1 /*
2  * FreeRTOS Kernel V10.2.1
3  * Copyright (C) 2019 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
9  * the Software, and to permit persons to whom the Software is furnished to do so,
10  * subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
17  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
18  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
19  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * http://www.FreeRTOS.org
23  * http://aws.amazon.com/freertos
24  *
25  * 1 tab == 4 spaces!
26  */
27 
28 #ifndef CO_ROUTINE_H
29 #define CO_ROUTINE_H
30 
31 #ifndef INC_FREERTOS_H
32 	#error "include FreeRTOS.h must appear in source files before include croutine.h"
33 #endif
34 
35 #include "list.h"
36 
37 #ifdef __cplusplus
38 extern "C" {
39 #endif
40 
41 /* Used to hide the implementation of the co-routine control block.  The
42 control block structure however has to be included in the header due to
43 the macro implementation of the co-routine functionality. */
44 typedef void * CoRoutineHandle_t;
45 
46 /* Defines the prototype to which co-routine functions must conform. */
47 typedef void (*crCOROUTINE_CODE)( CoRoutineHandle_t, UBaseType_t );
48 
49 typedef struct corCoRoutineControlBlock
50 {
51 	crCOROUTINE_CODE 	pxCoRoutineFunction;
52 	ListItem_t			xGenericListItem;	/*< List item used to place the CRCB in ready and blocked queues. */
53 	ListItem_t			xEventListItem;		/*< List item used to place the CRCB in event lists. */
54 	UBaseType_t 		uxPriority;			/*< The priority of the co-routine in relation to other co-routines. */
55 	UBaseType_t 		uxIndex;			/*< Used to distinguish between co-routines when multiple co-routines use the same co-routine function. */
56 	uint16_t 			uxState;			/*< Used internally by the co-routine implementation. */
57 } CRCB_t; /* Co-routine control block.  Note must be identical in size down to uxPriority with TCB_t. */
58 
59 /**
60  * croutine. h
61  *<pre>
62  BaseType_t xCoRoutineCreate(
63                                  crCOROUTINE_CODE pxCoRoutineCode,
64                                  UBaseType_t uxPriority,
65                                  UBaseType_t uxIndex
66                                );</pre>
67  *
68  * Create a new co-routine and add it to the list of co-routines that are
69  * ready to run.
70  *
71  * @param pxCoRoutineCode Pointer to the co-routine function.  Co-routine
72  * functions require special syntax - see the co-routine section of the WEB
73  * documentation for more information.
74  *
75  * @param uxPriority The priority with respect to other co-routines at which
76  *  the co-routine will run.
77  *
78  * @param uxIndex Used to distinguish between different co-routines that
79  * execute the same function.  See the example below and the co-routine section
80  * of the WEB documentation for further information.
81  *
82  * @return pdPASS if the co-routine was successfully created and added to a ready
83  * list, otherwise an error code defined with ProjDefs.h.
84  *
85  * Example usage:
86    <pre>
87  // Co-routine to be created.
88  void vFlashCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
89  {
90  // Variables in co-routines must be declared static if they must maintain value across a blocking call.
91  // This may not be necessary for const variables.
92  static const char cLedToFlash[ 2 ] = { 5, 6 };
93  static const TickType_t uxFlashRates[ 2 ] = { 200, 400 };
94 
95      // Must start every co-routine with a call to crSTART();
96      crSTART( xHandle );
97 
98      for( ;; )
99      {
100          // This co-routine just delays for a fixed period, then toggles
101          // an LED.  Two co-routines are created using this function, so
102          // the uxIndex parameter is used to tell the co-routine which
103          // LED to flash and how int32_t to delay.  This assumes xQueue has
104          // already been created.
105          vParTestToggleLED( cLedToFlash[ uxIndex ] );
106          crDELAY( xHandle, uxFlashRates[ uxIndex ] );
107      }
108 
109      // Must end every co-routine with a call to crEND();
110      crEND();
111  }
112 
113  // Function that creates two co-routines.
114  void vOtherFunction( void )
115  {
116  uint8_t ucParameterToPass;
117  TaskHandle_t xHandle;
118 
119      // Create two co-routines at priority 0.  The first is given index 0
120      // so (from the code above) toggles LED 5 every 200 ticks.  The second
121      // is given index 1 so toggles LED 6 every 400 ticks.
