1 /*
2 * Copyright (c) 2022 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /**
8 * @file
9 * @brief Real-Time IO device API for moving bytes with low effort
10 *
11 * RTIO is a context for asynchronous batch operations using a submission and completion queue.
12 *
13 * Asynchronous I/O operation are setup in a submission queue. Each entry in the queue describes
14 * the operation it wishes to perform with some understood semantics.
15 *
16 * These operations may be chained in a such a way that only when the current
17 * operation is complete the next will be executed. If the current operation fails
18 * all chained operations will also fail.
19 *
20 * Operations may also be submitted as a transaction where a set of operations are considered
21 * to be one operation.
22 *
23 * The completion of these operations typically provide one or more completion queue events.
24 */
25
26 #ifndef ZEPHYR_INCLUDE_RTIO_RTIO_H_
27 #define ZEPHYR_INCLUDE_RTIO_RTIO_H_
28
29 #include <string.h>
30
31 #include <zephyr/app_memory/app_memdomain.h>
32 #include <zephyr/device.h>
33 #include <zephyr/kernel.h>
34 #include <zephyr/sys/__assert.h>
35 #include <zephyr/sys/atomic.h>
36 #include <zephyr/sys/mem_blocks.h>
37 #include <zephyr/sys/util.h>
38 #include <zephyr/sys/iterable_sections.h>
39 #include <zephyr/sys/mpsc_lockfree.h>
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45
46 /**
47 * @brief RTIO
48 * @defgroup rtio RTIO
49 * @since 3.2
50 * @version 0.1.0
51 * @ingroup os_services
52 * @{
53 */
54
55 /**
56 * @brief RTIO Predefined Priorities
57 * @defgroup rtio_sqe_prio RTIO Priorities
58 * @ingroup rtio
59 * @{
60 */
61
62 /**
63 * @brief Low priority
64 */
65 #define RTIO_PRIO_LOW 0U
66
67 /**
68 * @brief Normal priority
69 */
70 #define RTIO_PRIO_NORM 127U
71
72 /**
73 * @brief High priority
74 */
75 #define RTIO_PRIO_HIGH 255U
76
77 /**
78 * @}
79 */
80
81
82 /**
83 * @brief RTIO SQE Flags
84 * @defgroup rtio_sqe_flags RTIO SQE Flags
85 * @ingroup rtio
86 * @{
87 */
88
89 /**
90 * @brief The next request in the queue should wait on this one.
91 *
92 * Chained SQEs are individual units of work describing patterns of
93 * ordering and failure cascading. A chained SQE must be started only
94 * after the one before it. They are given to the iodevs one after another.
95 */
96 #define RTIO_SQE_CHAINED BIT(0)
97
98 /**
99 * @brief The next request in the queue is part of a transaction.
100 *
101 * Transactional SQEs are sequential parts of a unit of work.
102 * Only the first transactional SQE is submitted to an iodev, the
103 * remaining SQEs are never individually submitted but instead considered
104 * to be part of the transaction to the single iodev. The first sqe in the
105 * sequence holds the iodev that will be used and the last holds the userdata
106 * that will be returned in a single completion on failure/success.
107 */
108 #define RTIO_SQE_TRANSACTION BIT(1)
109
110
111 /**
112 * @brief The buffer should be allocated by the RTIO mempool
113 *
114 * This flag can only exist if the CONFIG_RTIO_SYS_MEM_BLOCKS Kconfig was
115 * enabled and the RTIO context was created via the RTIO_DEFINE_WITH_MEMPOOL()
116 * macro. If set, the buffer associated with the entry was allocated by the
117 * internal memory pool and should be released as soon as it is no longer
118 * needed via a call to rtio_release_mempool().
119 */
120 #define RTIO_SQE_MEMPOOL_BUFFER BIT(2)
121
122 /**
123 * @brief The SQE should not execute if possible
124 *
125 * If possible (not yet executed), the SQE should be canceled by flagging it as failed and returning
126 * -ECANCELED as the result.
127 */
128 #define RTIO_SQE_CANCELED BIT(3)
129
130 /**
131 * @brief The SQE should continue producing CQEs until canceled
132 *
133 * This flag must exist along @ref RTIO_SQE_MEMPOOL_BUFFER and signals that when a read is
134 * complete. It should be placed back in queue until canceled.
135 */
136 #define RTIO_SQE_MULTISHOT BIT(4)
137
138 /**
139 * @brief The SQE does not produce a CQE.
140 */
141 #define RTIO_SQE_NO_RESPONSE BIT(5)
142
143 /**
144 * @}
145 */
146
147 /**
148 * @brief RTIO CQE Flags
149 * @defgroup rtio_cqe_flags RTIO CQE Flags
150 * @ingroup rtio
151 * @{
152 */
153
154 /**
155 * @brief The entry's buffer was allocated from the RTIO's mempool
156 *
157 * If this bit is set, the buffer was allocated from the memory pool and should be recycled as
158 * soon as the application is done with it.
159 */
160 #define RTIO_CQE_FLAG_MEMPOOL_BUFFER BIT(0)
161
162 #define RTIO_CQE_FLAG_GET(flags) FIELD_GET(GENMASK(7, 0), (flags))
163
164 /**
165 * @brief Get the block index of a mempool flags
166 *
167 * @param flags The CQE flags value
168 * @return The block index portion of the flags field.
169 */
170 #define RTIO_CQE_FLAG_MEMPOOL_GET_BLK_IDX(flags) FIELD_GET(GENMASK(19, 8), (flags))
171
172 /**
173 * @brief Get the block count of a mempool flags
174 *
175 * @param flags The CQE flags value
176 * @return The block count portion of the flags field.
177 */
178 #define RTIO_CQE_FLAG_MEMPOOL_GET_BLK_CNT(flags) FIELD_GET(GENMASK(31, 20), (flags))
179
180 /**
181 * @brief Prepare CQE flags for a mempool read.
182 *
183 * @param blk_idx The mempool block index
184 * @param blk_cnt The mempool block count
185 * @return A shifted and masked value that can be added to the flags field with an OR operator.
186 */
187 #define RTIO_CQE_FLAG_PREP_MEMPOOL(blk_idx, blk_cnt) \
188 (FIELD_PREP(GENMASK(7, 0), RTIO_CQE_FLAG_MEMPOOL_BUFFER) | \
189 FIELD_PREP(GENMASK(19, 8), blk_idx) | FIELD_PREP(GENMASK(31, 20), blk_cnt))
190
191 /**
192 * @}
193 */
194
195 /**
196 * @brief Equivalent to the I2C_MSG_STOP flag
197 */
198 #define RTIO_IODEV_I2C_STOP BIT(1)
199
200 /**
201 * @brief Equivalent to the I2C_MSG_RESTART flag
202 */
203 #define RTIO_IODEV_I2C_RESTART BIT(2)
204
205 /**
206 * @brief Equivalent to the I2C_MSG_ADDR_10_BITS
207 */
208 #define RTIO_IODEV_I2C_10_BITS BIT(3)
209
210 /** @cond ignore */
211 struct rtio;
212 struct rtio_cqe;
213 struct rtio_sqe;
214 struct rtio_sqe_pool;
215 struct rtio_cqe_pool;
216 struct rtio_iodev;
217 struct rtio_iodev_sqe;
218 /** @endcond */
219
220 /**
221 * @typedef rtio_callback_t
222 * @brief Callback signature for RTIO_OP_CALLBACK
223 * @param r RTIO context being used with the callback
224 * @param sqe Submission for the callback op
225 * @param arg0 Argument option as part of the sqe
226 */
227 typedef void (*rtio_callback_t)(struct rtio *r, const struct rtio_sqe *sqe, void *arg0);
228
229 /**
230 * @brief A submission queue event
231 */
232 struct rtio_sqe {
233 uint8_t op; /**< Op code */
234
235 uint8_t prio; /**< Op priority */
236
237 uint16_t flags; /**< Op Flags */
238
239 uint16_t iodev_flags; /**< Op iodev flags */
240
241 uint16_t _resv0;
242
243 const struct rtio_iodev *iodev; /**< Device to operation on */
244
245 /**
246 * User provided data which is returned upon operation completion. Could be a pointer or
247 * integer.
