/cmsis-nn-latest/Source/ActivationFunctions/ |
D | arm_relu_q15.c | 50 void arm_relu_q15(int16_t *data, uint16_t size) in arm_relu_q15() argument 57 int16_t *input = data; in arm_relu_q15() 58 int16_t *output = data; in arm_relu_q15() 91 if (data[i] < 0) in arm_relu_q15() 92 data[i] = 0; in arm_relu_q15()
|
D | arm_relu6_s8.c | 50 void arm_relu6_s8(int8_t *data, uint16_t size) in arm_relu6_s8() argument 56 int32_t ip = data[i]; in arm_relu6_s8() 59 data[i] = MIN(ip, 6); in arm_relu6_s8()
|
D | arm_relu_q7.c | 50 void arm_relu_q7(int8_t *data, uint16_t size) in arm_relu_q7() argument 57 int8_t *input = data; in arm_relu_q7() 58 int8_t *output = data; in arm_relu_q7() 96 if (data[i] < 0) in arm_relu_q7() 97 data[i] = 0; in arm_relu_q7()
|
/cmsis-nn-latest/Tests/UnitTest/RefactoredTestGen/Lib/ |
D | test.py | 97 data = op_type.generate_data_tflite(fpaths["tflite"], params) 100 data = op_type.generate_data_json(shapes, params) 103 replacements = {**params, **data.params, **data.scales} 104 …convert_json_to_tflite(json_template_fpath, json_output_fpath, data.tensors, replacements, args.sc… 109 data = op_type.post_model_update(fpaths["tflite"], data, params) 111 params.update(data.params) 114 for name, scale in data.effective_scales.items(): 129 if shape_name in data.tensors: 130 input_tensors[shape_name] = data.tensors[shape_name] 133 data.tensors[shape_name] = input_tensors[shape_name].numpy() [all …]
|
D | op_conv.py | 221 data = generate_data(tflite_path, params) 223 generated_data.params |= data.params 224 generated_data.aliases |= data.aliases 225 generated_data.tensors |= data.tensors 243 …def quantize_float_data(data=None, quantization_bit_range=8, quantization_type="affine", tf_tensor… argument 244 if data is None: 248 data = data.numpy() 249 data_max = np.amax(data) 250 data_min = np.amin(data) 270 quantized_data = [(x // scale) + zero_point for x in data]
|
/cmsis-nn-latest/Tests/UnitTest/ |
D | test_settings.py | 210 def save_multiple_dim_array_in_txt(self, file, data): argument 211 header = ','.join(map(str, data.shape)) 212 np.savetxt(file, data.reshape(-1, data.shape[-1]), header=header, delimiter=',') 217 data = np.genfromtxt(f, delimiter=',').reshape(shape) 218 return data.astype(np.float32) 258 …data = tf.Variable(tf.random.uniform(dims, minval=minrange, maxval=maxrange, dtype=tf.dtypes.int64… 259 data = tf.cast(data, dtype=tf.float32) 261 …data = tf.Variable(tf.random.uniform(dims, minval=minrange, maxval=maxrange, dtype=tf.dtypes.float… 262 data = np.around(data.numpy(), decimals) 263 data = tf.convert_to_tensor(data) [all …]
|
D | README.md | 120 ## Generating new test data 121 **NOTE:** The data generation scrips are being reworked, see *Refactoring of generate_test_data* 123 Generating new test data is done with the following script. Use the -h flag to get more info. 130 The script use a concept of test data sets, i.e. it need a test set data name as input. It will the… 131 When adding a new test data set, new c files should be added or existing c files should be updated … 159 Test data generation is in progress of incrementally moving over to the cleaned up scripts placed i… 166 The previous generate_test_data will remain as the main data generator until all functionality is r… 193 - `PregeneratedData` - Host local(Not part of GitHub) test data for model creation using Keras in u… 199 …data in .h files that the unit tests are using. The data in PregenrateData folder has fp32 data of… 200 - `TestCases/Common` - Common files used in test data generation is placed here.
|
D | model_extractor.py | 173 data = in_file.read() 174 data = json.loads(data) 175 tensors = data['subgraphs'][0]['tensors'] 176 operators = data['subgraphs'][0]['operators'] 177 operator_codes = data['operator_codes'] 178 buffers = data['buffers']
|
D | conv_settings.py | 177 …def quantize_float_data(self, data=None, quantization_bit_range=8, quantization_type="affine", tf_… argument 178 if data is not None: 180 data = data.numpy() 181 data_max = np.amax(data) 182 data_min = np.amin(data) 202 quantized_data = [(x // scale) + zero_point for x in data]
|
D | unittest_targets.py | 111 data = json.load(read_file) 113 while ('core' not in data[target_name]): 115 target_name = data[target_name]['inherits'][0] 116 core = data[target_name]['core']
|
/cmsis-nn-latest/Tests/UnitTest/Corstone-300/ |
D | linker.ld | 170 /* Add each additional data section here */ 193 .data : AT (__etext) 197 *(.data) 198 *(.data.*) 201 /* preinit data */ 207 /* init data */ 215 /* finit data */ 223 /* All data end */ 229 * Secondary data section, optional 231 * Remember to add each additional data section [all …]
|
/cmsis-nn-latest/Source/ConvolutionFunctions/ |
D | arm_convolve_s16.c | 203 const int64_t *bias_s64 = (const int64_t *)bias_data->data; in arm_convolve_s16() 204 const int32_t *bias_s32 = (const int32_t *)bias_data->data; in arm_convolve_s16()
|
D | arm_nn_mat_mult_kernel_s16.c | 61 const int64_t *bias_s64 = (const int64_t *)bias_data->data; in arm_nn_mat_mult_kernel_s16() 62 const int32_t *bias_s32 = (const int32_t *)bias_data->data; in arm_nn_mat_mult_kernel_s16()
|
/cmsis-nn-latest/Include/ |
D | arm_nn_types.h | 77 const void *data; /**< Pointer to bias data */ member
|
D | arm_nnfunctions.h | 2048 void arm_relu_q7(int8_t *data, uint16_t size); 2055 void arm_relu6_s8(int8_t *data, uint16_t size); 2062 void arm_relu_q15(int16_t *data, uint16_t size);
|
/cmsis-nn-latest/Source/NNSupportFunctions/ |
D | arm_nn_mat_mult_nt_t_s16.c | 66 const int64_t *bias_s64 = (const int64_t *)bias_data->data; in arm_nn_mat_mult_nt_t_s16() 67 const int32_t *bias_s32 = (const int32_t *)bias_data->data; in arm_nn_mat_mult_nt_t_s16()
|
/cmsis-nn-latest/Documentation/Doxygen/ |
D | nn.dxy.in | 461 # with only public data fields or simple typedef fields will be shown inline in 1122 # Note that doxygen will use the data processed and written to standard output 1944 # search data is written to a file for indexing by an external tool. With the
|