1 /*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /**
8 * @file
9 *
10 * @brief Public kernel APIs.
11 */
12
13 #ifndef ZEPHYR_INCLUDE_KERNEL_H_
14 #define ZEPHYR_INCLUDE_KERNEL_H_
15
16 #if !defined(_ASMLANGUAGE)
17 #include <zephyr/kernel_includes.h>
18 #include <errno.h>
19 #include <limits.h>
20 #include <stdbool.h>
21 #include <zephyr/toolchain.h>
22 #include <zephyr/tracing/tracing_macros.h>
23 #include <zephyr/sys/mem_stats.h>
24 #include <zephyr/sys/iterable_sections.h>
25
26 #ifdef __cplusplus
27 extern "C" {
28 #endif
29
30 /*
31 * Zephyr currently assumes the size of a couple standard types to simplify
32 * print string formats. Let's make sure this doesn't change without notice.
33 */
34 BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
35 BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
36 BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
37
38 /**
39 * @brief Kernel APIs
40 * @defgroup kernel_apis Kernel APIs
41 * @{
42 * @}
43 */
44
45 #define K_ANY NULL
46
47 #if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
48 #error Zero available thread priorities defined!
49 #endif
50
51 #define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
52 #define K_PRIO_PREEMPT(x) (x)
53
54 #define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
55 #define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
56 #define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
57 #define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
58 #define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
59
60 #ifdef CONFIG_POLL
61 #define _POLL_EVENT_OBJ_INIT(obj) \
62 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
63 #define _POLL_EVENT sys_dlist_t poll_events
64 #else
65 #define _POLL_EVENT_OBJ_INIT(obj)
66 #define _POLL_EVENT
67 #endif
68
69 struct k_thread;
70 struct k_mutex;
71 struct k_sem;
72 struct k_msgq;
73 struct k_mbox;
74 struct k_pipe;
75 struct k_queue;
76 struct k_fifo;
77 struct k_lifo;
78 struct k_stack;
79 struct k_mem_slab;
80 struct k_timer;
81 struct k_poll_event;
82 struct k_poll_signal;
83 struct k_mem_domain;
84 struct k_mem_partition;
85 struct k_futex;
86 struct k_event;
87
88 enum execution_context_types {
89 K_ISR = 0,
90 K_COOP_THREAD,
91 K_PREEMPT_THREAD,
92 };
93
94 /* private, used by k_poll and k_work_poll */
95 struct k_work_poll;
96 typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
97
98 /**
99 * @addtogroup thread_apis
100 * @{
101 */
102
103 typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
104 void *user_data);
105
106 /**
107 * @brief Iterate over all the threads in the system.
108 *
109 * This routine iterates over all the threads in the system and
110 * calls the user_cb function for each thread.
111 *
112 * @param user_cb Pointer to the user callback function.
113 * @param user_data Pointer to user data.
114 *
115 * @note @kconfig{CONFIG_THREAD_MONITOR} must be set for this function
116 * to be effective.
117 * @note This API uses @ref k_spin_lock to protect the _kernel.threads
118 * list which means creation of new threads and terminations of existing
119 * threads are blocked until this API returns.
120 */
121 extern void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
122
123 /**
124 * @brief Iterate over all the threads in the system without locking.
125 *
126 * This routine works exactly the same like @ref k_thread_foreach
127 * but unlocks interrupts when user_cb is executed.
128 *
129 * @param user_cb Pointer to the user callback function.
130 * @param user_data Pointer to user data.
131 *
132 * @note @kconfig{CONFIG_THREAD_MONITOR} must be set for this function
133 * to be effective.
134 * @note This API uses @ref k_spin_lock only when accessing the _kernel.threads
135 * queue elements. It unlocks it during user callback function processing.
136 * If a new task is created when this @c foreach function is in progress,
137 * the added new task would not be included in the enumeration.
138 * If a task is aborted during this enumeration, there would be a race here
139 * and there is a possibility that this aborted task would be included in the
140 * enumeration.
141 * @note If the task is aborted and the memory occupied by its @c k_thread
142 * structure is reused when this @c k_thread_foreach_unlocked is in progress
143 * it might even lead to the system behave unstable.
144 * This function may never return, as it would follow some @c next task
145 * pointers treating given pointer as a pointer to the k_thread structure
146 * while it is something different right now.
147 * Do not reuse the memory that was occupied by k_thread structure of aborted
148 * task if it was aborted after this function was called in any context.
149 */
150 extern void k_thread_foreach_unlocked(
151 k_thread_user_cb_t user_cb, void *user_data);
152
153 /** @} */
154
155 /**
156 * @defgroup thread_apis Thread APIs
157 * @ingroup kernel_apis
158 * @{
159 */
160
161 #endif /* !_ASMLANGUAGE */
162
163
164 /*
165 * Thread user options. May be needed by assembly code. Common part uses low
166 * bits, arch-specific use high bits.
167 */
168
169 /**
170 * @brief system thread that must not abort
171 * */
172 #define K_ESSENTIAL (BIT(0))
173
174 #if defined(CONFIG_FPU_SHARING)
175 /**
176 * @brief FPU registers are managed by context switch
177 *
178 * @details
179 * This option indicates that the thread uses the CPU's floating point
180 * registers. This instructs the kernel to take additional steps to save
181 * and restore the contents of these registers when scheduling the thread.
182 * No effect if @kconfig{CONFIG_FPU_SHARING} is not enabled.
183 */
184 #define K_FP_IDX 1
185 #define K_FP_REGS (BIT(K_FP_IDX))
186 #endif
187
188 /**
189 * @brief user mode thread
190 *
191 * This thread has dropped from supervisor mode to user mode and consequently
192 * has additional restrictions
193 */
194 #define K_USER (BIT(2))
195
196 /**
197 * @brief Inherit Permissions
198 *
199 * @details
200 * Indicates that the thread being created should inherit all kernel object
201 * permissions from the thread that created it. No effect if
202 * @kconfig{CONFIG_USERSPACE} is not enabled.
203 */
204 #define K_INHERIT_PERMS (BIT(3))
205
206 /**
207 * @brief Callback item state
208 *
209 * @details
210 * This is a single bit of state reserved for "callback manager"
211 * utilities (p4wq initially) who need to track operations invoked
212 * from within a user-provided callback they have been invoked.
213 * Effectively it serves as a tiny bit of zero-overhead TLS data.
214 */
215 #define K_CALLBACK_STATE (BIT(4))
216
217 #ifdef CONFIG_ARC
218 /* ARC processor Bitmask definitions for threads user options */
219
220 #if defined(CONFIG_ARC_DSP_SHARING)
221 /**
222 * @brief DSP registers are managed by context switch
223 *
224 * @details
225 * This option indicates that the thread uses the CPU's DSP registers.
226 * This instructs the kernel to take additional steps to save and
227 * restore the contents of these registers when scheduling the thread.
228 * No effect if @kconfig{CONFIG_ARC_DSP_SHARING} is not enabled.
229 */
230 #define K_DSP_IDX 6
231 #define K_ARC_DSP_REGS (BIT(K_DSP_IDX))
232 #endif
233
234 #if defined(CONFIG_ARC_AGU_SHARING)
235 /**
236 * @brief AGU registers are managed by context switch
237 *
238 * @details
239 * This option indicates that the thread uses the ARC processor's XY
240 * memory and DSP feature. Often used with @kconfig{CONFIG_ARC_AGU_SHARING}.
241 * No effect if @kconfig{CONFIG_ARC_AGU_SHARING} is not enabled.
242 */
243 #define K_AGU_IDX 7
244 #define K_ARC_AGU_REGS (BIT(K_AGU_IDX))
245 #endif
246 #endif
247
248 #ifdef CONFIG_X86
249 /* x86 Bitmask definitions for threads user options */
250
251 #if defined(CONFIG_FPU_SHARING) && defined(CONFIG_X86_SSE)
252 /**
253 * @brief FP and SSE registers are managed by context switch on x86
254 *
255 * @details
256 * This option indicates that the thread uses the x86 CPU's floating point
257 * and SSE registers. This instructs the kernel to take additional steps to
258 * save and restore the contents of these registers when scheduling
259 * the thread. No effect if @kconfig{CONFIG_X86_SSE} is not enabled.
260 */
261 #define K_SSE_REGS (BIT(7))
262 #endif
263 #endif
264
265 /* end - thread options */
266
267 #if !defined(_ASMLANGUAGE)
268 /**
269 * @brief Dynamically allocate a thread stack.
270 *
271 * Relevant stack creation flags include:
272 * - @ref K_USER allocate a userspace thread (requires `CONFIG_USERSPACE=y`)
273 *
274 * @param size Stack size in bytes.
275 * @param flags Stack creation flags, or 0.
276 *
277 * @retval the allocated thread stack on success.
278 * @retval NULL on failure.
279 *
280 * @see CONFIG_DYNAMIC_THREAD
281 */
282 __syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
283
284 /**
285 * @brief Free a dynamically allocated thread stack.
286 *
287 * @param stack Pointer to the thread stack.
288 *
289 * @retval 0 on success.
290 * @retval -EBUSY if the thread stack is in use.
291 * @retval -EINVAL if @p stack is invalid.
292 * @retval -ENOSYS if dynamic thread stack allocation is disabled
293 *
294 * @see CONFIG_DYNAMIC_THREAD
295 */
296 __syscall int k_thread_stack_free(k_thread_stack_t *stack);
297
298 /**
299 * @brief Create a thread.
300 *
301 * This routine initializes a thread, then schedules it for execution.
302 *
303 * The new thread may be scheduled for immediate execution or a delayed start.
304 * If the newly spawned thread does not have a delayed start the kernel
305 * scheduler may preempt the current thread to allow the new thread to
306 * execute.
307 *
308 * Thread options are architecture-specific, and can include K_ESSENTIAL,
309 * K_FP_REGS, and K_SSE_REGS. Multiple options may be specified by separating
310 * them using "|" (the logical OR operator).
311 *
312 * Stack objects passed to this function must be originally defined with
313 * either of these macros in order to be portable:
314 *
315 * - K_THREAD_STACK_DEFINE() - For stacks that may support either user or
316 * supervisor threads.
317 * - K_KERNEL_STACK_DEFINE() - For stacks that may support supervisor
318 * threads only. These stacks use less memory if CONFIG_USERSPACE is
319 * enabled.
320 *
321 * The stack_size parameter has constraints. It must either be:
322 *
323 * - The original size value passed to K_THREAD_STACK_DEFINE() or
324 * K_KERNEL_STACK_DEFINE()
325 * - The return value of K_THREAD_STACK_SIZEOF(stack) if the stack was
326 * defined with K_THREAD_STACK_DEFINE()
327 * - The return value of K_KERNEL_STACK_SIZEOF(stack) if the stack was
328 * defined with K_KERNEL_STACK_DEFINE().
329 *
330 * Using other values, or sizeof(stack) may produce undefined behavior.
331 *
332 * @param new_thread Pointer to uninitialized struct k_thread
333 * @param stack Pointer to the stack space.
334 * @param stack_size Stack size in bytes.
335 * @param entry Thread entry function.
336 * @param p1 1st entry point parameter.
337 * @param p2 2nd entry point parameter.
338 * @param p3 3rd entry point parameter.
339 * @param prio Thread priority.
340 * @param options Thread options.
341 * @param delay Scheduling delay, or K_NO_WAIT (for no delay).
342 *
343 * @return ID of new thread.
344 *
345 */
346 __syscall k_tid_t k_thread_create(struct k_thread *new_thread,
347 k_thread_stack_t *stack,
348 size_t stack_size,
349 k_thread_entry_t entry,
350 void *p1, void *p2, void *p3,
351 int prio, uint32_t options, k_timeout_t delay);
352
353 /**
354 * @brief Drop a thread's privileges permanently to user mode
355 *
356 * This allows a supervisor thread to be re-used as a user thread.
357 * This function does not return, but control will transfer to the provided
358 * entry point as if this was a new user thread.
359 *
360 * The implementation ensures that the stack buffer contents are erased.
361 * Any thread-local storage will be reverted to a pristine state.
362 *
363 * Memory domain membership, resource pool assignment, kernel object
364 * permissions, priority, and thread options are preserved.
365 *
366 * A common use of this function is to re-use the main thread as a user thread
367 * once all supervisor mode-only tasks have been completed.
368 *
369 * @param entry Function to start executing from
370 * @param p1 1st entry point parameter
371 * @param p2 2nd entry point parameter
372 * @param p3 3rd entry point parameter
373 */
374 extern FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
375 void *p1, void *p2,
376 void *p3);
377
378 /**
379 * @brief Grant a thread access to a set of kernel objects
380 *
381 * This is a convenience function. For the provided thread, grant access to
382 * the remaining arguments, which must be pointers to kernel objects.
383 *
384 * The thread object must be initialized (i.e. running). The objects don't
385 * need to be.
386 * Note that NULL shouldn't be passed as an argument.
387 *
388 * @param thread Thread to grant access to objects
389 * @param ... list of kernel object pointers
390 */
391 #define k_thread_access_grant(thread, ...) \
392 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
393
394 /**
395 * @brief Assign a resource memory pool to a thread
396 *
397 * By default, threads have no resource pool assigned unless their parent
398 * thread has a resource pool, in which case it is inherited. Multiple
399 * threads may be assigned to the same memory pool.
400 *
401 * Changing a thread's resource pool will not migrate allocations from the
402 * previous pool.
403 *
404 * @param thread Target thread to assign a memory pool for resource requests.
405 * @param heap Heap object to use for resources,
406 * or NULL if the thread should no longer have a memory pool.
407 */
k_thread_heap_assign(struct k_thread * thread,struct k_heap * heap)408 static inline void k_thread_heap_assign(struct k_thread *thread,
409 struct k_heap *heap)
410 {
411 thread->resource_pool = heap;
412 }
413
414 #if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
415 /**
416 * @brief Obtain stack usage information for the specified thread
417 *
418 * User threads will need to have permission on the target thread object.
419 *
420 * Some hardware may prevent inspection of a stack buffer currently in use.
421 * If this API is called from supervisor mode, on the currently running thread,
422 * on a platform which selects @kconfig{CONFIG_NO_UNUSED_STACK_INSPECTION}, an
423 * error will be generated.
424 *
425 * @param thread Thread to inspect stack information
426 * @param unused_ptr Output parameter, filled in with the unused stack space
427 * of the target thread in bytes.
428 * @return 0 on success
429 * @return -EBADF Bad thread object (user mode only)
430 * @return -EPERM No permissions on thread object (user mode only)
431 * #return -ENOTSUP Forbidden by hardware policy
432 * @return -EINVAL Thread is uninitialized or exited (user mode only)
433 * @return -EFAULT Bad memory address for unused_ptr (user mode only)
434 */
435 __syscall int k_thread_stack_space_get(const struct k_thread *thread,
436 size_t *unused_ptr);
437 #endif
438
439 #if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
440 /**
441 * @brief Assign the system heap as a thread's resource pool
442 *
443 * Similar to k_thread_heap_assign(), but the thread will use
444 * the kernel heap to draw memory.
445 *
446 * Use with caution, as a malicious thread could perform DoS attacks on the
447 * kernel heap.
448 *
449 * @param thread Target thread to assign the system heap for resource requests
450 *
451 */
452 void k_thread_system_pool_assign(struct k_thread *thread);
453 #endif /* (CONFIG_HEAP_MEM_POOL_SIZE > 0) */
454
455 /**
456 * @brief Sleep until a thread exits
457 *
458 * The caller will be put to sleep until the target thread exits, either due
459 * to being aborted, self-exiting, or taking a fatal error. This API returns
460 * immediately if the thread isn't running.
461 *
462 * This API may only be called from ISRs with a K_NO_WAIT timeout,
463 * where it can be useful as a predicate to detect when a thread has
464 * aborted.
465 *
466 * @param thread Thread to wait to exit
467 * @param timeout upper bound time to wait for the thread to exit.
468 * @retval 0 success, target thread has exited or wasn't running
469 * @retval -EBUSY returned without waiting
470 * @retval -EAGAIN waiting period timed out
471 * @retval -EDEADLK target thread is joining on the caller, or target thread
472 * is the caller
473 */
474 __syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
475
476 /**
477 * @brief Put the current thread to sleep.
478 *
479 * This routine puts the current thread to sleep for @a duration,
480 * specified as a k_timeout_t object.
481 *
482 * @note if @a timeout is set to K_FOREVER then the thread is suspended.
483 *
484 * @param timeout Desired duration of sleep.
485 *
486 * @return Zero if the requested time has elapsed or the number of milliseconds
487 * left to sleep, if thread was woken up by \ref k_wakeup call.
488 */
489 __syscall int32_t k_sleep(k_timeout_t timeout);
490
491 /**
492 * @brief Put the current thread to sleep.
493 *
494 * This routine puts the current thread to sleep for @a duration milliseconds.
495 *
496 * @param ms Number of milliseconds to sleep.
497 *
498 * @return Zero if the requested time has elapsed or the number of milliseconds
499 * left to sleep, if thread was woken up by \ref k_wakeup call.
500 */
k_msleep(int32_t ms)501 static inline int32_t k_msleep(int32_t ms)
502 {
503 return k_sleep(Z_TIMEOUT_MS(ms));
504 }
505
506 /**
507 * @brief Put the current thread to sleep with microsecond resolution.
508 *
509 * This function is unlikely to work as expected without kernel tuning.
510 * In particular, because the lower bound on the duration of a sleep is
511 * the duration of a tick, @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC} must be
512 * adjusted to achieve the resolution desired. The implications of doing
513 * this must be understood before attempting to use k_usleep(). Use with
514 * caution.
515 *
516 * @param us Number of microseconds to sleep.
517 *
518 * @return Zero if the requested time has elapsed or the number of microseconds
519 * left to sleep, if thread was woken up by \ref k_wakeup call.
520 */
521 __syscall int32_t k_usleep(int32_t us);
522
523 /**
524 * @brief Cause the current thread to busy wait.
525 *
526 * This routine causes the current thread to execute a "do nothing" loop for
527 * @a usec_to_wait microseconds.
528 *
529 * @note The clock used for the microsecond-resolution delay here may
530 * be skewed relative to the clock used for system timeouts like
531 * k_sleep(). For example k_busy_wait(1000) may take slightly more or
532 * less time than k_sleep(K_MSEC(1)), with the offset dependent on
533 * clock tolerances.
534 *
535 * @note In case when @kconfig{CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE} and
536 * @kconfig{CONFIG_PM} options are enabled, this function may not work.
537 * The timer/clock used for delay processing may be disabled/inactive.
538 */
539 __syscall void k_busy_wait(uint32_t usec_to_wait);
540
541 /**
542 * @brief Check whether it is possible to yield in the current context.
543 *
544 * This routine checks whether the kernel is in a state where it is possible to
545 * yield or call blocking API's. It should be used by code that needs to yield
546 * to perform correctly, but can feasibly be called from contexts where that
547 * is not possible. For example in the PRE_KERNEL initialization step, or when
548 * being run from the idle thread.
549 *
550 * @return True if it is possible to yield in the current context, false otherwise.
551 */
552 bool k_can_yield(void);
553
554 /**
555 * @brief Yield the current thread.
556 *
557 * This routine causes the current thread to yield execution to another
558 * thread of the same or higher priority. If there are no other ready threads
559 * of the same or higher priority, the routine returns immediately.
560 */
561 __syscall void k_yield(void);
562
563 /**
564 * @brief Wake up a sleeping thread.
565 *
566 * This routine prematurely wakes up @a thread from sleeping.
567 *
568 * If @a thread is not currently sleeping, the routine has no effect.
569 *
570 * @param thread ID of thread to wake.
571 */
572 __syscall void k_wakeup(k_tid_t thread);
573
574 /**
575 * @brief Query thread ID of the current thread.
576 *
577 * This unconditionally queries the kernel via a system call.
578 *
579 * @note Use k_current_get() unless absolutely sure this is necessary.
580 * This should only be used directly where the thread local
581 * variable cannot be used or may contain invalid values
582 * if thread local storage (TLS) is enabled. If TLS is not
583 * enabled, this is the same as k_current_get().
584 *
585 * @return ID of current thread.
586 */
587 __attribute_const__
588 __syscall k_tid_t k_sched_current_thread_query(void);
589
590 /**
591 * @brief Get thread ID of the current thread.
592 *
593 * @return ID of current thread.
594 *
595 */
596 __attribute_const__
k_current_get(void)597 static inline k_tid_t k_current_get(void)
598 {
599 #ifdef CONFIG_THREAD_LOCAL_STORAGE
600 /* Thread-local cache of current thread ID, set in z_thread_entry() */
601 extern __thread k_tid_t z_tls_current;
602
603 return z_tls_current;
604 #else
605 return k_sched_current_thread_query();
606 #endif
607 }
608
609 /**
610 * @brief Abort a thread.
611 *
612 * This routine permanently stops execution of @a thread. The thread is taken
613 * off all kernel queues it is part of (i.e. the ready queue, the timeout
614 * queue, or a kernel object wait queue). However, any kernel resources the
615 * thread might currently own (such as mutexes or memory blocks) are not
616 * released. It is the responsibility of the caller of this routine to ensure
617 * all necessary cleanup is performed.
618 *
619 * After k_thread_abort() returns, the thread is guaranteed not to be
620 * running or to become runnable anywhere on the system. Normally
621 * this is done via blocking the caller (in the same manner as
622 * k_thread_join()), but in interrupt context on SMP systems the
623 * implementation is required to spin for threads that are running on
624 * other CPUs. Note that as specified, this means that on SMP
625 * platforms it is possible for application code to create a deadlock
626 * condition by simultaneously aborting a cycle of threads using at
627 * least one termination from interrupt context. Zephyr cannot detect
628 * all such conditions.
629 *
630 * @param thread ID of thread to abort.
631 */
632 __syscall void k_thread_abort(k_tid_t thread);
633
634
635 /**
636 * @brief Start an inactive thread
637 *
638 * If a thread was created with K_FOREVER in the delay parameter, it will
639 * not be added to the scheduling queue until this function is called
640 * on it.
641 *
642 * @param thread thread to start
643 */
644 __syscall void k_thread_start(k_tid_t thread);
645
646 extern k_ticks_t z_timeout_expires(const struct _timeout *timeout);
647 extern k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
648
649 #ifdef CONFIG_SYS_CLOCK_EXISTS
650
651 /**
652 * @brief Get time when a thread wakes up, in system ticks
653 *
654 * This routine computes the system uptime when a waiting thread next
655 * executes, in units of system ticks. If the thread is not waiting,
656 * it returns current system time.
657 */
658 __syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t);
659
z_impl_k_thread_timeout_expires_ticks(const struct k_thread * t)660 static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
661 const struct k_thread *t)
662 {
663 return z_timeout_expires(&t->base.timeout);
664 }
665
666 /**
667 * @brief Get time remaining before a thread wakes up, in system ticks
668 *
669 * This routine computes the time remaining before a waiting thread
670 * next executes, in units of system ticks. If the thread is not
671 * waiting, it returns zero.
672 */
673 __syscall k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t);
674
z_impl_k_thread_timeout_remaining_ticks(const struct k_thread * t)675 static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
676 const struct k_thread *t)
677 {
678 return z_timeout_remaining(&t->base.timeout);
679 }
680
681 #endif /* CONFIG_SYS_CLOCK_EXISTS */
682
683 /**
684 * @cond INTERNAL_HIDDEN
685 */
686
687 struct _static_thread_data {
688 struct k_thread *init_thread;
689 k_thread_stack_t *init_stack;
690 unsigned int init_stack_size;
691 k_thread_entry_t init_entry;
692 void *init_p1;
693 void *init_p2;
694 void *init_p3;
695 int init_prio;
696 uint32_t init_options;
697 const char *init_name;
698 #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
699 int32_t init_delay_ms;
700 #else
701 k_timeout_t init_delay;
702 #endif
703 };
704
705 #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
706 #define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
707 #define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
708 #else
709 #define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS(ms)
710 #define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
711 #endif
712
713 #define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
714 entry, p1, p2, p3, \
715 prio, options, delay, tname) \
716 { \
717 .init_thread = (thread), \
718 .init_stack = (stack), \
719 .init_stack_size = (stack_size), \
720 .init_entry = (k_thread_entry_t)entry, \
721 .init_p1 = (void *)p1, \
722 .init_p2 = (void *)p2, \
723 .init_p3 = (void *)p3, \
724 .init_prio = (prio), \
725 .init_options = (options), \
726 .init_name = STRINGIFY(tname), \
727 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
728 }
729
730 /*
731 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
732 * information on arguments.
733 */
734 #define Z_THREAD_COMMON_DEFINE(name, stack_size, \
735 entry, p1, p2, p3, \
736 prio, options, delay) \
737 struct k_thread _k_thread_obj_##name; \
738 STRUCT_SECTION_ITERABLE(_static_thread_data, \
739 _k_thread_data_##name) = \
740 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
741 _k_thread_stack_##name, stack_size,\
742 entry, p1, p2, p3, prio, options, \
743 delay, name); \
744 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
745
746 /**
747 * INTERNAL_HIDDEN @endcond
748 */
749
750 /**
751 * @brief Statically define and initialize a thread.