248 *
249 * If unique identification of completions is desired this should be
250 * unique as well.
251 */
252 void *userdata;
253
254 union {
255
256 /** OP_TX, OP_RX */
257 struct {
258 uint32_t buf_len; /**< Length of buffer */
259 uint8_t *buf; /**< Buffer to use*/
260 };
261
262 /** OP_TINY_TX */
263 struct {
264 uint8_t tiny_buf_len; /**< Length of tiny buffer */
265 uint8_t tiny_buf[7]; /**< Tiny buffer */
266 };
267
268 /** OP_CALLBACK */
269 struct {
270 rtio_callback_t callback;
271 void *arg0; /**< Last argument given to callback */
272 };
273
274 /** OP_TXRX */
275 struct {
276 uint32_t txrx_buf_len;
277 uint8_t *tx_buf;
278 uint8_t *rx_buf;
279 };
280
281 /** OP_I2C_CONFIGURE */
282 uint32_t i2c_config;
283 };
284 };
285
286 /** @cond ignore */
287 /* Ensure the rtio_sqe never grows beyond a common cacheline size of 64 bytes */
288 BUILD_ASSERT(sizeof(struct rtio_sqe) <= 64);
289 /** @endcond */
290
291 /**
292 * @brief A completion queue event
293 */
294 struct rtio_cqe {
295 struct mpsc_node q;
296
297 int32_t result; /**< Result from operation */
298 void *userdata; /**< Associated userdata with operation */
299 uint32_t flags; /**< Flags associated with the operation */
300 };
301
302 struct rtio_sqe_pool {
303 struct mpsc free_q;
304 const uint16_t pool_size;
305 uint16_t pool_free;
306 struct rtio_iodev_sqe *pool;
307 };
308
309 struct rtio_cqe_pool {
310 struct mpsc free_q;
311 const uint16_t pool_size;
312 uint16_t pool_free;
313 struct rtio_cqe *pool;
314 };
315
316 /**
317 * @brief An RTIO context containing what can be viewed as a pair of queues.
318 *
319 * A queue for submissions (available and in queue to be produced) as well as a queue
320 * of completions (available and ready to be consumed).
321 *
322 * The rtio executor along with any objects implementing the rtio_iodev interface are
323 * the consumers of submissions and producers of completions.
324 *
325 * No work is started until rtio_submit() is called.
326 */
327 struct rtio {
328 #ifdef CONFIG_RTIO_SUBMIT_SEM
329 /* A wait semaphore which may suspend the calling thread
330 * to wait for some number of completions when calling submit
331 */
332 struct k_sem *submit_sem;
333
334 uint32_t submit_count;
335 #endif
336
337 #ifdef CONFIG_RTIO_CONSUME_SEM
338 /* A wait semaphore which may suspend the calling thread
339 * to wait for some number of completions while consuming
340 * them from the completion queue
341 */
342 struct k_sem *consume_sem;
343 #endif
344
345 /* Total number of completions */
346 atomic_t cq_count;
347
348 /* Number of completions that were unable to be submitted with results
349 * due to the cq spsc being full
350 */
351 atomic_t xcqcnt;
352
353 /* Submission queue object pool with free list */
354 struct rtio_sqe_pool *sqe_pool;
355
356 /* Complete queue object pool with free list */
357 struct rtio_cqe_pool *cqe_pool;
358
359 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
360 /* Mem block pool */
361 struct sys_mem_blocks *block_pool;
362 #endif
363
364 /* Submission queue */
365 struct mpsc sq;
366
367 /* Completion queue */
368 struct mpsc cq;
369 };
370
371 /** The memory partition associated with all RTIO context information */
372 extern struct k_mem_partition rtio_partition;
373
374 /**
375 * @brief Get the mempool block size of the RTIO context
376 *
377 * @param[in] r The RTIO context
378 * @return The size of each block in the context's mempool
379 * @return 0 if the context doesn't have a mempool
380 */
rtio_mempool_block_size(const struct rtio * r)381 static inline size_t rtio_mempool_block_size(const struct rtio *r)
382 {
383 #ifndef CONFIG_RTIO_SYS_MEM_BLOCKS
384 ARG_UNUSED(r);
385 return 0;
386 #else
387 if (r == NULL || r->block_pool == NULL) {
388 return 0;
389 }
390 return BIT(r->block_pool->info.blk_sz_shift);
391 #endif
392 }
393
394 /**
395 * @brief Compute the mempool block index for a given pointer
396 *
397 * @param[in] r RTIO context
398 * @param[in] ptr Memory pointer in the mempool
399 * @return Index of the mempool block associated with the pointer. Or UINT16_MAX if invalid.
400 */
401 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
__rtio_compute_mempool_block_index(const struct rtio * r,const void * ptr)402 static inline uint16_t __rtio_compute_mempool_block_index(const struct rtio *r, const void *ptr)
403 {
404 uintptr_t addr = (uintptr_t)ptr;
405 struct sys_mem_blocks *mem_pool = r->block_pool;
406 uint32_t block_size = rtio_mempool_block_size(r);
407
408 uintptr_t buff = (uintptr_t)mem_pool->buffer;
409 uint32_t buff_size = mem_pool->info.num_blocks * block_size;
410
411 if (addr < buff || addr >= buff + buff_size) {
412 return UINT16_MAX;
413 }
414 return (addr - buff) / block_size;
415 }
416 #endif
417
418 /**
419 * @brief IO device submission queue entry
420 *
421 * May be cast safely to and from a rtio_sqe as they occupy the same memory provided by the pool
422 */
423 struct rtio_iodev_sqe {
424 struct rtio_sqe sqe;
425 struct mpsc_node q;
426 struct rtio_iodev_sqe *next;
427 struct rtio *r;
428 };
429
430 /**
431 * @brief API that an RTIO IO device should implement
432 */
433 struct rtio_iodev_api {
434 /**
435 * @brief Submit to the iodev an entry to work on
436 *
437 * This call should be short in duration and most likely
438 * either enqueue or kick off an entry with the hardware.
