL;
1051 HCD_EXIT_CRITICAL();
1052
1053 //Free resources
1054 port_obj_free(p_hcd_obj_dmy->port_obj);
1055 esp_intr_free(p_hcd_obj_dmy->isr_hdl);
1056 free(p_hcd_obj_dmy);
1057 return ESP_OK;
1058 }
1059
1060 // ------------------------------------------------------ Port ---------------------------------------------------------
1061
1062 // ----------------------- Helpers -------------------------
1063
_port_persist_all_pipes(port_t * port)1064 static bool _port_persist_all_pipes(port_t *port)
1065 {
1066 if (port->num_pipes_queued > 0) {
1067 //All pipes must be idle before we run-time reset
1068 return false;
1069 }
1070 bool all_persist = true;
1071 pipe_t *pipe;
1072 //Check that each pipe is persistent
1073 TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
1074 if (!pipe->cs_flags.persist) {
1075 all_persist = false;
1076 break;
1077 }
1078 }
1079 if (!all_persist) {
1080 //At least one pipe is not persistent. All pipes must be freed or made persistent before we can reset
1081 return false;
1082 }
1083 TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
1084 pipe->cs_flags.reset_lock = 1;
1085 usbh_hal_chan_free(port->hal, pipe->chan_obj);
1086 }
1087 return true;
1088 }
1089
_port_recover_all_pipes(port_t * port)1090 static void _port_recover_all_pipes(port_t *port)
1091 {
1092 pipe_t *pipe;
1093 TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
1094 pipe->cs_flags.persist = 0;
1095 pipe->cs_flags.reset_lock = 0;
1096 usbh_hal_chan_alloc(port->hal, pipe->chan_obj, (void *)pipe);
1097 usbh_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char);
1098 }
1099 }
1100
_port_check_all_pipes_halted(port_t * port)1101 static bool _port_check_all_pipes_halted(port_t *port)
1102 {
1103 bool all_halted = true;
1104 pipe_t *pipe;
1105 TAILQ_FOREACH(pipe, &port->pipes_active_tailq, tailq_entry) {
1106 if (pipe->state != HCD_PIPE_STATE_HALTED) {
1107 all_halted = false;
1108 break;
1109 }
1110 }
1111 TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
1112 if (pipe->state != HCD_PIPE_STATE_HALTED) {
1113 all_halted = false;
1114 break;
1115 }
1116 }
1117 return all_halted;
1118 }
1119
_port_debounce(port_t * port)1120 static bool _port_debounce(port_t *port)
1121 {
1122 if (port->state == HCD_PORT_STATE_NOT_POWERED) {
1123 //Disconnect event due to power off, no need to debounce or update port state.
1124 return false;
1125 }
1126 HCD_EXIT_CRITICAL();
1127 vTaskDelay(pdMS_TO_TICKS(DEBOUNCE_DELAY_MS));
1128 HCD_ENTER_CRITICAL();
1129 //Check the post-debounce state of the bus (i.e., whether it's actually connected/disconnected)
1130 bool is_connected = usbh_hal_port_check_if_connected(port->hal);
1131 if (is_connected) {
1132 port->state = HCD_PORT_STATE_DISABLED;
1133 } else {
1134 port->state = HCD_PORT_STATE_DISCONNECTED;
1135 }
1136 //Disable debounce lock
1137 usbh_hal_disable_debounce_lock(port->hal);
1138 return is_connected;
1139 }
1140
1141 // ---------------------- Commands -------------------------
1142
_port_cmd_power_on(port_t * port)1143 static esp_err_t _port_cmd_power_on(port_t *port)
1144 {
1145 esp_err_t ret;
1146 //Port can only be powered on if it's currently unpowered
1147 if (port->state == HCD_PORT_STATE_NOT_POWERED) {
1148 port->state = HCD_PORT_STATE_DISCONNECTED;
1149 usbh_hal_port_init(port->hal);
1150 usbh_hal_port_toggle_power(port->hal, true);
1151 ret = ESP_OK;
1152 } else {
1153 ret = ESP_ERR_INVALID_STATE;
1154 }
1155 return ret;
1156 }
1157
_port_cmd_power_off(port_t * port)1158 static esp_err_t _port_cmd_power_off(port_t *port)
1159 {
1160 esp_err_t ret;
1161 //Port can only be unpowered if already powered
1162 if (port->state != HCD_PORT_STATE_NOT_POWERED) {
1163 port->state = HCD_PORT_STATE_NOT_POWERED;
1164 usbh_hal_port_deinit(port->hal);
1165 usbh_hal_port_toggle_power(port->hal, false);
1166 //If a device is currently connected, this should trigger a disconnect event
1167 ret = ESP_OK;
1168 } else {
1169 ret = ESP_ERR_INVALID_STATE;
1170 }
1171 return ret;
1172 }
1173
_port_cmd_reset(port_t * port)1174 static esp_err_t _port_cmd_reset(port_t *port)
1175 {
1176 esp_err_t ret;
1177 //Port can only a reset when it is in the enabled or disabled states (in case of new connection)
1178 if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_DISABLED) {
1179 ret = ESP_ERR_INVALID_STATE;
1180 goto exit;
1181 }
1182 bool is_runtime_reset = (port->state == HCD_PORT_STATE_ENABLED) ? true : false;
1183 if (is_runtime_reset && !_port_persist_all_pipes(port)) {
1184 //If this is a run time reset, check all pipes that are still allocated can persist the reset
1185 ret = ESP_ERR_INVALID_STATE;
1186 goto exit;
1187 }
1188 //All pipes (if any_) are guaranteed to be persistent at this point. Proceed to resetting the bus
1189 port->state = HCD_PORT_STATE_RESETTING;
1190 //Put and hold the bus in the reset state. If the port was previously enabled, a disabled event will occur after this
1191 usbh_hal_port_toggle_reset(port->hal, true);
1192 HCD_EXIT_CRITICAL();
1193 vTaskDelay(pdMS_TO_TICKS(RESET_HOLD_MS));
1194 HCD_ENTER_CRITICAL();
1195 if (port->state != HCD_PORT_STATE_RESETTING) {
1196 //The port state has unexpectedly changed
1197 ret = ESP_ERR_INVALID_RESPONSE;
1198 goto bailout;
1199 }
1200 //Return the bus to the idle state and hold it for the required reset recovery time. Port enabled event should occur
1201 usbh_hal_port_toggle_reset(port->hal, false);
1202 HCD_EXIT_CRITICAL();
1203 vTaskDelay(pdMS_TO_TICKS(RESET_RECOVERY_MS));
1204 HCD_ENTER_CRITICAL();
1205 if (port->state != HCD_PORT_STATE_ENABLED || !port->flags.conn_dev_ena) {
1206 //The port state has unexpectedly changed
1207 ret = ESP_ERR_INVALID_RESPONSE;
1208 goto bailout;
1209 }
1210 //Set FIFO sizes based on the selected biasing
1211 usbh_hal_set_fifo_size(port->hal, port->fifo_config);
1212 //We start periodic scheduling only after a RESET command since SOFs only start after a reset
1213 usbh_hal_port_set_frame_list(port->hal, port->frame_list, FRAME_LIST_LEN);
1214 usbh_hal_port_periodic_enable(port->hal);
1215 ret = ESP_OK;
1216 bailout:
1217 if (is_runtime_reset) {
1218 _port_recover_all_pipes(port);
1219 }
1220 exit:
1221 return ret;
1222 }
1223
_port_cmd_bus_suspend(port_t * port)1224 static esp_err_t _port_cmd_bus_suspend(port_t *port)
1225 {
1226 esp_err_t ret;
1227 //Port must have been previously enabled, and all pipes must already be halted
1228 if (port->state == HCD_PORT_STATE_ENABLED && !_port_check_all_pipes_halted(port)) {
1229 ret = ESP_ERR_INVALID_STATE;
1230 goto exit;
1231 }
1232 //All pipes are guaranteed halted at this point. Proceed to suspend the port
1233 usbh_hal_port_suspend(port->hal);
1234 port->state = HCD_PORT_STATE_SUSPENDED;
1235 ret = ESP_OK;
1236 exit:
1237 return ret;
1238 }
1239
_port_cmd_bus_resume(port_t * port)1240 static esp_err_t _port_cmd_bus_resume(port_t *port)
1241 {
1242 esp_err_t ret;
1243 //Port can only be resumed if it was previously suspended
1244 if (port->state != HCD_PORT_STATE_SUSPENDED) {
1245 ret = ESP_ERR_INVALID_STATE;
1246 goto exit;
1247 }
1248 //Put and hold the bus in the K state.