752 *
753 * The thread may be scheduled for immediate execution or a delayed start.
754 *
755 * Thread options are architecture-specific, and can include K_ESSENTIAL,
756 * K_FP_REGS, and K_SSE_REGS. Multiple options may be specified by separating
757 * them using "|" (the logical OR operator).
758 *
759 * The ID of the thread can be accessed using:
760 *
761 * @code extern const k_tid_t <name>; @endcode
762 *
763 * @param name Name of the thread.
764 * @param stack_size Stack size in bytes.
765 * @param entry Thread entry function.
766 * @param p1 1st entry point parameter.
767 * @param p2 2nd entry point parameter.
768 * @param p3 3rd entry point parameter.
769 * @param prio Thread priority.
770 * @param options Thread options.
771 * @param delay Scheduling delay (in milliseconds), zero for no delay.
772 *
773 * @note Static threads with zero delay should not normally have
774 * MetaIRQ priority levels. This can preempt the system
775 * initialization handling (depending on the priority of the main
776 * thread) and cause surprising ordering side effects. It will not
777 * affect anything in the OS per se, but consider it bad practice.
778 * Use a SYS_INIT() callback if you need to run code before entrance
779 * to the application main().
780 */
781 #define K_THREAD_DEFINE(name, stack_size, \
782 entry, p1, p2, p3, \
783 prio, options, delay) \
784 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
785 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
786 prio, options, delay)
787
788 /**
789 * @brief Statically define and initialize a thread intended to run only in kernel mode.
790 *
791 * The thread may be scheduled for immediate execution or a delayed start.
792 *
793 * Thread options are architecture-specific, and can include K_ESSENTIAL,
794 * K_FP_REGS, and K_SSE_REGS. Multiple options may be specified by separating
795 * them using "|" (the logical OR operator).
796 *
797 * The ID of the thread can be accessed using:
798 *
799 * @code extern const k_tid_t <name>; @endcode
800 *
801 * @note Threads defined by this can only run in kernel mode, and cannot be
802 * transformed into user thread via k_thread_user_mode_enter().
803 *
804 * @warning Depending on the architecture, the stack size (@p stack_size)
805 * may need to be multiples of CONFIG_MMU_PAGE_SIZE (if MMU)
806 * or in power-of-two size (if MPU).
807 *
808 * @param name Name of the thread.
809 * @param stack_size Stack size in bytes.
810 * @param entry Thread entry function.
811 * @param p1 1st entry point parameter.
812 * @param p2 2nd entry point parameter.
813 * @param p3 3rd entry point parameter.
814 * @param prio Thread priority.
815 * @param options Thread options.
816 * @param delay Scheduling delay (in milliseconds), zero for no delay.
817 */
818 #define K_KERNEL_THREAD_DEFINE(name, stack_size, \
819 entry, p1, p2, p3, \
820 prio, options, delay) \
821 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
822 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
823 prio, options, delay)
824
825 /**
826 * @brief Get a thread's priority.
827 *
828 * This routine gets the priority of @a thread.
829 *
830 * @param thread ID of thread whose priority is needed.
831 *
832 * @return Priority of @a thread.
833 */
834 __syscall int k_thread_priority_get(k_tid_t thread);
835
836 /**
837 * @brief Set a thread's priority.
838 *
839 * This routine immediately changes the priority of @a thread.
840 *
841 * Rescheduling can occur immediately depending on the priority @a thread is
842 * set to:
843 *
844 * - If its priority is raised above the priority of the caller of this
845 * function, and the caller is preemptible, @a thread will be scheduled in.
846 *
847 * - If the caller operates on itself, it lowers its priority below that of
848 * other threads in the system, and the caller is preemptible, the thread of
849 * highest priority will be scheduled in.
850 *
851 * Priority can be assigned in the range of -CONFIG_NUM_COOP_PRIORITIES to
852 * CONFIG_NUM_PREEMPT_PRIORITIES-1, where -CONFIG_NUM_COOP_PRIORITIES is the
853 * highest priority.
854 *
855 * @param thread ID of thread whose priority is to be set.
856 * @param prio New priority.
857 *
858 * @warning Changing the priority of a thread currently involved in mutex
859 * priority inheritance may result in undefined behavior.
860 */
861 __syscall void k_thread_priority_set(k_tid_t thread, int prio);
862
863
864 #ifdef CONFIG_SCHED_DEADLINE
865 /**
866 * @brief Set deadline expiration time for scheduler
867 *
868 * This sets the "deadline" expiration as a time delta from the
869 * current time, in the same units used by k_cycle_get_32(). The
870 * scheduler (when deadline scheduling is enabled) will choose the
871 * next expiring thread when selecting between threads at the same
872 * static priority. Threads at different priorities will be scheduled
873 * according to their static priority.
874 *
875 * @note Deadlines are stored internally using 32 bit unsigned
876 * integers. The number of cycles between the "first" deadline in the
877 * scheduler queue and the "last" deadline must be less than 2^31 (i.e
878 * a signed non-negative quantity). Failure to adhere to this rule
879 * may result in scheduled threads running in an incorrect deadline
880 * order.
881 *
882 * @note Despite the API naming, the scheduler makes no guarantees the
883 * the thread WILL be scheduled within that deadline, nor does it take
884 * extra metadata (like e.g. the "runtime" and "period" parameters in
885 * Linux sched_setattr()) that allows the kernel to validate the
886 * scheduling for achievability. Such features could be implemented
887 * above this call, which is simply input to the priority selection
888 * logic.
889 *
890 * @note You should enable @kconfig{CONFIG_SCHED_DEADLINE} in your project
891 * configuration.
892 *
893 * @param thread A thread on which to set the deadline
894 * @param deadline A time delta, in cycle units
895 *
896 */
897 __syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
898 #endif
899
900 #ifdef CONFIG_SCHED_CPU_MASK
901 /**
902 * @brief Sets all CPU enable masks to zero
903 *
904 * After this returns, the thread will no longer be schedulable on any
905 * CPUs. The thread must not be currently runnable.
906 *
907 * @note You should enable @kconfig{CONFIG_SCHED_CPU_MASK} in your project
908 * configuration.
909 *
910 * @param thread Thread to operate upon
911 * @return Zero on success, otherwise error code
912 */
913 int k_thread_cpu_mask_clear(k_tid_t thread);
914
915 /**
916 * @brief Sets all CPU enable masks to one
917 *
918 * After this returns, the thread will be schedulable on any CPU. The
919 * thread must not be currently runnable.
920 *
921 * @note You should enable @kconfig{CONFIG_SCHED_CPU_MASK} in your project
922 * configuration.
923 *
924 * @param thread Thread to operate upon
925 * @return Zero on success, otherwise error code
926 */
927 int k_thread_cpu_mask_enable_all(k_tid_t thread);
928
929 /**
930 * @brief Enable thread to run on specified CPU
931 *
932 * The thread must not be currently runnable.
933 *
934 * @note You should enable @kconfig{CONFIG_SCHED_CPU_MASK} in your project
935 * configuration.
936 *
937 * @param thread Thread to operate upon
938 * @param cpu CPU index
939 * @return Zero on success, otherwise error code
940 */
941 int k_thread_cpu_mask_enable(k_tid_t thread, int cpu);
942
943 /**
944 * @brief Prevent thread to run on specified CPU
945 *
946 * The thread must not be currently runnable.
947 *
948 * @note You should enable @kconfig{CONFIG_SCHED_CPU_MASK} in your project
949 * configuration.
950 *
951 * @param thread Thread to operate upon
952 * @param cpu CPU index
953 * @return Zero on success, otherwise error code
954 */
955 int k_thread_cpu_mask_disable(k_tid_t thread, int cpu);
956
957 /**
958 * @brief Pin a thread to a CPU
959 *
960 * Pin a thread to a CPU by first clearing the cpu mask and then enabling the
961 * thread on the selected CPU.
962 *
963 * @param thread Thread to operate upon
964 * @param cpu CPU index
965 * @return Zero on success, otherwise error code
966 */
967 int k_thread_cpu_pin(k_tid_t thread, int cpu);
968 #endif
969
970 /**
971 * @brief Suspend a thread.
972 *
973 * This routine prevents the kernel scheduler from making @a thread
974 * the current thread. All other internal operations on @a thread are
975 * still performed; for example, kernel objects it is waiting on are
976 * still handed to it. Note that any existing timeouts
977 * (e.g. k_sleep(), or a timeout argument to k_sem_take() et. al.)
978 * will be canceled. On resume, the thread will begin running
979 * immediately and return from the blocked call.
980 *
981 * If @a thread is already suspended, the routine has no effect.
982 *
983 * @param thread ID of thread to suspend.
984 */
985 __syscall void k_thread_suspend(k_tid_t thread);
986
987 /**
988 * @brief Resume a suspended thread.
989 *
990 * This routine allows the kernel scheduler to make @a thread the current
991 * thread, when it is next eligible for that role.
992 *
993 * If @a thread is not currently suspended, the routine has no effect.
994 *
995 * @param thread ID of thread to resume.
996 */
997 __syscall void k_thread_resume(k_tid_t thread);
998
999 /**
1000 * @brief Set time-slicing period and scope.
1001 *
1002 * This routine specifies how the scheduler will perform time slicing of
1003 * preemptible threads.
1004 *
1005 * To enable time slicing, @a slice must be non-zero. The scheduler
1006 * ensures that no thread runs for more than the specified time limit
1007 * before other threads of that priority are given a chance to execute.
1008 * Any thread whose priority is higher than @a prio is exempted, and may
1009 * execute as long as desired without being preempted due to time slicing.
1010 *
1011 * Time slicing only limits the maximum amount of time a thread may continuously
1012 * execute. Once the scheduler selects a thread for execution, there is no
1013 * minimum guaranteed time the thread will execute before threads of greater or
1014 * equal priority are scheduled.
1015 *
1016 * When the current thread is the only one of that priority eligible
1017 * for execution, this routine has no effect; the thread is immediately
1018 * rescheduled after the slice period expires.
1019 *
1020 * To disable timeslicing, set both @a slice and @a prio to zero.
1021 *
1022 * @param slice Maximum time slice length (in milliseconds).
1023 * @param prio Highest thread priority level eligible for time slicing.
1024 */
1025 extern void k_sched_time_slice_set(int32_t slice, int prio);
1026
1027 /**
1028 * @brief Set thread time slice
1029 *
1030 * As for k_sched_time_slice_set, but (when
1031 * CONFIG_TIMESLICE_PER_THREAD=y) sets the timeslice for a specific
1032 * thread. When non-zero, this timeslice will take precedence over
1033 * the global value.
1034 *
1035 * When such a thread's timeslice expires, the configured callback
1036 * will be called before the thread is removed/re-added to the run
1037 * queue. This callback will occur in interrupt context, and the
1038 * specified thread is guaranteed to have been preempted by the
1039 * currently-executing ISR. Such a callback is free to, for example,
1040 * modify the thread priority or slice time for future execution,
1041 * suspend the thread, etc...
1042 *
1043 * @note Unlike the older API, the time slice parameter here is
1044 * specified in ticks, not milliseconds. Ticks have always been the
1045 * internal unit, and not all platforms have integer conversions
1046 * between the two.
1047 *
1048 * @note Threads with a non-zero slice time set will be timesliced
1049 * always, even if they are higher priority than the maximum timeslice
1050 * priority set via k_sched_time_slice_set().
1051 *
1052 * @note The callback notification for slice expiration happens, as it
1053 * must, while the thread is still "current", and thus it happens
1054 * before any registered timeouts at this tick. This has the somewhat
1055 * confusing side effect that the tick time (c.f. k_uptime_get()) does
1056 * not yet reflect the expired ticks. Applications wishing to make
1057 * fine-grained timing decisions within this callback should use the
1058 * cycle API, or derived facilities like k_thread_runtime_stats_get().
1059 *
1060 * @param th A valid, initialized thread
1061 * @param slice_ticks Maximum timeslice, in ticks
1062 * @param expired Callback function called on slice expiration
1063 * @param data Parameter for the expiration handler
1064 */
1065 void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1066 k_thread_timeslice_fn_t expired, void *data);
1067
1068 /** @} */
1069
1070 /**
1071 * @addtogroup isr_apis
1072 * @{
1073 */
1074
1075 /**
1076 * @brief Determine if code is running at interrupt level.
1077 *
1078 * This routine allows the caller to customize its actions, depending on
1079 * whether it is a thread or an ISR.
1080 *
1081 * @funcprops \isr_ok
1082 *
1083 * @return false if invoked by a thread.
1084 * @return true if invoked by an ISR.
1085 */
1086 extern bool k_is_in_isr(void);
1087
1088 /**
1089 * @brief Determine if code is running in a preemptible thread.
1090 *
1091 * This routine allows the caller to customize its actions, depending on
1092 * whether it can be preempted by another thread. The routine returns a 'true'
1093 * value if all of the following conditions are met:
1094 *
1095 * - The code is running in a thread, not at ISR.
1096 * - The thread's priority is in the preemptible range.
1097 * - The thread has not locked the scheduler.
1098 *
1099 * @funcprops \isr_ok
1100 *
1101 * @return 0 if invoked by an ISR or by a cooperative thread.
1102 * @return Non-zero if invoked by a preemptible thread.
1103 */
1104 __syscall int k_is_preempt_thread(void);
1105
1106 /**
1107 * @brief Test whether startup is in the before-main-task phase.
1108 *
1109 * This routine allows the caller to customize its actions, depending on
1110 * whether it being invoked before the kernel is fully active.
1111 *
1112 * @funcprops \isr_ok
1113 *
1114 * @return true if invoked before post-kernel initialization
1115 * @return false if invoked during/after post-kernel initialization
1116 */
k_is_pre_kernel(void)1117 static inline bool k_is_pre_kernel(void)
1118 {
1119 extern bool z_sys_post_kernel; /* in init.c */
1120
1121 return !z_sys_post_kernel;
1122 }
1123
1124 /**
1125 * @}
1126 */
1127
1128 /**
1129 * @addtogroup thread_apis
1130 * @{
1131 */
1132
1133 /**
1134 * @brief Lock the scheduler.
1135 *
1136 * This routine prevents the current thread from being preempted by another
1137 * thread by instructing the scheduler to treat it as a cooperative thread.
1138 * If the thread subsequently performs an operation that makes it unready,
1139 * it will be context switched out in the normal manner. When the thread
1140 * again becomes the current thread, its non-preemptible status is maintained.
1141 *
1142 * This routine can be called recursively.
1143 *
1144 * Owing to clever implementation details, scheduler locks are
1145 * extremely fast for non-userspace threads (just one byte
1146 * inc/decrement in the thread struct).
1147 *
1148 * @note This works by elevating the thread priority temporarily to a
1149 * cooperative priority, allowing cheap synchronization vs. other
1150 * preemptible or cooperative threads running on the current CPU. It
1151 * does not prevent preemption or asynchrony of other types. It does
1152 * not prevent threads from running on other CPUs when CONFIG_SMP=y.
1153 * It does not prevent interrupts from happening, nor does it prevent
1154 * threads with MetaIRQ priorities from preempting the current thread.
1155 * In general this is a historical API not well-suited to modern
1156 * applications, use with care.
1157 */
1158 extern void k_sched_lock(void);
1159
1160 /**
1161 * @brief Unlock the scheduler.
1162 *
1163 * This routine reverses the effect of a previous call to k_sched_lock().
1164 * A thread must call the routine once for each time it called k_sched_lock()
1165 * before the thread becomes preemptible.
1166 */
1167 extern void k_sched_unlock(void);
1168
1169 /**
1170 * @brief Set current thread's custom data.
1171 *
1172 * This routine sets the custom data for the current thread to @ value.
1173 *
1174 * Custom data is not used by the kernel itself, and is freely available
1175 * for a thread to use as it sees fit. It can be used as a framework
1176 * upon which to build thread-local storage.
1177 *
1178 * @param value New custom data value.
1179 *
1180 */
1181 __syscall void k_thread_custom_data_set(void *value);
1182
1183 /**
1184 * @brief Get current thread's custom data.
1185 *
1186 * This routine returns the custom data for the current thread.
1187 *
1188 * @return Current custom data value.
1189 */
1190 __syscall void *k_thread_custom_data_get(void);
1191
1192 /**
1193 * @brief Set current thread name
1194 *
1195 * Set the name of the thread to be used when @kconfig{CONFIG_THREAD_MONITOR}
1196 * is enabled for tracing and debugging.
1197 *
1198 * @param thread Thread to set name, or NULL to set the current thread
1199 * @param str Name string
1200 * @retval 0 on success
1201 * @retval -EFAULT Memory access error with supplied string
1202 * @retval -ENOSYS Thread name configuration option not enabled
1203 * @retval -EINVAL Thread name too long
1204 */
1205 __syscall int k_thread_name_set(k_tid_t thread, const char *str);
1206
1207 /**
1208 * @brief Get thread name
1209 *
1210 * Get the name of a thread
1211 *
1212 * @param thread Thread ID
1213 * @retval Thread name, or NULL if configuration not enabled
1214 */
1215 const char *k_thread_name_get(k_tid_t thread);
1216
1217 /**
1218 * @brief Copy the thread name into a supplied buffer
1219 *
1220 * @param thread Thread to obtain name information
1221 * @param buf Destination buffer
1222 * @param size Destination buffer size
1223 * @retval -ENOSPC Destination buffer too small
1224 * @retval -EFAULT Memory access error
1225 * @retval -ENOSYS Thread name feature not enabled
1226 * @retval 0 Success
1227 */
1228 __syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1229 size_t size);
1230
1231 /**
1232 * @brief Get thread state string
1233 *
1234 * This routine generates a human friendly string containing the thread's
1235 * state, and copies as much of it as possible into @a buf.
1236 *
1237 * @param thread_id Thread ID
1238 * @param buf Buffer into which to copy state strings
1239 * @param buf_size Size of the buffer
1240 *
1241 * @retval Pointer to @a buf if data was copied, else a pointer to "".
1242 */
1243 const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1244
1245 /**
1246 * @}
1247 */
1248
1249 /**
1250 * @addtogroup clock_apis
1251 * @{
1252 */
1253
1254 /**
1255 * @brief Generate null timeout delay.
1256 *
1257 * This macro generates a timeout delay that instructs a kernel API
1258 * not to wait if the requested operation cannot be performed immediately.
1259 *
1260 * @return Timeout delay value.
1261 */
1262 #define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1263
1264 /**
1265 * @brief Generate timeout delay from nanoseconds.
1266 *
1267 * This macro generates a timeout delay that instructs a kernel API to
1268 * wait up to @a t nanoseconds to perform the requested operation.
1269 * Note that timer precision is limited to the tick rate, not the
1270 * requested value.
1271 *
1272 * @param t Duration in nanoseconds.
1273 *
1274 * @return Timeout delay value.
1275 */
1276 #define K_NSEC(t) Z_TIMEOUT_NS(t)
1277
1278 /**
1279 * @brief Generate timeout delay from microseconds.
1280 *
1281 * This macro generates a timeout delay that instructs a kernel API
1282 * to wait up to @a t microseconds to perform the requested operation.
1283 * Note that timer precision is limited to the tick rate, not the
1284 * requested value.
1285 *
1286 * @param t Duration in microseconds.
1287 *
1288 * @return Timeout delay value.
1289 */
1290 #define K_USEC(t) Z_TIMEOUT_US(t)
1291
1292 /**
1293 * @brief Generate timeout delay from cycles.
1294 *
1295 * This macro generates a timeout delay that instructs a kernel API
1296 * to wait up to @a t cycles to perform the requested operation.
1297 *
1298 * @param t Duration in cycles.
1299 *
1300 * @return Timeout delay value.
1301 */
1302 #define K_CYC(t) Z_TIMEOUT_CYC(t)
1303
1304 /**
1305 * @brief Generate timeout delay from system ticks.
1306 *
1307 * This macro generates a timeout delay that instructs a kernel API
1308 * to wait up to @a t ticks to perform the requested operation.
1309 *
1310 * @param t Duration in system ticks.
1311 *
1312 * @return Timeout delay value.
1313 */
1314 #define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1315
1316 /**
1317 * @brief Generate timeout delay from milliseconds.
1318 *
1319 * This macro generates a timeout delay that instructs a kernel API
1320 * to wait up to @a ms milliseconds to perform the requested operation.
1321 *
1322 * @param ms Duration in milliseconds.
1323 *
1324 * @return Timeout delay value.
1325 */
1326 #define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1327
1328 /**
1329 * @brief Generate timeout delay from seconds.
1330 *
1331 * This macro generates a timeout delay that instructs a kernel API
1332 * to wait up to @a s seconds to perform the requested operation.
1333 *
1334 * @param s Duration in seconds.
1335 *
1336 * @return Timeout delay value.
1337 */
1338 #define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1339
1340 /**
1341 * @brief Generate timeout delay from minutes.
1342
1343 * This macro generates a timeout delay that instructs a kernel API
1344 * to wait up to @a m minutes to perform the requested operation.
1345 *
1346 * @param m Duration in minutes.
1347 *
1348 * @return Timeout delay value.
1349 */
1350 #define K_MINUTES(m) K_SECONDS((m) * 60)
1351
1352 /**
1353 * @brief Generate timeout delay from hours.
1354 *
1355 * This macro generates a timeout delay that instructs a kernel API
1356 * to wait up to @a h hours to perform the requested operation.
1357 *
1358 * @param h Duration in hours.
1359 *
1360 * @return Timeout delay value.
1361 */
1362 #define K_HOURS(h) K_MINUTES((h) * 60)
1363
1364 /**
1365 * @brief Generate infinite timeout delay.
1366 *
1367 * This macro generates a timeout delay that instructs a kernel API
1368 * to wait as long as necessary to perform the requested operation.
1369 *
1370 * @return Timeout delay value.
1371 */
1372 #define K_FOREVER Z_FOREVER
1373
1374 #ifdef CONFIG_TIMEOUT_64BIT
1375
1376 /**
1377 * @brief Generates an absolute/uptime timeout value from system ticks
1378 *
1379 * This macro generates a timeout delay that represents an expiration
1380 * at the absolute uptime value specified, in system ticks. That is, the
1381 * timeout will expire immediately after the system uptime reaches the
1382 * specified tick count.
1383 *
1384 * @param t Tick uptime value
1385 * @return Timeout delay value
1386 */
1387 #define K_TIMEOUT_ABS_TICKS(t) \
1388 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1389
1390 /**
1391 * @brief Generates an absolute/uptime timeout value from milliseconds
1392 *
1393 * This macro generates a timeout delay that represents an expiration
1394 * at the absolute uptime value specified, in milliseconds. That is,
1395 * the timeout will expire immediately after the system uptime reaches
1396 * the specified tick count.
1397 *
1398 * @param t Millisecond uptime value
1399 * @return Timeout delay value
1400 */
1401 #define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1402
1403 /**
1404 * @brief Generates an absolute/uptime timeout value from microseconds
1405 *
1406 * This macro generates a timeout delay that represents an expiration
1407 * at the absolute uptime value specified, in microseconds. That is,
1408 * the timeout will expire immediately after the system uptime reaches
1409 * the specified time. Note that timer precision is limited by the
1410 * system tick rate and not the requested timeout value.
1411 *
1412 * @param t Microsecond uptime value
1413 * @return Timeout delay value
1414 */
1415 #define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1416
1417 /**
1418 * @brief Generates an absolute/uptime timeout value from nanoseconds
1419 *
1420 * This macro generates a timeout delay that represents an expiration
1421 * at the absolute uptime value specified, in nanoseconds. That is,
1422 * the timeout will expire immediately after the system uptime reaches
1423 * the specified time. Note that timer precision is limited by the
1424 * system tick rate and not the requested timeout value.
1425 *
1426 * @param t Nanosecond uptime value
1427 * @return Timeout delay value
1428 */
1429 #define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1430
1431 /**
1432 * @brief Generates an absolute/uptime timeout value from system cycles
1433 *
1434 * This macro generates a timeout delay that represents an expiration
1435 * at the absolute uptime value specified, in cycles. That is, the
1436 * timeout will expire immediately after the system uptime reaches the
1437 * specified time. Note that timer precision is limited by the system
1438 * tick rate and not the requested timeout value.