122      for( uxIndex = 0; uxIndex < 2; uxIndex++ )
123      {
124          xCoRoutineCreate( vFlashCoRoutine, 0, uxIndex );
125      }
126  }
127    </pre>
128  * \defgroup xCoRoutineCreate xCoRoutineCreate
129  * \ingroup Tasks
130  */
131 BaseType_t xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode, UBaseType_t uxPriority, UBaseType_t uxIndex );
132 
133 
134 /**
135  * croutine. h
136  *<pre>
137  void vCoRoutineSchedule( void );</pre>
138  *
139  * Run a co-routine.
140  *
141  * vCoRoutineSchedule() executes the highest priority co-routine that is able
142  * to run.  The co-routine will execute until it either blocks, yields or is
143  * preempted by a task.  Co-routines execute cooperatively so one
144  * co-routine cannot be preempted by another, but can be preempted by a task.
145  *
146  * If an application comprises of both tasks and co-routines then
147  * vCoRoutineSchedule should be called from the idle task (in an idle task
148  * hook).
149  *
150  * Example usage:
151    <pre>
152  // This idle task hook will schedule a co-routine each time it is called.
153  // The rest of the idle task will execute between co-routine calls.
154  void vApplicationIdleHook( void )
155  {
156 	vCoRoutineSchedule();
157  }
158 
159  // Alternatively, if you do not require any other part of the idle task to
160  // execute, the idle task hook can call vCoRoutineScheduler() within an
161  // infinite loop.
162  void vApplicationIdleHook( void )
163  {
164     for( ;; )
165     {
166         vCoRoutineSchedule();
167     }
168  }
169  </pre>
170  * \defgroup vCoRoutineSchedule vCoRoutineSchedule
171  * \ingroup Tasks
172  */
173 void vCoRoutineSchedule( void );
174 
175 /**
176  * croutine. h
177  * <pre>
178  crSTART( CoRoutineHandle_t xHandle );</pre>
179  *
180  * This macro MUST always be called at the start of a co-routine function.
181  *
182  * Example usage:
183    <pre>
184  // Co-routine to be created.
185  void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
186  {
187  // Variables in co-routines must be declared static if they must maintain value across a blocking call.
188  static int32_t ulAVariable;
189 
190      // Must start every co-routine with a call to crSTART();
191      crSTART( xHandle );
192 
193      for( ;; )
194      {
195           // Co-routine functionality goes here.
196      }
197 
198      // Must end every co-routine with a call to crEND();
199      crEND();
200  }</pre>
201  * \defgroup crSTART crSTART
202  * \ingroup Tasks
203  */
204 #define crSTART( pxCRCB ) switch( ( ( CRCB_t * )( pxCRCB ) )->uxState ) { case 0:
205 
206 /**
207  * croutine. h
208  * <pre>
209  crEND();</pre>
210  *
211  * This macro MUST always be called at the end of a co-routine function.
212  *
213  * Example usage:
214    <pre>
215  // Co-routine to be created.
216  void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
217  {
218  // Variables in co-routines must be declared static if they must maintain value across a blocking call.
219  static int32_t ulAVariable;
220 
221      // Must start every co-routine with a call to crSTART();
222      crSTART( xHandle );
223 
224      for( ;; )
225      {
226           // Co-routine functionality goes here.
227      }
228 
229      // Must end every co-routine with a call to crEND();
230      crEND();
231  }</pre>
232  * \defgroup crSTART crSTART
233  * \ingroup Tasks
234  */
235 #define crEND() }
236 
237 /*
238  * These macros are intended for internal use by the co-routine implementation
239  * only.  The macros should not be used directly by application writers.
240  */
241 #define crSET_STATE0( xHandle ) ( ( CRCB_t * )( xHandle ) )->uxState = (__LINE__ * 2); return; case (__LINE__ * 2):
242 #define crSET_STATE1( xHandle ) ( ( CRCB_t * )( xHandle ) )->uxState = ((__LINE__ * 2)+1); return; case ((__LINE__ * 2)+1):
243 
244 /**
245  * croutine. h
246  *<pre>
247  crDELAY( CoRoutineHandle_t xHandle, TickType_t xTicksToDelay );</pre>
248  *
249  * Delay a co-routine for a fixed period of time.
250  *
251  * crDELAY can only be called from the co-routine function itself - not
252  * from within a function called by the co-routine function.  This is because
253  * co-routines do not maintain their own stack.
254  *
255  * @param xHandle The handle of the co-routine to delay.  This is the xHandle
256  * parameter of the co-routine function.