1249 usbh_hal_port_toggle_resume(port->hal, true);
1250 port->state = HCD_PORT_STATE_RESUMING;
1251 HCD_EXIT_CRITICAL();
1252 vTaskDelay(pdMS_TO_TICKS(RESUME_HOLD_MS));
1253 HCD_ENTER_CRITICAL();
1254 //Return and hold the bus to the J state (as port of the LS EOP)
1255 usbh_hal_port_toggle_resume(port->hal, false);
1256 if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) {
1257 //Port state unexpectedly changed
1258 ret = ESP_ERR_INVALID_RESPONSE;
1259 goto exit;
1260 }
1261 HCD_EXIT_CRITICAL();
1262 vTaskDelay(pdMS_TO_TICKS(RESUME_RECOVERY_MS));
1263 HCD_ENTER_CRITICAL();
1264 if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) {
1265 //Port state unexpectedly changed
1266 ret = ESP_ERR_INVALID_RESPONSE;
1267 goto exit;
1268 }
1269 port->state = HCD_PORT_STATE_ENABLED;
1270 ret = ESP_OK;
1271 exit:
1272 return ret;
1273 }
1274
_port_cmd_disable(port_t * port)1275 static esp_err_t _port_cmd_disable(port_t *port)
1276 {
1277 esp_err_t ret;
1278 if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_SUSPENDED) {
1279 ret = ESP_ERR_INVALID_STATE;
1280 goto exit;
1281 }
1282 //All pipes must be halted before disabling the port
1283 if (!_port_check_all_pipes_halted(port)){
1284 ret = ESP_ERR_INVALID_STATE;
1285 goto exit;
1286 }
1287 //All pipes are guaranteed to be halted or freed at this point. Proceed to disable the port
1288 port->flags.disable_requested = 1;
1289 usbh_hal_port_disable(port->hal);
1290 _internal_port_event_wait(port);
1291 if (port->state != HCD_PORT_STATE_DISABLED) {
1292 //Port state unexpectedly changed
1293 ret = ESP_ERR_INVALID_RESPONSE;
1294 goto exit;
1295 }
1296 ret = ESP_OK;
1297 exit:
1298 return ret;
1299 }
1300
1301 // ----------------------- Public --------------------------
1302
hcd_port_init(int port_number,const hcd_port_config_t * port_config,hcd_port_handle_t * port_hdl)1303 esp_err_t hcd_port_init(int port_number, const hcd_port_config_t *port_config, hcd_port_handle_t *port_hdl)
1304 {
1305 HCD_CHECK(port_number > 0 && port_config != NULL && port_hdl != NULL, ESP_ERR_INVALID_ARG);
1306 HCD_CHECK(port_number <= NUM_PORTS, ESP_ERR_NOT_FOUND);
1307
1308 //Get a pointer to the correct FIFO bias constant values
1309 const usbh_hal_fifo_config_t *fifo_config;
1310 const fifo_mps_limits_t *mps_limits;
1311 switch (port_config->fifo_bias) {
1312 case HCD_PORT_FIFO_BIAS_BALANCED:
1313 fifo_config = &fifo_config_default;
1314 mps_limits = &mps_limits_default;
1315 break;
1316 case HCD_PORT_FIFO_BIAS_RX:
1317 fifo_config = &fifo_config_bias_rx;
1318 mps_limits = &mps_limits_bias_rx;
1319 break;
1320 case HCD_PORT_FIFO_BIAS_PTX:
1321 fifo_config = &fifo_config_bias_ptx;
1322 mps_limits = &mps_limits_bias_ptx;
1323 break;
1324 default:
1325 fifo_config = NULL;
1326 mps_limits = NULL;
1327 abort();
1328 break;
1329 }
1330
1331 HCD_ENTER_CRITICAL();
1332 HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && !s_hcd_obj->port_obj->initialized, ESP_ERR_INVALID_STATE);
1333 //Port object memory and resources (such as the mutex) already be allocated. Just need to initialize necessary fields only
1334 port_t *port_obj = s_hcd_obj->port_obj;
1335 TAILQ_INIT(&port_obj->pipes_idle_tailq);
1336 TAILQ_INIT(&port_obj->pipes_active_tailq);
1337 port_obj->state = HCD_PORT_STATE_NOT_POWERED;
1338 port_obj->last_event = HCD_PORT_EVENT_NONE;
1339 port_obj->fifo_config = fifo_config;
1340 port_obj->fifo_mps_limits = mps_limits;
1341 port_obj->callback = port_config->callback;
1342 port_obj->callback_arg = port_config->callback_arg;
1343 port_obj->context = port_config->context;
1344 usbh_hal_init(port_obj->hal);
1345 port_obj->initialized = true;
1346 //Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset
1347 memset(port_obj->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t));
1348 esp_intr_enable(s_hcd_obj->isr_hdl);
1349 *port_hdl = (hcd_port_handle_t)port_obj;
1350 HCD_EXIT_CRITICAL();
1351
1352 vTaskDelay(pdMS_TO_TICKS(INIT_DELAY_MS)); //Need a short delay before host mode takes effect
1353 return ESP_OK;
1354 }
1355
hcd_port_deinit(hcd_port_handle_t port_hdl)1356 esp_err_t hcd_port_deinit(hcd_port_handle_t port_hdl)
1357 {
1358 port_t *port = (port_t *)port_hdl;
1359
1360 HCD_ENTER_CRITICAL();
1361 HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized
1362 && port->num_pipes_idle == 0 && port->num_pipes_queued == 0
1363 && (port->state == HCD_PORT_STATE_NOT_POWERED || port->state == HCD_PORT_STATE_RECOVERY)
1364 && port->task_waiting_port_notif == NULL,
1365 ESP_ERR_INVALID_STATE);
1366 port->initialized = false;
1367 esp_intr_disable(s_hcd_obj->isr_hdl);
1368 usbh_hal_deinit(port->hal);
1369 HCD_EXIT_CRITICAL();
1370
1371 return ESP_OK;
1372 }
1373
hcd_port_command(hcd_port_handle_t port_hdl,hcd_port_cmd_t command)1374 esp_err_t hcd_port_command(hcd_port_handle_t port_hdl, hcd_port_cmd_t command)
1375 {
1376 esp_err_t ret = ESP_ERR_INVALID_STATE;
1377 port_t *port = (port_t *)port_hdl;
1378 xSemaphoreTake(port->port_mux, portMAX_DELAY);
1379 HCD_ENTER_CRITICAL();
1380 if (port->initialized && !port->flags.event_pending) { //Port events need to be handled first before issuing a command
1381 port->flags.cmd_processing = 1;
1382 switch (command) {
1383 case HCD_PORT_CMD_POWER_ON: {
1384 ret = _port_cmd_power_on(port);
1385 break;
1386 }
1387 case HCD_PORT_CMD_POWER_OFF: {
1388 ret = _port_cmd_power_off(port);
1389 break;
1390 }
1391 case HCD_PORT_CMD_RESET: {
1392 ret = _port_cmd_reset(port);
1393 break;
1394 }
1395 case HCD_PORT_CMD_SUSPEND: {
1396 ret = _port_cmd_bus_suspend(port);
1397 break;
1398 }
1399 case HCD_PORT_CMD_RESUME: {
1400 ret = _port_cmd_bus_resume(port);
1401 break;
1402 }
1403 case HCD_PORT_CMD_DISABLE: {
1404 ret = _port_cmd_disable(port);
1405 break;
1406 }
1407 }
1408 port->flags.cmd_processing = 0;
1409 }
1410 HCD_EXIT_CRITICAL();
1411 xSemaphoreGive(port->port_mux);
1412 return ret;
1413 }
1414
hcd_port_get_state(hcd_port_handle_t port_hdl)1415 hcd_port_state_t hcd_port_get_state(hcd_port_handle_t port_hdl)
1416 {
1417 port_t *port = (port_t *)port_hdl;
1418 hcd_port_state_t ret;
1419 HCD_ENTER_CRITICAL();
1420 ret = port->state;
1421 HCD_EXIT_CRITICAL();
1422 return ret;
1423 }
1424
hcd_port_get_speed(hcd_port_handle_t port_hdl,usb_speed_t * speed)1425 esp_err_t hcd_port_get_speed(hcd_port_handle_t port_hdl, usb_speed_t *speed)
1426 {
1427 port_t *port = (port_t *)port_hdl;
1428 HCD_CHECK(speed != NULL, ESP_ERR_INVALID_ARG);
1429 HCD_ENTER_CRITICAL();
1430 //Device speed is only valid if there is device connected to the port that has been reset
1431 HCD_CHECK_FROM_CRIT(port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE);
1432 usb_priv_speed_t hal_speed = usbh_hal_port_get_conn_speed(port->hal);
1433 if (hal_speed == USB_PRIV_SPEED_FULL) {
1434 *speed = USB_SPEED_FULL;
1435 } else {
1436 *speed = USB_SPEED_LOW;
1437 }
1438 HCD_EXIT_CRITICAL();
1439 return ESP_OK;
1440 }
1441
hcd_port_handle_event(hcd_port_handle_t port_hdl)1442 hcd_port_event_t hcd_port_handle_event(hcd_port_handle_t port_hdl)
1443 {
1444 port_t *port = (port_t *)port_hdl;
1445 hcd_port_event_t ret = HCD_PORT_EVENT_NONE;
1446 xSemaphoreTake(port->port_mux, portMAX_DELAY);
1447 HCD_ENTER_CRITICAL();
1448 if (port->initialized && port->flags.event_pending) {
1449 port->flags.event_pending = 0;
1450 port->flags.event_processing = 1;
1451 ret = port->last_event;
1452 switch (ret) {
1453 case HCD_PORT_EVENT_CONNECTION: {
1454 if (_port_debounce(port)) {
1455 ret = HCD_PORT_EVENT_CONNECTION;
1456 }
1457 break;
1458 }
1459 case HCD_PORT_EVENT_DISCONNECTION:
1460 case HCD_PORT_EVENT_ERROR:
1461 case HCD_PORT_EVENT_OVERCURRENT: {
1462 break;
1463 }
1464 default: {
1465 break;
1466 }
1467 }
1468 port->flags.event_processing = 0;
1469 } else {
1470 ret = HCD_PORT_EVENT_NONE;
1471 }
1472 HCD_EXIT_CRITICAL();
1473 xSemaphoreGive(port->port_mux);
1474 return ret;
1475 }
1476
hcd_port_recover(hcd_port_handle_t port_hdl)1477 esp_err_t hcd_port_recover(hcd_port_handle_t port_hdl)
1478 {
1479 port_t *port = (port_t *)port_hdl;
1480 HCD_ENTER_CRITICAL();
1481 HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized && port->state == HCD_PORT_STATE_RECOVERY
1482 && port->num_pipes_idle == 0 && port->num_pipes_queued == 0
1483 && port->flags.val == 0 && port->task_waiting_port_notif == NULL,
1484 ESP_ERR_INVALID_STATE);
1485 //We are about to do a soft reset on the peripheral. Disable the peripheral throughout
1486 esp_intr_disable(s_hcd_obj->isr_hdl);
1487 usbh_hal_core_soft_reset(port->hal);
1488 port->state = HCD_PORT_STATE_NOT_POWERED;
1489 port->last_event = HCD_PORT_EVENT_NONE;
1490 port->flags.val = 0;
1491 //Soft reset wipes all registers so we need to reinitialize the HAL
