/cmsis-nn-latest/Tests/UnitTest/RefactoredTestGen/Lib/ |
D | op_utils.py | 17 import numpy as np namespace 63 array = minval + (maxval - minval) * np.random.rand(*dims) 64 array = np.round(array, decimals=decimals) 94 return np.uint8 96 return np.uint16 98 return np.uint32 100 return np.uint64
|
D | op_lstm.py | 20 import numpy as np namespace 145 scales["input_scale"] = np.round(np.random.rand(1) * (maxval - minval) + minval, 6)[0] 146 scales["cell_scale"] = np.round(np.random.rand(1) * (maxval - minval) + maxval, 6)[0] 147 scales["output_scale"] = np.round(np.random.rand(1) * (maxval - minval) + minval, 6)[0] 158 scales[name + "_scale"] = np.round(np.random.rand(1) * (maxval - minval) + minval, 6)[0] 173 …tensors["input_gate_hidden_weights"] = np.random.randint(minval, maxval, size=shapes["hidden_weigh… 174 …tensors["forget_gate_hidden_weights"] = np.random.randint(minval, maxval, size=shapes["hidden_weig… 175 …tensors["cell_gate_hidden_weights"] = np.random.randint(minval, maxval, size=shapes["hidden_weight… 176 …tensors["output_gate_hidden_weights"] = np.random.randint(minval, maxval, size=shapes["hidden_weig… 177 …tensors["input_gate_input_weights"] = np.random.randint(minval, maxval, size=shapes["input_weights… [all …]
|
D | op_fully_connected.py | 20 import numpy as np namespace 82 weights = np.random.randint(minval, maxval, size=shapes["weight_shape"]) 86 weights = np.append(weights, 0) 88 temp = np.reshape(weights, (weights.size // 2, 2)).astype(np.uint8) 93 tensors["input_bias"] = np.random.randint(minval, maxval, size=shapes["bias_shape"])
|
D | op_conv.py | 23 import numpy as np namespace 213 tensors["output_multiplier"] = np.array(per_channel_multiplier) 214 tensors["output_shift"] = np.array(per_channel_shift)
|
D | test.py | 22 import numpy as np namespace 133 tensor = np.clip(tensor, params["out_activation_min"], params["out_activation_max"]) 163 data = np.random.rand(*shape) 164 yield [data.astype(np.float32)] 242 values, counts = np.unique(data, return_counts=True)
|
/cmsis-nn-latest/Tests/UnitTest/ |
D | test_settings.py | 27 import numpy as np namespace 74 randmin=np.iinfo(np.dtype('int8')).min, 75 randmax=np.iinfo(np.dtype('int8')).max, 82 bias_min=np.iinfo(np.dtype('int32')).min, 83 bias_max=np.iinfo(np.dtype('int32')).max, 91 …if self.INT8_MIN != np.iinfo(np.dtype('int8')).min or self.INT8_MAX != np.iinfo(np.dtype('int8')).… 92 …self.INT16_MIN != np.iinfo(np.dtype('int16')).min or self.INT16_MAX != np.iinfo(np.dtype('int16'))… 93 …self.INT32_MIN != np.iinfo(np.dtype('int32')).min or self.INT32_MAX != np.iinfo(np.dtype('int32'))… 212 np.savetxt(file, data.reshape(-1, data.shape[-1]), header=header, delimiter=',') 217 data = np.genfromtxt(f, delimiter=',').reshape(shape) [all …]
|
D | conv_settings.py | 20 import numpy as np namespace 167 self.scaling_factors = np.random.uniform(0.001, 0.01, [self.output_ch]).tolist() 181 data_max = np.amax(data) 182 data_min = np.amin(data) 240 weights = np.append(weights, [0]) 256 output_scale = np.random.uniform(0.02, 0.06) 259 scaling_factors = np.random.uniform(0.001, 0.01, [self.output_ch]).tolist() 300 temp = np.reshape(weights, (len(weights) // 2, 2)).astype(np.uint8) 441 … np.clip(output_data, self.out_activation_min, self.out_activation_max),
|
D | pooling_settings.py | 19 import numpy as np namespace 119 … np.clip(output_data, self.out_activation_min, self.out_activation_max),
|
D | fully_connected_settings.py | 20 import numpy as np namespace 212 temp = np.reshape(weights, (len(weights) // 2, 2)).astype(np.uint8) 294 … np.clip(output_data, self.out_activation_min, self.out_activation_max),
|
D | add_mul_settings.py | 20 import numpy as np namespace 133 … np.clip(output_data, self.out_activation_min, self.out_activation_max),
|
D | lstm_settings.py | 21 import numpy as np namespace 353 output = np.zeros((row, ), dtype=np.int32)
|
D | model_extractor.py | 25 import numpy as np namespace 299 …self.generate_c_array("output_ref", np.clip(output_data, self.out_activation_min, self.out_activat…
|