257  *
258  * @param xTickToDelay The number of ticks that the co-routine should delay
259  * for.  The actual amount of time this equates to is defined by
260  * configTICK_RATE_HZ (set in FreeRTOSConfig.h).  The constant portTICK_PERIOD_MS
261  * can be used to convert ticks to milliseconds.
262  *
263  * Example usage:
264    <pre>
265  // Co-routine to be created.
266  void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
267  {
268  // Variables in co-routines must be declared static if they must maintain value across a blocking call.
269  // This may not be necessary for const variables.
270  // We are to delay for 200ms.
271  static const xTickType xDelayTime = 200 / portTICK_PERIOD_MS;
272 
273      // Must start every co-routine with a call to crSTART();
274      crSTART( xHandle );
275 
276      for( ;; )
277      {
278         // Delay for 200ms.
279         crDELAY( xHandle, xDelayTime );
280 
281         // Do something here.
282      }
283 
284      // Must end every co-routine with a call to crEND();
285      crEND();
286  }</pre>
287  * \defgroup crDELAY crDELAY
288  * \ingroup Tasks
289  */
290 #define crDELAY( xHandle, xTicksToDelay )												\
291 	if( ( xTicksToDelay ) > 0 )															\
292 	{																					\
293 		vCoRoutineAddToDelayedList( ( xTicksToDelay ), NULL );							\
294 	}																					\
295 	crSET_STATE0( ( xHandle ) );
296 
297 /**
298  * <pre>
299  crQUEUE_SEND(
300                   CoRoutineHandle_t xHandle,
301                   QueueHandle_t pxQueue,
302                   void *pvItemToQueue,
303                   TickType_t xTicksToWait,
304                   BaseType_t *pxResult
305              )</pre>
306  *
307  * The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
308  * equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
309  *
310  * crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
311  * xQueueSend() and xQueueReceive() can only be used from tasks.
312  *
313  * crQUEUE_SEND can only be called from the co-routine function itself - not
314  * from within a function called by the co-routine function.  This is because
315  * co-routines do not maintain their own stack.
316  *
317  * See the co-routine section of the WEB documentation for information on
318  * passing data between tasks and co-routines and between ISR's and
319  * co-routines.
320  *
321  * @param xHandle The handle of the calling co-routine.  This is the xHandle
322  * parameter of the co-routine function.
323  *
324  * @param pxQueue The handle of the queue on which the data will be posted.
325  * The handle is obtained as the return value when the queue is created using
326  * the xQueueCreate() API function.
327  *
328  * @param pvItemToQueue A pointer to the data being posted onto the queue.
329  * The number of bytes of each queued item is specified when the queue is
330  * created.  This number of bytes is copied from pvItemToQueue into the queue
331  * itself.
332  *
333  * @param xTickToDelay The number of ticks that the co-routine should block
334  * to wait for space to become available on the queue, should space not be
335  * available immediately. The actual amount of time this equates to is defined
336  * by configTICK_RATE_HZ (set in FreeRTOSConfig.h).  The constant
337  * portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see example
338  * below).
339  *
340  * @param pxResult The variable pointed to by pxResult will be set to pdPASS if
341  * data was successfully posted onto the queue, otherwise it will be set to an
342  * error defined within ProjDefs.h.
343  *
344  * Example usage:
345    <pre>
346  // Co-routine function that blocks for a fixed period then posts a number onto
347  // a queue.
348  static void prvCoRoutineFlashTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
349  {
350  // Variables in co-routines must be declared static if they must maintain value across a blocking call.
351  static BaseType_t xNumberToPost = 0;
352  static BaseType_t xResult;
353 
354     // Co-routines must begin with a call to crSTART().
355     crSTART( xHandle );
356 
357     for( ;; )
358     {
359         // This assumes the queue has already been created.
360         crQUEUE_SEND( xHandle, xCoRoutineQueue, &xNumberToPost, NO_DELAY, &xResult );
361 
362         if( xResult != pdPASS )
363         {
364             // The message was not posted!
365         }
366 
367         // Increment the number to be posted onto the queue.
368         xNumberToPost++;
369 
370         // Delay for 100 ticks.
371         crDELAY( xHandle, 100 );
372     }
373 
374     // Co-routines must end with a call to crEND().