1492 usbh_hal_init(port->hal);
1493 //Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset
1494 memset(port->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t));
1495 esp_intr_enable(s_hcd_obj->isr_hdl);
1496 HCD_EXIT_CRITICAL();
1497 return ESP_OK;
1498 }
1499
hcd_port_get_context(hcd_port_handle_t port_hdl)1500 void *hcd_port_get_context(hcd_port_handle_t port_hdl)
1501 {
1502 port_t *port = (port_t *)port_hdl;
1503 void *ret;
1504 HCD_ENTER_CRITICAL();
1505 ret = port->context;
1506 HCD_EXIT_CRITICAL();
1507 return ret;
1508 }
1509
hcd_port_set_fifo_bias(hcd_port_handle_t port_hdl,hcd_port_fifo_bias_t bias)1510 esp_err_t hcd_port_set_fifo_bias(hcd_port_handle_t port_hdl, hcd_port_fifo_bias_t bias)
1511 {
1512 esp_err_t ret;
1513 //Get a pointer to the correct FIFO bias constant values
1514 const usbh_hal_fifo_config_t *fifo_config;
1515 const fifo_mps_limits_t *mps_limits;
1516 switch (bias) {
1517 case HCD_PORT_FIFO_BIAS_BALANCED:
1518 fifo_config = &fifo_config_default;
1519 mps_limits = &mps_limits_default;
1520 break;
1521 case HCD_PORT_FIFO_BIAS_RX:
1522 fifo_config = &fifo_config_bias_rx;
1523 mps_limits = &mps_limits_bias_rx;
1524 break;
1525 case HCD_PORT_FIFO_BIAS_PTX:
1526 fifo_config = &fifo_config_bias_ptx;
1527 mps_limits = &mps_limits_bias_ptx;
1528 break;
1529 default:
1530 fifo_config = NULL;
1531 mps_limits = NULL;
1532 abort();
1533 break;
1534 }
1535 //Configure the new FIFO sizes and store the pointers
1536 port_t *port = (port_t *)port_hdl;
1537 xSemaphoreTake(port->port_mux, portMAX_DELAY);
1538 HCD_ENTER_CRITICAL();
1539 //Check that port is in the correct state to update FIFO sizes
1540 if (port->initialized && !port->flags.event_pending && port->num_pipes_idle == 0 && port->num_pipes_queued == 0) {
1541 usbh_hal_set_fifo_size(port->hal, fifo_config);
1542 port->fifo_config = fifo_config;
1543 port->fifo_mps_limits = mps_limits;
1544 ret = ESP_OK;
1545 } else {
1546 ret = ESP_ERR_INVALID_STATE;
1547 }
1548 HCD_EXIT_CRITICAL();
1549 xSemaphoreGive(port->port_mux);
1550 return ret;
1551 }
1552
1553 // --------------------------------------------------- HCD Pipes -------------------------------------------------------
1554
1555 // ----------------------- Private -------------------------
1556
pipe_decode_error_event(usbh_hal_chan_error_t chan_error)1557 static inline hcd_pipe_event_t pipe_decode_error_event(usbh_hal_chan_error_t chan_error)
1558 {
1559 hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
1560 switch (chan_error) {
1561 case USBH_HAL_CHAN_ERROR_XCS_XACT:
1562 event = HCD_PIPE_EVENT_ERROR_XFER;
1563 break;
1564 case USBH_HAL_CHAN_ERROR_BNA:
1565 event = HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL;
1566 break;
1567 case USBH_HAL_CHAN_ERROR_PKT_BBL:
1568 event = HCD_PIPE_EVENT_ERROR_OVERFLOW;
1569 break;
1570 case USBH_HAL_CHAN_ERROR_STALL:
1571 event = HCD_PIPE_EVENT_ERROR_STALL;
1572 break;
1573 }
1574 return event;
1575 }
1576
buffer_block_alloc(usb_transfer_type_t type)1577 static dma_buffer_block_t *buffer_block_alloc(usb_transfer_type_t type)
1578 {
1579 int desc_list_len;
1580 switch (type) {
1581 case USB_TRANSFER_TYPE_CTRL:
1582 desc_list_len = XFER_LIST_LEN_CTRL;
1583 break;
1584 case USB_TRANSFER_TYPE_ISOCHRONOUS:
1585 desc_list_len = XFER_LIST_LEN_ISOC;
1586 break;
1587 case USB_TRANSFER_TYPE_BULK:
1588 desc_list_len = XFER_LIST_LEN_BULK;
1589 break;
1590 default: //USB_TRANSFER_TYPE_INTR:
1591 desc_list_len = XFER_LIST_LEN_INTR;
1592 break;
1593 }
1594 dma_buffer_block_t *buffer = calloc(1, sizeof(dma_buffer_block_t));
1595 void *xfer_desc_list = heap_caps_aligned_calloc(USBH_HAL_DMA_MEM_ALIGN, desc_list_len, sizeof(usbh_ll_dma_qtd_t), MALLOC_CAP_DMA);
1596 if (buffer == NULL || xfer_desc_list == NULL) {
1597 free(buffer);
1598 heap_caps_free(xfer_desc_list);
1599 return NULL;
1600 }
1601 buffer->xfer_desc_list = xfer_desc_list;
1602 return buffer;
1603 }
1604
buffer_block_free(dma_buffer_block_t * buffer)1605 static void buffer_block_free(dma_buffer_block_t *buffer)
1606 {
1607 if (buffer == NULL) {
1608 return;
1609 }
1610 heap_caps_free(buffer->xfer_desc_list);
1611 free(buffer);
1612 }
1613
pipe_alloc_check_args(const hcd_pipe_config_t * pipe_config,usb_speed_t port_speed,const fifo_mps_limits_t * mps_limits,usb_transfer_type_t type,bool is_default_pipe)1614 static bool pipe_alloc_check_args(const hcd_pipe_config_t *pipe_config, usb_speed_t port_speed, const fifo_mps_limits_t *mps_limits, usb_transfer_type_t type, bool is_default_pipe)
1615 {
1616 //Check if pipe can be supported
1617 if (port_speed == USB_SPEED_LOW && pipe_config->dev_speed == USB_SPEED_FULL) {
1618 //Low speed port does not supported full speed pipe
1619 return false;
1620 }
1621 if (pipe_config->dev_speed == USB_SPEED_LOW && (type == USB_TRANSFER_TYPE_BULK || type == USB_TRANSFER_TYPE_ISOCHRONOUS)) {
1622 //Low speed does not support Bulk or Isochronous pipes
1623 return false;
1624 }
1625 //Check interval of pipe
1626 if (type == USB_TRANSFER_TYPE_INTR &&
1627 (pipe_config->ep_desc->bInterval > 0 && pipe_config->ep_desc->bInterval > 32)) {
1628 //Interval not supported for interrupt pipe
1629 return false;
1630 }
1631 if (type == USB_TRANSFER_TYPE_ISOCHRONOUS &&
1632 (pipe_config->ep_desc->bInterval > 0 && pipe_config->ep_desc->bInterval > 6)) {
1633 //Interval not supported for isochronous pipe (where 0 < 2^(bInterval - 1) <= 32)
1634 return false;
1635 }
1636 if (is_default_pipe) {
1637 return true;
1638 }
1639
1640 int limit;
1641 if (USB_EP_DESC_GET_EP_DIR(pipe_config->ep_desc)) { //IN
1642 limit = mps_limits->in_mps;
1643 } else { //OUT
1644 if (type == USB_TRANSFER_TYPE_CTRL || type == USB_TRANSFER_TYPE_BULK) {
1645 limit = mps_limits->non_periodic_out_mps;
1646 } else {
1647 limit = mps_limits->periodic_out_mps;
1648 }
1649 }
1650 return (pipe_config->ep_desc->wMaxPacketSize <= limit);
1651 }
1652
pipe_set_ep_char(const hcd_pipe_config_t * pipe_config,usb_transfer_type_t type,bool is_default_pipe,int pipe_idx,usb_speed_t port_speed,usbh_hal_ep_char_t * ep_char)1653 static void pipe_set_ep_char(const hcd_pipe_config_t *pipe_config, usb_transfer_type_t type, bool is_default_pipe, int pipe_idx, usb_speed_t port_speed, usbh_hal_ep_char_t *ep_char)
1654 {
1655 //Initialize EP characteristics
1656 usb_priv_xfer_type_t hal_xfer_type;
1657 switch (type) {
1658 case USB_TRANSFER_TYPE_CTRL:
1659 hal_xfer_type = USB_PRIV_XFER_TYPE_CTRL;
1660 break;
1661 case USB_TRANSFER_TYPE_ISOCHRONOUS:
1662 hal_xfer_type = USB_PRIV_XFER_TYPE_ISOCHRONOUS;
1663 break;
1664 case USB_TRANSFER_TYPE_BULK:
1665 hal_xfer_type = USB_PRIV_XFER_TYPE_BULK;
1666 break;
1667 default: //USB_TRANSFER_TYPE_INTR
1668 hal_xfer_type = USB_PRIV_XFER_TYPE_INTR;
1669 break;
1670 }
1671 ep_char->type = hal_xfer_type;
1672 if (is_default_pipe) {
1673 ep_char->bEndpointAddress = 0;
1674 //Set the default pipe's MPS to the worst case MPS for the device's speed
1675 ep_char->mps = (pipe_config->dev_speed == USB_SPEED_FULL) ? CTRL_EP_MAX_MPS_FS : CTRL_EP_MAX_MPS_LS;
1676 } else {
1677 ep_char->bEndpointAddress = pipe_config->ep_desc->bEndpointAddress;
1678 ep_char->mps = pipe_config->ep_desc->wMaxPacketSize;
1679 }
1680 ep_char->dev_addr = pipe_config->dev_addr;
1681 ep_char->ls_via_fs_hub = (port_speed == USB_SPEED_FULL && pipe_config->dev_speed == USB_SPEED_LOW);
1682 //Calculate the pipe's interval in terms of USB frames
1683 if (type == USB_TRANSFER_TYPE_INTR || type == USB_TRANSFER_TYPE_ISOCHRONOUS) {
1684 int interval_frames;
1685 if (type == USB_TRANSFER_TYPE_INTR) {
1686 interval_frames = pipe_config->ep_desc->bInterval;
1687 } else {
1688 interval_frames = (1 << (pipe_config->ep_desc->bInterval - 1));
1689 }
1690 //Round down interval to nearest power of 2
1691 if (interval_frames >= 32) {
1692 interval_frames = 32;
1693 } else if (interval_frames >= 16) {
1694 interval_frames = 16;
1695 } else if (interval_frames >= 8) {
1696 interval_frames = 8;
1697 } else if (interval_frames >= 4) {
1698 interval_frames = 4;
1699 } else if (interval_frames >= 2) {
1700 interval_frames = 2;
1701 } else if (interval_frames >= 1) {
1702 interval_frames = 1;
1703 }
1704 ep_char->periodic.interval = interval_frames;
1705 //We are the Nth pipe to be allocated. Use N as a phase offset
1706 ep_char->periodic.phase_offset_frames = pipe_idx & (XFER_LIST_LEN_ISOC - 1);
1707 }else {
1708 ep_char->periodic.interval = 0;
1709 ep_char->periodic.phase_offset_frames = 0;
1710 }
1711 }
1712
1713 // ---------------------- Commands -------------------------
1714
_pipe_cmd_halt(pipe_t * pipe)1715 static esp_err_t _pipe_cmd_halt(pipe_t *pipe)
1716 {
1717 esp_err_t ret;
1718
1719 //If pipe is already halted, just return.