439 *
440 * @param iodev_sqe Submission queue entry
441 */
442 void (*submit)(struct rtio_iodev_sqe *iodev_sqe);
443 };
444
445 /**
446 * @brief An IO device with a function table for submitting requests
447 */
448 struct rtio_iodev {
449 /* Function pointer table */
450 const struct rtio_iodev_api *api;
451
452 /* Data associated with this iodev */
453 void *data;
454 };
455
456 /** An operation that does nothing and will complete immediately */
457 #define RTIO_OP_NOP 0
458
459 /** An operation that receives (reads) */
460 #define RTIO_OP_RX (RTIO_OP_NOP+1)
461
462 /** An operation that transmits (writes) */
463 #define RTIO_OP_TX (RTIO_OP_RX+1)
464
465 /** An operation that transmits tiny writes by copying the data to write */
466 #define RTIO_OP_TINY_TX (RTIO_OP_TX+1)
467
468 /** An operation that calls a given function (callback) */
469 #define RTIO_OP_CALLBACK (RTIO_OP_TINY_TX+1)
470
471 /** An operation that transceives (reads and writes simultaneously) */
472 #define RTIO_OP_TXRX (RTIO_OP_CALLBACK+1)
473
474 /** An operation to recover I2C buses */
475 #define RTIO_OP_I2C_RECOVER (RTIO_OP_TXRX+1)
476
477 /** An operation to configure I2C buses */
478 #define RTIO_OP_I2C_CONFIGURE (RTIO_OP_I2C_RECOVER+1)
479
480 /**
481 * @brief Prepare a nop (no op) submission
482 */
rtio_sqe_prep_nop(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,void * userdata)483 static inline void rtio_sqe_prep_nop(struct rtio_sqe *sqe,
484 const struct rtio_iodev *iodev,
485 void *userdata)
486 {
487 memset(sqe, 0, sizeof(struct rtio_sqe));
488 sqe->op = RTIO_OP_NOP;
489 sqe->iodev = iodev;
490 sqe->userdata = userdata;
491 }
492
493 /**
494 * @brief Prepare a read op submission
495 */
rtio_sqe_prep_read(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,uint8_t * buf,uint32_t len,void * userdata)496 static inline void rtio_sqe_prep_read(struct rtio_sqe *sqe,
497 const struct rtio_iodev *iodev,
498 int8_t prio,
499 uint8_t *buf,
500 uint32_t len,
501 void *userdata)
502 {
503 memset(sqe, 0, sizeof(struct rtio_sqe));
504 sqe->op = RTIO_OP_RX;
505 sqe->prio = prio;
506 sqe->iodev = iodev;
507 sqe->buf_len = len;
508 sqe->buf = buf;
509 sqe->userdata = userdata;
510 }
511
512 /**
513 * @brief Prepare a read op submission with context's mempool
514 *
515 * @see rtio_sqe_prep_read()
516 */
rtio_sqe_prep_read_with_pool(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,void * userdata)517 static inline void rtio_sqe_prep_read_with_pool(struct rtio_sqe *sqe,
518 const struct rtio_iodev *iodev, int8_t prio,
519 void *userdata)
520 {
521 rtio_sqe_prep_read(sqe, iodev, prio, NULL, 0, userdata);
522 sqe->flags = RTIO_SQE_MEMPOOL_BUFFER;
523 }
524
rtio_sqe_prep_read_multishot(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,void * userdata)525 static inline void rtio_sqe_prep_read_multishot(struct rtio_sqe *sqe,
526 const struct rtio_iodev *iodev, int8_t prio,
527 void *userdata)
528 {
529 rtio_sqe_prep_read_with_pool(sqe, iodev, prio, userdata);
530 sqe->flags |= RTIO_SQE_MULTISHOT;
531 }
532
533 /**
534 * @brief Prepare a write op submission
535 */
rtio_sqe_prep_write(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,uint8_t * buf,uint32_t len,void * userdata)536 static inline void rtio_sqe_prep_write(struct rtio_sqe *sqe,
537 const struct rtio_iodev *iodev,
538 int8_t prio,
539 uint8_t *buf,
540 uint32_t len,
541 void *userdata)
542 {
543 memset(sqe, 0, sizeof(struct rtio_sqe));
544 sqe->op = RTIO_OP_TX;
545 sqe->prio = prio;
546 sqe->iodev = iodev;
547 sqe->buf_len = len;
548 sqe->buf = buf;
549 sqe->userdata = userdata;
550 }
551
552 /**
553 * @brief Prepare a tiny write op submission
554 *
555 * Unlike the normal write operation where the source buffer must outlive the call
556 * the tiny write data in this case is copied to the sqe. It must be tiny to fit
557 * within the specified size of a rtio_sqe.
558 *
559 * This is useful in many scenarios with RTL logic where a write of the register to
560 * subsequently read must be done.
561 */
rtio_sqe_prep_tiny_write(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,const uint8_t * tiny_write_data,uint8_t tiny_write_len,void * userdata)562 static inline void rtio_sqe_prep_tiny_write(struct rtio_sqe *sqe,
563 const struct rtio_iodev *iodev,
564 int8_t prio,
565 const uint8_t *tiny_write_data,
566 uint8_t tiny_write_len,
567 void *userdata)
568 {
569 __ASSERT_NO_MSG(tiny_write_len <= sizeof(sqe->tiny_buf));
570
571 memset(sqe, 0, sizeof(struct rtio_sqe));
572 sqe->op = RTIO_OP_TINY_TX;
573 sqe->prio = prio;
574 sqe->iodev = iodev;
575 sqe->tiny_buf_len = tiny_write_len;
576 memcpy(sqe->tiny_buf, tiny_write_data, tiny_write_len);
577 sqe->userdata = userdata;
578 }
579
580 /**
581 * @brief Prepare a callback op submission
582 *
583 * A somewhat special operation in that it may only be done in kernel mode.
584 *
585 * Used where general purpose logic is required in a queue of io operations to do
586 * transforms or logic.