375     crEND();
376  }</pre>
377  * \defgroup crQUEUE_SEND crQUEUE_SEND
378  * \ingroup Tasks
379  */
380 #define crQUEUE_SEND( xHandle, pxQueue, pvItemToQueue, xTicksToWait, pxResult )			\
381 {																						\
382 	*( pxResult ) = xQueueCRSend( ( pxQueue) , ( pvItemToQueue) , ( xTicksToWait ) );	\
383 	if( *( pxResult ) == errQUEUE_BLOCKED )												\
384 	{																					\
385 		crSET_STATE0( ( xHandle ) );													\
386 		*pxResult = xQueueCRSend( ( pxQueue ), ( pvItemToQueue ), 0 );					\
387 	}																					\
388 	if( *pxResult == errQUEUE_YIELD )													\
389 	{																					\
390 		crSET_STATE1( ( xHandle ) );													\
391 		*pxResult = pdPASS;																\
392 	}																					\
393 }
394 
395 /**
396  * croutine. h
397  * <pre>
398   crQUEUE_RECEIVE(
399                      CoRoutineHandle_t xHandle,
400                      QueueHandle_t pxQueue,
401                      void *pvBuffer,
402                      TickType_t xTicksToWait,
403                      BaseType_t *pxResult
404                  )</pre>
405  *
406  * The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
407  * equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
408  *
409  * crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
410  * xQueueSend() and xQueueReceive() can only be used from tasks.
411  *
412  * crQUEUE_RECEIVE can only be called from the co-routine function itself - not
413  * from within a function called by the co-routine function.  This is because
414  * co-routines do not maintain their own stack.
415  *
416  * See the co-routine section of the WEB documentation for information on
417  * passing data between tasks and co-routines and between ISR's and
418  * co-routines.
419  *
420  * @param xHandle The handle of the calling co-routine.  This is the xHandle
421  * parameter of the co-routine function.
422  *
423  * @param pxQueue The handle of the queue from which the data will be received.
424  * The handle is obtained as the return value when the queue is created using
425  * the xQueueCreate() API function.
426  *
427  * @param pvBuffer The buffer into which the received item is to be copied.
428  * The number of bytes of each queued item is specified when the queue is
429  * created.  This number of bytes is copied into pvBuffer.
430  *
431  * @param xTickToDelay The number of ticks that the co-routine should block
432  * to wait for data to become available from the queue, should data not be
433  * available immediately. The actual amount of time this equates to is defined
434  * by configTICK_RATE_HZ (set in FreeRTOSConfig.h).  The constant
435  * portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see the
436  * crQUEUE_SEND example).
437  *
438  * @param pxResult The variable pointed to by pxResult will be set to pdPASS if
439  * data was successfully retrieved from the queue, otherwise it will be set to
440  * an error code as defined within ProjDefs.h.
441  *
442  * Example usage:
443  <pre>
444  // A co-routine receives the number of an LED to flash from a queue.  It
445  // blocks on the queue until the number is received.
446  static void prvCoRoutineFlashWorkTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
447  {
448  // Variables in co-routines must be declared static if they must maintain value across a blocking call.
449  static BaseType_t xResult;
450  static UBaseType_t uxLEDToFlash;
451 
452     // All co-routines must start with a call to crSTART().
453     crSTART( xHandle );
454 
455     for( ;; )
456     {
457         // Wait for data to become available on the queue.
458         crQUEUE_RECEIVE( xHandle, xCoRoutineQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
459 
460         if( xResult == pdPASS )
461         {
462             // We received the LED to flash - flash it!
463             vParTestToggleLED( uxLEDToFlash );
464         }
465     }
466 
467     crEND();
468  }</pre>
469  * \defgroup crQUEUE_RECEIVE crQUEUE_RECEIVE
470  * \ingroup Tasks
471  */
472 #define crQUEUE_RECEIVE( xHandle, pxQueue, pvBuffer, xTicksToWait, pxResult )			\
473 {																						\
474 	*( pxResult ) = xQueueCRReceive( ( pxQueue) , ( pvBuffer ), ( xTicksToWait ) );		\
475 	if( *( pxResult ) == errQUEUE_BLOCKED ) 											\
476 	{																					\
477 		crSET_STATE0( ( xHandle ) );													\
478 		*( pxResult ) = xQueueCRReceive( ( pxQueue) , ( pvBuffer ), 0 );				\
479 	}																					\
480 	if( *( pxResult ) == errQUEUE_YIELD )												\
481 	{																					\
482 		crSET_STATE1( ( xHandle ) );													\
483 		*( pxResult ) = pdPASS;															\
484 	}																					\
485 }
486 
487 /**
488  * croutine. h
489  * <pre>
490   crQUEUE_SEND_FROM_ISR(
491                             QueueHandle_t pxQueue,
492                             void *pvItemToQueue,
493                             BaseType_t xCoRoutinePreviouslyWoken
494                        )</pre>
495  *
496  * The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
497  * co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
498  * functions used by tasks.