1720 if (pipe->state == HCD_PIPE_STATE_HALTED) {
1721 ret = ESP_OK;
1722 goto exit;
1723 }
1724 //If the pipe's port is invalid, we just mark the pipe as halted without needing to halt the underlying channel
1725 if (pipe->port->flags.conn_dev_ena //Skip halting the underlying channel if the port is invalid
1726 && !usbh_hal_chan_request_halt(pipe->chan_obj)) { //Check if the channel is already halted
1727 //Channel is not halted, we need to request and wait for a haltWe need to wait for channel to be halted.
1728 pipe->cs_flags.waiting_halt = 1;
1729 _internal_pipe_event_wait(pipe);
1730 //State should have been updated in the ISR
1731 assert(pipe->state == HCD_PIPE_STATE_HALTED);
1732 } else {
1733 //We are already halted, just need to update the state
1734 usbh_hal_chan_mark_halted(pipe->chan_obj);
1735 pipe->state = HCD_PIPE_STATE_HALTED;
1736 }
1737 ret = ESP_OK;
1738 exit:
1739 return ret;
1740 }
1741
_pipe_cmd_flush(pipe_t * pipe)1742 static esp_err_t _pipe_cmd_flush(pipe_t *pipe)
1743 {
1744 esp_err_t ret;
1745 //The pipe must be halted in order to be flushed
1746 if (pipe->state != HCD_PIPE_STATE_HALTED) {
1747 ret = ESP_ERR_INVALID_STATE;
1748 goto exit;
1749 }
1750 //If the port is still valid, we are canceling transfers. Otherwise, we are flushing due to a port error
1751 bool canceled = pipe->port->flags.conn_dev_ena;
1752 bool call_pipe_cb;
1753 //Flush any filled buffers
1754 call_pipe_cb = _buffer_flush_all(pipe, canceled);
1755 //Move all URBs from the pending tailq to the done tailq
1756 if (pipe->num_urb_pending > 0) {
1757 //Process all remaining pending URBs
1758 urb_t *urb;
1759 TAILQ_FOREACH(urb, &pipe->pending_urb_tailq, tailq_entry) {
1760 //Update the URB's current state
1761 urb->hcd_var = URB_HCD_STATE_DONE;
1762 //URBs were never executed, Update the actual_num_bytes and status
1763 urb->transfer.actual_num_bytes = 0;
1764 urb->transfer.status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
1765 if (pipe->ep_char.type == USB_PRIV_XFER_TYPE_ISOCHRONOUS) {
1766 //Update the URB's isoc packet descriptors as well
1767 for (int pkt_idx = 0; pkt_idx < urb->transfer.num_isoc_packets; pkt_idx++) {
1768 urb->transfer.isoc_packet_desc[pkt_idx].actual_num_bytes = 0;
1769 urb->transfer.isoc_packet_desc[pkt_idx].status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
1770 }
1771 }
1772 }
1773 //Concatenated pending tailq to the done tailq
1774 TAILQ_CONCAT(&pipe->done_urb_tailq, &pipe->pending_urb_tailq, tailq_entry);
1775 pipe->num_urb_done += pipe->num_urb_pending;
1776 pipe->num_urb_pending = 0;
1777 call_pipe_cb = true;
1778 }
1779 if (call_pipe_cb) {
1780 //One or more URBs can be dequeued as a result of the flush. We need to call the callback
1781 HCD_EXIT_CRITICAL();
1782 pipe->callback((hcd_pipe_handle_t)pipe, HCD_PIPE_EVENT_URB_DONE, pipe->callback_arg, false);
1783 HCD_ENTER_CRITICAL();
1784 }
1785 ret = ESP_OK;
1786 exit:
1787 return ret;
1788 }
1789
_pipe_cmd_clear(pipe_t * pipe)1790 static esp_err_t _pipe_cmd_clear(pipe_t *pipe)
1791 {
1792 esp_err_t ret;
1793 //Pipe must be in the halted state in order to be made active, and there must be an enabled device on the port
1794 if (pipe->state != HCD_PIPE_STATE_HALTED || !pipe->port->flags.conn_dev_ena) {
1795 ret = ESP_ERR_INVALID_STATE;
1796 goto exit;
1797 }
1798 //Update the pipe's state
1799 pipe->state = HCD_PIPE_STATE_ACTIVE;
1800 if (pipe->num_urb_pending > 0) {
1801 //Fill as many buffers as possible
1802 while (_buffer_can_fill(pipe)) {
1803 _buffer_fill(pipe);
1804 }
1805 }
1806 //Execute any filled buffers
1807 if (_buffer_can_exec(pipe)) {
1808 _buffer_exec(pipe);
1809 }
1810 ret = ESP_OK;
1811 exit:
1812 return ret;
1813 }
1814
1815 // ----------------------- Public --------------------------
1816
hcd_pipe_alloc(hcd_port_handle_t port_hdl,const hcd_pipe_config_t * pipe_config,hcd_pipe_handle_t * pipe_hdl)1817 esp_err_t hcd_pipe_alloc(hcd_port_handle_t port_hdl, const hcd_pipe_config_t *pipe_config, hcd_pipe_handle_t *pipe_hdl)
1818 {
1819 HCD_CHECK(port_hdl != NULL && pipe_config != NULL && pipe_hdl != NULL, ESP_ERR_INVALID_ARG);
1820 port_t *port = (port_t *)port_hdl;
1821 HCD_ENTER_CRITICAL();
1822 //Can only allocate a pipe if the target port is initialized and connected to an enabled device
1823 HCD_CHECK_FROM_CRIT(port->initialized && port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE);
1824 usb_speed_t port_speed = port->speed;
1825 const fifo_mps_limits_t *mps_limits = port->fifo_mps_limits;
1826 int pipe_idx = port->num_pipes_idle + port->num_pipes_queued;
1827 HCD_EXIT_CRITICAL();
1828
1829 usb_transfer_type_t type;
1830 bool is_default;
1831 if (pipe_config->ep_desc == NULL) {
1832 type = USB_TRANSFER_TYPE_CTRL;
1833 is_default = true;
1834 } else {
1835 type = USB_EP_DESC_GET_XFERTYPE(pipe_config->ep_desc);
1836 is_default = false;
1837 }
1838 //Check if pipe configuration can be supported
1839 if (!pipe_alloc_check_args(pipe_config, port_speed, mps_limits, type, is_default)) {
1840 return ESP_ERR_NOT_SUPPORTED;
1841 }
1842
1843 esp_err_t ret;
1844 //Allocate the pipe resources
1845 pipe_t *pipe = calloc(1, sizeof(pipe_t));
1846 usbh_hal_chan_t *chan_obj = calloc(1, sizeof(usbh_hal_chan_t));
1847 dma_buffer_block_t *buffers[NUM_BUFFERS] = {0};
1848 if (pipe == NULL|| chan_obj == NULL) {
1849 ret = ESP_ERR_NO_MEM;
1850 goto err;
1851 }
1852 for (int i = 0; i < NUM_BUFFERS; i++) {
1853 buffers[i] = buffer_block_alloc(type);
1854 if (buffers[i] == NULL) {
1855 ret = ESP_ERR_NO_MEM;
1856 goto err;
1857 }
1858 }
1859
1860 //Initialize pipe object
1861 TAILQ_INIT(&pipe->pending_urb_tailq);
1862 TAILQ_INIT(&pipe->done_urb_tailq);
1863 for (int i = 0; i < NUM_BUFFERS; i++) {
1864 pipe->buffers[i] = buffers[i];
1865 }
1866 pipe->multi_buffer_control.buffer_num_to_fill = NUM_BUFFERS;
1867 pipe->port = port;
1868 pipe->chan_obj = chan_obj;
1869 usbh_hal_ep_char_t ep_char;
1870 pipe_set_ep_char(pipe_config, type, is_default, pipe_idx, port_speed, &ep_char);
1871 memcpy(&pipe->ep_char, &ep_char, sizeof(usbh_hal_ep_char_t));
1872 pipe->state = HCD_PIPE_STATE_ACTIVE;
1873 pipe->callback = pipe_config->callback;
1874 pipe->callback_arg = pipe_config->callback_arg;
1875 pipe->context = pipe_config->context;
1876
1877 //Allocate channel
1878 HCD_ENTER_CRITICAL();
1879 if (!port->initialized || !port->flags.conn_dev_ena) {
1880 HCD_EXIT_CRITICAL();
1881 ret = ESP_ERR_INVALID_STATE;
1882 goto err;
1883 }
1884 bool chan_allocated = usbh_hal_chan_alloc(port->hal, pipe->chan_obj, (void *) pipe);
1885 if (!chan_allocated) {
1886 HCD_EXIT_CRITICAL();
1887 ret = ESP_ERR_NOT_SUPPORTED;
1888 goto err;
1889 }
1890 usbh_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char);
1891 //Add the pipe to the list of idle pipes in the port object
1892 TAILQ_INSERT_TAIL(&port->pipes_idle_tailq, pipe, tailq_entry);
1893 port->num_pipes_idle++;
1894 HCD_EXIT_CRITICAL();
1895
