/cmsis-dsp-latest/PythonWrapper/examples/ |
D | testdsp.py | 2 import numpy as np namespace 7 r = dsp.arm_add_f32(np.array([1.,2,3]),np.array([4.,5,7])) 41 r = dsp.arm_negate_q7(np.array([0x80,0x81,0x82])) 86 return(np.int32(0x7FFFFFFF)) 88 return(np.int32(0x80000000)) 90 return(np.int32(x)) 92 q31satV=np.vectorize(q31sat) 95 return(q31satV(np.round(x * (1<<31)))) 99 return(np.int16(0x7FFF)) 101 return(np.int16(0x8000)) [all …]
|
D | testdsp5.py | 2 import numpy as np namespace 10 ar=np.zeros(np.array(a.shape) * 2) 19 a=np.array([1.,-3.,4.,0.,-10.,8.]) 46 a=np.array([1.,-3.,4.,0.5,-10.,8.]) 74 a=np.zeros((12,3)) 75 w=np.array([[2.0] * 12])[0] 92 scaled= np.dot(a.T , w) 94 ref=scaled/np.sum(w) 97 points = np.array(a).reshape(12*3) 111 s = np.random.randn(nb) [all …]
|
D | testdsp6.py | 2 import numpy as np namespace 46 x = np.arange(0, 2*np.pi+np.pi/4, np.pi/4) 47 y = np.sin(x) 48 xnew = np.arange(0, 2*np.pi+np.pi/16, np.pi/16) 68 x1 = [1.5, 1] + ballRadius * np.random.randn(NBVECS,VECDIM) 69 x2 = [-1.5, 1] + ballRadius * np.random.randn(NBVECS,VECDIM) 70 x3 = [0, -3] + ballRadius * np.random.randn(NBVECS,VECDIM) 73 X_train=np.concatenate((x1,x2,x3)) 76 Y_train=np.concatenate((np.zeros(NBVECS),np.ones(NBVECS),2*np.ones(NBVECS))) 95 theta=list(np.reshape(gnb.theta_,np.size(gnb.theta_))) [all …]
|
D | example.py | 2 import numpy as np namespace 9 return(np.int32(0x7FFFFFFF)) 11 return(np.int32(0x80000000)) 13 return(np.int32(x)) 15 q31satV=np.vectorize(q31sat) 18 return(q31satV(np.round(x * (1<<31)))) 26 sig = np.fromfile(f, dtype=np.int16) 32 p0 = np.exp(1j*0.05) * 0.98 33 p1 = np.exp(1j*0.25) * 0.9 34 p2 = np.exp(1j*0.45) * 0.97 [all …]
|
D | example_1_5.py | 4 import numpy as np namespace 14 v=np.hstack([[1],x[1:]]) 24 v = np.zeros(len(x)) 26 if np.sign(alpha) <= 0: 50 a=np.random.randn(VECDIM) 51 a = a / np.max(np.abs(a)) 58 print(np.isclose(betaRef,betaF32,1e-6,1e-6)) 59 print(np.isclose(vRef,vF32,1e-6,1e-6)) 63 print(np.isclose(betaRef,betaF64,1e-6,1e-6)) 64 print(np.isclose(vRef,vF64,1e-6,1e-6)) [all …]
|
D | testdsp2.py | 2 import numpy as np namespace 25 ar=np.zeros(np.array(a.shape) * [1,2]) 34 return(a/np.max(np.abs(a))) 37 result = np.correlate(x, x, mode='full') 42 a=np.array([1.,-3.,4.,0.,-10.,8.]) 71 a=np.array([1.,-3.,4.,0.5,-10.,8.]) 103 a=np.array([1.,-3.,4.,0.5,-10.,8.]) 130 a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) 131 b=np.array([-2,-1,3,4]) 133 c = np.dot(a,b) [all …]
|
D | example_1_11.py | 4 import numpy as np namespace 27 refWin1=np.array([[1, 1, 1, 0, 0], 36 [0, 0, 0, 0, 0]], dtype=np.int8) 38 dtwWindow=np.zeros((10,5),dtype=np.int8) 46 refWin2=np.array([[1, 1, 0, 0, 0], 55 [0, 0, 0, 0, 1]], dtype=np.int8) 57 dtwWindow=np.zeros((10,5),dtype=np.int8) 69 query=np.array([ 0.08387197, 0.68082274, 1.06756417, 0.88914541, 0.42513398, -0.3259053, 72 template=np.array([ 1.00000000e+00, 7.96326711e-04, -9.99998732e-01, -2.38897811e-03, 75 cols=np.array([1,2,3]) [all …]
