Home
last modified time | relevance | path

Searched refs:x_input (Results 1 – 8 of 8) sorted by relevance

/cmsis-nn-latest/Tests/UnitTest/
Dsoftmax_settings.py60 self.x_input = self.x_output = x_in
72 "row_size": self.x_input,
99 f.write("#define {}_ROW_SIZE {}\n".format(prefix, self.x_input))
117 … input_data = self.get_softmax_randomized_input_data(input_data, [self.y_input, self.x_input])
151 input_shape = (self.y_input, self.x_input)
Dmodel_extractor.py97 f.write("#define {}_INPUT_W {}\n".format(prefix, self.x_input))
103 f.write("#define {}_ROW_SIZE {}\n".format(prefix, self.x_input))
124 … f.write("#define {}_INPUT_SIZE {}\n".format(prefix, self.x_input * self.y_input * self.input_ch))
140 … self.input_ch * self.x_input * self.y_input))
149 [self.batches, self.y_input, self.x_input, self.input_ch] = input_shape
156 self.x_input = 1
160 [self.y_input, self.x_input] = input_shape
168 self.calculate_padding(self.x_output, self.y_output, self.x_input, self.y_input)
Dfully_connected_settings.py125 …e("#define {}_ACCUMULATION_DEPTH {}\n".format(prefix, self.input_ch * self.x_input * self.y_input))
149 fc_input_format = [self.batches, self.input_ch * self.x_input * self.y_input]
165 fc_weights_format = [self.input_ch * self.y_input * self.x_input * self.output_ch]
189 fc_weights_format = [self.input_ch * self.y_input * self.x_input * self.output_ch]
227 fc_weights_format = [self.input_ch * self.y_input * self.x_input, self.output_ch]
241 keras.layers.InputLayer(input_shape=(self.y_input * self.x_input * self.input_ch, ),
Dpooling_settings.py89 input_shape = (self.batches, self.y_input, self.x_input, self.input_ch)
113 self.calculate_padding(self.x_output, self.y_output, self.x_input, self.y_input)
Dadd_mul_settings.py68 self.x_input = self.x_output = x_in
75 input_shape = (1, self.y_input, self.x_input, self.input_ch)
148 … self.batches * self.y_input * self.x_input * self.input_ch))
Dconv_settings.py264 output_x = math.ceil(float(self.x_input) / float(self.stride_x))
270 …output_x = math.ceil(float(self.x_input - self.filter_x - dilation_filter_x + 1) / float(self.stri…
277 "input_x": self.x_input,
335 input_shape = (self.batches, self.y_input, self.x_input, self.input_ch)
417 self.calculate_padding(self.x_input, self.y_input, self.x_output, self.y_output)
419 self.calculate_padding(self.x_output, self.y_output, self.x_input, self.y_input)
Dtest_settings.py148 self.x_input = x_in
275 input_shape = [self.batches, self.y_input, self.x_input, self.input_ch]
351 f.write("#define {}_INPUT_W {}\n".format(prefix, self.x_input))
355 … f.write("#define {}_INPUT_SIZE {}\n".format(prefix, self.x_input * self.y_input * self.input_ch))
401 def calculate_padding(self, x_output, y_output, x_input, y_input): argument
407 pad_along_width = max((x_output - 1) * self.stride_x + filter_x - x_input, 0)
464 representative_dataset_shape = (self.batches, self.y_input, self.x_input, self.input_ch)
/cmsis-nn-latest/Tests/UnitTest/RefactoredTestGen/Lib/
Dop_conv.py141 x_input = params["input_w"]
149 pad_along_width = max((x_output - 1) * params["stride_x"] + filter_x - x_input, 0)