1439 *
1440 * @param t Cycle uptime value
1441 * @return Timeout delay value
1442 */
1443 #define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1444
1445 #endif
1446
1447 /**
1448 * @}
1449 */
1450
1451 /**
1452 * @cond INTERNAL_HIDDEN
1453 */
1454
1455 struct k_timer {
1456 /*
1457 * _timeout structure must be first here if we want to use
1458 * dynamic timer allocation. timeout.node is used in the double-linked
1459 * list of free timers
1460 */
1461 struct _timeout timeout;
1462
1463 /* wait queue for the (single) thread waiting on this timer */
1464 _wait_q_t wait_q;
1465
1466 /* runs in ISR context */
1467 void (*expiry_fn)(struct k_timer *timer);
1468
1469 /* runs in the context of the thread that calls k_timer_stop() */
1470 void (*stop_fn)(struct k_timer *timer);
1471
1472 /* timer period */
1473 k_timeout_t period;
1474
1475 /* timer status */
1476 uint32_t status;
1477
1478 /* user-specific data, also used to support legacy features */
1479 void *user_data;
1480
1481 SYS_PORT_TRACING_TRACKING_FIELD(k_timer)
1482
1483 #ifdef CONFIG_OBJ_CORE_TIMER
1484 struct k_obj_core obj_core;
1485 #endif
1486 };
1487
1488 #define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1489 { \
1490 .timeout = { \
1491 .node = {},\
1492 .fn = z_timer_expiration_handler, \
1493 .dticks = 0, \
1494 }, \
1495 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1496 .expiry_fn = expiry, \
1497 .stop_fn = stop, \
1498 .status = 0, \
1499 .user_data = 0, \
1500 }
1501
1502 /**
1503 * INTERNAL_HIDDEN @endcond
1504 */
1505
1506 /**
1507 * @defgroup timer_apis Timer APIs
1508 * @ingroup kernel_apis
1509 * @{
1510 */
1511
1512 /**
1513 * @typedef k_timer_expiry_t
1514 * @brief Timer expiry function type.
1515 *
1516 * A timer's expiry function is executed by the system clock interrupt handler
1517 * each time the timer expires. The expiry function is optional, and is only
1518 * invoked if the timer has been initialized with one.
1519 *
1520 * @param timer Address of timer.
1521 */
1522 typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1523
1524 /**
1525 * @typedef k_timer_stop_t
1526 * @brief Timer stop function type.
1527 *
1528 * A timer's stop function is executed if the timer is stopped prematurely.
1529 * The function runs in the context of call that stops the timer. As
1530 * k_timer_stop() can be invoked from an ISR, the stop function must be
1531 * callable from interrupt context (isr-ok).
1532 *
1533 * The stop function is optional, and is only invoked if the timer has been
1534 * initialized with one.
1535 *
1536 * @param timer Address of timer.
1537 */
1538 typedef void (*k_timer_stop_t)(struct k_timer *timer);
1539
1540 /**
1541 * @brief Statically define and initialize a timer.
1542 *
1543 * The timer can be accessed outside the module where it is defined using:
1544 *
1545 * @code extern struct k_timer <name>; @endcode
1546 *
1547 * @param name Name of the timer variable.
1548 * @param expiry_fn Function to invoke each time the timer expires.
1549 * @param stop_fn Function to invoke if the timer is stopped while running.
1550 */
1551 #define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1552 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1553 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1554
1555 /**
1556 * @brief Initialize a timer.
1557 *
1558 * This routine initializes a timer, prior to its first use.
1559 *
1560 * @param timer Address of timer.
1561 * @param expiry_fn Function to invoke each time the timer expires.
1562 * @param stop_fn Function to invoke if the timer is stopped while running.
1563 */
1564 extern void k_timer_init(struct k_timer *timer,
1565 k_timer_expiry_t expiry_fn,
1566 k_timer_stop_t stop_fn);
1567
1568 /**
1569 * @brief Start a timer.
1570 *
1571 * This routine starts a timer, and resets its status to zero. The timer
1572 * begins counting down using the specified duration and period values.
1573 *
1574 * Attempting to start a timer that is already running is permitted.
1575 * The timer's status is reset to zero and the timer begins counting down
1576 * using the new duration and period values.
1577 *
1578 * @param timer Address of timer.
1579 * @param duration Initial timer duration.
1580 * @param period Timer period.
1581 */
1582 __syscall void k_timer_start(struct k_timer *timer,
1583 k_timeout_t duration, k_timeout_t period);
1584
1585 /**
1586 * @brief Stop a timer.
1587 *
1588 * This routine stops a running timer prematurely. The timer's stop function,
1589 * if one exists, is invoked by the caller.
1590 *
1591 * Attempting to stop a timer that is not running is permitted, but has no
1592 * effect on the timer.
1593 *
1594 * @note The stop handler has to be callable from ISRs if @a k_timer_stop is to
1595 * be called from ISRs.
1596 *
1597 * @funcprops \isr_ok
1598 *
1599 * @param timer Address of timer.
1600 */
1601 __syscall void k_timer_stop(struct k_timer *timer);
1602
1603 /**
1604 * @brief Read timer status.
1605 *
1606 * This routine reads the timer's status, which indicates the number of times
1607 * it has expired since its status was last read.
1608 *
1609 * Calling this routine resets the timer's status to zero.
1610 *
1611 * @param timer Address of timer.
1612 *
1613 * @return Timer status.
1614 */
1615 __syscall uint32_t k_timer_status_get(struct k_timer *timer);
1616
1617 /**
1618 * @brief Synchronize thread to timer expiration.
1619 *
1620 * This routine blocks the calling thread until the timer's status is non-zero
1621 * (indicating that it has expired at least once since it was last examined)
1622 * or the timer is stopped. If the timer status is already non-zero,
1623 * or the timer is already stopped, the caller continues without waiting.
1624 *
1625 * Calling this routine resets the timer's status to zero.
1626 *
1627 * This routine must not be used by interrupt handlers, since they are not
1628 * allowed to block.
1629 *
1630 * @param timer Address of timer.
1631 *
1632 * @return Timer status.
1633 */
1634 __syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1635
1636 #ifdef CONFIG_SYS_CLOCK_EXISTS
1637
1638 /**
1639 * @brief Get next expiration time of a timer, in system ticks
1640 *
1641 * This routine returns the future system uptime reached at the next
1642 * time of expiration of the timer, in units of system ticks. If the
1643 * timer is not running, current system time is returned.
1644 *
1645 * @param timer The timer object
1646 * @return Uptime of expiration, in ticks
1647 */
1648 __syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1649
z_impl_k_timer_expires_ticks(const struct k_timer * timer)1650 static inline k_ticks_t z_impl_k_timer_expires_ticks(
1651 const struct k_timer *timer)
1652 {
1653 return z_timeout_expires(&timer->timeout);
1654 }
1655
1656 /**
1657 * @brief Get time remaining before a timer next expires, in system ticks
1658 *
1659 * This routine computes the time remaining before a running timer
1660 * next expires, in units of system ticks. If the timer is not
1661 * running, it returns zero.
1662 */
1663 __syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1664
z_impl_k_timer_remaining_ticks(const struct k_timer * timer)1665 static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1666 const struct k_timer *timer)
1667 {
1668 return z_timeout_remaining(&timer->timeout);
1669 }
1670
1671 /**
1672 * @brief Get time remaining before a timer next expires.
1673 *
1674 * This routine computes the (approximate) time remaining before a running
1675 * timer next expires. If the timer is not running, it returns zero.
1676 *
1677 * @param timer Address of timer.
1678 *
1679 * @return Remaining time (in milliseconds).
1680 */
k_timer_remaining_get(struct k_timer * timer)1681 static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1682 {
1683 return k_ticks_to_ms_floor32(k_timer_remaining_ticks(timer));
1684 }
1685
1686 #endif /* CONFIG_SYS_CLOCK_EXISTS */
1687
1688 /**
1689 * @brief Associate user-specific data with a timer.
1690 *
1691 * This routine records the @a user_data with the @a timer, to be retrieved
1692 * later.
1693 *
1694 * It can be used e.g. in a timer handler shared across multiple subsystems to
1695 * retrieve data specific to the subsystem this timer is associated with.
1696 *
1697 * @param timer Address of timer.
1698 * @param user_data User data to associate with the timer.
1699 */
1700 __syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1701
1702 /**
1703 * @internal
1704 */
z_impl_k_timer_user_data_set(struct k_timer * timer,void * user_data)1705 static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1706 void *user_data)
1707 {
1708 timer->user_data = user_data;
1709 }
1710
1711 /**
1712 * @brief Retrieve the user-specific data from a timer.
1713 *
1714 * @param timer Address of timer.
1715 *
1716 * @return The user data.
1717 */
1718 __syscall void *k_timer_user_data_get(const struct k_timer *timer);
1719
z_impl_k_timer_user_data_get(const struct k_timer * timer)1720 static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1721 {
1722 return timer->user_data;
1723 }
1724
1725 /** @} */
1726
1727 /**
1728 * @addtogroup clock_apis
1729 * @ingroup kernel_apis
1730 * @{
1731 */
1732
1733 /**
1734 * @brief Get system uptime, in system ticks.
1735 *
1736 * This routine returns the elapsed time since the system booted, in
1737 * ticks (c.f. @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC}), which is the
1738 * fundamental unit of resolution of kernel timekeeping.
1739 *
1740 * @return Current uptime in ticks.
1741 */
1742 __syscall int64_t k_uptime_ticks(void);
1743
1744 /**
1745 * @brief Get system uptime.
1746 *
1747 * This routine returns the elapsed time since the system booted,
1748 * in milliseconds.
1749 *
1750 * @note
1751 * While this function returns time in milliseconds, it does
1752 * not mean it has millisecond resolution. The actual resolution depends on
1753 * @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC} config option.
1754 *
1755 * @return Current uptime in milliseconds.
1756 */
k_uptime_get(void)1757 static inline int64_t k_uptime_get(void)
1758 {
1759 return k_ticks_to_ms_floor64(k_uptime_ticks());
1760 }
1761
1762 /**
1763 * @brief Get system uptime (32-bit version).
1764 *
1765 * This routine returns the lower 32 bits of the system uptime in
1766 * milliseconds.
1767 *
1768 * Because correct conversion requires full precision of the system
1769 * clock there is no benefit to using this over k_uptime_get() unless
1770 * you know the application will never run long enough for the system
1771 * clock to approach 2^32 ticks. Calls to this function may involve
1772 * interrupt blocking and 64-bit math.
1773 *
1774 * @note
1775 * While this function returns time in milliseconds, it does
1776 * not mean it has millisecond resolution. The actual resolution depends on
1777 * @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC} config option
1778 *
1779 * @return The low 32 bits of the current uptime, in milliseconds.
1780 */
k_uptime_get_32(void)1781 static inline uint32_t k_uptime_get_32(void)
1782 {
1783 return (uint32_t)k_uptime_get();
1784 }
1785
1786 /**
1787 * @brief Get elapsed time.
1788 *
1789 * This routine computes the elapsed time between the current system uptime
1790 * and an earlier reference time, in milliseconds.
1791 *
1792 * @param reftime Pointer to a reference time, which is updated to the current
1793 * uptime upon return.
1794 *
1795 * @return Elapsed time.
1796 */
k_uptime_delta(int64_t * reftime)1797 static inline int64_t k_uptime_delta(int64_t *reftime)
1798 {
1799 int64_t uptime, delta;
1800
1801 uptime = k_uptime_get();
1802 delta = uptime - *reftime;
1803 *reftime = uptime;
1804
1805 return delta;
1806 }
1807
1808 /**
1809 * @brief Read the hardware clock.
1810 *
1811 * This routine returns the current time, as measured by the system's hardware
1812 * clock.
1813 *
1814 * @return Current hardware clock up-counter (in cycles).
1815 */
k_cycle_get_32(void)1816 static inline uint32_t k_cycle_get_32(void)
1817 {
1818 return arch_k_cycle_get_32();
1819 }
1820
1821 /**
1822 * @brief Read the 64-bit hardware clock.
1823 *
1824 * This routine returns the current time in 64-bits, as measured by the
1825 * system's hardware clock, if available.
1826 *
1827 * @see CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER
1828 *
1829 * @return Current hardware clock up-counter (in cycles).
1830 */
k_cycle_get_64(void)1831 static inline uint64_t k_cycle_get_64(void)
1832 {
1833 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1834 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1835 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1836 return 0;
1837 }
1838
1839 return arch_k_cycle_get_64();
1840 }
1841
1842 /**
1843 * @}
1844 */
1845
1846 struct k_queue {
1847 sys_sflist_t data_q;
1848 struct k_spinlock lock;
1849 _wait_q_t wait_q;
1850
1851 _POLL_EVENT;
1852
1853 SYS_PORT_TRACING_TRACKING_FIELD(k_queue)
1854 };
1855
1856 /**
1857 * @cond INTERNAL_HIDDEN
1858 */
1859
1860 #define Z_QUEUE_INITIALIZER(obj) \
1861 { \
1862 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1863 .lock = { }, \
1864 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1865 _POLL_EVENT_OBJ_INIT(obj) \
1866 }
1867
1868 /**
1869 * INTERNAL_HIDDEN @endcond
1870 */
1871
1872 /**
1873 * @defgroup queue_apis Queue APIs
1874 * @ingroup kernel_apis
1875 * @{
1876 */
1877
1878 /**
1879 * @brief Initialize a queue.
1880 *
1881 * This routine initializes a queue object, prior to its first use.
1882 *
1883 * @param queue Address of the queue.
1884 */
1885 __syscall void k_queue_init(struct k_queue *queue);
1886
1887 /**
1888 * @brief Cancel waiting on a queue.
1889 *
1890 * This routine causes first thread pending on @a queue, if any, to
1891 * return from k_queue_get() call with NULL value (as if timeout expired).
1892 * If the queue is being waited on by k_poll(), it will return with
1893 * -EINTR and K_POLL_STATE_CANCELLED state (and per above, subsequent
1894 * k_queue_get() will return NULL).
1895 *
1896 * @funcprops \isr_ok
1897 *
1898 * @param queue Address of the queue.
1899 */
1900 __syscall void k_queue_cancel_wait(struct k_queue *queue);
1901
1902 /**
1903 * @brief Append an element to the end of a queue.
1904 *
1905 * This routine appends a data item to @a queue. A queue data item must be
1906 * aligned on a word boundary, and the first word of the item is reserved
1907 * for the kernel's use.
1908 *
1909 * @funcprops \isr_ok
1910 *
1911 * @param queue Address of the queue.
1912 * @param data Address of the data item.
1913 */
1914 extern void k_queue_append(struct k_queue *queue, void *data);
1915
1916 /**
1917 * @brief Append an element to a queue.
1918 *
1919 * This routine appends a data item to @a queue. There is an implicit memory
1920 * allocation to create an additional temporary bookkeeping data structure from
1921 * the calling thread's resource pool, which is automatically freed when the
1922 * item is removed. The data itself is not copied.
1923 *
1924 * @funcprops \isr_ok
1925 *
1926 * @param queue Address of the queue.
1927 * @param data Address of the data item.
1928 *
1929 * @retval 0 on success
1930 * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
1931 */
1932 __syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
1933
1934 /**
1935 * @brief Prepend an element to a queue.
1936 *
1937 * This routine prepends a data item to @a queue. A queue data item must be
1938 * aligned on a word boundary, and the first word of the item is reserved
1939 * for the kernel's use.
1940 *
1941 * @funcprops \isr_ok
1942 *
1943 * @param queue Address of the queue.
1944 * @param data Address of the data item.
1945 */
1946 extern void k_queue_prepend(struct k_queue *queue, void *data);
1947
1948 /**
1949 * @brief Prepend an element to a queue.
1950 *
1951 * This routine prepends a data item to @a queue. There is an implicit memory
1952 * allocation to create an additional temporary bookkeeping data structure from
1953 * the calling thread's resource pool, which is automatically freed when the
1954 * item is removed. The data itself is not copied.
1955 *
1956 * @funcprops \isr_ok
1957 *
1958 * @param queue Address of the queue.
1959 * @param data Address of the data item.
1960 *
1961 * @retval 0 on success
1962 * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
1963 */
1964 __syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
1965
1966 /**
1967 * @brief Inserts an element to a queue.
1968 *
1969 * This routine inserts a data item to @a queue after previous item. A queue
1970 * data item must be aligned on a word boundary, and the first word of
1971 * the item is reserved for the kernel's use.
1972 *
1973 * @funcprops \isr_ok
1974 *
1975 * @param queue Address of the queue.
1976 * @param prev Address of the previous data item.
1977 * @param data Address of the data item.
1978 */
1979 extern void k_queue_insert(struct k_queue *queue, void *prev, void *data);
1980
1981 /**
1982 * @brief Atomically append a list of elements to a queue.
1983 *
1984 * This routine adds a list of data items to @a queue in one operation.
1985 * The data items must be in a singly-linked list, with the first word
1986 * in each data item pointing to the next data item; the list must be
1987 * NULL-terminated.
1988 *
1989 * @funcprops \isr_ok
1990 *
1991 * @param queue Address of the queue.
1992 * @param head Pointer to first node in singly-linked list.
1993 * @param tail Pointer to last node in singly-linked list.
1994 *
1995 * @retval 0 on success
1996 * @retval -EINVAL on invalid supplied data
1997 *
1998 */
1999 extern int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
2000
2001 /**
2002 * @brief Atomically add a list of elements to a queue.
2003 *
2004 * This routine adds a list of data items to @a queue in one operation.
2005 * The data items must be in a singly-linked list implemented using a
2006 * sys_slist_t object. Upon completion, the original list is empty.
2007 *
2008 * @funcprops \isr_ok
2009 *
2010 * @param queue Address of the queue.
2011 * @param list Pointer to sys_slist_t object.
2012 *
2013 * @retval 0 on success
2014 * @retval -EINVAL on invalid data
2015 */
2016 extern int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2017
2018 /**
2019 * @brief Get an element from a queue.
2020 *
2021 * This routine removes first data item from @a queue. The first word of the
2022 * data item is reserved for the kernel's use.
2023 *
2024 * @note @a timeout must be set to K_NO_WAIT if called from ISR.
2025 *
2026 * @funcprops \isr_ok
2027 *
2028 * @param queue Address of the queue.
2029 * @param timeout Non-negative waiting period to obtain a data item
2030 * or one of the special values K_NO_WAIT and
2031 * K_FOREVER.
2032 *
2033 * @return Address of the data item if successful; NULL if returned
2034 * without waiting, or waiting period timed out.
2035 */
2036 __syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2037
2038 /**
2039 * @brief Remove an element from a queue.
2040 *
2041 * This routine removes data item from @a queue. The first word of the
2042 * data item is reserved for the kernel's use. Removing elements from k_queue
2043 * rely on sys_slist_find_and_remove which is not a constant time operation.
2044 *
2045 * @note @a timeout must be set to K_NO_WAIT if called from ISR.
2046 *
2047 * @funcprops \isr_ok
2048 *
2049 * @param queue Address of the queue.
2050 * @param data Address of the data item.
2051 *
2052 * @return true if data item was removed
2053 */
2054 bool k_queue_remove(struct k_queue *queue, void *data);
2055
2056 /**
2057 * @brief Append an element to a queue only if it's not present already.
2058 *
2059 * This routine appends data item to @a queue. The first word of the data
2060 * item is reserved for the kernel's use. Appending elements to k_queue
2061 * relies on sys_slist_is_node_in_list which is not a constant time operation.
2062 *
2063 * @funcprops \isr_ok
2064 *
2065 * @param queue Address of the queue.
2066 * @param data Address of the data item.
2067 *
2068 * @return true if data item was added, false if not
2069 */
2070 bool k_queue_unique_append(struct k_queue *queue, void *data);
2071
2072 /**
2073 * @brief Query a queue to see if it has data available.
2074 *
2075 * Note that the data might be already gone by the time this function returns
2076 * if other threads are also trying to read from the queue.
2077 *
2078 * @funcprops \isr_ok
2079 *
2080 * @param queue Address of the queue.
2081 *
2082 * @return Non-zero if the queue is empty.
2083 * @return 0 if data is available.
2084 */
2085 __syscall int k_queue_is_empty(struct k_queue *queue);
2086
z_impl_k_queue_is_empty(struct k_queue * queue)2087 static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2088 {
2089 return (int)sys_sflist_is_empty(&queue->data_q);
2090 }
2091
2092 /**
2093 * @brief Peek element at the head of queue.
2094 *
2095 * Return element from the head of queue without removing it.
2096 *
2097 * @param queue Address of the queue.
2098 *
2099 * @return Head element, or NULL if queue is empty.
2100 */
2101 __syscall void *k_queue_peek_head(struct k_queue *queue);
2102
2103 /**
2104 * @brief Peek element at the tail of queue.
2105 *
2106 * Return element from the tail of queue without removing it.
2107 *
2108 * @param queue Address of the queue.
2109 *
2110 * @return Tail element, or NULL if queue is empty.
2111 */
2112 __syscall void *k_queue_peek_tail(struct k_queue *queue);
2113
2114 /**
2115 * @brief Statically define and initialize a queue.
2116 *
2117 * The queue can be accessed outside the module where it is defined using:
2118 *
2119 * @code extern struct k_queue <name>; @endcode
2120 *
2121 * @param name Name of the queue.
2122 */
2123 #define K_QUEUE_DEFINE(name) \
2124 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2125 Z_QUEUE_INITIALIZER(name)
2126
2127 /** @} */
2128
2129 #ifdef CONFIG_USERSPACE
2130 /**
2131 * @brief futex structure
2132 *
2133 * A k_futex is a lightweight mutual exclusion primitive designed
2134 * to minimize kernel involvement. Uncontended operation relies
2135 * only on atomic access to shared memory. k_futex are tracked as
2136 * kernel objects and can live in user memory so that any access
2137 * bypasses the kernel object permission management mechanism.
2138 */
2139 struct k_futex {
2140 atomic_t val;
2141 };
2142
2143 /**
2144 * @brief futex kernel data structure
2145 *
2146 * z_futex_data are the helper data structure for k_futex to complete
2147 * futex contended operation on kernel side, structure z_futex_data
2148 * of every futex object is invisible in user mode.
2149 */
2150 struct z_futex_data {
2151 _wait_q_t wait_q;
2152 struct k_spinlock lock;
2153 };
2154
2155 #define Z_FUTEX_DATA_INITIALIZER(obj) \
2156 { \
2157 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2158 }
2159
2160 /**
2161 * @defgroup futex_apis FUTEX APIs
2162 * @ingroup kernel_apis
2163 * @{
2164 */
2165
2166 /**
2167 * @brief Pend the current thread on a futex
2168 *
2169 * Tests that the supplied futex contains the expected value, and if so,
2170 * goes to sleep until some other thread calls k_futex_wake() on it.
2171 *
2172 * @param futex Address of the futex.
2173 * @param expected Expected value of the futex, if it is different the caller
2174 * will not wait on it.
2175 * @param timeout Non-negative waiting period on the futex, or
2176 * one of the special values K_NO_WAIT or K_FOREVER.
2177 * @retval -EACCES Caller does not have read access to futex address.
2178 * @retval -EAGAIN If the futex value did not match the expected parameter.
2179 * @retval -EINVAL Futex parameter address not recognized by the kernel.
2180 * @retval -ETIMEDOUT Thread woke up due to timeout and not a futex wakeup.
2181 * @retval 0 if the caller went to sleep and was woken up. The caller
2182 * should check the futex's value on wakeup to determine if it needs
2183 * to block again.
2184 */
2185 __syscall int k_futex_wait(struct k_futex *futex, int expected,
2186 k_timeout_t timeout);
2187
2188 /**
2189 * @brief Wake one/all threads pending on a futex
2190 *
2191 * Wake up the highest priority thread pending on the supplied futex, or
2192 * wakeup all the threads pending on the supplied futex, and the behavior
2193 * depends on wake_all.
2194 *
2195 * @param futex Futex to wake up pending threads.
2196 * @param wake_all If true, wake up all pending threads; If false,
2197 * wakeup the highest priority thread.
2198 * @retval -EACCES Caller does not have access to the futex address.
2199 * @retval -EINVAL Futex parameter address not recognized by the kernel.
2200 * @retval Number of threads that were woken up.
2201 */
2202 __syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2203
2204 /** @} */
2205 #endif
2206
2207 /**
2208 * @defgroup event_apis Event APIs
2209 * @ingroup kernel_apis
2210 * @{
2211 */
2212
2213 /**
2214 * Event Structure
2215 * @ingroup event_apis
2216 */
2217
2218 struct k_event {
2219 _wait_q_t wait_q;
2220 uint32_t events;
2221 struct k_spinlock lock;
2222
2223 SYS_PORT_TRACING_TRACKING_FIELD(k_event)
2224
2225 #ifdef CONFIG_OBJ_CORE_EVENT
2226 struct k_obj_core obj_core;
2227 #endif
2228
2229 };
2230
2231 #define Z_EVENT_INITIALIZER(obj) \
2232 { \
2233 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2234 .events = 0 \
2235 }
2236
2237 /**
2238 * @brief Initialize an event object
2239 *
2240 * This routine initializes an event object, prior to its first use.
2241 *
2242 * @param event Address of the event object.
2243 */
2244 __syscall void k_event_init(struct k_event *event);
2245
2246 /**
2247 * @brief Post one or more events to an event object
2248 *
2249 * This routine posts one or more events to an event object. All tasks waiting
2250 * on the event object @a event whose waiting conditions become met by this
2251 * posting immediately unpend.
2252 *
2253 * Posting differs from setting in that posted events are merged together with
2254 * the current set of events tracked by the event object.