|
D | example_1_4.py | 4 import numpy as np namespace 29 x = np.cos(angles) 30 y = np.sin(angles) 35 ref=np.array([np.arctan2(yv,xv) for (yv,xv) in vals])/math.pi*180 39 resf32=np.array([dsp.arm_atan2_f32(yv,xv)[1] for (yv,xv) in vals])/math.pi*180 41 print(np.isclose(ref,resf32,1e-6,1e-6)) 48 resq31=4*f.Q31toF32(np.array([dsp.arm_atan2_q31(yv,xv)[1] for (yv,xv) in valsQ31]))/math.pi*180 50 print(np.isclose(ref,resq31,1e-8,1e-8)) 57 resq15=4*f.Q15toF32(np.array([dsp.arm_atan2_q15(yv,xv)[1] for (yv,xv) in valsQ15]))/math.pi*180 59 print(np.isclose(ref,resq15,1e-3,1e-3)) [all …]
|
/cmsis-dsp-latest/cmsisdsp/ |
D | fixedpoint.py | 1 import numpy as np namespace 5 return(np.int32(0x7FFFFFFF)) 7 return(np.int32(0x80000000)) 9 return(np.int32(x)) 11 q31satV=np.vectorize(q31sat) 23 return(q31satV(np.round(np.array(x) * (1<<31)))) 27 return(np.int16(0x7FFF)) 29 return(np.int16(0x8000)) 31 return(np.int16(x)) 33 q15satV=np.vectorize(q15sat) [all …]
|
D | mfcc.py | 1 import numpy as np namespace 14 return 1127.0 * np.log(1.0 + freq / 700.0) 26 return 700.0 * (np.exp(mels / 1127.0) - 1.0) 48 filters = np.zeros((numOfMelFilters,int(FFTSize/2+1))) 49 zeros = np.zeros(int(FFTSize // 2 )) 54 mels = np.linspace(fmin_mel, fmax_mel, num=numOfMelFilters+2) 57 linearfreqs = np.linspace( 0, fs/2.0, int(FFTSize // 2 + 1) ) 72 filters[n, :] = np.hstack([0,np.maximum(zeros,np.minimum(upper,lower))]) 106 result = np.zeros((numOfDctOutputs,numOfMelFilters)) 107 s=(np.linspace(1,numOfMelFilters,numOfMelFilters) - 0.5)/numOfMelFilters [all …]
|
D | datatype.py | 2 import numpy as np namespace 35 return(f.toQ31(np.array(samples))) 37 return(f.toQ15(np.array(samples))) 39 return(f.toQ7(np.array(samples))) 41 return(np.array(samples).astype(dtype=np.float64)) 43 return(np.array(samples).astype(dtype=np.float32)) 45 return(np.array(samples).astype(dtype=np.float16))
|
/cmsis-dsp-latest/Testing/PatternGeneration/ |
D | FastMath.py | 2 import numpy as np namespace 7 import numpy as np namespace 10 return(np.round(1.0*x * (1<<31))) 13 return(np.round(1.0*x * (1<<15))) 16 return(np.round(1.0*x * (1<<7))) 81 vals=np.linspace(np.float_power(2,-15),1.0,num=125) 83 vals=np.linspace(np.float_power(2,-10),1.0,num=125) 85 vals=np.linspace(np.float_power(2,-31),1.0,num=125) 88 ref=np.log(vals) 106 a1=np.array([0,math.pi/4,math.pi/2,3*math.pi/4,math.pi,5*math.pi/4,3*math.pi/2,2*math.pi-1e-6]) [all …]
|