1896 *pipe_hdl = (hcd_pipe_handle_t)pipe;
1897 return ESP_OK;
1898
1899 err:
1900 for (int i = 0; i < NUM_BUFFERS; i++) {
1901 buffer_block_free(buffers[i]);
1902 }
1903 free(chan_obj);
1904 free(pipe);
1905 return ret;
1906 }
1907
hcd_pipe_free(hcd_pipe_handle_t pipe_hdl)1908 esp_err_t hcd_pipe_free(hcd_pipe_handle_t pipe_hdl)
1909 {
1910 pipe_t *pipe = (pipe_t *)pipe_hdl;
1911 HCD_ENTER_CRITICAL();
1912 //Check that all URBs have been removed and pipe has no pending events
1913 HCD_CHECK_FROM_CRIT(!pipe->multi_buffer_control.buffer_is_executing
1914 && !pipe->cs_flags.has_urb
1915 && !pipe->cs_flags.reset_lock,
1916 ESP_ERR_INVALID_STATE);
1917 //Remove pipe from the list of idle pipes (it must be in the idle list because it should have no queued URBs)
1918 TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
1919 pipe->port->num_pipes_idle--;
1920 usbh_hal_chan_free(pipe->port->hal, pipe->chan_obj);
1921 HCD_EXIT_CRITICAL();
1922
1923 //Free pipe resources
1924 for (int i = 0; i < NUM_BUFFERS; i++) {
1925 buffer_block_free(pipe->buffers[i]);
1926 }
1927 free(pipe->chan_obj);
1928 free(pipe);
1929 return ESP_OK;
1930 }
1931
hcd_pipe_update_mps(hcd_pipe_handle_t pipe_hdl,int mps)1932 esp_err_t hcd_pipe_update_mps(hcd_pipe_handle_t pipe_hdl, int mps)
1933 {
1934 pipe_t *pipe = (pipe_t *)pipe_hdl;
1935 HCD_ENTER_CRITICAL();
1936 //Check if pipe is in the correct state to be updated
1937 HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
1938 !pipe->cs_flags.has_urb &&
1939 !pipe->cs_flags.reset_lock,
1940 ESP_ERR_INVALID_STATE);
1941 pipe->ep_char.mps = mps;
1942 //Update the underlying channel's registers
1943 usbh_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
1944 HCD_EXIT_CRITICAL();
1945 return ESP_OK;
1946 }
1947
hcd_pipe_update_dev_addr(hcd_pipe_handle_t pipe_hdl,uint8_t dev_addr)1948 esp_err_t hcd_pipe_update_dev_addr(hcd_pipe_handle_t pipe_hdl, uint8_t dev_addr)
1949 {
1950 pipe_t *pipe = (pipe_t *)pipe_hdl;
1951 HCD_ENTER_CRITICAL();
1952 //Check if pipe is in the correct state to be updated
1953 HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
1954 !pipe->cs_flags.has_urb &&
1955 !pipe->cs_flags.reset_lock,
1956 ESP_ERR_INVALID_STATE);
1957 pipe->ep_char.dev_addr = dev_addr;
1958 //Update the underlying channel's registers
1959 usbh_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
1960 HCD_EXIT_CRITICAL();
1961 return ESP_OK;
1962 }
1963
hcd_pipe_update_callback(hcd_pipe_handle_t pipe_hdl,hcd_pipe_callback_t callback,void * user_arg)1964 esp_err_t hcd_pipe_update_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_callback_t callback, void *user_arg)
1965 {
1966 pipe_t *pipe = (pipe_t *)pipe_hdl;
1967 HCD_ENTER_CRITICAL();
1968 //Check if pipe is in the correct state to be updated
1969 HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
1970 !pipe->cs_flags.has_urb &&
1971 !pipe->cs_flags.reset_lock,
1972 ESP_ERR_INVALID_STATE);
1973 pipe->callback = callback;
1974 pipe->callback_arg = user_arg;
1975 HCD_EXIT_CRITICAL();
1976 return ESP_OK;
1977 }
1978
hcd_pipe_set_persist_reset(hcd_pipe_handle_t pipe_hdl)1979 esp_err_t hcd_pipe_set_persist_reset(hcd_pipe_handle_t pipe_hdl)
1980 {
1981 pipe_t *pipe = (pipe_t *)pipe_hdl;
1982 HCD_ENTER_CRITICAL();
1983 //Check if pipe is in the correct state to be updated
1984 HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
1985 !pipe->cs_flags.has_urb &&
1986 !pipe->cs_flags.reset_lock,
1987 ESP_ERR_INVALID_STATE);
1988 pipe->cs_flags.persist = 1;
1989 HCD_EXIT_CRITICAL();
1990 return ESP_OK;
1991 }
1992
hcd_pipe_get_context(hcd_pipe_handle_t pipe_hdl)1993 void *hcd_pipe_get_context(hcd_pipe_handle_t pipe_hdl)
1994 {
1995 pipe_t *pipe = (pipe_t *)pipe_hdl;
1996 void *ret;
1997 HCD_ENTER_CRITICAL();
1998 ret = pipe->context;
1999 HCD_EXIT_CRITICAL();
2000 return ret;
2001 }
2002
hcd_pipe_get_state(hcd_pipe_handle_t pipe_hdl)2003 hcd_pipe_state_t hcd_pipe_get_state(hcd_pipe_handle_t pipe_hdl)
2004 {
2005 hcd_pipe_state_t ret;
2006 pipe_t *pipe = (pipe_t *)pipe_hdl;
2007 HCD_ENTER_CRITICAL();
2008 ret = pipe->state;
2009 HCD_EXIT_CRITICAL();
2010 return ret;
2011 }
2012
hcd_pipe_command(hcd_pipe_handle_t pipe_hdl,hcd_pipe_cmd_t command)2013 esp_err_t hcd_pipe_command(hcd_pipe_handle_t pipe_hdl, hcd_pipe_cmd_t command)
2014 {
2015 pipe_t *pipe = (pipe_t *)pipe_hdl;
2016 esp_err_t ret = ESP_OK;
2017
2018 HCD_ENTER_CRITICAL();
2019 //Cannot execute pipe commands the pipe is already executing a command, or if the pipe or its port are no longer valid
2020 if (pipe->cs_flags.reset_lock) {
2021 ret = ESP_ERR_INVALID_STATE;
2022 } else {
2023 pipe->cs_flags.pipe_cmd_processing = 1;
2024 switch (command) {
2025 case HCD_PIPE_CMD_HALT: {
2026 ret = _pipe_cmd_halt(pipe);
2027 break;
2028 }
2029 case HCD_PIPE_CMD_FLUSH: {
2030 ret = _pipe_cmd_flush(pipe);
2031 break;
2032 }
2033 case HCD_PIPE_CMD_CLEAR: {
2034 ret = _pipe_cmd_clear(pipe);
2035 break;
2036 }
2037 }
2038 pipe->cs_flags.pipe_cmd_processing = 0;
2039 }
2040 HCD_EXIT_CRITICAL();
2041 return ret;
2042 }
2043
hcd_pipe_get_event(hcd_pipe_handle_t pipe_hdl)2044 hcd_pipe_event_t hcd_pipe_get_event(hcd_pipe_handle_t pipe_hdl)
2045 {
2046 pipe_t *pipe = (pipe_t *)pipe_hdl;
2047 hcd_pipe_event_t ret;
2048 HCD_ENTER_CRITICAL();
2049 ret = pipe->last_event;
2050 pipe->last_event = HCD_PIPE_EVENT_NONE;
2051 HCD_EXIT_CRITICAL();
2052 return ret;
2053 }
2054
2055 // ------------------------------------------------- Buffer Control ----------------------------------------------------
2056
_buffer_fill_ctrl(dma_buffer_block_t * buffer,usb_transfer_t * transfer)2057 static inline void _buffer_fill_ctrl(dma_buffer_block_t *buffer, usb_transfer_t *transfer)
2058 {
2059 //Get information about the control transfer by analyzing the setup packet (the first 8 bytes of the URB's data)
2060 usb_setup_packet_t *setup_pkt = (usb_setup_packet_t *)transfer->data_buffer;
2061 bool data_stg_in = (setup_pkt->bmRequestType & USB_BM_REQUEST_TYPE_DIR_IN);
2062 bool data_stg_skip = (setup_pkt->wLength == 0);
2063 //Fill setup stage
2064 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, sizeof(usb_setup_packet_t),
2065 USBH_HAL_XFER_DESC_FLAG_SETUP | USBH_HAL_XFER_DESC_FLAG_HOC);
2066 //Fill data stage
2067 if (data_stg_skip) {
2068 //Not data stage. Fill with an empty descriptor
2069 usbh_hal_xfer_desc_clear(buffer->xfer_desc_list, 1);
2070 } else {
2071 //Fill data stage. Note that we still fill with transfer->num_bytes instead of setup_pkt->wLength as it's possible to require more bytes than wLength
2072 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, transfer->data_buffer + sizeof(usb_setup_packet_t), transfer->num_bytes - sizeof(usb_setup_packet_t),
2073 ((data_stg_in) ? USBH_HAL_XFER_DESC_FLAG_IN : 0) | USBH_HAL_XFER_DESC_FLAG_HOC);
2074 }
2075 //Fill status stage (i.e., a zero length packet). If data stage is skipped, the status stage is always IN.