2255 *
2256 * @param event Address of the event object
2257 * @param events Set of events to post to @a event
2258 *
2259 * @retval Previous value of the events in @a event
2260 */
2261 __syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2262
2263 /**
2264 * @brief Set the events in an event object
2265 *
2266 * This routine sets the events stored in event object to the specified value.
2267 * All tasks waiting on the event object @a event whose waiting conditions
2268 * become met by this immediately unpend.
2269 *
2270 * Setting differs from posting in that set events replace the current set of
2271 * events tracked by the event object.
2272 *
2273 * @param event Address of the event object
2274 * @param events Set of events to set in @a event
2275 *
2276 * @retval Previous value of the events in @a event
2277 */
2278 __syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2279
2280 /**
2281 * @brief Set or clear the events in an event object
2282 *
2283 * This routine sets the events stored in event object to the specified value.
2284 * All tasks waiting on the event object @a event whose waiting conditions
2285 * become met by this immediately unpend. Unlike @ref k_event_set, this routine
2286 * allows specific event bits to be set and cleared as determined by the mask.
2287 *
2288 * @param event Address of the event object
2289 * @param events Set of events to set/clear in @a event
2290 * @param events_mask Mask to be applied to @a events
2291 *
2292 * @retval Previous value of the events in @a events_mask
2293 */
2294 __syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2295 uint32_t events_mask);
2296
2297 /**
2298 * @brief Clear the events in an event object
2299 *
2300 * This routine clears (resets) the specified events stored in an event object.
2301 *
2302 * @param event Address of the event object
2303 * @param events Set of events to clear in @a event
2304 *
2305 * @retval Previous value of the events in @a event
2306 */
2307 __syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2308
2309 /**
2310 * @brief Wait for any of the specified events
2311 *
2312 * This routine waits on event object @a event until any of the specified
2313 * events have been delivered to the event object, or the maximum wait time
2314 * @a timeout has expired. A thread may wait on up to 32 distinctly numbered
2315 * events that are expressed as bits in a single 32-bit word.
2316 *
2317 * @note The caller must be careful when resetting if there are multiple threads
2318 * waiting for the event object @a event.
2319 *
2320 * @param event Address of the event object
2321 * @param events Set of desired events on which to wait
2322 * @param reset If true, clear the set of events tracked by the event object
2323 * before waiting. If false, do not clear the events.
2324 * @param timeout Waiting period for the desired set of events or one of the
2325 * special values K_NO_WAIT and K_FOREVER.
2326 *
2327 * @retval set of matching events upon success
2328 * @retval 0 if matching events were not received within the specified time
2329 */
2330 __syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2331 bool reset, k_timeout_t timeout);
2332
2333 /**
2334 * @brief Wait for all of the specified events
2335 *
2336 * This routine waits on event object @a event until all of the specified
2337 * events have been delivered to the event object, or the maximum wait time
2338 * @a timeout has expired. A thread may wait on up to 32 distinctly numbered
2339 * events that are expressed as bits in a single 32-bit word.
2340 *
2341 * @note The caller must be careful when resetting if there are multiple threads
2342 * waiting for the event object @a event.
2343 *
2344 * @param event Address of the event object
2345 * @param events Set of desired events on which to wait
2346 * @param reset If true, clear the set of events tracked by the event object
2347 * before waiting. If false, do not clear the events.
2348 * @param timeout Waiting period for the desired set of events or one of the
2349 * special values K_NO_WAIT and K_FOREVER.
2350 *
2351 * @retval set of matching events upon success
2352 * @retval 0 if matching events were not received within the specified time
2353 */
2354 __syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2355 bool reset, k_timeout_t timeout);
2356
2357 /**
2358 * @brief Test the events currently tracked in the event object
2359 *
2360 * @param event Address of the event object
2361 * @param events_mask Set of desired events to test
2362 *
2363 * @retval Current value of events in @a events_mask
2364 */
k_event_test(struct k_event * event,uint32_t events_mask)2365 static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2366 {
2367 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2368 }
2369
2370 /**
2371 * @brief Statically define and initialize an event object
2372 *
2373 * The event can be accessed outside the module where it is defined using:
2374 *
2375 * @code extern struct k_event <name>; @endcode
2376 *
2377 * @param name Name of the event object.
2378 */
2379 #define K_EVENT_DEFINE(name) \
2380 STRUCT_SECTION_ITERABLE(k_event, name) = \
2381 Z_EVENT_INITIALIZER(name);
2382
2383 /** @} */
2384
2385 struct k_fifo {
2386 struct k_queue _queue;
2387 #ifdef CONFIG_OBJ_CORE_FIFO
2388 struct k_obj_core obj_core;
2389 #endif
2390 };
2391
2392 /**
2393 * @cond INTERNAL_HIDDEN
2394 */
2395 #define Z_FIFO_INITIALIZER(obj) \
2396 { \
2397 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2398 }
2399
2400 /**
2401 * INTERNAL_HIDDEN @endcond
2402 */
2403
2404 /**
2405 * @defgroup fifo_apis FIFO APIs
2406 * @ingroup kernel_apis
2407 * @{
2408 */
2409
2410 /**
2411 * @brief Initialize a FIFO queue.
2412 *
2413 * This routine initializes a FIFO queue, prior to its first use.
2414 *
2415 * @param fifo Address of the FIFO queue.
2416 */
2417 #define k_fifo_init(fifo) \
2418 ({ \
2419 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2420 k_queue_init(&(fifo)->_queue); \
2421 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2422 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2423 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2424 })
2425
2426 /**
2427 * @brief Cancel waiting on a FIFO queue.
2428 *
2429 * This routine causes first thread pending on @a fifo, if any, to
2430 * return from k_fifo_get() call with NULL value (as if timeout
2431 * expired).
2432 *
2433 * @funcprops \isr_ok
2434 *
2435 * @param fifo Address of the FIFO queue.
2436 */
2437 #define k_fifo_cancel_wait(fifo) \
2438 ({ \
2439 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2440 k_queue_cancel_wait(&(fifo)->_queue); \
2441 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2442 })
2443
2444 /**
2445 * @brief Add an element to a FIFO queue.
2446 *
2447 * This routine adds a data item to @a fifo. A FIFO data item must be
2448 * aligned on a word boundary, and the first word of the item is reserved
2449 * for the kernel's use.
2450 *
2451 * @funcprops \isr_ok
2452 *
2453 * @param fifo Address of the FIFO.
2454 * @param data Address of the data item.
2455 */
2456 #define k_fifo_put(fifo, data) \
2457 ({ \
2458 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2459 k_queue_append(&(fifo)->_queue, data); \
2460 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2461 })
2462
2463 /**
2464 * @brief Add an element to a FIFO queue.
2465 *
2466 * This routine adds a data item to @a fifo. There is an implicit memory
2467 * allocation to create an additional temporary bookkeeping data structure from
2468 * the calling thread's resource pool, which is automatically freed when the
2469 * item is removed. The data itself is not copied.
2470 *
2471 * @funcprops \isr_ok
2472 *
2473 * @param fifo Address of the FIFO.
2474 * @param data Address of the data item.
2475 *
2476 * @retval 0 on success
2477 * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
2478 */
2479 #define k_fifo_alloc_put(fifo, data) \
2480 ({ \
2481 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2482 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2483 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, fap_ret); \
2484 fap_ret; \
2485 })
2486
2487 /**
2488 * @brief Atomically add a list of elements to a FIFO.
2489 *
2490 * This routine adds a list of data items to @a fifo in one operation.
2491 * The data items must be in a singly-linked list, with the first word of
2492 * each data item pointing to the next data item; the list must be
2493 * NULL-terminated.
2494 *
2495 * @funcprops \isr_ok
2496 *
2497 * @param fifo Address of the FIFO queue.
2498 * @param head Pointer to first node in singly-linked list.
2499 * @param tail Pointer to last node in singly-linked list.
2500 */
2501 #define k_fifo_put_list(fifo, head, tail) \
2502 ({ \
2503 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2504 k_queue_append_list(&(fifo)->_queue, head, tail); \
2505 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2506 })
2507
2508 /**
2509 * @brief Atomically add a list of elements to a FIFO queue.
2510 *
2511 * This routine adds a list of data items to @a fifo in one operation.
2512 * The data items must be in a singly-linked list implemented using a
2513 * sys_slist_t object. Upon completion, the sys_slist_t object is invalid
2514 * and must be re-initialized via sys_slist_init().
2515 *
2516 * @funcprops \isr_ok
2517 *
2518 * @param fifo Address of the FIFO queue.
2519 * @param list Pointer to sys_slist_t object.
2520 */
2521 #define k_fifo_put_slist(fifo, list) \
2522 ({ \
2523 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2524 k_queue_merge_slist(&(fifo)->_queue, list); \
2525 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2526 })
2527
2528 /**
2529 * @brief Get an element from a FIFO queue.
2530 *
2531 * This routine removes a data item from @a fifo in a "first in, first out"
2532 * manner. The first word of the data item is reserved for the kernel's use.
2533 *
2534 * @note @a timeout must be set to K_NO_WAIT if called from ISR.
2535 *
2536 * @funcprops \isr_ok
2537 *
2538 * @param fifo Address of the FIFO queue.
2539 * @param timeout Waiting period to obtain a data item,
2540 * or one of the special values K_NO_WAIT and K_FOREVER.
2541 *
2542 * @return Address of the data item if successful; NULL if returned
2543 * without waiting, or waiting period timed out.
2544 */
2545 #define k_fifo_get(fifo, timeout) \
2546 ({ \
2547 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2548 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2549 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2550 fg_ret; \
2551 })
2552
2553 /**
2554 * @brief Query a FIFO queue to see if it has data available.
2555 *
2556 * Note that the data might be already gone by the time this function returns
2557 * if other threads is also trying to read from the FIFO.
2558 *
2559 * @funcprops \isr_ok
2560 *
2561 * @param fifo Address of the FIFO queue.
2562 *
2563 * @return Non-zero if the FIFO queue is empty.
2564 * @return 0 if data is available.
2565 */
2566 #define k_fifo_is_empty(fifo) \
2567 k_queue_is_empty(&(fifo)->_queue)
2568
2569 /**
2570 * @brief Peek element at the head of a FIFO queue.
2571 *
2572 * Return element from the head of FIFO queue without removing it. A usecase
2573 * for this is if elements of the FIFO object are themselves containers. Then
2574 * on each iteration of processing, a head container will be peeked,
2575 * and some data processed out of it, and only if the container is empty,
2576 * it will be completely remove from the FIFO queue.
2577 *
2578 * @param fifo Address of the FIFO queue.
2579 *
2580 * @return Head element, or NULL if the FIFO queue is empty.
2581 */
2582 #define k_fifo_peek_head(fifo) \
2583 ({ \
2584 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2585 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2586 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2587 fph_ret; \
2588 })
2589
2590 /**
2591 * @brief Peek element at the tail of FIFO queue.
2592 *
2593 * Return element from the tail of FIFO queue (without removing it). A usecase
2594 * for this is if elements of the FIFO queue are themselves containers. Then
2595 * it may be useful to add more data to the last container in a FIFO queue.
2596 *
2597 * @param fifo Address of the FIFO queue.
2598 *
2599 * @return Tail element, or NULL if a FIFO queue is empty.
2600 */
2601 #define k_fifo_peek_tail(fifo) \
2602 ({ \
2603 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2604 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2605 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2606 fpt_ret; \
2607 })
2608
2609 /**
2610 * @brief Statically define and initialize a FIFO queue.
2611 *
2612 * The FIFO queue can be accessed outside the module where it is defined using:
2613 *
2614 * @code extern struct k_fifo <name>; @endcode
2615 *
2616 * @param name Name of the FIFO queue.
2617 */
2618 #define K_FIFO_DEFINE(name) \
2619 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2620 Z_FIFO_INITIALIZER(name)
2621
2622 /** @} */
2623
2624 struct k_lifo {
2625 struct k_queue _queue;
2626 #ifdef CONFIG_OBJ_CORE_LIFO
2627 struct k_obj_core obj_core;
2628 #endif
2629 };
2630
2631 /**
2632 * @cond INTERNAL_HIDDEN
2633 */
2634
2635 #define Z_LIFO_INITIALIZER(obj) \
2636 { \
2637 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2638 }
2639
2640 /**
2641 * INTERNAL_HIDDEN @endcond
2642 */
2643
2644 /**
2645 * @defgroup lifo_apis LIFO APIs
2646 * @ingroup kernel_apis
2647 * @{
2648 */
2649
2650 /**
2651 * @brief Initialize a LIFO queue.
2652 *
2653 * This routine initializes a LIFO queue object, prior to its first use.
2654 *
2655 * @param lifo Address of the LIFO queue.
2656 */
2657 #define k_lifo_init(lifo) \
2658 ({ \
2659 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2660 k_queue_init(&(lifo)->_queue); \
2661 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2662 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2663 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2664 })
2665
2666 /**
2667 * @brief Add an element to a LIFO queue.
2668 *
2669 * This routine adds a data item to @a lifo. A LIFO queue data item must be
2670 * aligned on a word boundary, and the first word of the item is
2671 * reserved for the kernel's use.
2672 *
2673 * @funcprops \isr_ok
2674 *
2675 * @param lifo Address of the LIFO queue.
2676 * @param data Address of the data item.
2677 */
2678 #define k_lifo_put(lifo, data) \
2679 ({ \
2680 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2681 k_queue_prepend(&(lifo)->_queue, data); \
2682 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2683 })
2684
2685 /**
2686 * @brief Add an element to a LIFO queue.
2687 *
2688 * This routine adds a data item to @a lifo. There is an implicit memory
2689 * allocation to create an additional temporary bookkeeping data structure from
2690 * the calling thread's resource pool, which is automatically freed when the
2691 * item is removed. The data itself is not copied.
2692 *
2693 * @funcprops \isr_ok
2694 *
2695 * @param lifo Address of the LIFO.
2696 * @param data Address of the data item.
2697 *
2698 * @retval 0 on success
2699 * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
2700 */
2701 #define k_lifo_alloc_put(lifo, data) \
2702 ({ \
2703 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2704 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2705 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, lap_ret); \
2706 lap_ret; \
2707 })
2708
2709 /**
2710 * @brief Get an element from a LIFO queue.
2711 *
2712 * This routine removes a data item from @a LIFO in a "last in, first out"
2713 * manner. The first word of the data item is reserved for the kernel's use.
2714 *
2715 * @note @a timeout must be set to K_NO_WAIT if called from ISR.
2716 *
2717 * @funcprops \isr_ok
2718 *
2719 * @param lifo Address of the LIFO queue.
2720 * @param timeout Waiting period to obtain a data item,
2721 * or one of the special values K_NO_WAIT and K_FOREVER.
2722 *
2723 * @return Address of the data item if successful; NULL if returned
2724 * without waiting, or waiting period timed out.
2725 */
2726 #define k_lifo_get(lifo, timeout) \
2727 ({ \
2728 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2729 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2730 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2731 lg_ret; \
2732 })
2733
2734 /**
2735 * @brief Statically define and initialize a LIFO queue.
2736 *
2737 * The LIFO queue can be accessed outside the module where it is defined using:
2738 *
2739 * @code extern struct k_lifo <name>; @endcode
2740 *
2741 * @param name Name of the fifo.
2742 */
2743 #define K_LIFO_DEFINE(name) \
2744 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2745 Z_LIFO_INITIALIZER(name)
2746
2747 /** @} */
2748
2749 /**
2750 * @cond INTERNAL_HIDDEN
2751 */
2752 #define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2753
2754 typedef uintptr_t stack_data_t;
2755
2756 struct k_stack {
2757 _wait_q_t wait_q;
2758 struct k_spinlock lock;
2759 stack_data_t *base, *next, *top;
2760
2761 uint8_t flags;
2762
2763 SYS_PORT_TRACING_TRACKING_FIELD(k_stack)
2764
2765 #ifdef CONFIG_OBJ_CORE_STACK
2766 struct k_obj_core obj_core;
2767 #endif
2768 };
2769
2770 #define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2771 { \
2772 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2773 .base = stack_buffer, \
2774 .next = stack_buffer, \
2775 .top = stack_buffer + stack_num_entries, \
2776 }
2777
2778 /**
2779 * INTERNAL_HIDDEN @endcond
2780 */
2781
2782 /**
2783 * @defgroup stack_apis Stack APIs
2784 * @ingroup kernel_apis
2785 * @{
2786 */
2787
2788 /**
2789 * @brief Initialize a stack.
2790 *
2791 * This routine initializes a stack object, prior to its first use.
2792 *
2793 * @param stack Address of the stack.
2794 * @param buffer Address of array used to hold stacked values.
2795 * @param num_entries Maximum number of values that can be stacked.
2796 */
2797 void k_stack_init(struct k_stack *stack,
2798 stack_data_t *buffer, uint32_t num_entries);
2799
2800
2801 /**
2802 * @brief Initialize a stack.
2803 *
2804 * This routine initializes a stack object, prior to its first use. Internal
2805 * buffers will be allocated from the calling thread's resource pool.
2806 * This memory will be released if k_stack_cleanup() is called, or
2807 * userspace is enabled and the stack object loses all references to it.
2808 *
2809 * @param stack Address of the stack.
2810 * @param num_entries Maximum number of values that can be stacked.
2811 *
2812 * @return -ENOMEM if memory couldn't be allocated
2813 */
2814
2815 __syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2816 uint32_t num_entries);
2817
2818 /**
2819 * @brief Release a stack's allocated buffer
2820 *
2821 * If a stack object was given a dynamically allocated buffer via
2822 * k_stack_alloc_init(), this will free it. This function does nothing
2823 * if the buffer wasn't dynamically allocated.
2824 *
2825 * @param stack Address of the stack.
2826 * @retval 0 on success
2827 * @retval -EAGAIN when object is still in use
2828 */
2829 int k_stack_cleanup(struct k_stack *stack);
2830
2831 /**
2832 * @brief Push an element onto a stack.
2833 *
2834 * This routine adds a stack_data_t value @a data to @a stack.
2835 *
2836 * @funcprops \isr_ok
2837 *
2838 * @param stack Address of the stack.
2839 * @param data Value to push onto the stack.
2840 *
2841 * @retval 0 on success
2842 * @retval -ENOMEM if stack is full
2843 */
2844 __syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2845
2846 /**
2847 * @brief Pop an element from a stack.
2848 *
2849 * This routine removes a stack_data_t value from @a stack in a "last in,
2850 * first out" manner and stores the value in @a data.
2851 *
2852 * @note @a timeout must be set to K_NO_WAIT if called from ISR.
2853 *
2854 * @funcprops \isr_ok
2855 *
2856 * @param stack Address of the stack.
2857 * @param data Address of area to hold the value popped from the stack.
2858 * @param timeout Waiting period to obtain a value,
2859 * or one of the special values K_NO_WAIT and
2860 * K_FOREVER.
2861 *
2862 * @retval 0 Element popped from stack.
2863 * @retval -EBUSY Returned without waiting.
2864 * @retval -EAGAIN Waiting period timed out.
2865 */
2866 __syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2867 k_timeout_t timeout);
2868
2869 /**
2870 * @brief Statically define and initialize a stack
2871 *
2872 * The stack can be accessed outside the module where it is defined using:
2873 *
2874 * @code extern struct k_stack <name>; @endcode
2875 *
2876 * @param name Name of the stack.
2877 * @param stack_num_entries Maximum number of values that can be stacked.
2878 */
2879 #define K_STACK_DEFINE(name, stack_num_entries) \
2880 stack_data_t __noinit \
2881 _k_stack_buf_##name[stack_num_entries]; \
2882 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2883 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2884 stack_num_entries)
2885
2886 /** @} */
2887
2888 /**
2889 * @cond INTERNAL_HIDDEN
2890 */
2891
2892 struct k_work;
2893 struct k_work_q;
2894 struct k_work_queue_config;
2895 extern struct k_work_q k_sys_work_q;
2896
2897 /**
2898 * INTERNAL_HIDDEN @endcond
2899 */
2900
2901 /**
2902 * @defgroup mutex_apis Mutex APIs
2903 * @ingroup kernel_apis
2904 * @{
2905 */
2906
2907 /**
2908 * Mutex Structure
2909 * @ingroup mutex_apis
2910 */
2911 struct k_mutex {
2912 /** Mutex wait queue */
2913 _wait_q_t wait_q;
2914 /** Mutex owner */
2915 struct k_thread *owner;
2916
2917 /** Current lock count */
2918 uint32_t lock_count;
2919
2920 /** Original thread priority */
2921 int owner_orig_prio;
2922
2923 SYS_PORT_TRACING_TRACKING_FIELD(k_mutex)
2924
2925 #ifdef CONFIG_OBJ_CORE_MUTEX
2926 struct k_obj_core obj_core;
2927 #endif
2928 };
2929
2930 /**
2931 * @cond INTERNAL_HIDDEN
2932 */
2933 #define Z_MUTEX_INITIALIZER(obj) \
2934 { \
2935 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2936 .owner = NULL, \
2937 .lock_count = 0, \
2938 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2939 }
2940
2941 /**
2942 * INTERNAL_HIDDEN @endcond
2943 */
2944
2945 /**
2946 * @brief Statically define and initialize a mutex.
2947 *
2948 * The mutex can be accessed outside the module where it is defined using:
2949 *
2950 * @code extern struct k_mutex <name>; @endcode
2951 *
2952 * @param name Name of the mutex.
2953 */
2954 #define K_MUTEX_DEFINE(name) \
2955 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2956 Z_MUTEX_INITIALIZER(name)
2957
2958 /**
2959 * @brief Initialize a mutex.
2960 *
2961 * This routine initializes a mutex object, prior to its first use.
2962 *
2963 * Upon completion, the mutex is available and does not have an owner.
2964 *
2965 * @param mutex Address of the mutex.
2966 *
2967 * @retval 0 Mutex object created
2968 *
2969 */
2970 __syscall int k_mutex_init(struct k_mutex *mutex);
2971
2972
2973 /**
2974 * @brief Lock a mutex.
2975 *
2976 * This routine locks @a mutex. If the mutex is locked by another thread,
2977 * the calling thread waits until the mutex becomes available or until
2978 * a timeout occurs.
2979 *
2980 * A thread is permitted to lock a mutex it has already locked. The operation
2981 * completes immediately and the lock count is increased by 1.
2982 *
2983 * Mutexes may not be locked in ISRs.
2984 *
2985 * @param mutex Address of the mutex.
2986 * @param timeout Waiting period to lock the mutex,
2987 * or one of the special values K_NO_WAIT and
2988 * K_FOREVER.
2989 *
2990 * @retval 0 Mutex locked.
2991 * @retval -EBUSY Returned without waiting.
2992 * @retval -EAGAIN Waiting period timed out.
2993 */
2994 __syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
2995
2996 /**
2997 * @brief Unlock a mutex.
2998 *
2999 * This routine unlocks @a mutex. The mutex must already be locked by the
3000 * calling thread.
3001 *
3002 * The mutex cannot be claimed by another thread until it has been unlocked by
3003 * the calling thread as many times as it was previously locked by that
3004 * thread.
3005 *
3006 * Mutexes may not be unlocked in ISRs, as mutexes must only be manipulated
3007 * in thread context due to ownership and priority inheritance semantics.
3008 *
3009 * @param mutex Address of the mutex.
3010 *
3011 * @retval 0 Mutex unlocked.
3012 * @retval -EPERM The current thread does not own the mutex
3013 * @retval -EINVAL The mutex is not locked
3014 *
3015 */
3016 __syscall int k_mutex_unlock(struct k_mutex *mutex);
3017
3018 /**
3019 * @}
3020 */
3021
3022
3023 struct k_condvar {
3024 _wait_q_t wait_q;
3025
3026 #ifdef CONFIG_OBJ_CORE_CONDVAR
3027 struct k_obj_core obj_core;
3028 #endif
3029 };
3030
3031 #define Z_CONDVAR_INITIALIZER(obj) \
3032 { \
3033 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3034 }
3035
3036 /**
3037 * @defgroup condvar_apis Condition Variables APIs
3038 * @ingroup kernel_apis
3039 * @{
3040 */
3041
3042 /**
3043 * @brief Initialize a condition variable
3044 *
3045 * @param condvar pointer to a @p k_condvar structure
3046 * @retval 0 Condition variable created successfully
3047 */
3048 __syscall int k_condvar_init(struct k_condvar *condvar);
3049
3050 /**
3051 * @brief Signals one thread that is pending on the condition variable
3052 *
3053 * @param condvar pointer to a @p k_condvar structure
3054 * @retval 0 On success
3055 */
3056 __syscall int k_condvar_signal(struct k_condvar *condvar);
3057
3058 /**
3059 * @brief Unblock all threads that are pending on the condition
3060 * variable
3061 *
3062 * @param condvar pointer to a @p k_condvar structure
3063 * @return An integer with number of woken threads on success
3064 */
3065 __syscall int k_condvar_broadcast(struct k_condvar *condvar);
3066
3067 /**
3068 * @brief Waits on the condition variable releasing the mutex lock
3069 *
3070 * Atomically releases the currently owned mutex, blocks the current thread
3071 * waiting on the condition variable specified by @a condvar,
3072 * and finally acquires the mutex again.