587 */
rtio_sqe_prep_callback(struct rtio_sqe * sqe,rtio_callback_t callback,void * arg0,void * userdata)588 static inline void rtio_sqe_prep_callback(struct rtio_sqe *sqe,
589 rtio_callback_t callback,
590 void *arg0,
591 void *userdata)
592 {
593 memset(sqe, 0, sizeof(struct rtio_sqe));
594 sqe->op = RTIO_OP_CALLBACK;
595 sqe->prio = 0;
596 sqe->iodev = NULL;
597 sqe->callback = callback;
598 sqe->arg0 = arg0;
599 sqe->userdata = userdata;
600 }
601
602 /**
603 * @brief Prepare a transceive op submission
604 */
rtio_sqe_prep_transceive(struct rtio_sqe * sqe,const struct rtio_iodev * iodev,int8_t prio,uint8_t * tx_buf,uint8_t * rx_buf,uint32_t buf_len,void * userdata)605 static inline void rtio_sqe_prep_transceive(struct rtio_sqe *sqe,
606 const struct rtio_iodev *iodev,
607 int8_t prio,
608 uint8_t *tx_buf,
609 uint8_t *rx_buf,
610 uint32_t buf_len,
611 void *userdata)
612 {
613 memset(sqe, 0, sizeof(struct rtio_sqe));
614 sqe->op = RTIO_OP_TXRX;
615 sqe->prio = prio;
616 sqe->iodev = iodev;
617 sqe->txrx_buf_len = buf_len;
618 sqe->tx_buf = tx_buf;
619 sqe->rx_buf = rx_buf;
620 sqe->userdata = userdata;
621 }
622
rtio_sqe_pool_alloc(struct rtio_sqe_pool * pool)623 static inline struct rtio_iodev_sqe *rtio_sqe_pool_alloc(struct rtio_sqe_pool *pool)
624 {
625 struct mpsc_node *node = mpsc_pop(&pool->free_q);
626
627 if (node == NULL) {
628 return NULL;
629 }
630
631 struct rtio_iodev_sqe *iodev_sqe = CONTAINER_OF(node, struct rtio_iodev_sqe, q);
632
633 pool->pool_free--;
634
635 return iodev_sqe;
636 }
637
rtio_sqe_pool_free(struct rtio_sqe_pool * pool,struct rtio_iodev_sqe * iodev_sqe)638 static inline void rtio_sqe_pool_free(struct rtio_sqe_pool *pool, struct rtio_iodev_sqe *iodev_sqe)
639 {
640 mpsc_push(&pool->free_q, &iodev_sqe->q);
641
642 pool->pool_free++;
643 }
644
rtio_cqe_pool_alloc(struct rtio_cqe_pool * pool)645 static inline struct rtio_cqe *rtio_cqe_pool_alloc(struct rtio_cqe_pool *pool)
646 {
647 struct mpsc_node *node = mpsc_pop(&pool->free_q);
648
649 if (node == NULL) {
650 return NULL;
651 }
652
653 struct rtio_cqe *cqe = CONTAINER_OF(node, struct rtio_cqe, q);
654
655 memset(cqe, 0, sizeof(struct rtio_cqe));
656
657 pool->pool_free--;
658
659 return cqe;
660 }
661
rtio_cqe_pool_free(struct rtio_cqe_pool * pool,struct rtio_cqe * cqe)662 static inline void rtio_cqe_pool_free(struct rtio_cqe_pool *pool, struct rtio_cqe *cqe)
663 {
664 mpsc_push(&pool->free_q, &cqe->q);
665
666 pool->pool_free++;
667 }
668
rtio_block_pool_alloc(struct rtio * r,size_t min_sz,size_t max_sz,uint8_t ** buf,uint32_t * buf_len)669 static inline int rtio_block_pool_alloc(struct rtio *r, size_t min_sz,
670 size_t max_sz, uint8_t **buf, uint32_t *buf_len)
671 {
672 #ifndef CONFIG_RTIO_SYS_MEM_BLOCKS
673 ARG_UNUSED(r);
674 ARG_UNUSED(min_sz);
675 ARG_UNUSED(max_sz);
676 ARG_UNUSED(buf);
677 ARG_UNUSED(buf_len);
678 return -ENOTSUP;
679 #else
680 const uint32_t block_size = rtio_mempool_block_size(r);
681 uint32_t bytes = max_sz;
682
683 /* Not every context has a block pool and the block size may return 0 in
684 * that case
685 */
686 if (block_size == 0) {
687 return -ENOMEM;
688 }
689
690 do {
691 size_t num_blks = DIV_ROUND_UP(bytes, block_size);
692 int rc = sys_mem_blocks_alloc_contiguous(r->block_pool, num_blks, (void **)buf);
693
694 if (rc == 0) {
695 *buf_len = num_blks * block_size;
696 return 0;
697 }
698
699 bytes -= block_size;
700 } while (bytes >= min_sz);
701
702 return -ENOMEM;
703 #endif
704 }
705
rtio_block_pool_free(struct rtio * r,void * buf,uint32_t buf_len)706 static inline void rtio_block_pool_free(struct rtio *r, void *buf, uint32_t buf_len)
707 {
708 #ifndef CONFIG_RTIO_SYS_MEM_BLOCKS
709 ARG_UNUSED(r);
710 ARG_UNUSED(buf);
711 ARG_UNUSED(buf_len);
712 #else
713 size_t num_blks = buf_len >> r->block_pool->info.blk_sz_shift;
714
715 sys_mem_blocks_free_contiguous(r->block_pool, buf, num_blks);
716 #endif
717 }
718
719 /* Do not try and reformat the macros */
720 /* clang-format off */
721
722 /**
723 * @brief Statically define and initialize an RTIO IODev
724 *
725 * @param name Name of the iodev
726 * @param iodev_api Pointer to struct rtio_iodev_api
727 * @param iodev_data Data pointer
728 */
729 #define RTIO_IODEV_DEFINE(name, iodev_api, iodev_data) \
730 STRUCT_SECTION_ITERABLE(rtio_iodev, name) = { \
731 .api = (iodev_api), \
732 .data = (iodev_data), \
733 }
734
735 #define Z_RTIO_SQE_POOL_DEFINE(name, sz) \
736 static struct rtio_iodev_sqe CONCAT(_sqe_pool_, name)[sz]; \
737 STRUCT_SECTION_ITERABLE(rtio_sqe_pool, name) = { \
738 .free_q = MPSC_INIT((name.free_q)), \
739 .pool_size = sz, \
740 .pool_free = sz, \
741 .pool = CONCAT(_sqe_pool_, name), \
742 }
743
744
745 #define Z_RTIO_CQE_POOL_DEFINE(name, sz) \
746 static struct rtio_cqe CONCAT(_cqe_pool_, name)[sz]; \
747 STRUCT_SECTION_ITERABLE(rtio_cqe_pool, name) = { \
748 .free_q = MPSC_INIT((name.free_q)), \
749 .pool_size = sz, \
750 .pool_free = sz, \
751 .pool = CONCAT(_cqe_pool_, name), \
752 }
753
754 /**
755 * @brief Allocate to bss if available
756 *
757 * If CONFIG_USERSPACE is selected, allocate to the rtio_partition bss. Maps to:
758 * K_APP_BMEM(rtio_partition) static
759 *
760 * If CONFIG_USERSPACE is disabled, allocate as plain static:
761 * static
762 */
763 #define RTIO_BMEM COND_CODE_1(CONFIG_USERSPACE, (K_APP_BMEM(rtio_partition) static), (static))
764
765 /**
766 * @brief Allocate as initialized memory if available
767 *
768 * If CONFIG_USERSPACE is selected, allocate to the rtio_partition init. Maps to:
769 * K_APP_DMEM(rtio_partition) static
770 *
771 * If CONFIG_USERSPACE is disabled, allocate as plain static:
772 * static
773 */
774 #define RTIO_DMEM COND_CODE_1(CONFIG_USERSPACE, (K_APP_DMEM(rtio_partition) static), (static))
775
776 #define Z_RTIO_BLOCK_POOL_DEFINE(name, blk_sz, blk_cnt, blk_align) \
777 RTIO_BMEM uint8_t __aligned(WB_UP(blk_align)) \
778 CONCAT(_block_pool_, name)[blk_cnt*WB_UP(blk_sz)]; \