2076 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 2, NULL, 0,
2077 ((data_stg_in && !data_stg_skip) ? 0 : USBH_HAL_XFER_DESC_FLAG_IN) | USBH_HAL_XFER_DESC_FLAG_HOC);
2078 //Update buffer flags
2079 buffer->flags.ctrl.data_stg_in = data_stg_in;
2080 buffer->flags.ctrl.data_stg_skip = data_stg_skip;
2081 buffer->flags.ctrl.cur_stg = 0;
2082 }
2083
_buffer_fill_bulk(dma_buffer_block_t * buffer,usb_transfer_t * transfer,bool is_in,int mps)2084 static inline void _buffer_fill_bulk(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps)
2085 {
2086 //Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS
2087 //Minor optimization: Do the mod operation last
2088 bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (transfer->num_bytes % mps == 0);
2089 if (is_in) {
2090 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes,
2091 USBH_HAL_XFER_DESC_FLAG_IN | USBH_HAL_XFER_DESC_FLAG_HOC);
2092 } else { //OUT
2093 if (zero_len_packet) {
2094 //Adding a zero length packet, so two descriptors are used.
2095 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, 0);
2096 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, NULL, 0, USBH_HAL_XFER_DESC_FLAG_HOC);
2097 } else {
2098 //Zero length packet not required. One descriptor is enough
2099 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, USBH_HAL_XFER_DESC_FLAG_HOC);
2100 }
2101 }
2102 //Update buffer flags
2103 buffer->flags.bulk.zero_len_packet = zero_len_packet;
2104 }
2105
_buffer_fill_intr(dma_buffer_block_t * buffer,usb_transfer_t * transfer,bool is_in,int mps)2106 static inline void _buffer_fill_intr(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps)
2107 {
2108 int num_qtds;
2109 int mod_mps = transfer->num_bytes % mps;
2110 //Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS
2111 bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (mod_mps == 0);
2112 if (is_in) {
2113 assert(mod_mps == 0); //IN transfers MUST be integer multiple of MPS
2114 num_qtds = transfer->num_bytes / mps; //Can just floor divide as it's already multiple of MPS
2115 } else {
2116 num_qtds = transfer->num_bytes / mps; //Floor division to get the number of MPS sized packets
2117 if (mod_mps > 0) {
2118 num_qtds++; //Add a short packet for the remainder
2119 }
2120 }
2121 assert((zero_len_packet) ? num_qtds + 1 : num_qtds <= XFER_LIST_LEN_INTR); //Check that the number of QTDs doesn't exceed the QTD list's length
2122
2123 uint32_t xfer_desc_flags = (is_in) ? USBH_HAL_XFER_DESC_FLAG_IN : 0;
2124 int bytes_filled = 0;
2125 //Fill all but last QTD
2126 for (int i = 0; i < num_qtds - 1; i++) {
2127 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, i, &transfer->data_buffer[bytes_filled], mps, xfer_desc_flags);
2128 bytes_filled += mps;
2129 }
2130 //Fill last QTD and zero length packet
2131 if (zero_len_packet) {
2132 //Fill in last data packet without HOC flag
2133 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled,
2134 xfer_desc_flags);
2135 //HOC flag goes to zero length packet instead
2136 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds, NULL, 0, USBH_HAL_XFER_DESC_FLAG_HOC);
2137 } else {
2138 //Zero length packet not required. Fill in last QTD with HOC flag
2139 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled,
2140 xfer_desc_flags | USBH_HAL_XFER_DESC_FLAG_HOC);
2141 }
2142
2143 //Update buffer members and flags
2144 buffer->flags.intr.num_qtds = num_qtds;
2145 buffer->flags.intr.zero_len_packet = zero_len_packet;
2146 }
2147
_buffer_fill_isoc(dma_buffer_block_t * buffer,usb_transfer_t * transfer,bool is_in,int mps,int interval,int start_idx)2148 static inline void _buffer_fill_isoc(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps, int interval, int start_idx)
2149 {
2150 assert(interval > 0);
2151 int total_num_desc = transfer->num_isoc_packets * interval;
2152 assert(total_num_desc <= XFER_LIST_LEN_ISOC);
2153 int desc_idx = start_idx;
2154 int bytes_filled = 0;
2155 //For each packet, fill in a descriptor and a interval-1 blank descriptor after it
2156 for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) {
2157 int xfer_len = transfer->isoc_packet_desc[pkt_idx].num_bytes;
2158 uint32_t flags = (is_in) ? USBH_HAL_XFER_DESC_FLAG_IN : 0;
2159 if (pkt_idx == transfer->num_isoc_packets - 1) {
2160 //Last packet, set the the HOC flag
2161 flags |= USBH_HAL_XFER_DESC_FLAG_HOC;
2162 }
2163 usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, desc_idx, &transfer->data_buffer[bytes_filled], xfer_len, flags);
2164 bytes_filled += xfer_len;
2165 if (++desc_idx >= XFER_LIST_LEN_ISOC) {
2166 desc_idx = 0;
2167 }
2168 //Clear descriptors for unscheduled frames
2169 for (int i = 0; i < interval - 1; i++) {
2170 usbh_hal_xfer_desc_clear(buffer->xfer_desc_list, desc_idx);
2171 if (++desc_idx >= XFER_LIST_LEN_ISOC) {
2172 desc_idx = 0;
2173 }
2174 }
2175 }
2176 //Update buffer members and flags
2177 buffer->flags.isoc.num_qtds = total_num_desc;
2178 buffer->flags.isoc.interval = interval;
2179 buffer->flags.isoc.start_idx = start_idx;
2180 buffer->flags.isoc.next_start_idx = desc_idx;
2181 }
2182
_buffer_fill(pipe_t * pipe)2183 static void _buffer_fill(pipe_t *pipe)
2184 {
2185 //Get an URB from the pending tailq
2186 urb_t *urb = TAILQ_FIRST(&pipe->pending_urb_tailq);
2187 assert(pipe->num_urb_pending > 0 && urb != NULL);
2188 TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry);
2189 pipe->num_urb_pending--;
2190
2191 //Select the inactive buffer
2192 assert(pipe->multi_buffer_control.buffer_num_to_exec <= NUM_BUFFERS);
2193 dma_buffer_block_t *buffer_to_fill = pipe->buffers[pipe->multi_buffer_control.wr_idx];
2194 buffer_to_fill->status_flags.val = 0; //Clear the buffer's status flags
2195 assert(buffer_to_fill->urb == NULL);
2196 bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
2197 int mps = pipe->ep_char.mps;
2198 usb_transfer_t *transfer = &urb->transfer;
2199 switch (pipe->ep_char.type) {
2200 case USB_PRIV_XFER_TYPE_CTRL: {
2201 _buffer_fill_ctrl(buffer_to_fill, transfer);
2202 break;
2203 }
2204 case USB_PRIV_XFER_TYPE_ISOCHRONOUS: {
2205 uint32_t start_idx;
2206 if (pipe->multi_buffer_control.buffer_num_to_exec == 0) {
2207 //There are no more previously filled buffers to execute. We need to calculate a new start index based on HFNUM and the pipe's schedule
2208 uint32_t cur_frame_num = usbh_hal_port_get_cur_frame_num(pipe->port->hal);
2209 uint32_t cur_mod_idx_no_offset = (cur_frame_num - pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1); //Get the modulated index (i.e., the Nth desc in the descriptor list)
2210 //This is the non-offset modulated QTD index of the last scheduled interval
2211 uint32_t last_interval_mod_idx_no_offset = (cur_mod_idx_no_offset / pipe->ep_char.periodic.interval) * pipe->ep_char.periodic.interval; //Floor divide and the multiply again
2212 uint32_t next_interval_idx_no_offset = (last_interval_mod_idx_no_offset + pipe->ep_char.periodic.interval);
2213 //We want at least a half interval or 2 frames of buffer space
2214 if (next_interval_idx_no_offset - cur_mod_idx_no_offset > (pipe->ep_char.periodic.interval / 2)
2215 && next_interval_idx_no_offset - cur_mod_idx_no_offset >= 2) {
2216 start_idx = (next_interval_idx_no_offset + pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1);
2217 } else {
2218 //Not enough time until the next schedule, add another interval to it.