3073 *
3074 * The waiting thread unblocks only after another thread calls
3075 * k_condvar_signal, or k_condvar_broadcast with the same condition variable.
3076 *
3077 * @param condvar pointer to a @p k_condvar structure
3078 * @param mutex Address of the mutex.
3079 * @param timeout Waiting period for the condition variable
3080 * or one of the special values K_NO_WAIT and K_FOREVER.
3081 * @retval 0 On success
3082 * @retval -EAGAIN Waiting period timed out.
3083 */
3084 __syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3085 k_timeout_t timeout);
3086
3087 /**
3088 * @brief Statically define and initialize a condition variable.
3089 *
3090 * The condition variable can be accessed outside the module where it is
3091 * defined using:
3092 *
3093 * @code extern struct k_condvar <name>; @endcode
3094 *
3095 * @param name Name of the condition variable.
3096 */
3097 #define K_CONDVAR_DEFINE(name) \
3098 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3099 Z_CONDVAR_INITIALIZER(name)
3100 /**
3101 * @}
3102 */
3103
3104 /**
3105 * @cond INTERNAL_HIDDEN
3106 */
3107
3108 struct k_sem {
3109 _wait_q_t wait_q;
3110 unsigned int count;
3111 unsigned int limit;
3112
3113 _POLL_EVENT;
3114
3115 SYS_PORT_TRACING_TRACKING_FIELD(k_sem)
3116
3117 #ifdef CONFIG_OBJ_CORE_SEM
3118 struct k_obj_core obj_core;
3119 #endif
3120 };
3121
3122 #define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3123 { \
3124 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3125 .count = initial_count, \
3126 .limit = count_limit, \
3127 _POLL_EVENT_OBJ_INIT(obj) \
3128 }
3129
3130 /**
3131 * INTERNAL_HIDDEN @endcond
3132 */
3133
3134 /**
3135 * @defgroup semaphore_apis Semaphore APIs
3136 * @ingroup kernel_apis
3137 * @{
3138 */
3139
3140 /**
3141 * @brief Maximum limit value allowed for a semaphore.
3142 *
3143 * This is intended for use when a semaphore does not have
3144 * an explicit maximum limit, and instead is just used for
3145 * counting purposes.
3146 *
3147 */
3148 #define K_SEM_MAX_LIMIT UINT_MAX
3149
3150 /**
3151 * @brief Initialize a semaphore.
3152 *
3153 * This routine initializes a semaphore object, prior to its first use.
3154 *
3155 * @param sem Address of the semaphore.
3156 * @param initial_count Initial semaphore count.
3157 * @param limit Maximum permitted semaphore count.
3158 *
3159 * @see K_SEM_MAX_LIMIT
3160 *
3161 * @retval 0 Semaphore created successfully
3162 * @retval -EINVAL Invalid values
3163 *
3164 */
3165 __syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3166 unsigned int limit);
3167
3168 /**
3169 * @brief Take a semaphore.
3170 *
3171 * This routine takes @a sem.
3172 *
3173 * @note @a timeout must be set to K_NO_WAIT if called from ISR.
3174 *
3175 * @funcprops \isr_ok
3176 *
3177 * @param sem Address of the semaphore.
3178 * @param timeout Waiting period to take the semaphore,
3179 * or one of the special values K_NO_WAIT and K_FOREVER.
3180 *
3181 * @retval 0 Semaphore taken.
3182 * @retval -EBUSY Returned without waiting.
3183 * @retval -EAGAIN Waiting period timed out,
3184 * or the semaphore was reset during the waiting period.
3185 */
3186 __syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3187
3188 /**
3189 * @brief Give a semaphore.
3190 *
3191 * This routine gives @a sem, unless the semaphore is already at its maximum
3192 * permitted count.
3193 *
3194 * @funcprops \isr_ok
3195 *
3196 * @param sem Address of the semaphore.
3197 */
3198 __syscall void k_sem_give(struct k_sem *sem);
3199
3200 /**
3201 * @brief Resets a semaphore's count to zero.
3202 *
3203 * This routine sets the count of @a sem to zero.
3204 * Any outstanding semaphore takes will be aborted
3205 * with -EAGAIN.
3206 *
3207 * @param sem Address of the semaphore.
3208 */
3209 __syscall void k_sem_reset(struct k_sem *sem);
3210
3211 /**
3212 * @brief Get a semaphore's count.
3213 *
3214 * This routine returns the current count of @a sem.
3215 *
3216 * @param sem Address of the semaphore.
3217 *
3218 * @return Current semaphore count.
3219 */
3220 __syscall unsigned int k_sem_count_get(struct k_sem *sem);
3221
3222 /**
3223 * @internal
3224 */
z_impl_k_sem_count_get(struct k_sem * sem)3225 static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3226 {
3227 return sem->count;
3228 }
3229
3230 /**
3231 * @brief Statically define and initialize a semaphore.
3232 *
3233 * The semaphore can be accessed outside the module where it is defined using:
3234 *
3235 * @code extern struct k_sem <name>; @endcode
3236 *
3237 * @param name Name of the semaphore.
3238 * @param initial_count Initial semaphore count.
3239 * @param count_limit Maximum permitted semaphore count.
3240 */
3241 #define K_SEM_DEFINE(name, initial_count, count_limit) \
3242 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3243 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3244 BUILD_ASSERT(((count_limit) != 0) && \
3245 ((initial_count) <= (count_limit)) && \
3246 ((count_limit) <= K_SEM_MAX_LIMIT));
3247
3248 /** @} */
3249
3250 /**
3251 * @cond INTERNAL_HIDDEN
3252 */
3253
3254 struct k_work_delayable;
3255 struct k_work_sync;
3256
3257 /**
3258 * INTERNAL_HIDDEN @endcond
3259 */
3260
3261 /**
3262 * @defgroup workqueue_apis Work Queue APIs
3263 * @ingroup kernel_apis
3264 * @{
3265 */
3266
3267 /** @brief The signature for a work item handler function.
3268 *
3269 * The function will be invoked by the thread animating a work queue.
3270 *
3271 * @param work the work item that provided the handler.
3272 */
3273 typedef void (*k_work_handler_t)(struct k_work *work);
3274
3275 /** @brief Initialize a (non-delayable) work structure.
3276 *
3277 * This must be invoked before submitting a work structure for the first time.
3278 * It need not be invoked again on the same work structure. It can be
3279 * re-invoked to change the associated handler, but this must be done when the
3280 * work item is idle.
3281 *
3282 * @funcprops \isr_ok
3283 *
3284 * @param work the work structure to be initialized.
3285 *
3286 * @param handler the handler to be invoked by the work item.
3287 */
3288 void k_work_init(struct k_work *work,
3289 k_work_handler_t handler);
3290
3291 /** @brief Busy state flags from the work item.
3292 *
3293 * A zero return value indicates the work item appears to be idle.
3294 *
3295 * @note This is a live snapshot of state, which may change before the result
3296 * is checked. Use locks where appropriate.
3297 *
3298 * @funcprops \isr_ok
3299 *
3300 * @param work pointer to the work item.
3301 *
3302 * @return a mask of flags K_WORK_DELAYED, K_WORK_QUEUED,
3303 * K_WORK_RUNNING, and K_WORK_CANCELING.
3304 */
3305 int k_work_busy_get(const struct k_work *work);
3306
3307 /** @brief Test whether a work item is currently pending.
3308 *
3309 * Wrapper to determine whether a work item is in a non-idle dstate.
3310 *
3311 * @note This is a live snapshot of state, which may change before the result
3312 * is checked. Use locks where appropriate.
3313 *
3314 * @funcprops \isr_ok
3315 *
3316 * @param work pointer to the work item.
3317 *
3318 * @return true if and only if k_work_busy_get() returns a non-zero value.
3319 */
3320 static inline bool k_work_is_pending(const struct k_work *work);
3321
3322 /** @brief Submit a work item to a queue.
3323 *
3324 * @param queue pointer to the work queue on which the item should run. If
3325 * NULL the queue from the most recent submission will be used.
3326 *
3327 * @funcprops \isr_ok
3328 *
3329 * @param work pointer to the work item.
3330 *
3331 * @retval 0 if work was already submitted to a queue
3332 * @retval 1 if work was not submitted and has been queued to @p queue
3333 * @retval 2 if work was running and has been queued to the queue that was
3334 * running it
3335 * @retval -EBUSY
3336 * * if work submission was rejected because the work item is cancelling; or
3337 * * @p queue is draining; or
3338 * * @p queue is plugged.
3339 * @retval -EINVAL if @p queue is null and the work item has never been run.
3340 * @retval -ENODEV if @p queue has not been started.
3341 */
3342 int k_work_submit_to_queue(struct k_work_q *queue,
3343 struct k_work *work);
3344
3345 /** @brief Submit a work item to the system queue.
3346 *
3347 * @funcprops \isr_ok
3348 *
3349 * @param work pointer to the work item.
3350 *
3351 * @return as with k_work_submit_to_queue().
3352 */
3353 extern int k_work_submit(struct k_work *work);
3354
3355 /** @brief Wait for last-submitted instance to complete.
3356 *
3357 * Resubmissions may occur while waiting, including chained submissions (from
3358 * within the handler).
3359 *
3360 * @note Be careful of caller and work queue thread relative priority. If
3361 * this function sleeps it will not return until the work queue thread
3362 * completes the tasks that allow this thread to resume.
3363 *
3364 * @note Behavior is undefined if this function is invoked on @p work from a
3365 * work queue running @p work.
3366 *
3367 * @param work pointer to the work item.
3368 *
3369 * @param sync pointer to an opaque item containing state related to the
3370 * pending cancellation. The object must persist until the call returns, and
3371 * be accessible from both the caller thread and the work queue thread. The
3372 * object must not be used for any other flush or cancel operation until this
3373 * one completes. On architectures with CONFIG_KERNEL_COHERENCE the object
3374 * must be allocated in coherent memory.
3375 *
3376 * @retval true if call had to wait for completion
3377 * @retval false if work was already idle
3378 */
3379 bool k_work_flush(struct k_work *work,
3380 struct k_work_sync *sync);
3381
3382 /** @brief Cancel a work item.
3383 *
3384 * This attempts to prevent a pending (non-delayable) work item from being
3385 * processed by removing it from the work queue. If the item is being
3386 * processed, the work item will continue to be processed, but resubmissions
3387 * are rejected until cancellation completes.
3388 *
3389 * If this returns zero cancellation is complete, otherwise something
3390 * (probably a work queue thread) is still referencing the item.
3391 *
3392 * See also k_work_cancel_sync().
3393 *
3394 * @funcprops \isr_ok
3395 *
3396 * @param work pointer to the work item.
3397 *
3398 * @return the k_work_busy_get() status indicating the state of the item after all
3399 * cancellation steps performed by this call are completed.
3400 */
3401 int k_work_cancel(struct k_work *work);
3402
3403 /** @brief Cancel a work item and wait for it to complete.
3404 *
3405 * Same as k_work_cancel() but does not return until cancellation is complete.
3406 * This can be invoked by a thread after k_work_cancel() to synchronize with a
3407 * previous cancellation.
3408 *
3409 * On return the work structure will be idle unless something submits it after
3410 * the cancellation was complete.
3411 *
3412 * @note Be careful of caller and work queue thread relative priority. If
3413 * this function sleeps it will not return until the work queue thread
3414 * completes the tasks that allow this thread to resume.
3415 *
3416 * @note Behavior is undefined if this function is invoked on @p work from a
3417 * work queue running @p work.
3418 *
3419 * @param work pointer to the work item.
3420 *
3421 * @param sync pointer to an opaque item containing state related to the
3422 * pending cancellation. The object must persist until the call returns, and
3423 * be accessible from both the caller thread and the work queue thread. The
3424 * object must not be used for any other flush or cancel operation until this
3425 * one completes. On architectures with CONFIG_KERNEL_COHERENCE the object
3426 * must be allocated in coherent memory.
3427 *
3428 * @retval true if work was pending (call had to wait for cancellation of a
3429 * running handler to complete, or scheduled or submitted operations were
3430 * cancelled);
3431 * @retval false otherwise
3432 */
3433 bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3434
3435 /** @brief Initialize a work queue structure.
3436 *
3437 * This must be invoked before starting a work queue structure for the first time.
3438 * It need not be invoked again on the same work queue structure.
3439 *
3440 * @funcprops \isr_ok
3441 *
3442 * @param queue the queue structure to be initialized.
3443 */
3444 void k_work_queue_init(struct k_work_q *queue);
3445
3446 /** @brief Initialize a work queue.
3447 *
3448 * This configures the work queue thread and starts it running. The function
3449 * should not be re-invoked on a queue.
3450 *
3451 * @param queue pointer to the queue structure. It must be initialized
3452 * in zeroed/bss memory or with @ref k_work_queue_init before
3453 * use.
3454 *
3455 * @param stack pointer to the work thread stack area.
3456 *
3457 * @param stack_size size of the the work thread stack area, in bytes.
3458 *
3459 * @param prio initial thread priority
3460 *
3461 * @param cfg optional additional configuration parameters. Pass @c
3462 * NULL if not required, to use the defaults documented in
3463 * k_work_queue_config.
3464 */
3465 void k_work_queue_start(struct k_work_q *queue,
3466 k_thread_stack_t *stack, size_t stack_size,
3467 int prio, const struct k_work_queue_config *cfg);
3468
3469 /** @brief Access the thread that animates a work queue.
3470 *
3471 * This is necessary to grant a work queue thread access to things the work
3472 * items it will process are expected to use.
3473 *
3474 * @param queue pointer to the queue structure.
3475 *
3476 * @return the thread associated with the work queue.
3477 */
3478 static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3479
3480 /** @brief Wait until the work queue has drained, optionally plugging it.
3481 *
3482 * This blocks submission to the work queue except when coming from queue
3483 * thread, and blocks the caller until no more work items are available in the
3484 * queue.
3485 *
3486 * If @p plug is true then submission will continue to be blocked after the
3487 * drain operation completes until k_work_queue_unplug() is invoked.
3488 *
3489 * Note that work items that are delayed are not yet associated with their
3490 * work queue. They must be cancelled externally if a goal is to ensure the
3491 * work queue remains empty. The @p plug feature can be used to prevent
3492 * delayed items from being submitted after the drain completes.
3493 *
3494 * @param queue pointer to the queue structure.
3495 *
3496 * @param plug if true the work queue will continue to block new submissions
3497 * after all items have drained.
3498 *
3499 * @retval 1 if call had to wait for the drain to complete
3500 * @retval 0 if call did not have to wait
3501 * @retval negative if wait was interrupted or failed
3502 */
3503 int k_work_queue_drain(struct k_work_q *queue, bool plug);
3504
3505 /** @brief Release a work queue to accept new submissions.
3506 *
3507 * This releases the block on new submissions placed when k_work_queue_drain()
3508 * is invoked with the @p plug option enabled. If this is invoked before the
3509 * drain completes new items may be submitted as soon as the drain completes.
3510 *
3511 * @funcprops \isr_ok
3512 *
3513 * @param queue pointer to the queue structure.
3514 *
3515 * @retval 0 if successfully unplugged
3516 * @retval -EALREADY if the work queue was not plugged.
3517 */
3518 int k_work_queue_unplug(struct k_work_q *queue);
3519
3520 /** @brief Initialize a delayable work structure.
3521 *
3522 * This must be invoked before scheduling a delayable work structure for the
3523 * first time. It need not be invoked again on the same work structure. It
3524 * can be re-invoked to change the associated handler, but this must be done
3525 * when the work item is idle.
3526 *
3527 * @funcprops \isr_ok
3528 *
3529 * @param dwork the delayable work structure to be initialized.
3530 *
3531 * @param handler the handler to be invoked by the work item.
3532 */
3533 void k_work_init_delayable(struct k_work_delayable *dwork,
3534 k_work_handler_t handler);
3535
3536 /**
3537 * @brief Get the parent delayable work structure from a work pointer.
3538 *
3539 * This function is necessary when a @c k_work_handler_t function is passed to
3540 * k_work_schedule_for_queue() and the handler needs to access data from the
3541 * container of the containing `k_work_delayable`.
3542 *
3543 * @param work Address passed to the work handler
3544 *
3545 * @return Address of the containing @c k_work_delayable structure.
3546 */
3547 static inline struct k_work_delayable *
3548 k_work_delayable_from_work(struct k_work *work);
3549
3550 /** @brief Busy state flags from the delayable work item.
3551 *
3552 * @funcprops \isr_ok
3553 *
3554 * @note This is a live snapshot of state, which may change before the result
3555 * can be inspected. Use locks where appropriate.
3556 *
3557 * @param dwork pointer to the delayable work item.
3558 *
3559 * @return a mask of flags K_WORK_DELAYED, K_WORK_QUEUED, K_WORK_RUNNING, and
3560 * K_WORK_CANCELING. A zero return value indicates the work item appears to
3561 * be idle.
3562 */
3563 int k_work_delayable_busy_get(const struct k_work_delayable *dwork);
3564
3565 /** @brief Test whether a delayed work item is currently pending.
3566 *
3567 * Wrapper to determine whether a delayed work item is in a non-idle state.
3568 *
3569 * @note This is a live snapshot of state, which may change before the result
3570 * can be inspected. Use locks where appropriate.
3571 *
3572 * @funcprops \isr_ok
3573 *
3574 * @param dwork pointer to the delayable work item.
3575 *
3576 * @return true if and only if k_work_delayable_busy_get() returns a non-zero
3577 * value.
3578 */
3579 static inline bool k_work_delayable_is_pending(
3580 const struct k_work_delayable *dwork);
3581
3582 /** @brief Get the absolute tick count at which a scheduled delayable work
3583 * will be submitted.
3584 *
3585 * @note This is a live snapshot of state, which may change before the result
3586 * can be inspected. Use locks where appropriate.
3587 *
3588 * @funcprops \isr_ok
3589 *
3590 * @param dwork pointer to the delayable work item.
3591 *
3592 * @return the tick count when the timer that will schedule the work item will
3593 * expire, or the current tick count if the work is not scheduled.
3594 */
3595 static inline k_ticks_t k_work_delayable_expires_get(
3596 const struct k_work_delayable *dwork);
3597
3598 /** @brief Get the number of ticks until a scheduled delayable work will be
3599 * submitted.
3600 *
3601 * @note This is a live snapshot of state, which may change before the result
3602 * can be inspected. Use locks where appropriate.
3603 *
3604 * @funcprops \isr_ok
3605 *
3606 * @param dwork pointer to the delayable work item.
3607 *
3608 * @return the number of ticks until the timer that will schedule the work
3609 * item will expire, or zero if the item is not scheduled.
3610 */
3611 static inline k_ticks_t k_work_delayable_remaining_get(
3612 const struct k_work_delayable *dwork);
3613
3614 /** @brief Submit an idle work item to a queue after a delay.
3615 *
3616 * Unlike k_work_reschedule_for_queue() this is a no-op if the work item is
3617 * already scheduled or submitted, even if @p delay is @c K_NO_WAIT.
3618 *
3619 * @funcprops \isr_ok
3620 *
3621 * @param queue the queue on which the work item should be submitted after the
3622 * delay.
3623 *
3624 * @param dwork pointer to the delayable work item.
3625 *
3626 * @param delay the time to wait before submitting the work item. If @c
3627 * K_NO_WAIT and the work is not pending this is equivalent to
3628 * k_work_submit_to_queue().
3629 *
3630 * @retval 0 if work was already scheduled or submitted.
3631 * @retval 1 if work has been scheduled.
3632 * @retval -EBUSY if @p delay is @c K_NO_WAIT and
3633 * k_work_submit_to_queue() fails with this code.
3634 * @retval -EINVAL if @p delay is @c K_NO_WAIT and
3635 * k_work_submit_to_queue() fails with this code.
3636 * @retval -ENODEV if @p delay is @c K_NO_WAIT and
3637 * k_work_submit_to_queue() fails with this code.
3638 */
3639 int k_work_schedule_for_queue(struct k_work_q *queue,
3640 struct k_work_delayable *dwork,
3641 k_timeout_t delay);
3642
3643 /** @brief Submit an idle work item to the system work queue after a
3644 * delay.
3645 *
3646 * This is a thin wrapper around k_work_schedule_for_queue(), with all the API
3647 * characteristics of that function.
3648 *
3649 * @param dwork pointer to the delayable work item.
3650 *
3651 * @param delay the time to wait before submitting the work item. If @c
3652 * K_NO_WAIT this is equivalent to k_work_submit_to_queue().
3653 *
3654 * @return as with k_work_schedule_for_queue().
3655 */
3656 extern int k_work_schedule(struct k_work_delayable *dwork,
3657 k_timeout_t delay);
3658
3659 /** @brief Reschedule a work item to a queue after a delay.
3660 *
3661 * Unlike k_work_schedule_for_queue() this function can change the deadline of
3662 * a scheduled work item, and will schedule a work item that is in any state
3663 * (e.g. is idle, submitted, or running). This function does not affect
3664 * ("unsubmit") a work item that has been submitted to a queue.
3665 *
3666 * @funcprops \isr_ok
3667 *
3668 * @param queue the queue on which the work item should be submitted after the
3669 * delay.
3670 *
3671 * @param dwork pointer to the delayable work item.
3672 *
3673 * @param delay the time to wait before submitting the work item. If @c
3674 * K_NO_WAIT this is equivalent to k_work_submit_to_queue() after canceling
3675 * any previous scheduled submission.
3676 *
3677 * @note If delay is @c K_NO_WAIT ("no delay") the return values are as with
3678 * k_work_submit_to_queue().
3679 *
3680 * @retval 0 if delay is @c K_NO_WAIT and work was already on a queue
3681 * @retval 1 if
3682 * * delay is @c K_NO_WAIT and work was not submitted but has now been queued
3683 * to @p queue; or
3684 * * delay not @c K_NO_WAIT and work has been scheduled
3685 * @retval 2 if delay is @c K_NO_WAIT and work was running and has been queued
3686 * to the queue that was running it
3687 * @retval -EBUSY if @p delay is @c K_NO_WAIT and
3688 * k_work_submit_to_queue() fails with this code.
3689 * @retval -EINVAL if @p delay is @c K_NO_WAIT and
3690 * k_work_submit_to_queue() fails with this code.
3691 * @retval -ENODEV if @p delay is @c K_NO_WAIT and
3692 * k_work_submit_to_queue() fails with this code.
3693 */
3694 int k_work_reschedule_for_queue(struct k_work_q *queue,
3695 struct k_work_delayable *dwork,
3696 k_timeout_t delay);
3697
3698 /** @brief Reschedule a work item to the system work queue after a
3699 * delay.
3700 *
3701 * This is a thin wrapper around k_work_reschedule_for_queue(), with all the
3702 * API characteristics of that function.
3703 *
3704 * @param dwork pointer to the delayable work item.
3705 *
3706 * @param delay the time to wait before submitting the work item.
3707 *
3708 * @return as with k_work_reschedule_for_queue().
3709 */
3710 extern int k_work_reschedule(struct k_work_delayable *dwork,
3711 k_timeout_t delay);
3712
3713 /** @brief Flush delayable work.
3714 *
3715 * If the work is scheduled, it is immediately submitted. Then the caller
3716 * blocks until the work completes, as with k_work_flush().
3717 *
3718 * @note Be careful of caller and work queue thread relative priority. If
3719 * this function sleeps it will not return until the work queue thread
3720 * completes the tasks that allow this thread to resume.
3721 *
3722 * @note Behavior is undefined if this function is invoked on @p dwork from a
3723 * work queue running @p dwork.
3724 *
3725 * @param dwork pointer to the delayable work item.
3726 *
3727 * @param sync pointer to an opaque item containing state related to the
3728 * pending cancellation. The object must persist until the call returns, and
3729 * be accessible from both the caller thread and the work queue thread. The
3730 * object must not be used for any other flush or cancel operation until this
3731 * one completes. On architectures with CONFIG_KERNEL_COHERENCE the object
3732 * must be allocated in coherent memory.
3733 *
3734 * @retval true if call had to wait for completion
3735 * @retval false if work was already idle
3736 */
3737 bool k_work_flush_delayable(struct k_work_delayable *dwork,
3738 struct k_work_sync *sync);
3739
3740 /** @brief Cancel delayable work.
3741 *
3742 * Similar to k_work_cancel() but for delayable work. If the work is
3743 * scheduled or submitted it is canceled. This function does not wait for the
3744 * cancellation to complete.
3745 *
3746 * @note The work may still be running when this returns. Use
3747 * k_work_flush_delayable() or k_work_cancel_delayable_sync() to ensure it is
3748 * not running.
3749 *
3750 * @note Canceling delayable work does not prevent rescheduling it. It does
3751 * prevent submitting it until the cancellation completes.
3752 *
3753 * @funcprops \isr_ok
3754 *
3755 * @param dwork pointer to the delayable work item.
3756 *
3757 * @return the k_work_delayable_busy_get() status indicating the state of the
3758 * item after all cancellation steps performed by this call are completed.