779 _SYS_MEM_BLOCKS_DEFINE_WITH_EXT_BUF(name, WB_UP(blk_sz), blk_cnt, \
780 CONCAT(_block_pool_, name), RTIO_DMEM)
781
782 #define Z_RTIO_DEFINE(name, _sqe_pool, _cqe_pool, _block_pool) \
783 IF_ENABLED(CONFIG_RTIO_SUBMIT_SEM, \
784 (static K_SEM_DEFINE(CONCAT(_submit_sem_, name), 0, K_SEM_MAX_LIMIT))) \
785 IF_ENABLED(CONFIG_RTIO_CONSUME_SEM, \
786 (static K_SEM_DEFINE(CONCAT(_consume_sem_, name), 0, K_SEM_MAX_LIMIT))) \
787 STRUCT_SECTION_ITERABLE(rtio, name) = { \
788 IF_ENABLED(CONFIG_RTIO_SUBMIT_SEM, (.submit_sem = &CONCAT(_submit_sem_, name),)) \
789 IF_ENABLED(CONFIG_RTIO_SUBMIT_SEM, (.submit_count = 0,)) \
790 IF_ENABLED(CONFIG_RTIO_CONSUME_SEM, (.consume_sem = &CONCAT(_consume_sem_, name),))\
791 .cq_count = ATOMIC_INIT(0), \
792 .xcqcnt = ATOMIC_INIT(0), \
793 .sqe_pool = _sqe_pool, \
794 .cqe_pool = _cqe_pool, \
795 IF_ENABLED(CONFIG_RTIO_SYS_MEM_BLOCKS, (.block_pool = _block_pool,)) \
796 .sq = MPSC_INIT((name.sq)), \
797 .cq = MPSC_INIT((name.cq)), \
798 }
799
800 /**
801 * @brief Statically define and initialize an RTIO context
802 *
803 * @param name Name of the RTIO
804 * @param sq_sz Size of the submission queue entry pool
805 * @param cq_sz Size of the completion queue entry pool
806 */
807 #define RTIO_DEFINE(name, sq_sz, cq_sz) \
808 Z_RTIO_SQE_POOL_DEFINE(CONCAT(name, _sqe_pool), sq_sz); \
809 Z_RTIO_CQE_POOL_DEFINE(CONCAT(name, _cqe_pool), cq_sz); \
810 Z_RTIO_DEFINE(name, &CONCAT(name, _sqe_pool), \
811 &CONCAT(name, _cqe_pool), NULL)
812
813 /* clang-format on */
814
815 /**
816 * @brief Statically define and initialize an RTIO context
817 *
818 * @param name Name of the RTIO
819 * @param sq_sz Size of the submission queue, must be power of 2
820 * @param cq_sz Size of the completion queue, must be power of 2
821 * @param num_blks Number of blocks in the memory pool
822 * @param blk_size The number of bytes in each block
823 * @param balign The block alignment
824 */
825 #define RTIO_DEFINE_WITH_MEMPOOL(name, sq_sz, cq_sz, num_blks, blk_size, balign) \
826 Z_RTIO_SQE_POOL_DEFINE(name##_sqe_pool, sq_sz); \
827 Z_RTIO_CQE_POOL_DEFINE(name##_cqe_pool, cq_sz); \
828 Z_RTIO_BLOCK_POOL_DEFINE(name##_block_pool, blk_size, num_blks, balign); \
829 Z_RTIO_DEFINE(name, &name##_sqe_pool, &name##_cqe_pool, &name##_block_pool)
830
831 /* clang-format on */
832
833 /**
834 * @brief Count of acquirable submission queue events
835 *
836 * @param r RTIO context
837 *
838 * @return Count of acquirable submission queue events
839 */
rtio_sqe_acquirable(struct rtio * r)840 static inline uint32_t rtio_sqe_acquirable(struct rtio *r)
841 {
842 return r->sqe_pool->pool_free;
843 }
844
845 /**
846 * @brief Get the next sqe in the transaction
847 *
848 * @param iodev_sqe Submission queue entry
849 *
850 * @retval NULL if current sqe is last in transaction
851 * @retval struct rtio_sqe * if available
852 */
rtio_txn_next(const struct rtio_iodev_sqe * iodev_sqe)853 static inline struct rtio_iodev_sqe *rtio_txn_next(const struct rtio_iodev_sqe *iodev_sqe)
854 {
855 if (iodev_sqe->sqe.flags & RTIO_SQE_TRANSACTION) {
856 return iodev_sqe->next;
857 } else {
858 return NULL;
859 }
860 }
861
862
863 /**
864 * @brief Get the next sqe in the chain
865 *
866 * @param iodev_sqe Submission queue entry
867 *
868 * @retval NULL if current sqe is last in chain
869 * @retval struct rtio_sqe * if available
870 */
rtio_chain_next(const struct rtio_iodev_sqe * iodev_sqe)871 static inline struct rtio_iodev_sqe *rtio_chain_next(const struct rtio_iodev_sqe *iodev_sqe)
872 {
873 if (iodev_sqe->sqe.flags & RTIO_SQE_CHAINED) {
874 return iodev_sqe->next;
875 } else {
876 return NULL;
877 }
878 }
879
880 /**
881 * @brief Get the next sqe in the chain or transaction
882 *
883 * @param iodev_sqe Submission queue entry
884 *
885 * @retval NULL if current sqe is last in chain
886 * @retval struct rtio_iodev_sqe * if available
887 */
rtio_iodev_sqe_next(const struct rtio_iodev_sqe * iodev_sqe)888 static inline struct rtio_iodev_sqe *rtio_iodev_sqe_next(const struct rtio_iodev_sqe *iodev_sqe)
889 {
890 return iodev_sqe->next;
891 }
892
893 /**
894 * @brief Acquire a single submission queue event if available
895 *
896 * @param r RTIO context
897 *
898 * @retval sqe A valid submission queue event acquired from the submission queue
899 * @retval NULL No subsmission queue event available
900 */
rtio_sqe_acquire(struct rtio * r)901 static inline struct rtio_sqe *rtio_sqe_acquire(struct rtio *r)
902 {
903 struct rtio_iodev_sqe *iodev_sqe = rtio_sqe_pool_alloc(r->sqe_pool);
904
905 if (iodev_sqe == NULL) {
906 return NULL;
907 }
908
909 mpsc_push(&r->sq, &iodev_sqe->q);
910
911 return &iodev_sqe->sqe;
912 }
913
914 /**
915 * @brief Drop all previously acquired sqe
916 *
917 * @param r RTIO context
918 */
rtio_sqe_drop_all(struct rtio * r)919 static inline void rtio_sqe_drop_all(struct rtio *r)
920 {
921 struct rtio_iodev_sqe *iodev_sqe;
922 struct mpsc_node *node = mpsc_pop(&r->sq);
923
924 while (node != NULL) {
925 iodev_sqe = CONTAINER_OF(node, struct rtio_iodev_sqe, q);
926 rtio_sqe_pool_free(r->sqe_pool, iodev_sqe);
927 node = mpsc_pop(&r->sq);
928 }
929 }
930
931 /**
932 * @brief Acquire a complete queue event if available
933 */
rtio_cqe_acquire(struct rtio * r)934 static inline struct rtio_cqe *rtio_cqe_acquire(struct rtio *r)
935 {
936 struct rtio_cqe *cqe = rtio_cqe_pool_alloc(r->cqe_pool);
937
938 if (cqe == NULL) {
939 return NULL;
940 }
941
942 memset(cqe, 0, sizeof(struct rtio_cqe));
943
944 return cqe;
945 }
946
947 /**
948 * @brief Produce a complete queue event if available
949 */
rtio_cqe_produce(struct rtio * r,struct rtio_cqe * cqe)950 static inline void rtio_cqe_produce(struct rtio *r, struct rtio_cqe *cqe)
951 {
952 mpsc_push(&r->cq, &cqe->q);
953 }
954
955 /**
956 * @brief Consume a single completion queue event if available
957 *
958 * If a completion queue event is returned rtio_cq_release(r) must be called
959 * at some point to release the cqe spot for the cqe producer.