2219 start_idx = (next_interval_idx_no_offset + pipe->ep_char.periodic.interval + pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1);
2220 }
2221 } else {
2222 //Start index is based on previously filled buffer
2223 uint32_t prev_buffer_idx = (pipe->multi_buffer_control.wr_idx - 1) & (NUM_BUFFERS - 1);
2224 dma_buffer_block_t *prev_filled_buffer = pipe->buffers[prev_buffer_idx];
2225 start_idx = prev_filled_buffer->flags.isoc.next_start_idx;
2226 }
2227 _buffer_fill_isoc(buffer_to_fill, transfer, is_in, mps, (int)pipe->ep_char.periodic.interval, start_idx);
2228 break;
2229 }
2230 case USB_PRIV_XFER_TYPE_BULK: {
2231 _buffer_fill_bulk(buffer_to_fill, transfer, is_in, mps);
2232 break;
2233 }
2234 case USB_PRIV_XFER_TYPE_INTR: {
2235 _buffer_fill_intr(buffer_to_fill, transfer, is_in, mps);
2236 break;
2237 }
2238 default: {
2239 abort();
2240 break;
2241 }
2242 }
2243 buffer_to_fill->urb = urb;
2244 urb->hcd_var = URB_HCD_STATE_INFLIGHT;
2245 //Update multi buffer flags
2246 pipe->multi_buffer_control.wr_idx++;
2247 pipe->multi_buffer_control.buffer_num_to_fill--;
2248 pipe->multi_buffer_control.buffer_num_to_exec++;
2249 }
2250
_buffer_exec(pipe_t * pipe)2251 static void _buffer_exec(pipe_t *pipe)
2252 {
2253 assert(pipe->multi_buffer_control.rd_idx != pipe->multi_buffer_control.wr_idx || pipe->multi_buffer_control.buffer_num_to_exec > 0);
2254 dma_buffer_block_t *buffer_to_exec = pipe->buffers[pipe->multi_buffer_control.rd_idx];
2255 assert(buffer_to_exec->urb != NULL);
2256
2257 uint32_t start_idx;
2258 int desc_list_len;
2259 switch (pipe->ep_char.type) {
2260 case USB_PRIV_XFER_TYPE_CTRL: {
2261 start_idx = 0;
2262 desc_list_len = XFER_LIST_LEN_CTRL;
2263 //Set the channel's direction to OUT and PID to 0 respectively for the the setup stage
2264 usbh_hal_chan_set_dir(pipe->chan_obj, false); //Setup stage is always OUT
2265 usbh_hal_chan_set_pid(pipe->chan_obj, 0); //Setup stage always has a PID of DATA0
2266 break;
2267 }
2268 case USB_PRIV_XFER_TYPE_ISOCHRONOUS: {
2269 start_idx = buffer_to_exec->flags.isoc.start_idx;
2270 desc_list_len = XFER_LIST_LEN_ISOC;
2271 break;
2272 }
2273 case USB_PRIV_XFER_TYPE_BULK: {
2274 start_idx = 0;
2275 desc_list_len = (buffer_to_exec->flags.bulk.zero_len_packet) ? XFER_LIST_LEN_BULK : 1;
2276 break;
2277 }
2278 case USB_PRIV_XFER_TYPE_INTR: {
2279 start_idx = 0;
2280 desc_list_len = (buffer_to_exec->flags.intr.zero_len_packet) ? buffer_to_exec->flags.intr.num_qtds + 1 : buffer_to_exec->flags.intr.num_qtds;
2281 break;
2282 }
2283 default: {
2284 start_idx = 0;
2285 desc_list_len = 0;
2286 abort();
2287 break;
2288 }
2289 }
2290 //Update buffer and multi buffer flags
2291 buffer_to_exec->status_flags.executing = 1;
2292 pipe->multi_buffer_control.buffer_is_executing = 1;
2293 usbh_hal_chan_activate(pipe->chan_obj, buffer_to_exec->xfer_desc_list, desc_list_len, start_idx);
2294 }
2295
_buffer_exec_cont(pipe_t * pipe)2296 static void _buffer_exec_cont(pipe_t *pipe)
2297 {
2298 //This should only ever be called on control transfers
2299 assert(pipe->ep_char.type == USB_PRIV_XFER_TYPE_CTRL);
2300 dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx];
2301 bool next_dir_is_in;
2302 int next_pid;
2303 assert(buffer_inflight->flags.ctrl.cur_stg != 2);
2304 if (buffer_inflight->flags.ctrl.cur_stg == 0) { //Just finished control stage
2305 if (buffer_inflight->flags.ctrl.data_stg_skip) {
2306 //Skipping data stage. Go straight to status stage
2307 next_dir_is_in = true; //With no data stage, status stage must be IN
2308 next_pid = 1; //Status stage always has a PID of DATA1
2309 buffer_inflight->flags.ctrl.cur_stg = 2; //Skip over the null descriptor representing the skipped data stage
2310 } else {
2311 //Go to data stage
2312 next_dir_is_in = buffer_inflight->flags.ctrl.data_stg_in;
2313 next_pid = 1; //Data stage always starts with a PID of DATA1
2314 buffer_inflight->flags.ctrl.cur_stg = 1;
2315 }
2316 } else { //cur_stg == 1. //Just finished data stage. Go to status stage
2317 next_dir_is_in = !buffer_inflight->flags.ctrl.data_stg_in; //Status stage is always the opposite direction of data stage
2318 next_pid = 1; //Status stage always has a PID of DATA1
2319 buffer_inflight->flags.ctrl.cur_stg = 2;
2320 }
2321 //Continue the control transfer
2322 usbh_hal_chan_set_dir(pipe->chan_obj, next_dir_is_in);
2323 usbh_hal_chan_set_pid(pipe->chan_obj, next_pid);
2324 usbh_hal_chan_activate(pipe->chan_obj, buffer_inflight->xfer_desc_list, XFER_LIST_LEN_CTRL, buffer_inflight->flags.ctrl.cur_stg);
2325 }
2326
_buffer_parse_ctrl(dma_buffer_block_t * buffer)2327 static inline void _buffer_parse_ctrl(dma_buffer_block_t *buffer)
2328 {
2329 usb_transfer_t *transfer = &buffer->urb->transfer;
2330 //Update URB's actual number of bytes
2331 if (buffer->flags.ctrl.data_stg_skip) {
2332 //There was no data stage. Just set the actual length to the size of the setup packet
2333 transfer->actual_num_bytes = sizeof(usb_setup_packet_t);
2334 } else {
2335 //Parse the data stage for the remaining length
2336 int rem_len;
2337 int desc_status;
2338 usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, 1, &rem_len, &desc_status);
2339 assert(desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
2340 assert(rem_len <= (transfer->num_bytes - sizeof(usb_setup_packet_t)));
2341 transfer->actual_num_bytes = transfer->num_bytes - rem_len;
2342 }
2343 //Update URB status
2344 transfer->status = USB_TRANSFER_STATUS_COMPLETED;
2345 //Clear the descriptor list
2346 memset(buffer->xfer_desc_list, XFER_LIST_LEN_CTRL, sizeof(usbh_ll_dma_qtd_t));
2347 }
2348
_buffer_parse_bulk(dma_buffer_block_t * buffer)2349 static inline void _buffer_parse_bulk(dma_buffer_block_t *buffer)
2350 {
2351 usb_transfer_t *transfer = &buffer->urb->transfer;
2352 //Update URB's actual number of bytes
2353 int rem_len;
2354 int desc_status;
2355 usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, 0, &rem_len, &desc_status);
2356 assert(desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
2357 assert(rem_len <= transfer->num_bytes);
2358 transfer->actual_num_bytes = transfer->num_bytes - rem_len;
2359 //Update URB's status
2360 transfer->status = USB_TRANSFER_STATUS_COMPLETED;
2361 //Clear the descriptor list
2362 memset(buffer->xfer_desc_list, XFER_LIST_LEN_BULK, sizeof(usbh_ll_dma_qtd_t));
2363 }
2364
_buffer_parse_intr(dma_buffer_block_t * buffer,bool is_in,int mps)2365 static inline void _buffer_parse_intr(dma_buffer_block_t *buffer, bool is_in, int mps)
2366 {
2367 usb_transfer_t *transfer = &buffer->urb->transfer;
2368 int intr_stop_idx = buffer->status_flags.stop_idx;
2369 if (is_in) {
2370 if (intr_stop_idx > 0) { //This is an early stop (short packet)
2371 assert(intr_stop_idx <= buffer->flags.intr.num_qtds);
2372 int rem_len;
2373 int desc_status;
2374 for (int i = 0; i < intr_stop_idx - 1; i++) { //Check all packets before the short
2375 usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
2376 assert(rem_len == 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
2377 }
2378 //Check the short packet
2379 usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, intr_stop_idx - 1, &rem_len, &desc_status);
2380 assert(rem_len > 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
2381 //Update actual bytes
2382 transfer->actual_num_bytes = (mps * intr_stop_idx - 2) + (mps - rem_len);
2383 } else {
2384 //Check that all but the last packet transmitted MPS
2385 for (int i = 0; i < buffer->flags.intr.num_qtds - 1; i++) {
2386 int rem_len;
2387 int desc_status;
2388 usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
2389 assert(rem_len == 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
2390 }
2391 //Check the last packet
2392 int last_packet_rem_len;
2393 int last_packet_desc_status;
2394 usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, buffer->flags.intr.num_qtds - 1, &last_packet_rem_len, &last_packet_desc_status);
2395 assert(last_packet_desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
2396 //All packets except last MUST be MPS. So just deduct the remaining length of the last packet to get actual number of bytes
2397 transfer->actual_num_bytes = transfer->num_bytes - last_packet_rem_len;
2398 }
2399 } else {
2400 //OUT INTR transfers can only complete successfully if all packets have been transmitted. Double check
2401 for (int i = 0 ; i < buffer->flags.intr.num_qtds; i++) {
2402 int rem_len;
2403 int desc_status;
2404 usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
2405 assert(rem_len == 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
2406 }
2407 transfer->actual_num_bytes = transfer->num_bytes;
2408 }
2409 //Update URB's status
2410 transfer->status = USB_TRANSFER_STATUS_COMPLETED;
2411 //Clear the descriptor list
2412 memset(buffer->xfer_desc_list, XFER_LIST_LEN_INTR, sizeof(usbh_ll_dma_qtd_t));
2413 }
2414
_buffer_parse_isoc(dma_buffer_block_t * buffer,bool is_in)2415 static inline void _buffer_parse_isoc(dma_buffer_block_t *buffer, bool is_in)
2416 {
2417 usb_transfer_t *transfer = &buffer->urb->transfer;
2418 int desc_idx = buffer->flags.isoc.start_idx; //Descriptor index tracks which descriptor in the QTD list
2419 int total_actual_num_bytes = 0;
2420 for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) {
2421 //Clear the filled descriptor
2422 int rem_len;
2423 int desc_status;
2424 usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, desc_idx, &rem_len, &desc_status);
2425 usbh_hal_xfer_desc_clear(buffer->xfer_desc_list, desc_idx);
2426 assert(rem_len == 0 || is_in);
2427 assert(desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS || USBH_HAL_XFER_DESC_STS_NOT_EXECUTED);
2428 assert(rem_len <= transfer->isoc_packet_desc[pkt_idx].num_bytes); //Check for DMA errata
2429 //Update ISO packet actual length and status
2430 transfer->isoc_packet_desc[pkt_idx].actual_num_bytes = transfer->isoc_packet_desc[pkt_idx].num_bytes - rem_len;
2431 total_actual_num_bytes += transfer->isoc_packet_desc[pkt_idx].actual_num_bytes;
2432 transfer->isoc_packet_desc[pkt_idx].status = (desc_status == USBH_HAL_XFER_DESC_STS_NOT_EXECUTED) ? USB_TRANSFER_STATUS_SKIPPED : USB_TRANSFER_STATUS_COMPLETED;
2433 //A descriptor is also allocated for unscheduled frames. We need to skip over them
2434 desc_idx += buffer->flags.isoc.interval;
2435 if (desc_idx >= XFER_LIST_LEN_INTR) {
2436 desc_idx -= XFER_LIST_LEN_INTR;
2437 }
2438 }
2439 //Write back the actual_num_bytes and statue of entire transfer
2440 assert(total_actual_num_bytes <= transfer->num_bytes);
2441 transfer->actual_num_bytes = total_actual_num_bytes;
2442 transfer->status = USB_TRANSFER_STATUS_COMPLETED;
2443 }
2444
_buffer_parse_error(dma_buffer_block_t * buffer)2445 static inline void _buffer_parse_error(dma_buffer_block_t *buffer)
2446 {
2447 //The URB had an error in one of its packet, or a port error), so we the entire URB an error.