3759 */
3760 int k_work_cancel_delayable(struct k_work_delayable *dwork);
3761
3762 /** @brief Cancel delayable work and wait.
3763 *
3764 * Like k_work_cancel_delayable() but waits until the work becomes idle.
3765 *
3766 * @note Canceling delayable work does not prevent rescheduling it. It does
3767 * prevent submitting it until the cancellation completes.
3768 *
3769 * @note Be careful of caller and work queue thread relative priority. If
3770 * this function sleeps it will not return until the work queue thread
3771 * completes the tasks that allow this thread to resume.
3772 *
3773 * @note Behavior is undefined if this function is invoked on @p dwork from a
3774 * work queue running @p dwork.
3775 *
3776 * @param dwork pointer to the delayable work item.
3777 *
3778 * @param sync pointer to an opaque item containing state related to the
3779 * pending cancellation. The object must persist until the call returns, and
3780 * be accessible from both the caller thread and the work queue thread. The
3781 * object must not be used for any other flush or cancel operation until this
3782 * one completes. On architectures with CONFIG_KERNEL_COHERENCE the object
3783 * must be allocated in coherent memory.
3784 *
3785 * @retval true if work was not idle (call had to wait for cancellation of a
3786 * running handler to complete, or scheduled or submitted operations were
3787 * cancelled);
3788 * @retval false otherwise
3789 */
3790 bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork,
3791 struct k_work_sync *sync);
3792
3793 enum {
3794 /**
3795 * @cond INTERNAL_HIDDEN
3796 */
3797
3798 /* The atomic API is used for all work and queue flags fields to
3799 * enforce sequential consistency in SMP environments.
3800 */
3801
3802 /* Bits that represent the work item states. At least nine of the
3803 * combinations are distinct valid stable states.
3804 */
3805 K_WORK_RUNNING_BIT = 0,
3806 K_WORK_CANCELING_BIT = 1,
3807 K_WORK_QUEUED_BIT = 2,
3808 K_WORK_DELAYED_BIT = 3,
3809
3810 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3811 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT),
3812
3813 /* Static work flags */
3814 K_WORK_DELAYABLE_BIT = 8,
3815 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3816
3817 /* Dynamic work queue flags */
3818 K_WORK_QUEUE_STARTED_BIT = 0,
3819 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3820 K_WORK_QUEUE_BUSY_BIT = 1,
3821 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3822 K_WORK_QUEUE_DRAIN_BIT = 2,
3823 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3824 K_WORK_QUEUE_PLUGGED_BIT = 3,
3825 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3826
3827 /* Static work queue flags */
3828 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3829 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3830
3831 /**
3832 * INTERNAL_HIDDEN @endcond
3833 */
3834 /* Transient work flags */
3835
3836 /** @brief Flag indicating a work item that is running under a work
3837 * queue thread.
3838 *
3839 * Accessed via k_work_busy_get(). May co-occur with other flags.
3840 */
3841 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3842
3843 /** @brief Flag indicating a work item that is being canceled.
3844 *
3845 * Accessed via k_work_busy_get(). May co-occur with other flags.
3846 */
3847 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3848
3849 /** @brief Flag indicating a work item that has been submitted to a
3850 * queue but has not started running.
3851 *
3852 * Accessed via k_work_busy_get(). May co-occur with other flags.
3853 */
3854 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3855
3856 /** @brief Flag indicating a delayed work item that is scheduled for
3857 * submission to a queue.
3858 *
3859 * Accessed via k_work_busy_get(). May co-occur with other flags.
3860 */
3861 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3862 };
3863
3864 /** @brief A structure used to submit work. */
3865 struct k_work {
3866 /* All fields are protected by the work module spinlock. No fields
3867 * are to be accessed except through kernel API.
3868 */
3869
3870 /* Node to link into k_work_q pending list. */
3871 sys_snode_t node;
3872
3873 /* The function to be invoked by the work queue thread. */
3874 k_work_handler_t handler;
3875
3876 /* The queue on which the work item was last submitted. */
3877 struct k_work_q *queue;
3878
3879 /* State of the work item.
3880 *
3881 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
3882 *
3883 * It can be RUNNING and CANCELING simultaneously.
3884 */
3885 uint32_t flags;
3886 };
3887
3888 #define Z_WORK_INITIALIZER(work_handler) { \
3889 .handler = work_handler, \
3890 }
3891
3892 /** @brief A structure used to submit work after a delay. */
3893 struct k_work_delayable {
3894 /* The work item. */
3895 struct k_work work;
3896
3897 /* Timeout used to submit work after a delay. */
3898 struct _timeout timeout;
3899
3900 /* The queue to which the work should be submitted. */
3901 struct k_work_q *queue;
3902 };
3903
3904 #define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3905 .work = { \
3906 .handler = work_handler, \
3907 .flags = K_WORK_DELAYABLE, \
3908 }, \
3909 }
3910
3911 /**
3912 * @brief Initialize a statically-defined delayable work item.
3913 *
3914 * This macro can be used to initialize a statically-defined delayable
3915 * work item, prior to its first use. For example,
3916 *
3917 * @code static K_WORK_DELAYABLE_DEFINE(<dwork>, <work_handler>); @endcode
3918 *
3919 * Note that if the runtime dependencies support initialization with
3920 * k_work_init_delayable() using that will eliminate the initialized
3921 * object in ROM that is produced by this macro and copied in at
3922 * system startup.
3923 *
3924 * @param work Symbol name for delayable work item object
3925 * @param work_handler Function to invoke each time work item is processed.
3926 */
3927 #define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3928 struct k_work_delayable work \
3929 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3930
3931 /**
3932 * @cond INTERNAL_HIDDEN
3933 */
3934
3935 /* Record used to wait for work to flush.
3936 *
3937 * The work item is inserted into the queue that will process (or is
3938 * processing) the item, and will be processed as soon as the item
3939 * completes. When the flusher is processed the semaphore will be
3940 * signaled, releasing the thread waiting for the flush.
3941 */
3942 struct z_work_flusher {
3943 struct k_work work;
3944 struct k_sem sem;
3945 };
3946
3947 /* Record used to wait for work to complete a cancellation.
3948 *
3949 * The work item is inserted into a global queue of pending cancels.
3950 * When a cancelling work item goes idle any matching waiters are
3951 * removed from pending_cancels and are woken.
3952 */
3953 struct z_work_canceller {
3954 sys_snode_t node;
3955 struct k_work *work;
3956 struct k_sem sem;
3957 };
3958
3959 /**
3960 * INTERNAL_HIDDEN @endcond
3961 */
3962
3963 /** @brief A structure holding internal state for a pending synchronous
3964 * operation on a work item or queue.
3965 *
3966 * Instances of this type are provided by the caller for invocation of
3967 * k_work_flush(), k_work_cancel_sync() and sibling flush and cancel APIs. A
3968 * referenced object must persist until the call returns, and be accessible
3969 * from both the caller thread and the work queue thread.
3970 *
3971 * @note If CONFIG_KERNEL_COHERENCE is enabled the object must be allocated in
3972 * coherent memory; see arch_mem_coherent(). The stack on these architectures
3973 * is generally not coherent. be stack-allocated. Violations are detected by
3974 * runtime assertion.
3975 */
3976 struct k_work_sync {
3977 union {
3978 struct z_work_flusher flusher;
3979 struct z_work_canceller canceller;
3980 };
3981 };
3982
3983 /** @brief A structure holding optional configuration items for a work
3984 * queue.
3985 *
3986 * This structure, and values it references, are not retained by
3987 * k_work_queue_start().
3988 */
3989 struct k_work_queue_config {
3990 /** The name to be given to the work queue thread.
3991 *
3992 * If left null the thread will not have a name.
3993 */
3994 const char *name;
3995
3996 /** Control whether the work queue thread should yield between
3997 * items.
3998 *
3999 * Yielding between items helps guarantee the work queue
4000 * thread does not starve other threads, including cooperative
4001 * ones released by a work item. This is the default behavior.
4002 *
4003 * Set this to @c true to prevent the work queue thread from
4004 * yielding between items. This may be appropriate when a
4005 * sequence of items should complete without yielding
4006 * control.
4007 */
4008 bool no_yield;
4009 };
4010
4011 /** @brief A structure used to hold work until it can be processed. */
4012 struct k_work_q {
4013 /* The thread that animates the work. */
4014 struct k_thread thread;
4015
4016 /* All the following fields must be accessed only while the
4017 * work module spinlock is held.
4018 */
4019
4020 /* List of k_work items to be worked. */
4021 sys_slist_t pending;
4022
4023 /* Wait queue for idle work thread. */
4024 _wait_q_t notifyq;
4025
4026 /* Wait queue for threads waiting for the queue to drain. */
4027 _wait_q_t drainq;
4028
4029 /* Flags describing queue state. */
4030 uint32_t flags;
4031 };
4032
4033 /* Provide the implementation for inline functions declared above */
4034
k_work_is_pending(const struct k_work * work)4035 static inline bool k_work_is_pending(const struct k_work *work)
4036 {
4037 return k_work_busy_get(work) != 0;
4038 }
4039
4040 static inline struct k_work_delayable *
k_work_delayable_from_work(struct k_work * work)4041 k_work_delayable_from_work(struct k_work *work)
4042 {
4043 return CONTAINER_OF(work, struct k_work_delayable, work);
4044 }
4045
k_work_delayable_is_pending(const struct k_work_delayable * dwork)4046 static inline bool k_work_delayable_is_pending(
4047 const struct k_work_delayable *dwork)
4048 {
4049 return k_work_delayable_busy_get(dwork) != 0;
4050 }
4051
k_work_delayable_expires_get(const struct k_work_delayable * dwork)4052 static inline k_ticks_t k_work_delayable_expires_get(
4053 const struct k_work_delayable *dwork)
4054 {
4055 return z_timeout_expires(&dwork->timeout);
4056 }
4057
k_work_delayable_remaining_get(const struct k_work_delayable * dwork)4058 static inline k_ticks_t k_work_delayable_remaining_get(
4059 const struct k_work_delayable *dwork)
4060 {
4061 return z_timeout_remaining(&dwork->timeout);
4062 }
4063
k_work_queue_thread_get(struct k_work_q * queue)4064 static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
4065 {
4066 return &queue->thread;
4067 }
4068
4069 /** @} */
4070
4071 struct k_work_user;
4072
4073 /**
4074 * @addtogroup workqueue_apis
4075 * @{
4076 */
4077
4078 /**
4079 * @typedef k_work_user_handler_t
4080 * @brief Work item handler function type for user work queues.
4081 *
4082 * A work item's handler function is executed by a user workqueue's thread
4083 * when the work item is processed by the workqueue.
4084 *
4085 * @param work Address of the work item.
4086 */
4087 typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4088
4089 /**
4090 * @cond INTERNAL_HIDDEN
4091 */
4092
4093 struct k_work_user_q {
4094 struct k_queue queue;
4095 struct k_thread thread;
4096 };
4097
4098 enum {
4099 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4100 };
4101
4102 struct k_work_user {
4103 void *_reserved; /* Used by k_queue implementation. */
4104 k_work_user_handler_t handler;
4105 atomic_t flags;
4106 };
4107
4108 /**
4109 * INTERNAL_HIDDEN @endcond
4110 */
4111
4112 #if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4113 #define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4114 #else
4115 #define Z_WORK_USER_INITIALIZER(work_handler) \
4116 { \
4117 ._reserved = NULL, \
4118 .handler = work_handler, \
4119 .flags = 0 \
4120 }
4121 #endif
4122
4123 /**
4124 * @brief Initialize a statically-defined user work item.
4125 *
4126 * This macro can be used to initialize a statically-defined user work
4127 * item, prior to its first use. For example,
4128 *
4129 * @code static K_WORK_USER_DEFINE(<work>, <work_handler>); @endcode
4130 *
4131 * @param work Symbol name for work item object
4132 * @param work_handler Function to invoke each time work item is processed.
4133 */
4134 #define K_WORK_USER_DEFINE(work, work_handler) \
4135 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4136
4137 /**
4138 * @brief Initialize a userspace work item.
4139 *
4140 * This routine initializes a user workqueue work item, prior to its
4141 * first use.
4142 *
4143 * @param work Address of work item.
4144 * @param handler Function to invoke each time work item is processed.
4145 */
k_work_user_init(struct k_work_user * work,k_work_user_handler_t handler)4146 static inline void k_work_user_init(struct k_work_user *work,
4147 k_work_user_handler_t handler)
4148 {
4149 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4150 }
4151
4152 /**
4153 * @brief Check if a userspace work item is pending.
4154 *
4155 * This routine indicates if user work item @a work is pending in a workqueue's
4156 * queue.
4157 *
4158 * @note Checking if the work is pending gives no guarantee that the
4159 * work will still be pending when this information is used. It is up to
4160 * the caller to make sure that this information is used in a safe manner.
4161 *
4162 * @funcprops \isr_ok
4163 *
4164 * @param work Address of work item.
4165 *
4166 * @return true if work item is pending, or false if it is not pending.
4167 */
k_work_user_is_pending(struct k_work_user * work)4168 static inline bool k_work_user_is_pending(struct k_work_user *work)
4169 {
4170 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4171 }
4172
4173 /**
4174 * @brief Submit a work item to a user mode workqueue
4175 *
4176 * Submits a work item to a workqueue that runs in user mode. A temporary
4177 * memory allocation is made from the caller's resource pool which is freed
4178 * once the worker thread consumes the k_work item. The workqueue
4179 * thread must have memory access to the k_work item being submitted. The caller
4180 * must have permission granted on the work_q parameter's queue object.
4181 *
4182 * @funcprops \isr_ok
4183 *
4184 * @param work_q Address of workqueue.
4185 * @param work Address of work item.
4186 *
4187 * @retval -EBUSY if the work item was already in some workqueue
4188 * @retval -ENOMEM if no memory for thread resource pool allocation
4189 * @retval 0 Success
4190 */
k_work_user_submit_to_queue(struct k_work_user_q * work_q,struct k_work_user * work)4191 static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4192 struct k_work_user *work)
4193 {
4194 int ret = -EBUSY;
4195
4196 if (!atomic_test_and_set_bit(&work->flags,
4197 K_WORK_USER_STATE_PENDING)) {
4198 ret = k_queue_alloc_append(&work_q->queue, work);
4199
4200 /* Couldn't insert into the queue. Clear the pending bit
4201 * so the work item can be submitted again
4202 */
4203 if (ret != 0) {
4204 atomic_clear_bit(&work->flags,
4205 K_WORK_USER_STATE_PENDING);
4206 }
4207 }
4208
4209 return ret;
4210 }
4211
4212 /**
4213 * @brief Start a workqueue in user mode
4214 *
4215 * This works identically to k_work_queue_start() except it is callable from
4216 * user mode, and the worker thread created will run in user mode. The caller
4217 * must have permissions granted on both the work_q parameter's thread and
4218 * queue objects, and the same restrictions on priority apply as
4219 * k_thread_create().
4220 *
4221 * @param work_q Address of workqueue.
4222 * @param stack Pointer to work queue thread's stack space, as defined by
4223 * K_THREAD_STACK_DEFINE()
4224 * @param stack_size Size of the work queue thread's stack (in bytes), which
4225 * should either be the same constant passed to
4226 * K_THREAD_STACK_DEFINE() or the value of K_THREAD_STACK_SIZEOF().
4227 * @param prio Priority of the work queue's thread.
4228 * @param name optional thread name. If not null a copy is made into the
4229 * thread's name buffer.
4230 */
4231 extern void k_work_user_queue_start(struct k_work_user_q *work_q,
4232 k_thread_stack_t *stack,
4233 size_t stack_size, int prio,
4234 const char *name);
4235
4236 /**
4237 * @brief Access the user mode thread that animates a work queue.
4238 *
4239 * This is necessary to grant a user mode work queue thread access to things
4240 * the work items it will process are expected to use.
4241 *
4242 * @param work_q pointer to the user mode queue structure.
4243 *
4244 * @return the user mode thread associated with the work queue.
4245 */
k_work_user_queue_thread_get(struct k_work_user_q * work_q)4246 static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4247 {
4248 return &work_q->thread;
4249 }
4250
4251 /** @} */
4252
4253 /**
4254 * @cond INTERNAL_HIDDEN
4255 */
4256
4257 struct k_work_poll {
4258 struct k_work work;
4259 struct k_work_q *workq;
4260 struct z_poller poller;
4261 struct k_poll_event *events;
4262 int num_events;
4263 k_work_handler_t real_handler;
4264 struct _timeout timeout;
4265 int poll_result;
4266 };
4267
4268 /**
4269 * INTERNAL_HIDDEN @endcond
4270 */
4271
4272 /**
4273 * @addtogroup workqueue_apis
4274 * @{
4275 */
4276
4277 /**
4278 * @brief Initialize a statically-defined work item.
4279 *
4280 * This macro can be used to initialize a statically-defined workqueue work
4281 * item, prior to its first use. For example,
4282 *
4283 * @code static K_WORK_DEFINE(<work>, <work_handler>); @endcode
4284 *
4285 * @param work Symbol name for work item object
4286 * @param work_handler Function to invoke each time work item is processed.
4287 */
4288 #define K_WORK_DEFINE(work, work_handler) \
4289 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4290
4291 /**
4292 * @brief Initialize a triggered work item.
4293 *
4294 * This routine initializes a workqueue triggered work item, prior to
4295 * its first use.
4296 *
4297 * @param work Address of triggered work item.
4298 * @param handler Function to invoke each time work item is processed.
4299 */
4300 extern void k_work_poll_init(struct k_work_poll *work,
4301 k_work_handler_t handler);
4302
4303 /**
4304 * @brief Submit a triggered work item.
4305 *
4306 * This routine schedules work item @a work to be processed by workqueue
4307 * @a work_q when one of the given @a events is signaled. The routine
4308 * initiates internal poller for the work item and then returns to the caller.
4309 * Only when one of the watched events happen the work item is actually
4310 * submitted to the workqueue and becomes pending.
4311 *
4312 * Submitting a previously submitted triggered work item that is still
4313 * waiting for the event cancels the existing submission and reschedules it
4314 * the using the new event list. Note that this behavior is inherently subject
4315 * to race conditions with the pre-existing triggered work item and work queue,
4316 * so care must be taken to synchronize such resubmissions externally.
4317 *
4318 * @funcprops \isr_ok
4319 *
4320 * @warning
4321 * Provided array of events as well as a triggered work item must be placed
4322 * in persistent memory (valid until work handler execution or work
4323 * cancellation) and cannot be modified after submission.
4324 *
4325 * @param work_q Address of workqueue.
4326 * @param work Address of delayed work item.
4327 * @param events An array of events which trigger the work.
4328 * @param num_events The number of events in the array.
4329 * @param timeout Timeout after which the work will be scheduled
4330 * for execution even if not triggered.
4331 *
4332 *
4333 * @retval 0 Work item started watching for events.
4334 * @retval -EINVAL Work item is being processed or has completed its work.
4335 * @retval -EADDRINUSE Work item is pending on a different workqueue.
4336 */
4337 extern int k_work_poll_submit_to_queue(struct k_work_q *work_q,
4338 struct k_work_poll *work,
4339 struct k_poll_event *events,
4340 int num_events,
4341 k_timeout_t timeout);
4342
4343 /**
4344 * @brief Submit a triggered work item to the system workqueue.
4345 *
4346 * This routine schedules work item @a work to be processed by system
4347 * workqueue when one of the given @a events is signaled. The routine
4348 * initiates internal poller for the work item and then returns to the caller.
4349 * Only when one of the watched events happen the work item is actually
4350 * submitted to the workqueue and becomes pending.
4351 *
4352 * Submitting a previously submitted triggered work item that is still
4353 * waiting for the event cancels the existing submission and reschedules it
4354 * the using the new event list. Note that this behavior is inherently subject
4355 * to race conditions with the pre-existing triggered work item and work queue,
4356 * so care must be taken to synchronize such resubmissions externally.
4357 *
4358 * @funcprops \isr_ok
4359 *
4360 * @warning
4361 * Provided array of events as well as a triggered work item must not be
4362 * modified until the item has been processed by the workqueue.
4363 *
4364 * @param work Address of delayed work item.
4365 * @param events An array of events which trigger the work.
4366 * @param num_events The number of events in the array.
4367 * @param timeout Timeout after which the work will be scheduled
4368 * for execution even if not triggered.
4369 *
4370 * @retval 0 Work item started watching for events.
4371 * @retval -EINVAL Work item is being processed or has completed its work.
4372 * @retval -EADDRINUSE Work item is pending on a different workqueue.
4373 */
4374 extern int k_work_poll_submit(struct k_work_poll *work,
4375 struct k_poll_event *events,
4376 int num_events,
4377 k_timeout_t timeout);
4378
4379 /**
4380 * @brief Cancel a triggered work item.
4381 *
4382 * This routine cancels the submission of triggered work item @a work.
4383 * A triggered work item can only be canceled if no event triggered work
4384 * submission.
4385 *
4386 * @funcprops \isr_ok
4387 *
4388 * @param work Address of delayed work item.
4389 *
4390 * @retval 0 Work item canceled.
4391 * @retval -EINVAL Work item is being processed or has completed its work.
4392 */
4393 extern int k_work_poll_cancel(struct k_work_poll *work);
4394
4395 /** @} */
4396
4397 /**
4398 * @defgroup msgq_apis Message Queue APIs
4399 * @ingroup kernel_apis
4400 * @{
4401 */
4402
4403 /**
4404 * @brief Message Queue Structure
4405 */
4406 struct k_msgq {
4407 /** Message queue wait queue */
4408 _wait_q_t wait_q;
4409 /** Lock */
4410 struct k_spinlock lock;
4411 /** Message size */
4412 size_t msg_size;
4413 /** Maximal number of messages */
4414 uint32_t max_msgs;
4415 /** Start of message buffer */
4416 char *buffer_start;
4417 /** End of message buffer */
4418 char *buffer_end;
4419 /** Read pointer */
4420 char *read_ptr;
4421 /** Write pointer */
4422 char *write_ptr;
4423 /** Number of used messages */
4424 uint32_t used_msgs;
4425
4426 _POLL_EVENT;
4427
4428 /** Message queue */
4429 uint8_t flags;
4430
4431 SYS_PORT_TRACING_TRACKING_FIELD(k_msgq)
4432
4433 #ifdef CONFIG_OBJ_CORE_MSGQ
4434 struct k_obj_core obj_core;
4435 #endif
4436 };
4437 /**
4438 * @cond INTERNAL_HIDDEN
4439 */
4440
4441
4442 #define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4443 { \
4444 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4445 .msg_size = q_msg_size, \
4446 .max_msgs = q_max_msgs, \
4447 .buffer_start = q_buffer, \
4448 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4449 .read_ptr = q_buffer, \
4450 .write_ptr = q_buffer, \
4451 .used_msgs = 0, \
4452 _POLL_EVENT_OBJ_INIT(obj) \
4453 }
4454
4455 /**
4456 * INTERNAL_HIDDEN @endcond
4457 */
4458
4459
4460 #define K_MSGQ_FLAG_ALLOC BIT(0)
4461
4462 /**
4463 * @brief Message Queue Attributes
4464 */
4465 struct k_msgq_attrs {
4466 /** Message Size */
4467 size_t msg_size;
4468 /** Maximal number of messages */
4469 uint32_t max_msgs;
4470 /** Used messages */
4471 uint32_t used_msgs;
4472 };
4473
4474
4475 /**
4476 * @brief Statically define and initialize a message queue.
4477 *
4478 * The message queue's ring buffer contains space for @a q_max_msgs messages,
4479 * each of which is @a q_msg_size bytes long. Alignment of the message queue's
4480 * ring buffer is not necessary, setting @a q_align to 1 is sufficient.
4481 *
4482 * The message queue can be accessed outside the module where it is defined
4483 * using:
4484 *
4485 * @code extern struct k_msgq <name>; @endcode
4486 *
4487 * @param q_name Name of the message queue.
4488 * @param q_msg_size Message size (in bytes).
4489 * @param q_max_msgs Maximum number of messages that can be queued.
4490 * @param q_align Alignment of the message queue's ring buffer (power of 2).
4491 *
4492 */
4493 #define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4494 static char __noinit __aligned(q_align) \
4495 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4496 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4497 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4498 (q_msg_size), (q_max_msgs))
4499
4500 /**
4501 * @brief Initialize a message queue.
4502 *
4503 * This routine initializes a message queue object, prior to its first use.
4504 *
4505 * The message queue's ring buffer must contain space for @a max_msgs messages,
4506 * each of which is @a msg_size bytes long. Alignment of the message queue's
4507 * ring buffer is not necessary.
4508 *
4509 * @param msgq Address of the message queue.
4510 * @param buffer Pointer to ring buffer that holds queued messages.
4511 * @param msg_size Message size (in bytes).
4512 * @param max_msgs Maximum number of messages that can be queued.
4513 */
4514 void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4515 uint32_t max_msgs);
4516
4517 /**
4518 * @brief Initialize a message queue.