960 *
961 * @param r RTIO context
962 *
963 * @retval cqe A valid completion queue event consumed from the completion queue
964 * @retval NULL No completion queue event available
965 */
rtio_cqe_consume(struct rtio * r)966 static inline struct rtio_cqe *rtio_cqe_consume(struct rtio *r)
967 {
968 struct mpsc_node *node;
969 struct rtio_cqe *cqe = NULL;
970
971 #ifdef CONFIG_RTIO_CONSUME_SEM
972 if (k_sem_take(r->consume_sem, K_NO_WAIT) != 0) {
973 return NULL;
974 }
975 #endif
976
977 node = mpsc_pop(&r->cq);
978 if (node == NULL) {
979 return NULL;
980 }
981 cqe = CONTAINER_OF(node, struct rtio_cqe, q);
982
983 return cqe;
984 }
985
986 /**
987 * @brief Wait for and consume a single completion queue event
988 *
989 * If a completion queue event is returned rtio_cq_release(r) must be called
990 * at some point to release the cqe spot for the cqe producer.
991 *
992 * @param r RTIO context
993 *
994 * @retval cqe A valid completion queue event consumed from the completion queue
995 */
rtio_cqe_consume_block(struct rtio * r)996 static inline struct rtio_cqe *rtio_cqe_consume_block(struct rtio *r)
997 {
998 struct mpsc_node *node;
999 struct rtio_cqe *cqe;
1000
1001 #ifdef CONFIG_RTIO_CONSUME_SEM
1002 k_sem_take(r->consume_sem, K_FOREVER);
1003 #endif
1004 node = mpsc_pop(&r->cq);
1005 while (node == NULL) {
1006 Z_SPIN_DELAY(1);
1007 node = mpsc_pop(&r->cq);
1008 }
1009 cqe = CONTAINER_OF(node, struct rtio_cqe, q);
1010
1011 return cqe;
1012 }
1013
1014 /**
1015 * @brief Release consumed completion queue event
1016 *
1017 * @param r RTIO context
1018 * @param cqe Completion queue entry
1019 */
rtio_cqe_release(struct rtio * r,struct rtio_cqe * cqe)1020 static inline void rtio_cqe_release(struct rtio *r, struct rtio_cqe *cqe)
1021 {
1022 rtio_cqe_pool_free(r->cqe_pool, cqe);
1023 }
1024
1025 /**
1026 * @brief Compute the CQE flags from the rtio_iodev_sqe entry
1027 *
1028 * @param iodev_sqe The SQE entry in question.
1029 * @return The value that should be set for the CQE's flags field.
1030 */
rtio_cqe_compute_flags(struct rtio_iodev_sqe * iodev_sqe)1031 static inline uint32_t rtio_cqe_compute_flags(struct rtio_iodev_sqe *iodev_sqe)
1032 {
1033 uint32_t flags = 0;
1034
1035 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
1036 if (iodev_sqe->sqe.op == RTIO_OP_RX && iodev_sqe->sqe.flags & RTIO_SQE_MEMPOOL_BUFFER) {
1037 struct rtio *r = iodev_sqe->r;
1038 struct sys_mem_blocks *mem_pool = r->block_pool;
1039 int blk_index = (iodev_sqe->sqe.buf - mem_pool->buffer) >>
1040 mem_pool->info.blk_sz_shift;
1041 int blk_count = iodev_sqe->sqe.buf_len >> mem_pool->info.blk_sz_shift;
1042
1043 flags = RTIO_CQE_FLAG_PREP_MEMPOOL(blk_index, blk_count);
1044 }
1045 #else
1046 ARG_UNUSED(iodev_sqe);
1047 #endif
1048
1049 return flags;
1050 }
1051
1052 /**
1053 * @brief Retrieve the mempool buffer that was allocated for the CQE.
1054 *
1055 * If the RTIO context contains a memory pool, and the SQE was created by calling
1056 * rtio_sqe_read_with_pool(), this function can be used to retrieve the memory associated with the
1057 * read. Once processing is done, it should be released by calling rtio_release_buffer().
1058 *
1059 * @param[in] r RTIO context
1060 * @param[in] cqe The CQE handling the event.
1061 * @param[out] buff Pointer to the mempool buffer
1062 * @param[out] buff_len Length of the allocated buffer
1063 * @return 0 on success
1064 * @return -EINVAL if the buffer wasn't allocated for this cqe
1065 * @return -ENOTSUP if memory blocks are disabled
1066 */
1067 __syscall int rtio_cqe_get_mempool_buffer(const struct rtio *r, struct rtio_cqe *cqe,
1068 uint8_t **buff, uint32_t *buff_len);
1069
z_impl_rtio_cqe_get_mempool_buffer(const struct rtio * r,struct rtio_cqe * cqe,uint8_t ** buff,uint32_t * buff_len)1070 static inline int z_impl_rtio_cqe_get_mempool_buffer(const struct rtio *r, struct rtio_cqe *cqe,
1071 uint8_t **buff, uint32_t *buff_len)
1072 {
1073 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
1074 if (RTIO_CQE_FLAG_GET(cqe->flags) == RTIO_CQE_FLAG_MEMPOOL_BUFFER) {
1075 int blk_idx = RTIO_CQE_FLAG_MEMPOOL_GET_BLK_IDX(cqe->flags);
1076 int blk_count = RTIO_CQE_FLAG_MEMPOOL_GET_BLK_CNT(cqe->flags);
1077 uint32_t blk_size = rtio_mempool_block_size(r);
1078
1079 *buff = r->block_pool->buffer + blk_idx * blk_size;
1080 *buff_len = blk_count * blk_size;
1081 __ASSERT_NO_MSG(*buff >= r->block_pool->buffer);
1082 __ASSERT_NO_MSG(*buff <
1083 r->block_pool->buffer + blk_size * r->block_pool->info.num_blocks);
1084 return 0;
1085 }
1086 return -EINVAL;
1087 #else
1088 ARG_UNUSED(r);
1089 ARG_UNUSED(cqe);
1090 ARG_UNUSED(buff);
1091 ARG_UNUSED(buff_len);
1092
1093 return -ENOTSUP;
1094 #endif
1095 }
1096
1097 void rtio_executor_submit(struct rtio *r);
1098 void rtio_executor_ok(struct rtio_iodev_sqe *iodev_sqe, int result);
1099 void rtio_executor_err(struct rtio_iodev_sqe *iodev_sqe, int result);
1100
1101 /**
1102 * @brief Inform the executor of a submission completion with success
1103 *
1104 * This may start the next asynchronous request if one is available.
1105 *
1106 * @param iodev_sqe IODev Submission that has succeeded
1107 * @param result Result of the request
1108 */
rtio_iodev_sqe_ok(struct rtio_iodev_sqe * iodev_sqe,int result)1109 static inline void rtio_iodev_sqe_ok(struct rtio_iodev_sqe *iodev_sqe, int result)
1110 {
1111 rtio_executor_ok(iodev_sqe, result);
1112 }
1113
1114 /**
1115 * @brief Inform the executor of a submissions completion with error
1116 *
1117 * This SHALL fail the remaining submissions in the chain.