499  *
500  * crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
501  * pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
502  * xQueueReceiveFromISR() can only be used to pass data between a task and and
503  * ISR.
504  *
505  * crQUEUE_SEND_FROM_ISR can only be called from an ISR to send data to a queue
506  * that is being used from within a co-routine.
507  *
508  * See the co-routine section of the WEB documentation for information on
509  * passing data between tasks and co-routines and between ISR's and
510  * co-routines.
511  *
512  * @param xQueue The handle to the queue on which the item is to be posted.
513  *
514  * @param pvItemToQueue A pointer to the item that is to be placed on the
515  * queue.  The size of the items the queue will hold was defined when the
516  * queue was created, so this many bytes will be copied from pvItemToQueue
517  * into the queue storage area.
518  *
519  * @param xCoRoutinePreviouslyWoken This is included so an ISR can post onto
520  * the same queue multiple times from a single interrupt.  The first call
521  * should always pass in pdFALSE.  Subsequent calls should pass in
522  * the value returned from the previous call.
523  *
524  * @return pdTRUE if a co-routine was woken by posting onto the queue.  This is
525  * used by the ISR to determine if a context switch may be required following
526  * the ISR.
527  *
528  * Example usage:
529  <pre>
530  // A co-routine that blocks on a queue waiting for characters to be received.
531  static void vReceivingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
532  {
533  char cRxedChar;
534  BaseType_t xResult;
535 
536      // All co-routines must start with a call to crSTART().
537      crSTART( xHandle );
538 
539      for( ;; )
540      {
541          // Wait for data to become available on the queue.  This assumes the
542          // queue xCommsRxQueue has already been created!
543          crQUEUE_RECEIVE( xHandle, xCommsRxQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
544 
545          // Was a character received?
546          if( xResult == pdPASS )
547          {
548              // Process the character here.
549          }
550      }
551 
552      // All co-routines must end with a call to crEND().
553      crEND();
554  }
555 
556  // An ISR that uses a queue to send characters received on a serial port to
557  // a co-routine.
558  void vUART_ISR( void )
559  {
560  char cRxedChar;
561  BaseType_t xCRWokenByPost = pdFALSE;
562 
563      // We loop around reading characters until there are none left in the UART.
564      while( UART_RX_REG_NOT_EMPTY() )
565      {
566          // Obtain the character from the UART.
567          cRxedChar = UART_RX_REG;
568 
569          // Post the character onto a queue.  xCRWokenByPost will be pdFALSE
570          // the first time around the loop.  If the post causes a co-routine
571          // to be woken (unblocked) then xCRWokenByPost will be set to pdTRUE.
572          // In this manner we can ensure that if more than one co-routine is
573          // blocked on the queue only one is woken by this ISR no matter how
574          // many characters are posted to the queue.
575          xCRWokenByPost = crQUEUE_SEND_FROM_ISR( xCommsRxQueue, &cRxedChar, xCRWokenByPost );
576      }
577  }</pre>
578  * \defgroup crQUEUE_SEND_FROM_ISR crQUEUE_SEND_FROM_ISR
579  * \ingroup Tasks
580  */
581 #define crQUEUE_SEND_FROM_ISR( pxQueue, pvItemToQueue, xCoRoutinePreviouslyWoken ) xQueueCRSendFromISR( ( pxQueue ), ( pvItemToQueue ), ( xCoRoutinePreviouslyWoken ) )
582 
583 
584 /**
585  * croutine. h
586  * <pre>
587   crQUEUE_SEND_FROM_ISR(
588                             QueueHandle_t pxQueue,
589                             void *pvBuffer,
590                             BaseType_t * pxCoRoutineWoken
591                        )</pre>
592  *
593  * The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
594  * co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
595  * functions used by tasks.
596  *
597  * crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
598  * pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
599  * xQueueReceiveFromISR() can only be used to pass data between a task and and
600  * ISR.
601  *
602  * crQUEUE_RECEIVE_FROM_ISR can only be called from an ISR to receive data
603  * from a queue that is being used from within a co-routine (a co-routine
604  * posted to the queue).