4519 *
4520 * This routine initializes a message queue object, prior to its first use,
4521 * allocating its internal ring buffer from the calling thread's resource
4522 * pool.
4523 *
4524 * Memory allocated for the ring buffer can be released by calling
4525 * k_msgq_cleanup(), or if userspace is enabled and the msgq object loses
4526 * all of its references.
4527 *
4528 * @param msgq Address of the message queue.
4529 * @param msg_size Message size (in bytes).
4530 * @param max_msgs Maximum number of messages that can be queued.
4531 *
4532 * @return 0 on success, -ENOMEM if there was insufficient memory in the
4533 * thread's resource pool, or -EINVAL if the size parameters cause
4534 * an integer overflow.
4535 */
4536 __syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4537 uint32_t max_msgs);
4538
4539 /**
4540 * @brief Release allocated buffer for a queue
4541 *
4542 * Releases memory allocated for the ring buffer.
4543 *
4544 * @param msgq message queue to cleanup
4545 *
4546 * @retval 0 on success
4547 * @retval -EBUSY Queue not empty
4548 */
4549 int k_msgq_cleanup(struct k_msgq *msgq);
4550
4551 /**
4552 * @brief Send a message to a message queue.
4553 *
4554 * This routine sends a message to message queue @a q.
4555 *
4556 * @note The message content is copied from @a data into @a msgq and the @a data
4557 * pointer is not retained, so the message content will not be modified
4558 * by this function.
4559 *
4560 * @funcprops \isr_ok
4561 *
4562 * @param msgq Address of the message queue.
4563 * @param data Pointer to the message.
4564 * @param timeout Non-negative waiting period to add the message,
4565 * or one of the special values K_NO_WAIT and
4566 * K_FOREVER.
4567 *
4568 * @retval 0 Message sent.
4569 * @retval -ENOMSG Returned without waiting or queue purged.
4570 * @retval -EAGAIN Waiting period timed out.
4571 */
4572 __syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4573
4574 /**
4575 * @brief Receive a message from a message queue.
4576 *
4577 * This routine receives a message from message queue @a q in a "first in,
4578 * first out" manner.
4579 *
4580 * @note @a timeout must be set to K_NO_WAIT if called from ISR.
4581 *
4582 * @funcprops \isr_ok
4583 *
4584 * @param msgq Address of the message queue.
4585 * @param data Address of area to hold the received message.
4586 * @param timeout Waiting period to receive the message,
4587 * or one of the special values K_NO_WAIT and
4588 * K_FOREVER.
4589 *
4590 * @retval 0 Message received.
4591 * @retval -ENOMSG Returned without waiting.
4592 * @retval -EAGAIN Waiting period timed out.
4593 */
4594 __syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4595
4596 /**
4597 * @brief Peek/read a message from a message queue.
4598 *
4599 * This routine reads a message from message queue @a q in a "first in,
4600 * first out" manner and leaves the message in the queue.
4601 *
4602 * @funcprops \isr_ok
4603 *
4604 * @param msgq Address of the message queue.
4605 * @param data Address of area to hold the message read from the queue.
4606 *
4607 * @retval 0 Message read.
4608 * @retval -ENOMSG Returned when the queue has no message.
4609 */
4610 __syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4611
4612 /**
4613 * @brief Peek/read a message from a message queue at the specified index
4614 *
4615 * This routine reads a message from message queue at the specified index
4616 * and leaves the message in the queue.
4617 * k_msgq_peek_at(msgq, data, 0) is equivalent to k_msgq_peek(msgq, data)
4618 *
4619 * @funcprops \isr_ok
4620 *
4621 * @param msgq Address of the message queue.
4622 * @param data Address of area to hold the message read from the queue.
4623 * @param idx Message queue index at which to peek
4624 *
4625 * @retval 0 Message read.
4626 * @retval -ENOMSG Returned when the queue has no message at index.
4627 */
4628 __syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
4629
4630 /**
4631 * @brief Purge a message queue.
4632 *
4633 * This routine discards all unreceived messages in a message queue's ring
4634 * buffer. Any threads that are blocked waiting to send a message to the
4635 * message queue are unblocked and see an -ENOMSG error code.
4636 *
4637 * @param msgq Address of the message queue.
4638 */
4639 __syscall void k_msgq_purge(struct k_msgq *msgq);
4640
4641 /**
4642 * @brief Get the amount of free space in a message queue.
4643 *
4644 * This routine returns the number of unused entries in a message queue's
4645 * ring buffer.
4646 *
4647 * @param msgq Address of the message queue.
4648 *
4649 * @return Number of unused ring buffer entries.
4650 */
4651 __syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
4652
4653 /**
4654 * @brief Get basic attributes of a message queue.
4655 *
4656 * This routine fetches basic attributes of message queue into attr argument.
4657 *
4658 * @param msgq Address of the message queue.
4659 * @param attrs pointer to message queue attribute structure.
4660 */
4661 __syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4662 struct k_msgq_attrs *attrs);
4663
4664
z_impl_k_msgq_num_free_get(struct k_msgq * msgq)4665 static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4666 {
4667 return msgq->max_msgs - msgq->used_msgs;
4668 }
4669
4670 /**
4671 * @brief Get the number of messages in a message queue.
4672 *
4673 * This routine returns the number of messages in a message queue's ring buffer.
4674 *
4675 * @param msgq Address of the message queue.
4676 *
4677 * @return Number of messages.
4678 */
4679 __syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
4680
z_impl_k_msgq_num_used_get(struct k_msgq * msgq)4681 static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4682 {
4683 return msgq->used_msgs;
4684 }
4685
4686 /** @} */
4687
4688 /**
4689 * @defgroup mailbox_apis Mailbox APIs
4690 * @ingroup kernel_apis
4691 * @{
4692 */
4693
4694 /**
4695 * @brief Mailbox Message Structure
4696 *
4697 */
4698 struct k_mbox_msg {
4699 /** internal use only - needed for legacy API support */
4700 uint32_t _mailbox;
4701 /** size of message (in bytes) */
4702 size_t size;
4703 /** application-defined information value */
4704 uint32_t info;
4705 /** sender's message data buffer */
4706 void *tx_data;
4707 /** source thread id */
4708 k_tid_t rx_source_thread;
4709 /** target thread id */
4710 k_tid_t tx_target_thread;
4711 /** internal use only - thread waiting on send (may be a dummy) */
4712 k_tid_t _syncing_thread;
4713 #if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4714 /** internal use only - semaphore used during asynchronous send */
4715 struct k_sem *_async_sem;
4716 #endif
4717 };
4718 /**
4719 * @brief Mailbox Structure
4720 *
4721 */
4722 struct k_mbox {
4723 /** Transmit messages queue */
4724 _wait_q_t tx_msg_queue;
4725 /** Receive message queue */
4726 _wait_q_t rx_msg_queue;
4727 struct k_spinlock lock;
4728
4729 SYS_PORT_TRACING_TRACKING_FIELD(k_mbox)
4730
4731 #ifdef CONFIG_OBJ_CORE_MAILBOX
4732 struct k_obj_core obj_core;
4733 #endif
4734 };
4735 /**
4736 * @cond INTERNAL_HIDDEN
4737 */
4738
4739 #define Z_MBOX_INITIALIZER(obj) \
4740 { \
4741 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4742 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4743 }
4744
4745 /**
4746 * INTERNAL_HIDDEN @endcond
4747 */
4748
4749 /**
4750 * @brief Statically define and initialize a mailbox.
4751 *
4752 * The mailbox is to be accessed outside the module where it is defined using:
4753 *
4754 * @code extern struct k_mbox <name>; @endcode
4755 *
4756 * @param name Name of the mailbox.
4757 */
4758 #define K_MBOX_DEFINE(name) \
4759 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4760 Z_MBOX_INITIALIZER(name) \
4761
4762 /**
4763 * @brief Initialize a mailbox.
4764 *
4765 * This routine initializes a mailbox object, prior to its first use.
4766 *
4767 * @param mbox Address of the mailbox.
4768 */
4769 extern void k_mbox_init(struct k_mbox *mbox);
4770
4771 /**
4772 * @brief Send a mailbox message in a synchronous manner.
4773 *
4774 * This routine sends a message to @a mbox and waits for a receiver to both
4775 * receive and process it. The message data may be in a buffer or non-existent
4776 * (i.e. an empty message).
4777 *
4778 * @param mbox Address of the mailbox.
4779 * @param tx_msg Address of the transmit message descriptor.
4780 * @param timeout Waiting period for the message to be received,
4781 * or one of the special values K_NO_WAIT
4782 * and K_FOREVER. Once the message has been received,
4783 * this routine waits as long as necessary for the message
4784 * to be completely processed.
4785 *
4786 * @retval 0 Message sent.
4787 * @retval -ENOMSG Returned without waiting.
4788 * @retval -EAGAIN Waiting period timed out.
4789 */
4790 extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4791 k_timeout_t timeout);
4792
4793 /**
4794 * @brief Send a mailbox message in an asynchronous manner.
4795 *
4796 * This routine sends a message to @a mbox without waiting for a receiver
4797 * to process it. The message data may be in a buffer or non-existent
4798 * (i.e. an empty message). Optionally, the semaphore @a sem will be given
4799 * when the message has been both received and completely processed by
4800 * the receiver.
4801 *
4802 * @param mbox Address of the mailbox.
4803 * @param tx_msg Address of the transmit message descriptor.
4804 * @param sem Address of a semaphore, or NULL if none is needed.
4805 */
4806 extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4807 struct k_sem *sem);
4808
4809 /**
4810 * @brief Receive a mailbox message.
4811 *
4812 * This routine receives a message from @a mbox, then optionally retrieves
4813 * its data and disposes of the message.
4814 *
4815 * @param mbox Address of the mailbox.
4816 * @param rx_msg Address of the receive message descriptor.
4817 * @param buffer Address of the buffer to receive data, or NULL to defer data
4818 * retrieval and message disposal until later.
4819 * @param timeout Waiting period for a message to be received,
4820 * or one of the special values K_NO_WAIT and K_FOREVER.
4821 *
4822 * @retval 0 Message received.
4823 * @retval -ENOMSG Returned without waiting.
4824 * @retval -EAGAIN Waiting period timed out.
4825 */
4826 extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4827 void *buffer, k_timeout_t timeout);
4828
4829 /**
4830 * @brief Retrieve mailbox message data into a buffer.
4831 *
4832 * This routine completes the processing of a received message by retrieving
4833 * its data into a buffer, then disposing of the message.
4834 *
4835 * Alternatively, this routine can be used to dispose of a received message
4836 * without retrieving its data.
4837 *
4838 * @param rx_msg Address of the receive message descriptor.
4839 * @param buffer Address of the buffer to receive data, or NULL to discard
4840 * the data.
4841 */
4842 extern void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4843
4844 /** @} */
4845
4846 /**
4847 * @defgroup pipe_apis Pipe APIs
4848 * @ingroup kernel_apis
4849 * @{
4850 */
4851
4852 /** Pipe Structure */
4853 struct k_pipe {
4854 unsigned char *buffer; /**< Pipe buffer: may be NULL */
4855 size_t size; /**< Buffer size */
4856 size_t bytes_used; /**< # bytes used in buffer */
4857 size_t read_index; /**< Where in buffer to read from */
4858 size_t write_index; /**< Where in buffer to write */
4859 struct k_spinlock lock; /**< Synchronization lock */
4860
4861 struct {
4862 _wait_q_t readers; /**< Reader wait queue */
4863 _wait_q_t writers; /**< Writer wait queue */
4864 } wait_q; /** Wait queue */
4865
4866 _POLL_EVENT;
4867
4868 uint8_t flags; /**< Flags */
4869
4870 SYS_PORT_TRACING_TRACKING_FIELD(k_pipe)
4871
4872 #ifdef CONFIG_OBJ_CORE_PIPE
4873 struct k_obj_core obj_core;
4874 #endif
4875 };
4876
4877 /**
4878 * @cond INTERNAL_HIDDEN
4879 */
4880 #define K_PIPE_FLAG_ALLOC BIT(0) /** Buffer was allocated */
4881
4882 #define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4883 { \
4884 .buffer = pipe_buffer, \
4885 .size = pipe_buffer_size, \
4886 .bytes_used = 0, \
4887 .read_index = 0, \
4888 .write_index = 0, \
4889 .lock = {}, \
4890 .wait_q = { \
4891 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4892 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4893 }, \
4894 _POLL_EVENT_OBJ_INIT(obj) \
4895 .flags = 0, \
4896 }
4897
4898 /**
4899 * INTERNAL_HIDDEN @endcond
4900 */
4901
4902 /**
4903 * @brief Statically define and initialize a pipe.
4904 *
4905 * The pipe can be accessed outside the module where it is defined using:
4906 *
4907 * @code extern struct k_pipe <name>; @endcode
4908 *
4909 * @param name Name of the pipe.
4910 * @param pipe_buffer_size Size of the pipe's ring buffer (in bytes),
4911 * or zero if no ring buffer is used.
4912 * @param pipe_align Alignment of the pipe's ring buffer (power of 2).
4913 *
4914 */
4915 #define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4916 static unsigned char __noinit __aligned(pipe_align) \
4917 _k_pipe_buf_##name[pipe_buffer_size]; \
4918 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4919 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4920
4921 /**
4922 * @brief Initialize a pipe.
4923 *
4924 * This routine initializes a pipe object, prior to its first use.
4925 *
4926 * @param pipe Address of the pipe.
4927 * @param buffer Address of the pipe's ring buffer, or NULL if no ring buffer
4928 * is used.
4929 * @param size Size of the pipe's ring buffer (in bytes), or zero if no ring
4930 * buffer is used.
4931 */
4932 void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
4933
4934 /**
4935 * @brief Release a pipe's allocated buffer
4936 *
4937 * If a pipe object was given a dynamically allocated buffer via
4938 * k_pipe_alloc_init(), this will free it. This function does nothing
4939 * if the buffer wasn't dynamically allocated.
4940 *
4941 * @param pipe Address of the pipe.
4942 * @retval 0 on success
4943 * @retval -EAGAIN nothing to cleanup
4944 */
4945 int k_pipe_cleanup(struct k_pipe *pipe);
4946
4947 /**
4948 * @brief Initialize a pipe and allocate a buffer for it
4949 *
4950 * Storage for the buffer region will be allocated from the calling thread's
4951 * resource pool. This memory will be released if k_pipe_cleanup() is called,
4952 * or userspace is enabled and the pipe object loses all references to it.
4953 *
4954 * This function should only be called on uninitialized pipe objects.
4955 *
4956 * @param pipe Address of the pipe.
4957 * @param size Size of the pipe's ring buffer (in bytes), or zero if no ring
4958 * buffer is used.
4959 * @retval 0 on success
4960 * @retval -ENOMEM if memory couldn't be allocated
4961 */
4962 __syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
4963
4964 /**
4965 * @brief Write data to a pipe.
4966 *
4967 * This routine writes up to @a bytes_to_write bytes of data to @a pipe.
4968 *
4969 * @param pipe Address of the pipe.
4970 * @param data Address of data to write.
4971 * @param bytes_to_write Size of data (in bytes).
4972 * @param bytes_written Address of area to hold the number of bytes written.
4973 * @param min_xfer Minimum number of bytes to write.
4974 * @param timeout Waiting period to wait for the data to be written,
4975 * or one of the special values K_NO_WAIT and K_FOREVER.
4976 *
4977 * @retval 0 At least @a min_xfer bytes of data were written.
4978 * @retval -EIO Returned without waiting; zero data bytes were written.
4979 * @retval -EAGAIN Waiting period timed out; between zero and @a min_xfer
4980 * minus one data bytes were written.
4981 */
4982 __syscall int k_pipe_put(struct k_pipe *pipe, void *data,
4983 size_t bytes_to_write, size_t *bytes_written,
4984 size_t min_xfer, k_timeout_t timeout);
4985
4986 /**
4987 * @brief Read data from a pipe.
4988 *
4989 * This routine reads up to @a bytes_to_read bytes of data from @a pipe.
4990 *
4991 * @param pipe Address of the pipe.
4992 * @param data Address to place the data read from pipe.
4993 * @param bytes_to_read Maximum number of data bytes to read.
4994 * @param bytes_read Address of area to hold the number of bytes read.
4995 * @param min_xfer Minimum number of data bytes to read.
4996 * @param timeout Waiting period to wait for the data to be read,
4997 * or one of the special values K_NO_WAIT and K_FOREVER.
4998 *
4999 * @retval 0 At least @a min_xfer bytes of data were read.
5000 * @retval -EINVAL invalid parameters supplied
5001 * @retval -EIO Returned without waiting; zero data bytes were read.
5002 * @retval -EAGAIN Waiting period timed out; between zero and @a min_xfer
5003 * minus one data bytes were read.
5004 */
5005 __syscall int k_pipe_get(struct k_pipe *pipe, void *data,
5006 size_t bytes_to_read, size_t *bytes_read,
5007 size_t min_xfer, k_timeout_t timeout);
5008
5009 /**
5010 * @brief Query the number of bytes that may be read from @a pipe.
5011 *
5012 * @param pipe Address of the pipe.
5013 *
5014 * @retval a number n such that 0 <= n <= @ref k_pipe.size; the
5015 * result is zero for unbuffered pipes.
5016 */
5017 __syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
5018
5019 /**
5020 * @brief Query the number of bytes that may be written to @a pipe
5021 *
5022 * @param pipe Address of the pipe.
5023 *
5024 * @retval a number n such that 0 <= n <= @ref k_pipe.size; the
5025 * result is zero for unbuffered pipes.
5026 */
5027 __syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
5028
5029 /**
5030 * @brief Flush the pipe of write data
5031 *
5032 * This routine flushes the pipe. Flushing the pipe is equivalent to reading
5033 * both all the data in the pipe's buffer and all the data waiting to go into
5034 * that pipe into a large temporary buffer and discarding the buffer. Any
5035 * writers that were previously pended become unpended.
5036 *
5037 * @param pipe Address of the pipe.
5038 */
5039 __syscall void k_pipe_flush(struct k_pipe *pipe);
5040
5041 /**
5042 * @brief Flush the pipe's internal buffer
5043 *
5044 * This routine flushes the pipe's internal buffer. This is equivalent to
5045 * reading up to N bytes from the pipe (where N is the size of the pipe's
5046 * buffer) into a temporary buffer and then discarding that buffer. If there
5047 * were writers previously pending, then some may unpend as they try to fill
5048 * up the pipe's emptied buffer.
5049 *
5050 * @param pipe Address of the pipe.
5051 */
5052 __syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
5053
5054 /** @} */
5055
5056 /**
5057 * @cond INTERNAL_HIDDEN
5058 */
5059
5060 struct k_mem_slab_info {
5061 uint32_t num_blocks;
5062 size_t block_size;
5063 uint32_t num_used;
5064 #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5065 uint32_t max_used;
5066 #endif
5067 };
5068
5069 struct k_mem_slab {
5070 _wait_q_t wait_q;
5071 struct k_spinlock lock;
5072 char *buffer;
5073 char *free_list;
5074 struct k_mem_slab_info info;
5075
5076 SYS_PORT_TRACING_TRACKING_FIELD(k_mem_slab)
5077
5078 #ifdef CONFIG_OBJ_CORE_MEM_SLAB
5079 struct k_obj_core obj_core;
5080 #endif
5081 };
5082
5083 #define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5084 _slab_num_blocks) \
5085 { \
5086 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5087 .lock = {}, \
5088 .buffer = _slab_buffer, \
5089 .free_list = NULL, \
5090 .info = {_slab_num_blocks, _slab_block_size, 0} \
5091 }
5092
5093
5094 /**
5095 * INTERNAL_HIDDEN @endcond
5096 */
5097
5098 /**
5099 * @defgroup mem_slab_apis Memory Slab APIs
5100 * @ingroup kernel_apis
5101 * @{
5102 */
5103
5104 /**
5105 * @brief Statically define and initialize a memory slab in a public (non-static) scope.
5106 *
5107 * The memory slab's buffer contains @a slab_num_blocks memory blocks
5108 * that are @a slab_block_size bytes long. The buffer is aligned to a
5109 * @a slab_align -byte boundary. To ensure that each memory block is similarly
5110 * aligned to this boundary, @a slab_block_size must also be a multiple of
5111 * @a slab_align.
5112 *
5113 * The memory slab can be accessed outside the module where it is defined
5114 * using:
5115 *
5116 * @code extern struct k_mem_slab <name>; @endcode
5117 *
5118 * @note This macro cannot be used together with a static keyword.
5119 * If such a use-case is desired, use @ref K_MEM_SLAB_DEFINE_STATIC
5120 * instead.
5121 *
5122 * @param name Name of the memory slab.
5123 * @param slab_block_size Size of each memory block (in bytes).
5124 * @param slab_num_blocks Number memory blocks.
5125 * @param slab_align Alignment of the memory slab's buffer (power of 2).
5126 */
5127 #define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5128 char __noinit_named(k_mem_slab_buf_##name) \
5129 __aligned(WB_UP(slab_align)) \
5130 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5131 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5132 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5133 WB_UP(slab_block_size), slab_num_blocks)
5134
5135 /**
5136 * @brief Statically define and initialize a memory slab in a private (static) scope.
5137 *
5138 * The memory slab's buffer contains @a slab_num_blocks memory blocks
5139 * that are @a slab_block_size bytes long. The buffer is aligned to a
5140 * @a slab_align -byte boundary. To ensure that each memory block is similarly
5141 * aligned to this boundary, @a slab_block_size must also be a multiple of
5142 * @a slab_align.
5143 *
5144 * @param name Name of the memory slab.
5145 * @param slab_block_size Size of each memory block (in bytes).
5146 * @param slab_num_blocks Number memory blocks.
5147 * @param slab_align Alignment of the memory slab's buffer (power of 2).
5148 */
5149 #define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5150 static char __noinit_named(k_mem_slab_buf_##name) \
5151 __aligned(WB_UP(slab_align)) \
5152 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5153 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5154 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5155 WB_UP(slab_block_size), slab_num_blocks)
5156
5157 /**
5158 * @brief Initialize a memory slab.
5159 *
5160 * Initializes a memory slab, prior to its first use.
5161 *
5162 * The memory slab's buffer contains @a slab_num_blocks memory blocks
5163 * that are @a slab_block_size bytes long. The buffer must be aligned to an
5164 * N-byte boundary matching a word boundary, where N is a power of 2
5165 * (i.e. 4 on 32-bit systems, 8, 16, ...).
5166 * To ensure that each memory block is similarly aligned to this boundary,
5167 * @a slab_block_size must also be a multiple of N.
5168 *
5169 * @param slab Address of the memory slab.
5170 * @param buffer Pointer to buffer used for the memory blocks.
5171 * @param block_size Size of each memory block (in bytes).
5172 * @param num_blocks Number of memory blocks.
5173 *
5174 * @retval 0 on success
5175 * @retval -EINVAL invalid data supplied
5176 *
5177 */
5178 extern int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5179 size_t block_size, uint32_t num_blocks);
5180
5181 /**
5182 * @brief Allocate memory from a memory slab.
5183 *
5184 * This routine allocates a memory block from a memory slab.
5185 *
5186 * @note @a timeout must be set to K_NO_WAIT if called from ISR.
5187 * @note When CONFIG_MULTITHREADING=n any @a timeout is treated as K_NO_WAIT.
5188 *
5189 * @funcprops \isr_ok
5190 *
5191 * @param slab Address of the memory slab.
5192 * @param mem Pointer to block address area.
5193 * @param timeout Non-negative waiting period to wait for operation to complete.
5194 * Use K_NO_WAIT to return without waiting,
5195 * or K_FOREVER to wait as long as necessary.
5196 *
5197 * @retval 0 Memory allocated. The block address area pointed at by @a mem
5198 * is set to the starting address of the memory block.
5199 * @retval -ENOMEM Returned without waiting.
5200 * @retval -EAGAIN Waiting period timed out.
5201 * @retval -EINVAL Invalid data supplied
5202 */
5203 extern int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5204 k_timeout_t timeout);
5205
5206 /**
5207 * @brief Free memory allocated from a memory slab.
5208 *
5209 * This routine releases a previously allocated memory block back to its
5210 * associated memory slab.
5211 *
5212 * @param slab Address of the memory slab.
5213 * @param mem Pointer to the memory block (as returned by k_mem_slab_alloc()).
5214 */
5215 extern void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5216
5217 /**
5218 * @brief Get the number of used blocks in a memory slab.
5219 *
5220 * This routine gets the number of memory blocks that are currently
5221 * allocated in @a slab.
5222 *
5223 * @param slab Address of the memory slab.
5224 *
5225 * @return Number of allocated memory blocks.
5226 */
k_mem_slab_num_used_get(struct k_mem_slab * slab)5227 static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5228 {
5229 return slab->info.num_used;
5230 }
5231
5232 /**
5233 * @brief Get the number of maximum used blocks so far in a memory slab.
5234 *
5235 * This routine gets the maximum number of memory blocks that were
5236 * allocated in @a slab.