1118 *
1119 * @param iodev_sqe Submission that has failed
1120 * @param result Result of the request
1121 */
rtio_iodev_sqe_err(struct rtio_iodev_sqe * iodev_sqe,int result)1122 static inline void rtio_iodev_sqe_err(struct rtio_iodev_sqe *iodev_sqe, int result)
1123 {
1124 rtio_executor_err(iodev_sqe, result);
1125 }
1126
1127 /**
1128 * Submit a completion queue event with a given result and userdata
1129 *
1130 * Called by the executor to produce a completion queue event, no inherent
1131 * locking is performed and this is not safe to do from multiple callers.
1132 *
1133 * @param r RTIO context
1134 * @param result Integer result code (could be -errno)
1135 * @param userdata Userdata to pass along to completion
1136 * @param flags Flags to use for the CEQ see RTIO_CQE_FLAG_*
1137 */
rtio_cqe_submit(struct rtio * r,int result,void * userdata,uint32_t flags)1138 static inline void rtio_cqe_submit(struct rtio *r, int result, void *userdata, uint32_t flags)
1139 {
1140 struct rtio_cqe *cqe = rtio_cqe_acquire(r);
1141
1142 if (cqe == NULL) {
1143 atomic_inc(&r->xcqcnt);
1144 } else {
1145 cqe->result = result;
1146 cqe->userdata = userdata;
1147 cqe->flags = flags;
1148 rtio_cqe_produce(r, cqe);
1149 }
1150
1151 atomic_inc(&r->cq_count);
1152 #ifdef CONFIG_RTIO_SUBMIT_SEM
1153 if (r->submit_count > 0) {
1154 r->submit_count--;
1155 if (r->submit_count == 0) {
1156 k_sem_give(r->submit_sem);
1157 }
1158 }
1159 #endif
1160 #ifdef CONFIG_RTIO_CONSUME_SEM
1161 k_sem_give(r->consume_sem);
1162 #endif
1163 }
1164
1165 #define __RTIO_MEMPOOL_GET_NUM_BLKS(num_bytes, blk_size) (((num_bytes) + (blk_size)-1) / (blk_size))
1166
1167 /**
1168 * @brief Get the buffer associate with the RX submission
1169 *
1170 * @param[in] iodev_sqe The submission to probe
1171 * @param[in] min_buf_len The minimum number of bytes needed for the operation
1172 * @param[in] max_buf_len The maximum number of bytes needed for the operation
1173 * @param[out] buf Where to store the pointer to the buffer
1174 * @param[out] buf_len Where to store the size of the buffer
1175 *
1176 * @return 0 if @p buf and @p buf_len were successfully filled
1177 * @return -ENOMEM Not enough memory for @p min_buf_len
1178 */
rtio_sqe_rx_buf(const struct rtio_iodev_sqe * iodev_sqe,uint32_t min_buf_len,uint32_t max_buf_len,uint8_t ** buf,uint32_t * buf_len)1179 static inline int rtio_sqe_rx_buf(const struct rtio_iodev_sqe *iodev_sqe, uint32_t min_buf_len,
1180 uint32_t max_buf_len, uint8_t **buf, uint32_t *buf_len)
1181 {
1182 struct rtio_sqe *sqe = (struct rtio_sqe *)&iodev_sqe->sqe;
1183
1184 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
1185 if (sqe->op == RTIO_OP_RX && sqe->flags & RTIO_SQE_MEMPOOL_BUFFER) {
1186 struct rtio *r = iodev_sqe->r;
1187
1188 if (sqe->buf != NULL) {
1189 if (sqe->buf_len < min_buf_len) {
1190 return -ENOMEM;
1191 }
1192 *buf = sqe->buf;
1193 *buf_len = sqe->buf_len;
1194 return 0;
1195 }
1196
1197 int rc = rtio_block_pool_alloc(r, min_buf_len, max_buf_len, buf, buf_len);
1198 if (rc == 0) {
1199 sqe->buf = *buf;
1200 sqe->buf_len = *buf_len;
1201 return 0;
1202 }
1203
1204 return -ENOMEM;
1205 }
1206 #else
1207 ARG_UNUSED(max_buf_len);
1208 #endif
1209
1210 if (sqe->buf_len < min_buf_len) {
1211 return -ENOMEM;
1212 }
1213
1214 *buf = sqe->buf;
1215 *buf_len = sqe->buf_len;
1216 return 0;
1217 }
1218
1219 /**
1220 * @brief Release memory that was allocated by the RTIO's memory pool
1221 *
1222 * If the RTIO context was created by a call to RTIO_DEFINE_WITH_MEMPOOL(), then the cqe data might
1223 * contain a buffer that's owned by the RTIO context. In those cases (if the read request was
1224 * configured via rtio_sqe_read_with_pool()) the buffer must be returned back to the pool.
1225 *
1226 * Call this function when processing is complete. This function will validate that the memory
1227 * actually belongs to the RTIO context and will ignore invalid arguments.
1228 *
1229 * @param r RTIO context
1230 * @param buff Pointer to the buffer to be released.
1231 * @param buff_len Number of bytes to free (will be rounded up to nearest memory block).
1232 */
1233 __syscall void rtio_release_buffer(struct rtio *r, void *buff, uint32_t buff_len);
1234
z_impl_rtio_release_buffer(struct rtio * r,void * buff,uint32_t buff_len)1235 static inline void z_impl_rtio_release_buffer(struct rtio *r, void *buff, uint32_t buff_len)
1236 {
1237 #ifdef CONFIG_RTIO_SYS_MEM_BLOCKS
1238 if (r == NULL || buff == NULL || r->block_pool == NULL || buff_len == 0) {
1239 return;
1240 }
1241
1242 rtio_block_pool_free(r, buff, buff_len);
1243 #else
1244 ARG_UNUSED(r);
1245 ARG_UNUSED(buff);
1246 ARG_UNUSED(buff_len);
1247 #endif
1248 }
1249
1250 /**
1251 * Grant access to an RTIO context to a user thread
1252 */
rtio_access_grant(struct rtio * r,struct k_thread * t)1253 static inline void rtio_access_grant(struct rtio *r, struct k_thread *t)
1254 {
1255 k_object_access_grant(r, t);
1256
1257 #ifdef CONFIG_RTIO_SUBMIT_SEM
1258 k_object_access_grant(r->submit_sem, t);
1259 #endif
1260
1261 #ifdef CONFIG_RTIO_CONSUME_SEM
1262 k_object_access_grant(r->consume_sem, t);
1263 #endif
1264 }
1265
1266 /**
1267 * @brief Attempt to cancel an SQE
1268 *
1269 * If possible (not currently executing), cancel an SQE and generate a failure with -ECANCELED
1270 * result.
1271 *
1272 * @param[in] sqe The SQE to cancel
1273 * @return 0 if the SQE was flagged for cancellation
1274 * @return <0 on error
1275 */
1276 __syscall int rtio_sqe_cancel(struct rtio_sqe *sqe);
1277
z_impl_rtio_sqe_cancel(struct rtio_sqe * sqe)1278 static inline int z_impl_rtio_sqe_cancel(struct rtio_sqe *sqe)
1279 {
1280 struct rtio_iodev_sqe *iodev_sqe = CONTAINER_OF(sqe, struct rtio_iodev_sqe, sqe);
1281
1282 do {
1283 iodev_sqe->sqe.flags |= RTIO_SQE_CANCELED;
1284 iodev_sqe = rtio_iodev_sqe_next(iodev_sqe);
1285 } while (iodev_sqe != NULL);
1286
1287 return 0;
1288 }
1289
1290 /**
1291 * @brief Copy an array of SQEs into the queue and get resulting handles back
1292 *
1293 * Copies one or more SQEs into the RTIO context and optionally returns their generated SQE handles.
