Searched refs:x_input (Results 1 – 8 of 8) sorted by relevance
/cmsis-nn-latest/Tests/UnitTest/ |
D | softmax_settings.py | 60 self.x_input = self.x_output = x_in 72 "row_size": self.x_input, 99 f.write("#define {}_ROW_SIZE {}\n".format(prefix, self.x_input)) 117 … input_data = self.get_softmax_randomized_input_data(input_data, [self.y_input, self.x_input]) 151 input_shape = (self.y_input, self.x_input)
|
D | model_extractor.py | 97 f.write("#define {}_INPUT_W {}\n".format(prefix, self.x_input)) 103 f.write("#define {}_ROW_SIZE {}\n".format(prefix, self.x_input)) 124 … f.write("#define {}_INPUT_SIZE {}\n".format(prefix, self.x_input * self.y_input * self.input_ch)) 140 … self.input_ch * self.x_input * self.y_input)) 149 [self.batches, self.y_input, self.x_input, self.input_ch] = input_shape 156 self.x_input = 1 160 [self.y_input, self.x_input] = input_shape 168 self.calculate_padding(self.x_output, self.y_output, self.x_input, self.y_input)
|
D | fully_connected_settings.py | 125 …e("#define {}_ACCUMULATION_DEPTH {}\n".format(prefix, self.input_ch * self.x_input * self.y_input)) 149 fc_input_format = [self.batches, self.input_ch * self.x_input * self.y_input] 165 fc_weights_format = [self.input_ch * self.y_input * self.x_input * self.output_ch] 189 fc_weights_format = [self.input_ch * self.y_input * self.x_input * self.output_ch] 227 fc_weights_format = [self.input_ch * self.y_input * self.x_input, self.output_ch] 241 keras.layers.InputLayer(input_shape=(self.y_input * self.x_input * self.input_ch, ),
|
D | pooling_settings.py | 89 input_shape = (self.batches, self.y_input, self.x_input, self.input_ch) 113 self.calculate_padding(self.x_output, self.y_output, self.x_input, self.y_input)
|
D | add_mul_settings.py | 68 self.x_input = self.x_output = x_in 75 input_shape = (1, self.y_input, self.x_input, self.input_ch) 148 … self.batches * self.y_input * self.x_input * self.input_ch))
|
D | conv_settings.py | 264 output_x = math.ceil(float(self.x_input) / float(self.stride_x)) 270 …output_x = math.ceil(float(self.x_input - self.filter_x - dilation_filter_x + 1) / float(self.stri… 277 "input_x": self.x_input, 335 input_shape = (self.batches, self.y_input, self.x_input, self.input_ch) 417 self.calculate_padding(self.x_input, self.y_input, self.x_output, self.y_output) 419 self.calculate_padding(self.x_output, self.y_output, self.x_input, self.y_input)
|
D | test_settings.py | 148 self.x_input = x_in 275 input_shape = [self.batches, self.y_input, self.x_input, self.input_ch] 351 f.write("#define {}_INPUT_W {}\n".format(prefix, self.x_input)) 355 … f.write("#define {}_INPUT_SIZE {}\n".format(prefix, self.x_input * self.y_input * self.input_ch)) 401 def calculate_padding(self, x_output, y_output, x_input, y_input): argument 407 pad_along_width = max((x_output - 1) * self.stride_x + filter_x - x_input, 0) 464 representative_dataset_shape = (self.batches, self.y_input, self.x_input, self.input_ch)
|
/cmsis-nn-latest/Tests/UnitTest/RefactoredTestGen/Lib/ |
D | op_conv.py | 141 x_input = params["input_w"] 149 pad_along_width = max((x_output - 1) * params["stride_x"] + filter_x - x_input, 0)
|