Searched refs:model (Results 1 – 10 of 10) sorted by relevance
/cmsis-nn-latest/Tests/UnitTest/ |
D | pooling_settings.py | 88 model = keras.models.Sequential() 90 model.add(keras.layers.InputLayer(input_shape=input_shape[1:], batch_size=self.batches)) 92 model.add( 98 model.add( 106 interpreter = self.convert_and_interpret(model, inttype, input_data)
|
D | softmax_settings.py | 150 model = keras.models.Sequential() 152 model.add(keras.layers.Softmax(input_shape=input_shape)) 154 … interpreter = self.convert_and_interpret(model, inttype, tf.expand_dims(input_data, axis=0))
|
D | lstm_settings.py | 157 model = keras.Model(input_layer, lstm_layer, name="LSTM") 167 print("Updating weights", model.layers[1 + time_major_offset].weights[0].name) 168 model.layers[1 + time_major_offset].weights[0].assign(weights) 169 print("Updating hidden weights", model.layers[1 + time_major_offset].weights[1].name) 170 model.layers[1 + time_major_offset].weights[1].assign(hidden_weights) 171 print("Updating bias", model.layers[1 + time_major_offset].weights[2].name) 172 model.layers[1 + time_major_offset].weights[2].assign(biases) 174 interpreter = self.convert_and_interpret(model, tf.int8, input_data, dataset_shape=shape)
|
D | fully_connected_settings.py | 239 model = keras.models.Sequential() 240 model.add( 244 model.add(fully_connected_layer) 249 self.convert_model(model, inttype)
|
D | test_settings.py | 448 def convert_and_interpret(self, model, inttype, input_data=None, dataset_shape=None): argument 452 self.convert_model(model, inttype, dataset_shape) 455 def convert_model(self, model, inttype, dataset_shape=None, int16x8_int32bias=False): argument 456 model.compile(loss=keras.losses.categorical_crossentropy, 459 n_inputs = len(model.inputs) 466 converter = tf.lite.TFLiteConverter.from_keras_model(model) 485 with open(self.model_path_tflite, "wb") as model: 486 model.write(tflite_model)
|
D | conv_settings.py | 334 model = keras.models.Sequential() 336 model.add(keras.layers.InputLayer(input_shape=input_shape[1:], batch_size=self.batches)) 346 model.add(conv_layer) 359 model.add(depthwise_layer) 373 model.add(transposed_conv_layer) 389 self.convert_model(model, inttype, int16x8_int32bias=self.int16xint8_int32)
|
D | add_mul_settings.py | 103 model = keras.models.Model(inputs=[input1, input2], outputs=out) 105 interpreter = self.convert_and_interpret(model, inttype_tf)
|
D | README.md | 40 …it tests use a Keras generated model for reference. The SVDF unit test use a json template as inpu… 178 - `PregeneratedData` - Host local(Not part of GitHub) test data for model creation using Keras in u…
|
/cmsis-nn-latest/Tests/UnitTest/RefactoredTestGen/Lib/ |
D | op_conv.py | 74 model = keras.models.Sequential() 76 … model.add(keras.layers.InputLayer(input_shape=input_shape[1:], batch_size=params["batch_size"])) 86 model.add(conv_layer) 98 return model
|
D | op_lstm.py | 65 model = keras.Model(input_layer, lstm_layer, name="LSTM") 68 model.layers[1 + time_major_offset].weights[0].assign(input_weights) 71 model.layers[1 + time_major_offset].weights[1].assign(hidden_weights) 74 model.layers[1 + time_major_offset].weights[2].assign(biases) 76 return model
|