1294 * Handles can be used to cancel events via the rtio_sqe_cancel() call.
1295 *
1296 * @param[in] r RTIO context
1297 * @param[in] sqes Pointer to an array of SQEs
1298 * @param[out] handle Optional pointer to @ref rtio_sqe pointer to store the handle of the
1299 * first generated SQE. Use NULL to ignore.
1300 * @param[in] sqe_count Count of sqes in array
1301 *
1302 * @retval 0 success
1303 * @retval -ENOMEM not enough room in the queue
1304 */
1305 __syscall int rtio_sqe_copy_in_get_handles(struct rtio *r, const struct rtio_sqe *sqes,
1306 struct rtio_sqe **handle, size_t sqe_count);
1307
z_impl_rtio_sqe_copy_in_get_handles(struct rtio * r,const struct rtio_sqe * sqes,struct rtio_sqe ** handle,size_t sqe_count)1308 static inline int z_impl_rtio_sqe_copy_in_get_handles(struct rtio *r, const struct rtio_sqe *sqes,
1309 struct rtio_sqe **handle,
1310 size_t sqe_count)
1311 {
1312 struct rtio_sqe *sqe;
1313 uint32_t acquirable = rtio_sqe_acquirable(r);
1314
1315 if (acquirable < sqe_count) {
1316 return -ENOMEM;
1317 }
1318
1319 for (unsigned long i = 0; i < sqe_count; i++) {
1320 sqe = rtio_sqe_acquire(r);
1321 __ASSERT_NO_MSG(sqe != NULL);
1322 if (handle != NULL && i == 0) {
1323 *handle = sqe;
1324 }
1325 *sqe = sqes[i];
1326 }
1327
1328 return 0;
1329 }
1330
1331 /**
1332 * @brief Copy an array of SQEs into the queue
1333 *
1334 * Useful if a batch of submissions is stored in ROM or
1335 * RTIO is used from user mode where a copy must be made.
1336 *
1337 * Partial copying is not done as chained SQEs need to be submitted
1338 * as a whole set.
1339 *
1340 * @param r RTIO context
1341 * @param sqes Pointer to an array of SQEs
1342 * @param sqe_count Count of sqes in array
1343 *
1344 * @retval 0 success
1345 * @retval -ENOMEM not enough room in the queue
1346 */
rtio_sqe_copy_in(struct rtio * r,const struct rtio_sqe * sqes,size_t sqe_count)1347 static inline int rtio_sqe_copy_in(struct rtio *r, const struct rtio_sqe *sqes, size_t sqe_count)
1348 {
1349 return rtio_sqe_copy_in_get_handles(r, sqes, NULL, sqe_count);
1350 }
1351
1352 /**
1353 * @brief Copy an array of CQEs from the queue
1354 *
1355 * Copies from the RTIO context and its queue completion queue
1356 * events, waiting for the given time period to gather the number
1357 * of completions requested.
1358 *
1359 * @param r RTIO context
1360 * @param cqes Pointer to an array of SQEs
1361 * @param cqe_count Count of sqes in array
1362 * @param timeout Timeout to wait for each completion event. Total wait time is
1363 * potentially timeout*cqe_count at maximum.
1364 *
1365 * @retval copy_count Count of copied CQEs (0 to cqe_count)
1366 */
1367 __syscall int rtio_cqe_copy_out(struct rtio *r,
1368 struct rtio_cqe *cqes,
1369 size_t cqe_count,
1370 k_timeout_t timeout);
z_impl_rtio_cqe_copy_out(struct rtio * r,struct rtio_cqe * cqes,size_t cqe_count,k_timeout_t timeout)1371 static inline int z_impl_rtio_cqe_copy_out(struct rtio *r,
1372 struct rtio_cqe *cqes,
1373 size_t cqe_count,
1374 k_timeout_t timeout)
1375 {
1376 size_t copied = 0;
1377 struct rtio_cqe *cqe;
1378 k_timepoint_t end = sys_timepoint_calc(timeout);
1379
1380 do {
1381 cqe = K_TIMEOUT_EQ(timeout, K_FOREVER) ? rtio_cqe_consume_block(r)
1382 : rtio_cqe_consume(r);
1383 if (cqe == NULL) {
1384 #ifdef CONFIG_BOARD_NATIVE_POSIX
1385 /* Native posix fakes the clock and only moves it forward when sleeping. */
1386 k_sleep(K_TICKS(1));
1387 #else
1388 Z_SPIN_DELAY(1);
1389 #endif
1390 continue;
1391 }
1392 cqes[copied++] = *cqe;
1393 rtio_cqe_release(r, cqe);
1394 } while (copied < cqe_count && !sys_timepoint_expired(end));
1395
1396 return copied;
1397 }
1398
1399 /**
1400 * @brief Submit I/O requests to the underlying executor
1401 *
1402 * Submits the queue of submission queue events to the executor.
1403 * The executor will do the work of managing tasks representing each
1404 * submission chain, freeing submission queue events when done, and
1405 * producing completion queue events as submissions are completed.
1406 *
1407 * @param r RTIO context
1408 * @param wait_count Number of submissions to wait for completion of.
1409 *
1410 * @retval 0 On success
1411 */
1412 __syscall int rtio_submit(struct rtio *r, uint32_t wait_count);
1413
z_impl_rtio_submit(struct rtio * r,uint32_t wait_count)1414 static inline int z_impl_rtio_submit(struct rtio *r, uint32_t wait_count)
1415 {
1416 int res = 0;
1417
1418 #ifdef CONFIG_RTIO_SUBMIT_SEM
1419 /* TODO undefined behavior if another thread calls submit of course
1420 */
1421 if (wait_count > 0) {
1422 __ASSERT(!k_is_in_isr(),
1423 "expected rtio submit with wait count to be called from a thread");
1424
1425 k_sem_reset(r->submit_sem);
1426 r->submit_count = wait_count;
1427 }
1428 #else
1429 uintptr_t cq_count = (uintptr_t)atomic_get(&r->cq_count) + wait_count;
1430 #endif
1431
1432 /* Submit the queue to the executor which consumes submissions
1433 * and produces completions through ISR chains or other means.
1434 */
1435 rtio_executor_submit(r);
1436
1437
1438 /* TODO could be nicer if we could suspend the thread and not
1439 * wake up on each completion here.
1440 */
1441 #ifdef CONFIG_RTIO_SUBMIT_SEM
1442
1443 if (wait_count > 0) {
1444 res = k_sem_take(r->submit_sem, K_FOREVER);
1445 __ASSERT(res == 0,
1446 "semaphore was reset or timed out while waiting on completions!");
1447 }
1448 #else
1449 while ((uintptr_t)atomic_get(&r->cq_count) < cq_count) {
1450 Z_SPIN_DELAY(10);
1451 k_yield();
1452 }
1453 #endif
1454
1455 return res;
1456 }
1457
1458 /**
1459 * @}
1460 */
1461
1462 #ifdef __cplusplus
1463 }
1464 #endif
1465
1466 #include <zephyr/syscalls/rtio.h>
1467
1468 #endif /* ZEPHYR_INCLUDE_RTIO_RTIO_H_ */
1469