605  *
606  * See the co-routine section of the WEB documentation for information on
607  * passing data between tasks and co-routines and between ISR's and
608  * co-routines.
609  *
610  * @param xQueue The handle to the queue on which the item is to be posted.
611  *
612  * @param pvBuffer A pointer to a buffer into which the received item will be
613  * placed.  The size of the items the queue will hold was defined when the
614  * queue was created, so this many bytes will be copied from the queue into
615  * pvBuffer.
616  *
617  * @param pxCoRoutineWoken A co-routine may be blocked waiting for space to become
618  * available on the queue.  If crQUEUE_RECEIVE_FROM_ISR causes such a
619  * co-routine to unblock *pxCoRoutineWoken will get set to pdTRUE, otherwise
620  * *pxCoRoutineWoken will remain unchanged.
621  *
622  * @return pdTRUE an item was successfully received from the queue, otherwise
623  * pdFALSE.
624  *
625  * Example usage:
626  <pre>
627  // A co-routine that posts a character to a queue then blocks for a fixed
628  // period.  The character is incremented each time.
629  static void vSendingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
630  {
631  // cChar holds its value while this co-routine is blocked and must therefore
632  // be declared static.
633  static char cCharToTx = 'a';
634  BaseType_t xResult;
635 
636      // All co-routines must start with a call to crSTART().
637      crSTART( xHandle );
638 
639      for( ;; )
640      {
641          // Send the next character to the queue.
642          crQUEUE_SEND( xHandle, xCoRoutineQueue, &cCharToTx, NO_DELAY, &xResult );
643 
644          if( xResult == pdPASS )
645          {
646              // The character was successfully posted to the queue.
647          }
648 		 else
649 		 {
650 			// Could not post the character to the queue.
651 		 }
652 
653          // Enable the UART Tx interrupt to cause an interrupt in this
654 		 // hypothetical UART.  The interrupt will obtain the character
655 		 // from the queue and send it.
656 		 ENABLE_RX_INTERRUPT();
657 
658 		 // Increment to the next character then block for a fixed period.
659 		 // cCharToTx will maintain its value across the delay as it is
660 		 // declared static.
661 		 cCharToTx++;
662 		 if( cCharToTx > 'x' )
663 		 {
664 			cCharToTx = 'a';
665 		 }
666 		 crDELAY( 100 );
667      }
668 
669      // All co-routines must end with a call to crEND().
670      crEND();
671  }
672 
673  // An ISR that uses a queue to receive characters to send on a UART.
674  void vUART_ISR( void )
675  {
676  char cCharToTx;
677  BaseType_t xCRWokenByPost = pdFALSE;
678 
679      while( UART_TX_REG_EMPTY() )
680      {
681          // Are there any characters in the queue waiting to be sent?
682 		 // xCRWokenByPost will automatically be set to pdTRUE if a co-routine
683 		 // is woken by the post - ensuring that only a single co-routine is
684 		 // woken no matter how many times we go around this loop.
685          if( crQUEUE_RECEIVE_FROM_ISR( pxQueue, &cCharToTx, &xCRWokenByPost ) )
686 		 {
687 			 SEND_CHARACTER( cCharToTx );
688 		 }
689      }
690  }</pre>
691  * \defgroup crQUEUE_RECEIVE_FROM_ISR crQUEUE_RECEIVE_FROM_ISR
692  * \ingroup Tasks
693  */
694 #define crQUEUE_RECEIVE_FROM_ISR( pxQueue, pvBuffer, pxCoRoutineWoken ) xQueueCRReceiveFromISR( ( pxQueue ), ( pvBuffer ), ( pxCoRoutineWoken ) )
695 
696 /*
697  * This function is intended for internal use by the co-routine macros only.
698  * The macro nature of the co-routine implementation requires that the
699  * prototype appears here.  The function should not be used by application
700  * writers.
701  *
702  * Removes the current co-routine from its ready list and places it in the
703  * appropriate delayed list.
704  */
705 void vCoRoutineAddToDelayedList( TickType_t xTicksToDelay, List_t *pxEventList );
706 
707 /*
708  * This function is intended for internal use by the queue implementation only.
709  * The function should not be used by application writers.
710  *
711  * Removes the highest priority co-routine from the event list and places it in
712  * the pending ready list.
713  */
714 BaseType_t xCoRoutineRemoveFromEventList( const List_t *pxEventList );
715 
716 #ifdef __cplusplus
717 }
718 #endif
719 
720 #endif /* CO_ROUTINE_H */
721