2448 usb_transfer_t *transfer = &buffer->urb->transfer;
2449 transfer->actual_num_bytes = 0;
2450 //Update the overall status of URB. Status will depend on the pipe_event
2451 switch (buffer->status_flags.pipe_event) {
2452 case HCD_PIPE_EVENT_NONE:
2453 transfer->status = (buffer->status_flags.was_canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
2454 break;
2455 case HCD_PIPE_EVENT_ERROR_XFER:
2456 transfer->status = USB_TRANSFER_STATUS_ERROR;
2457 break;
2458 case HCD_PIPE_EVENT_ERROR_OVERFLOW:
2459 transfer->status = USB_TRANSFER_STATUS_OVERFLOW;
2460 break;
2461 case HCD_PIPE_EVENT_ERROR_STALL:
2462 transfer->status = USB_TRANSFER_STATUS_STALL;
2463 break;
2464 default:
2465 //HCD_PIPE_EVENT_URB_DONE and HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL should not occur here
2466 abort();
2467 break;
2468 }
2469 }
2470
_buffer_parse(pipe_t * pipe)2471 static void _buffer_parse(pipe_t *pipe)
2472 {
2473 assert(pipe->multi_buffer_control.buffer_num_to_parse > 0);
2474 dma_buffer_block_t *buffer_to_parse = pipe->buffers[pipe->multi_buffer_control.fr_idx];
2475 assert(buffer_to_parse->urb != NULL);
2476 bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
2477 int mps = pipe->ep_char.mps;
2478
2479 //Parsing the buffer will update the buffer's corresponding URB
2480 if (buffer_to_parse->status_flags.pipe_event == HCD_PIPE_EVENT_URB_DONE) {
2481 //URB was successful
2482 switch (pipe->ep_char.type) {
2483 case USB_PRIV_XFER_TYPE_CTRL: {
2484 _buffer_parse_ctrl(buffer_to_parse);
2485 break;
2486 }
2487 case USB_PRIV_XFER_TYPE_ISOCHRONOUS: {
2488 _buffer_parse_isoc(buffer_to_parse, is_in);
2489 break;
2490 }
2491 case USB_PRIV_XFER_TYPE_BULK: {
2492 _buffer_parse_bulk(buffer_to_parse);
2493 break;
2494 }
2495 case USB_PRIV_XFER_TYPE_INTR: {
2496 _buffer_parse_intr(buffer_to_parse, is_in, mps);
2497 break;
2498 }
2499 default: {
2500 abort();
2501 break;
2502 }
2503 }
2504 } else {
2505 //URB failed
2506 _buffer_parse_error(buffer_to_parse);
2507 }
2508 urb_t *urb = buffer_to_parse->urb;
2509 urb->hcd_var = URB_HCD_STATE_DONE;
2510 buffer_to_parse->urb = NULL;
2511 buffer_to_parse->flags.val = 0; //Clear flags
2512 //Move the URB to the done tailq
2513 TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry);
2514 pipe->num_urb_done++;
2515 //Update multi buffer flags
2516 pipe->multi_buffer_control.fr_idx++;
2517 pipe->multi_buffer_control.buffer_num_to_parse--;
2518 pipe->multi_buffer_control.buffer_num_to_fill++;
2519 }
2520
_buffer_flush_all(pipe_t * pipe,bool canceled)2521 static bool _buffer_flush_all(pipe_t *pipe, bool canceled)
2522 {
2523 int cur_num_to_mark_done = pipe->multi_buffer_control.buffer_num_to_exec;
2524 for (int i = 0; i < cur_num_to_mark_done; i++) {
2525 //Mark any filled buffers as done
2526 _buffer_done(pipe, 0, HCD_PIPE_EVENT_NONE, canceled);
2527 }
2528 int cur_num_to_parse = pipe->multi_buffer_control.buffer_num_to_parse;
2529 for (int i = 0; i < cur_num_to_parse; i++) {
2530 _buffer_parse(pipe);
2531 }
2532 //At this point, there should be no more filled buffers. Only URBs in the pending or done tailq
2533 return (cur_num_to_parse > 0);
2534 }
2535
2536 // ---------------------------------------------- HCD Transfer Descriptors ---------------------------------------------
2537
2538 // ----------------------- Public --------------------------
2539
hcd_urb_enqueue(hcd_pipe_handle_t pipe_hdl,urb_t * urb)2540 esp_err_t hcd_urb_enqueue(hcd_pipe_handle_t pipe_hdl, urb_t *urb)
2541 {
2542 //Check that URB has not already been enqueued
2543 HCD_CHECK(urb->hcd_ptr == NULL && urb->hcd_var == URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE);
2544 pipe_t *pipe = (pipe_t *)pipe_hdl;
2545
2546 HCD_ENTER_CRITICAL();
2547 //Check that pipe and port are in the correct state to receive URBs
2548 HCD_CHECK_FROM_CRIT(pipe->port->state == HCD_PORT_STATE_ENABLED //The pipe's port must be in the correct state
2549 && pipe->state == HCD_PIPE_STATE_ACTIVE //The pipe must be in the correct state
2550 && !pipe->cs_flags.pipe_cmd_processing //Pipe cannot currently be processing a pipe command
2551 && !pipe->cs_flags.reset_lock, //Pipe cannot be persisting through a port reset
2552 ESP_ERR_INVALID_STATE);
2553 //Use the URB's reserved_ptr to store the pipe's
2554 urb->hcd_ptr = (void *)pipe;
2555 //Add the URB to the pipe's pending tailq
2556 urb->hcd_var = URB_HCD_STATE_PENDING;
2557 TAILQ_INSERT_TAIL(&pipe->pending_urb_tailq, urb, tailq_entry);
2558 pipe->num_urb_pending++;
2559 //use the URB's reserved_flags to store the URB's current state
2560 if (_buffer_can_fill(pipe)) {
2561 _buffer_fill(pipe);
2562 }
2563 if (_buffer_can_exec(pipe)) {
2564 _buffer_exec(pipe);
2565 }
2566 if (!pipe->cs_flags.has_urb) {
2567 //This is the first URB to be enqueued into the pipe. Move the pipe to the list of active pipes
2568 TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
2569 TAILQ_INSERT_TAIL(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
2570 pipe->port->num_pipes_idle--;
2571 pipe->port->num_pipes_queued++;
2572 pipe->cs_flags.has_urb = 1;
2573 }
2574 HCD_EXIT_CRITICAL();
2575 return ESP_OK;
2576 }
2577
hcd_urb_dequeue(hcd_pipe_handle_t pipe_hdl)2578 urb_t *hcd_urb_dequeue(hcd_pipe_handle_t pipe_hdl)
2579 {
2580 pipe_t *pipe = (pipe_t *)pipe_hdl;
2581 urb_t *urb;
2582
2583 HCD_ENTER_CRITICAL();
2584 if (pipe->num_urb_done > 0) {
2585 urb = TAILQ_FIRST(&pipe->done_urb_tailq);
2586 TAILQ_REMOVE(&pipe->done_urb_tailq, urb, tailq_entry);
2587 pipe->num_urb_done--;
2588 //Check the URB's reserved fields then reset them
2589 assert(urb->hcd_ptr == (void *)pipe && urb->hcd_var == URB_HCD_STATE_DONE); //The URB's reserved field should have been set to this pipe
2590 urb->hcd_ptr = NULL;
2591 urb->hcd_var = URB_HCD_STATE_IDLE;
2592 if (pipe->cs_flags.has_urb
2593 && pipe->num_urb_pending == 0 && pipe->num_urb_done == 0
2594 && pipe->multi_buffer_control.buffer_num_to_exec == 0 && pipe->multi_buffer_control.buffer_num_to_parse == 0) {
2595 //This pipe has no more enqueued URBs. Move the pipe to the list of idle pipes
2596 TAILQ_REMOVE(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
2597 TAILQ_INSERT_TAIL(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
2598 pipe->port->num_pipes_idle++;
2599 pipe->port->num_pipes_queued--;
2600 pipe->cs_flags.has_urb = 0;
2601 }
2602 } else {
2603 //No more URBs to dequeue from this pipe
2604 urb = NULL;
2605 }
2606 HCD_EXIT_CRITICAL();
2607 return urb;
2608 }
2609
hcd_urb_abort(urb_t * urb)2610 esp_err_t hcd_urb_abort(urb_t *urb)
2611 {
2612 HCD_ENTER_CRITICAL();
2613 //Check that the URB was enqueued to begin with
2614 HCD_CHECK_FROM_CRIT(urb->hcd_ptr != NULL && urb->hcd_var != URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE);
2615 if (urb->hcd_var == URB_HCD_STATE_PENDING) {
2616 //URB has not been executed so it can be aborted
2617 pipe_t *pipe = (pipe_t *)urb->hcd_ptr;
2618 //Remove it form the pending queue
2619 TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry);
2620 pipe->num_urb_pending--;
2621 //Add it to the done queue
2622 TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry);
2623 pipe->num_urb_done++;
2624 //Update the URB's current state, status, and actual length
2625 urb->hcd_var = URB_HCD_STATE_DONE;
2626 if (urb->transfer.num_isoc_packets == 0) {
2627 urb->transfer.actual_num_bytes = 0;
2628 urb->transfer.status = USB_TRANSFER_STATUS_CANCELED;
2629 } else {
2630 //If this is an ISOC URB, update the ISO packet descriptors instead
2631 for (int i = 0; i < urb->transfer.num_isoc_packets; i++) {
2632 urb->transfer.isoc_packet_desc[i].actual_num_bytes = 0;
2633 urb->transfer.isoc_packet_desc[i].status = USB_TRANSFER_STATUS_CANCELED;
2634 }
2635 }
2636 } // Otherwise, the URB is in-flight or already done thus cannot be aborted
2637 HCD_EXIT_CRITICAL();
2638 return ESP_OK;
2639 }
2640