D | Interpolate.py | 2 import numpy as np namespace 12 return(np.array([[p[1],p[0]] for p in np.array(np.meshgrid(y,x)).T.reshape(-1,2)])) 18 x = np.linspace(0, NBSAMPLES, num=NBSAMPLES+1, endpoint=True) 19 y = np.cos(-x**2/(NBSAMPLES - 1)) 22 data=np.hstack((data,np.array(data[-1]+1.5))) 40 x = np.arange(-3.14, 3.14, 1.0) 41 y = np.arange(-3.14, 3.14, 0.8) 42 xx, yy = np.meshgrid(x, y) 43 z = np.sin(xx**2+yy**2) 48 matrixSize=[np.size(x),np.size(y)] [all …]
|
D | Matrix.py | 2 import numpy as np namespace 17 tmp = np.copy(a[j,:]) 18 a[j,:] = np.copy(a[k,:]) 23 tmp = np.copy(a[:,j]) 24 a[:,j] = np.copy(a[:,k]) 30 ma = np.copy(src) 34 piv=np.zeros(len(ma),dtype=int) 42 d=np.diagonal(ma) 43 j = np.argmax(d[k:]) + k 50 v = np.copy(ma[k+1:,k]) [all …]
|
D | BIQUAD.py | 2 import numpy as np namespace 22 samples=np.random.randn(NBSAMPLES) 23 coefs=np.random.randn(NUMSTAGES*5) 35 coefs=np.reshape(np.hstack((np.insert(sos[:,:3],1,0.0,axis=1),-sos[:,4:])),n*6) 37 coefs=np.reshape(np.hstack((sos[:,:3],-sos[:,4:])),n*5) 53 phase = np.random.rand()*2.0 * math.pi 54 z = np.exp(1j*phase) 56 phase = np.random.rand()*2.0 * math.pi 57 amplitude = np.random.rand()*0.7 58 p = np.exp(1j*phase) * amplitude [all …]
|
D | QR.py | 1 import numpy as np namespace 8 r=np.random.randn(rows) 9 r = Tools.normalize(r)[np.newaxis] 10 c=np.random.randn(cols) 11 c = Tools.normalize(c)[np.newaxis] 14 a = np.random.randn(rows,rows) 15 b = np.random.randn(cols,cols) 18 d = np.zeros((rows,cols)) 20 diag = np.ones(diagDim) 22 np.fill_diagonal(d,diag) [all …]
|
D | Stats.py | 5 import numpy as np namespace 21 v = np.random.rand(vecDim) 22 v = v / np.sum(v) 26 inputs = np.array(inputs) 27 outputs = np.array(outputs) 28 dims = np.array(dims) 41 v = np.random.rand(vecDim) 42 v = v / np.sum(v) 46 inputs = np.array(inputs) 47 outputs = np.array(outputs) [all …]
|
D | Bayes.py | 5 import numpy as np namespace 48 v = np.random.randn(vecDim) 50 c = np.random.choice(range(0,nbClasses)) 51 c0 = np.zeros(vecDim) 52 c1 = np.copy(c0) 85 params += list(np.reshape(gb.theta_,np.size(gb.theta_))) 86 params += list(np.reshape(gb.sigma_,np.size(gb.sigma_))) 87 params += list(np.reshape(gb.class_prior_,np.size(gb.class_prior_))) 123 inputs = np.array(inputs) 124 params = np.array(params) [all …]
|
D | Support.py | 5 import numpy as np namespace 21 va = np.random.rand(DIM) 22 vb = np.random.rand(DIM) 27 e = np.sum(va[0:nbiters].T * vb[0:nbiters]) / np.sum(vb[0:nbiters]) 31 e = np.sum(va[0:nbiters].T * vb[0:nbiters]) / np.sum(vb[0:nbiters]) 35 e = np.sum(va[0:nbiters].T * vb[0:nbiters]) / np.sum(vb[0:nbiters]) 38 inputs=np.array(inputs) 39 weights=np.array(weights) 40 output=np.array(output) 61 b = np.zeros(vecDim) [all …]
|
D | Transform.py | 2 import numpy as np namespace 18 return(a.reshape(np.size(a)).view(dtype=np.float64)) 21 return(np.random.randn(nb)) 26 time = np.arange(0,nb) 27 return(np.sin(2 * np.pi * f * time/nb)) 34 return(np.concatenate((np.zeros(n), r*np.ones(n)))) 38 ifft = np.copy(fft) 40 fft = np.array([x/2**scaling[j] for x in fft]) 50 rfft=np.insert(rfft, 1, rfft[-1]) 52 rifft = np.copy(rfft) [all …]
|
D | MFCC.py | 29 import numpy as np namespace 46 return 1127.0 * np.log(1.0 + freq / 700.0) 49 return 700.0 * (np.exp(mels / 1127.0) - 1.0) 53 filters = np.zeros((numOfMelFilters,int(FFTSize/2+1))) 54 zeros = np.zeros(int(FFTSize // 2 )) 59 mels = np.linspace(fmin_mel, fmax_mel, num=numOfMelFilters+2) 62 linearfreqs = np.linspace( 0, fs/2.0, int(FFTSize // 2 + 1) ) 73 filters[n, :] = np.hstack([0,np.maximum(zeros,np.minimum(upper,lower))]) 80 result = np.zeros((numOfDctOutputs,numOfMelFilters)) 81 s=(np.linspace(1,numOfMelFilters,numOfMelFilters) - 0.5)/numOfMelFilters [all …]
|
D | SVM.py | 6 import numpy as np namespace 25 C0 = np.zeros((1,VECDIM)) 26 C1 = np.copy(C0) 39 v = np.random.randn(1,VECDIM) 47 c = np.random.choice([0,1]) 60 c0 = np.zeros((1,vecdim)) 61 c1 = np.copy(c0) 64 v = np.random.randn(1,vecdim) 66 c = np.random.choice([0,1]) 79 v = np.random.randn(1,VECDIM) [all …]
|
D | ComplexMaths.py | 2 import numpy as np namespace 11 data = np.random.randn(2*nb) 13 data_comp = data.view(dtype=np.complex128) 18 return(a.reshape(np.size(a)).view(dtype=np.float64)) 25 data3=np.random.randn(NBSAMPLES) 33 ref = np.conj(data1) 37 ref = np.array(np.dot(data1[0:nb],data2[0:nb])) 48 ref = np.array(np.dot(data1[0:nb] ,data2[0:nb])) 59 ref = np.array(np.dot(data1[0:nb] ,data2[0:nb])) 69 ref = np.absolute(data1) [all …]
|
/cmsis-dsp-latest/Examples/ARM/arm_bayes_example/ |
D | train.py | 3 import numpy as np namespace 17 x1 = [1.5, 1] + ballRadius * np.random.randn(NBVECS,VECDIM) 18 x2 = [-1.5, 1] + ballRadius * np.random.randn(NBVECS,VECDIM) 19 x3 = [0, -3] + ballRadius * np.random.randn(NBVECS,VECDIM) 22 X_train=np.concatenate((x1,x2,x3)) 25 Y_train=np.concatenate((np.zeros(NBVECS),np.ones(NBVECS),2*np.ones(NBVECS))) 44 print("Theta = ",list(np.reshape(gnb.theta_,np.size(gnb.theta_)))) 47 print("Sigma = ",list(np.reshape(gnb.sigma_,np.size(gnb.sigma_)))) 50 print("Prior = ",list(np.reshape(gnb.class_prior_,np.size(gnb.class_prior_))))
|
/cmsis-dsp-latest/Examples/ARM/arm_svm_example/ |
D | train.py | 3 import numpy as np namespace 18 x = ballRadius * np.random.randn(NBVECS,2) 21 angle = 2.0*math.pi * np.random.randn(1,NBVECS) 22 radius = 3.0+0.1*np.random.randn(1,NBVECS) 24 xa = np.zeros((NBVECS,2)) 25 xa[:,0]=radius*np.cos(angle) 26 xa[:,1]=radius*np.sin(angle) 29 X_train=np.concatenate((x,xa)) 33 Y_train=np.concatenate((np.zeros(NBVECS),np.ones(NBVECS))) 46 test1=np.array([0.4,0.1]) [all …]
|