5237 *
5238 * @param slab Address of the memory slab.
5239 *
5240 * @return Maximum number of allocated memory blocks.
5241 */
k_mem_slab_max_used_get(struct k_mem_slab * slab)5242 static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5243 {
5244 #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5245 return slab->info.max_used;
5246 #else
5247 ARG_UNUSED(slab);
5248 return 0;
5249 #endif
5250 }
5251
5252 /**
5253 * @brief Get the number of unused blocks in a memory slab.
5254 *
5255 * This routine gets the number of memory blocks that are currently
5256 * unallocated in @a slab.
5257 *
5258 * @param slab Address of the memory slab.
5259 *
5260 * @return Number of unallocated memory blocks.
5261 */
k_mem_slab_num_free_get(struct k_mem_slab * slab)5262 static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5263 {
5264 return slab->info.num_blocks - slab->info.num_used;
5265 }
5266
5267 /**
5268 * @brief Get the memory stats for a memory slab
5269 *
5270 * This routine gets the runtime memory usage stats for the slab @a slab.
5271 *
5272 * @param slab Address of the memory slab
5273 * @param stats Pointer to memory into which to copy memory usage statistics
5274 *
5275 * @retval 0 Success
5276 * @retval -EINVAL Any parameter points to NULL
5277 */
5278
5279 int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5280
5281 /**
5282 * @brief Reset the maximum memory usage for a slab
5283 *
5284 * This routine resets the maximum memory usage for the slab @a slab to its
5285 * current usage.
5286 *
5287 * @param slab Address of the memory slab
5288 *
5289 * @retval 0 Success
5290 * @retval -EINVAL Memory slab is NULL
5291 */
5292 int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5293
5294 /** @} */
5295
5296 /**
5297 * @addtogroup heap_apis
5298 * @{
5299 */
5300
5301 /* kernel synchronized heap struct */
5302
5303 struct k_heap {
5304 struct sys_heap heap;
5305 _wait_q_t wait_q;
5306 struct k_spinlock lock;
5307 };
5308
5309 /**
5310 * @brief Initialize a k_heap
5311 *
5312 * This constructs a synchronized k_heap object over a memory region
5313 * specified by the user. Note that while any alignment and size can
5314 * be passed as valid parameters, internal alignment restrictions
5315 * inside the inner sys_heap mean that not all bytes may be usable as
5316 * allocated memory.
5317 *
5318 * @param h Heap struct to initialize
5319 * @param mem Pointer to memory.
5320 * @param bytes Size of memory region, in bytes
5321 */
5322 void k_heap_init(struct k_heap *h, void *mem, size_t bytes);
5323
5324 /** @brief Allocate aligned memory from a k_heap
5325 *
5326 * Behaves in all ways like k_heap_alloc(), except that the returned
5327 * memory (if available) will have a starting address in memory which
5328 * is a multiple of the specified power-of-two alignment value in
5329 * bytes. The resulting memory can be returned to the heap using
5330 * k_heap_free().
5331 *
5332 * @note @a timeout must be set to K_NO_WAIT if called from ISR.
5333 * @note When CONFIG_MULTITHREADING=n any @a timeout is treated as K_NO_WAIT.
5334 *
5335 * @funcprops \isr_ok
5336 *
5337 * @param h Heap from which to allocate
5338 * @param align Alignment in bytes, must be a power of two
5339 * @param bytes Number of bytes requested
5340 * @param timeout How long to wait, or K_NO_WAIT
5341 * @return Pointer to memory the caller can now use
5342 */
5343 void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5344 k_timeout_t timeout);
5345
5346 /**
5347 * @brief Allocate memory from a k_heap
5348 *
5349 * Allocates and returns a memory buffer from the memory region owned
5350 * by the heap. If no memory is available immediately, the call will
5351 * block for the specified timeout (constructed via the standard
5352 * timeout API, or K_NO_WAIT or K_FOREVER) waiting for memory to be
5353 * freed. If the allocation cannot be performed by the expiration of
5354 * the timeout, NULL will be returned.
5355 * Allocated memory is aligned on a multiple of pointer sizes.
5356 *
5357 * @note @a timeout must be set to K_NO_WAIT if called from ISR.
5358 * @note When CONFIG_MULTITHREADING=n any @a timeout is treated as K_NO_WAIT.
5359 *
5360 * @funcprops \isr_ok
5361 *
5362 * @param h Heap from which to allocate
5363 * @param bytes Desired size of block to allocate
5364 * @param timeout How long to wait, or K_NO_WAIT
5365 * @return A pointer to valid heap memory, or NULL
5366 */
5367 void *k_heap_alloc(struct k_heap *h, size_t bytes,
5368 k_timeout_t timeout);
5369
5370 /**
5371 * @brief Free memory allocated by k_heap_alloc()
5372 *
5373 * Returns the specified memory block, which must have been returned
5374 * from k_heap_alloc(), to the heap for use by other callers. Passing
5375 * a NULL block is legal, and has no effect.
5376 *
5377 * @param h Heap to which to return the memory
5378 * @param mem A valid memory block, or NULL
5379 */
5380 void k_heap_free(struct k_heap *h, void *mem);
5381
5382 /* Hand-calculated minimum heap sizes needed to return a successful
5383 * 1-byte allocation. See details in lib/os/heap.[ch]
5384 */
5385 #define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5386
5387 /**
5388 * @brief Define a static k_heap in the specified linker section
5389 *
5390 * This macro defines and initializes a static memory region and
5391 * k_heap of the requested size in the specified linker section.
5392 * After kernel start, &name can be used as if k_heap_init() had
5393 * been called.
5394 *
5395 * Note that this macro enforces a minimum size on the memory region
5396 * to accommodate metadata requirements. Very small heaps will be
5397 * padded to fit.
5398 *
5399 * @param name Symbol name for the struct k_heap object
5400 * @param bytes Size of memory region, in bytes
5401 * @param in_section __attribute__((section(name))
5402 */
5403 #define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5404 char in_section \
5405 __aligned(8) /* CHUNK_UNIT */ \
5406 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5407 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5408 .heap = { \
5409 .init_mem = kheap_##name, \
5410 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5411 }, \
5412 }
5413
5414 /**
5415 * @brief Define a static k_heap
5416 *
5417 * This macro defines and initializes a static memory region and
5418 * k_heap of the requested size. After kernel start, &name can be
5419 * used as if k_heap_init() had been called.
5420 *
5421 * Note that this macro enforces a minimum size on the memory region
5422 * to accommodate metadata requirements. Very small heaps will be
5423 * padded to fit.
5424 *
5425 * @param name Symbol name for the struct k_heap object
5426 * @param bytes Size of memory region, in bytes
5427 */
5428 #define K_HEAP_DEFINE(name, bytes) \
5429 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5430 __noinit_named(kheap_buf_##name))
5431
5432 /**
5433 * @brief Define a static k_heap in uncached memory
5434 *
5435 * This macro defines and initializes a static memory region and
5436 * k_heap of the requested size in uncached memory. After kernel
5437 * start, &name can be used as if k_heap_init() had been called.
5438 *
5439 * Note that this macro enforces a minimum size on the memory region
5440 * to accommodate metadata requirements. Very small heaps will be
5441 * padded to fit.
5442 *
5443 * @param name Symbol name for the struct k_heap object
5444 * @param bytes Size of memory region, in bytes
5445 */
5446 #define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5447 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5448
5449 /**
5450 * @}
5451 */
5452
5453 /**
5454 * @defgroup heap_apis Heap APIs
5455 * @ingroup kernel_apis
5456 * @{
5457 */
5458
5459 /**
5460 * @brief Allocate memory from the heap with a specified alignment.
5461 *
5462 * This routine provides semantics similar to aligned_alloc(); memory is
5463 * allocated from the heap with a specified alignment. However, one minor
5464 * difference is that k_aligned_alloc() accepts any non-zero @p size,
5465 * whereas aligned_alloc() only accepts a @p size that is an integral
5466 * multiple of @p align.
5467 *
5468 * Above, aligned_alloc() refers to:
5469 * C11 standard (ISO/IEC 9899:2011): 7.22.3.1
5470 * The aligned_alloc function (p: 347-348)
5471 *
5472 * @param align Alignment of memory requested (in bytes).
5473 * @param size Amount of memory requested (in bytes).
5474 *
5475 * @return Address of the allocated memory if successful; otherwise NULL.
5476 */
5477 extern void *k_aligned_alloc(size_t align, size_t size);
5478
5479 /**
5480 * @brief Allocate memory from the heap.
5481 *
5482 * This routine provides traditional malloc() semantics. Memory is
5483 * allocated from the heap memory pool.
5484 * Allocated memory is aligned on a multiple of pointer sizes.
5485 *
5486 * @param size Amount of memory requested (in bytes).
5487 *
5488 * @return Address of the allocated memory if successful; otherwise NULL.
5489 */
5490 extern void *k_malloc(size_t size);
5491
5492 /**
5493 * @brief Free memory allocated from heap.
5494 *
5495 * This routine provides traditional free() semantics. The memory being
5496 * returned must have been allocated from the heap memory pool.
5497 *
5498 * If @a ptr is NULL, no operation is performed.
5499 *
5500 * @param ptr Pointer to previously allocated memory.
5501 */
5502 extern void k_free(void *ptr);
5503
5504 /**
5505 * @brief Allocate memory from heap, array style
5506 *
5507 * This routine provides traditional calloc() semantics. Memory is
5508 * allocated from the heap memory pool and zeroed.
5509 *
5510 * @param nmemb Number of elements in the requested array
5511 * @param size Size of each array element (in bytes).
5512 *
5513 * @return Address of the allocated memory if successful; otherwise NULL.
5514 */
5515 extern void *k_calloc(size_t nmemb, size_t size);
5516
5517 /** @} */
5518
5519 /* polling API - PRIVATE */
5520
5521 #ifdef CONFIG_POLL
5522 #define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5523 #else
5524 #define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5525 #endif
5526
5527 /* private - types bit positions */
5528 enum _poll_types_bits {
5529 /* can be used to ignore an event */
5530 _POLL_TYPE_IGNORE,
5531
5532 /* to be signaled by k_poll_signal_raise() */
5533 _POLL_TYPE_SIGNAL,
5534
5535 /* semaphore availability */
5536 _POLL_TYPE_SEM_AVAILABLE,
5537
5538 /* queue/FIFO/LIFO data availability */
5539 _POLL_TYPE_DATA_AVAILABLE,
5540
5541 /* msgq data availability */
5542 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5543
5544 /* pipe data availability */
5545 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5546
5547 _POLL_NUM_TYPES
5548 };
5549
5550 #define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5551
5552 /* private - states bit positions */
5553 enum _poll_states_bits {
5554 /* default state when creating event */
5555 _POLL_STATE_NOT_READY,
5556
5557 /* signaled by k_poll_signal_raise() */
5558 _POLL_STATE_SIGNALED,
5559
5560 /* semaphore is available */
5561 _POLL_STATE_SEM_AVAILABLE,
5562
5563 /* data is available to read on queue/FIFO/LIFO */
5564 _POLL_STATE_DATA_AVAILABLE,
5565
5566 /* queue/FIFO/LIFO wait was cancelled */
5567 _POLL_STATE_CANCELLED,
5568
5569 /* data is available to read on a message queue */
5570 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5571
5572 /* data is available to read from a pipe */
5573 _POLL_STATE_PIPE_DATA_AVAILABLE,
5574
5575 _POLL_NUM_STATES
5576 };
5577
5578 #define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5579
5580 #define _POLL_EVENT_NUM_UNUSED_BITS \
5581 (32 - (0 \
5582 + 8 /* tag */ \
5583 + _POLL_NUM_TYPES \
5584 + _POLL_NUM_STATES \
5585 + 1 /* modes */ \
5586 ))
5587
5588 /* end of polling API - PRIVATE */
5589
5590
5591 /**
5592 * @defgroup poll_apis Async polling APIs
5593 * @ingroup kernel_apis
5594 * @{
5595 */
5596
5597 /* Public polling API */
5598
5599 /* public - values for k_poll_event.type bitfield */
5600 #define K_POLL_TYPE_IGNORE 0
5601 #define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5602 #define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5603 #define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5604 #define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5605 #define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5606 #define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5607
5608 /* public - polling modes */
5609 enum k_poll_modes {
5610 /* polling thread does not take ownership of objects when available */
5611 K_POLL_MODE_NOTIFY_ONLY = 0,
5612
5613 K_POLL_NUM_MODES
5614 };
5615
5616 /* public - values for k_poll_event.state bitfield */
5617 #define K_POLL_STATE_NOT_READY 0
5618 #define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5619 #define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5620 #define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5621 #define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5622 #define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5623 #define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5624 #define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5625
5626 /* public - poll signal object */
5627 struct k_poll_signal {
5628 /** PRIVATE - DO NOT TOUCH */
5629 sys_dlist_t poll_events;
5630
5631 /**
5632 * 1 if the event has been signaled, 0 otherwise. Stays set to 1 until
5633 * user resets it to 0.
5634 */
5635 unsigned int signaled;
5636
5637 /** custom result value passed to k_poll_signal_raise() if needed */
5638 int result;
5639 };
5640
5641 #define K_POLL_SIGNAL_INITIALIZER(obj) \
5642 { \
5643 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5644 .signaled = 0, \
5645 .result = 0, \
5646 }
5647 /**
5648 * @brief Poll Event
5649 *
5650 */
5651 struct k_poll_event {
5652 /** PRIVATE - DO NOT TOUCH */
5653 sys_dnode_t _node;
5654
5655 /** PRIVATE - DO NOT TOUCH */
5656 struct z_poller *poller;
5657
5658 /** optional user-specified tag, opaque, untouched by the API */
5659 uint32_t tag:8;
5660
5661 /** bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values) */
5662 uint32_t type:_POLL_NUM_TYPES;
5663
5664 /** bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values) */
5665 uint32_t state:_POLL_NUM_STATES;
5666
5667 /** mode of operation, from enum k_poll_modes */
5668 uint32_t mode:1;
5669
5670 /** unused bits in 32-bit word */
5671 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5672
5673 /** per-type data */
5674 union {
5675 void *obj;
5676 struct k_poll_signal *signal;
5677 struct k_sem *sem;
5678 struct k_fifo *fifo;
5679 struct k_queue *queue;
5680 struct k_msgq *msgq;
5681 #ifdef CONFIG_PIPES
5682 struct k_pipe *pipe;
5683 #endif
5684 };
5685 };
5686
5687 #define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5688 { \
5689 .poller = NULL, \
5690 .type = _event_type, \
5691 .state = K_POLL_STATE_NOT_READY, \
5692 .mode = _event_mode, \
5693 .unused = 0, \
5694 { \
5695 .obj = _event_obj, \
5696 }, \
5697 }
5698
5699 #define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5700 event_tag) \
5701 { \
5702 .tag = event_tag, \
5703 .type = _event_type, \
5704 .state = K_POLL_STATE_NOT_READY, \
5705 .mode = _event_mode, \
5706 .unused = 0, \
5707 { \
5708 .obj = _event_obj, \
5709 }, \
5710 }
5711
5712 /**
5713 * @brief Initialize one struct k_poll_event instance
5714 *
5715 * After this routine is called on a poll event, the event it ready to be
5716 * placed in an event array to be passed to k_poll().
5717 *
5718 * @param event The event to initialize.
5719 * @param type A bitfield of the types of event, from the K_POLL_TYPE_xxx
5720 * values. Only values that apply to the same object being polled
5721 * can be used together. Choosing K_POLL_TYPE_IGNORE disables the
5722 * event.
5723 * @param mode Future. Use K_POLL_MODE_NOTIFY_ONLY.
5724 * @param obj Kernel object or poll signal.
5725 */
5726
5727 extern void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5728 int mode, void *obj);
5729
5730 /**
5731 * @brief Wait for one or many of multiple poll events to occur
5732 *
5733 * This routine allows a thread to wait concurrently for one or many of
5734 * multiple poll events to have occurred. Such events can be a kernel object
5735 * being available, like a semaphore, or a poll signal event.
5736 *
5737 * When an event notifies that a kernel object is available, the kernel object
5738 * is not "given" to the thread calling k_poll(): it merely signals the fact
5739 * that the object was available when the k_poll() call was in effect. Also,
5740 * all threads trying to acquire an object the regular way, i.e. by pending on
5741 * the object, have precedence over the thread polling on the object. This
5742 * means that the polling thread will never get the poll event on an object
5743 * until the object becomes available and its pend queue is empty. For this
5744 * reason, the k_poll() call is more effective when the objects being polled
5745 * only have one thread, the polling thread, trying to acquire them.
5746 *
5747 * When k_poll() returns 0, the caller should loop on all the events that were
5748 * passed to k_poll() and check the state field for the values that were
5749 * expected and take the associated actions.
5750 *
5751 * Before being reused for another call to k_poll(), the user has to reset the
5752 * state field to K_POLL_STATE_NOT_READY.
5753 *
5754 * When called from user mode, a temporary memory allocation is required from
5755 * the caller's resource pool.
5756 *
5757 * @param events An array of events to be polled for.
5758 * @param num_events The number of events in the array.
5759 * @param timeout Waiting period for an event to be ready,
5760 * or one of the special values K_NO_WAIT and K_FOREVER.
5761 *
5762 * @retval 0 One or more events are ready.
5763 * @retval -EAGAIN Waiting period timed out.
5764 * @retval -EINTR Polling has been interrupted, e.g. with
5765 * k_queue_cancel_wait(). All output events are still set and valid,
5766 * cancelled event(s) will be set to K_POLL_STATE_CANCELLED. In other
5767 * words, -EINTR status means that at least one of output events is
5768 * K_POLL_STATE_CANCELLED.
5769 * @retval -ENOMEM Thread resource pool insufficient memory (user mode only)
5770 * @retval -EINVAL Bad parameters (user mode only)
5771 */
5772
5773 __syscall int k_poll(struct k_poll_event *events, int num_events,
5774 k_timeout_t timeout);
5775
5776 /**
5777 * @brief Initialize a poll signal object.
5778 *
5779 * Ready a poll signal object to be signaled via k_poll_signal_raise().
5780 *
5781 * @param sig A poll signal.
5782 */
5783
5784 __syscall void k_poll_signal_init(struct k_poll_signal *sig);
5785
5786 /*
5787 * @brief Reset a poll signal object's state to unsignaled.
5788 *
5789 * @param sig A poll signal object
5790 */
5791 __syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5792
5793 /**
5794 * @brief Fetch the signaled state and result value of a poll signal
5795 *
5796 * @param sig A poll signal object
5797 * @param signaled An integer buffer which will be written nonzero if the
5798 * object was signaled
5799 * @param result An integer destination buffer which will be written with the
5800 * result value if the object was signaled, or an undefined
5801 * value if it was not.
5802 */
5803 __syscall void k_poll_signal_check(struct k_poll_signal *sig,
5804 unsigned int *signaled, int *result);
5805
5806 /**
5807 * @brief Signal a poll signal object.
5808 *
5809 * This routine makes ready a poll signal, which is basically a poll event of
5810 * type K_POLL_TYPE_SIGNAL. If a thread was polling on that event, it will be
5811 * made ready to run. A @a result value can be specified.
5812 *
5813 * The poll signal contains a 'signaled' field that, when set by
5814 * k_poll_signal_raise(), stays set until the user sets it back to 0 with
5815 * k_poll_signal_reset(). It thus has to be reset by the user before being
5816 * passed again to k_poll() or k_poll() will consider it being signaled, and
5817 * will return immediately.
5818 *
5819 * @note The result is stored and the 'signaled' field is set even if
5820 * this function returns an error indicating that an expiring poll was
5821 * not notified. The next k_poll() will detect the missed raise.
5822 *
5823 * @param sig A poll signal.
5824 * @param result The value to store in the result field of the signal.
5825 *
5826 * @retval 0 The signal was delivered successfully.
5827 * @retval -EAGAIN The polling thread's timeout is in the process of expiring.
5828 */
5829
5830 __syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
5831
5832 /** @} */
5833
5834 /**
5835 * @defgroup cpu_idle_apis CPU Idling APIs
5836 * @ingroup kernel_apis
5837 * @{
5838 */
5839 /**
5840 * @brief Make the CPU idle.
5841 *
5842 * This function makes the CPU idle until an event wakes it up.
5843 *
5844 * In a regular system, the idle thread should be the only thread responsible
5845 * for making the CPU idle and triggering any type of power management.
5846 * However, in some more constrained systems, such as a single-threaded system,
5847 * the only thread would be responsible for this if needed.
5848 *
5849 * @note In some architectures, before returning, the function unmasks interrupts
5850 * unconditionally.
5851 */
k_cpu_idle(void)5852 static inline void k_cpu_idle(void)
5853 {
5854 arch_cpu_idle();
5855 }
5856
5857 /**
5858 * @brief Make the CPU idle in an atomic fashion.
5859 *
5860 * Similar to k_cpu_idle(), but must be called with interrupts locked.
5861 *
5862 * Enabling interrupts and entering a low-power mode will be atomic,
5863 * i.e. there will be no period of time where interrupts are enabled before
5864 * the processor enters a low-power mode.
5865 *
5866 * After waking up from the low-power mode, the interrupt lockout state will
5867 * be restored as if by irq_unlock(key).
5868 *
5869 * @param key Interrupt locking key obtained from irq_lock().
5870 */
k_cpu_atomic_idle(unsigned int key)5871 static inline void k_cpu_atomic_idle(unsigned int key)
5872 {
5873 arch_cpu_atomic_idle(key);
5874 }
5875
5876 /**
5877 * @}
5878 */
5879
5880 /**
5881 * @cond INTERNAL_HIDDEN
5882 * @internal
5883 */
5884 #ifdef ARCH_EXCEPT
5885 /* This architecture has direct support for triggering a CPU exception */
5886 #define z_except_reason(reason) ARCH_EXCEPT(reason)
5887 #else
5888
5889 #if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5890 #define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5891 #else
5892 #define __EXCEPT_LOC()
5893 #endif
5894
5895 /* NOTE: This is the implementation for arches that do not implement
5896 * ARCH_EXCEPT() to generate a real CPU exception.
5897 *
5898 * We won't have a real exception frame to determine the PC value when
5899 * the oops occurred, so print file and line number before we jump into
5900 * the fatal error handler.
5901 */
5902 #define z_except_reason(reason) do { \
5903 __EXCEPT_LOC(); \
5904 z_fatal_error(reason, NULL); \
5905 } while (false)
5906
5907 #endif /* _ARCH__EXCEPT */
5908 /**
5909 * INTERNAL_HIDDEN @endcond
5910 */
5911
5912 /**
5913 * @brief Fatally terminate a thread
5914 *
5915 * This should be called when a thread has encountered an unrecoverable
5916 * runtime condition and needs to terminate. What this ultimately
5917 * means is determined by the _fatal_error_handler() implementation, which
5918 * will be called will reason code K_ERR_KERNEL_OOPS.
5919 *
5920 * If this is called from ISR context, the default system fatal error handler
5921 * will treat it as an unrecoverable system error, just like k_panic().
5922 */
5923 #define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5924
5925 /**
5926 * @brief Fatally terminate the system
5927 *
5928 * This should be called when the Zephyr kernel has encountered an
5929 * unrecoverable runtime condition and needs to terminate. What this ultimately
5930 * means is determined by the _fatal_error_handler() implementation, which
5931 * will be called will reason code K_ERR_KERNEL_PANIC.
5932 */
5933 #define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5934
5935 /**
5936 * @cond INTERNAL_HIDDEN
5937 */
5938
5939 /*
5940 * private APIs that are utilized by one or more public APIs
5941 */
5942
5943 /**
5944 * @internal
5945 */
5946 #ifdef CONFIG_MULTITHREADING
5947 /**
5948 * @internal
5949 */
5950 extern void z_init_static_threads(void);
5951 #else
5952 /**
5953 * @internal
5954 */
5955 #define z_init_static_threads() do { } while (false)
5956 #endif
5957
5958 /**
5959 * @internal
5960 */
5961 extern void z_timer_expiration_handler(struct _timeout *t);
5962 /**
5963 * INTERNAL_HIDDEN @endcond
5964 */
5965
5966 #ifdef CONFIG_PRINTK
5967 /**
5968 * @brief Emit a character buffer to the console device
5969 *
5970 * @param c String of characters to print
5971 * @param n The length of the string
5972 *
5973 */
5974 __syscall void k_str_out(char *c, size_t n);
5975 #endif
5976
5977 /**
5978 * @brief Disable preservation of floating point context information.
5979 *
5980 * This routine informs the kernel that the specified thread
5981 * will no longer be using the floating point registers.
5982 *
5983 * @warning
5984 * Some architectures apply restrictions on how the disabling of floating
5985 * point preservation may be requested, see arch_float_disable.
5986 *
5987 * @warning
5988 * This routine should only be used to disable floating point support for
5989 * a thread that currently has such support enabled.
5990 *
5991 * @param thread ID of thread.
5992 *
5993 * @retval 0 On success.
5994 * @retval -ENOTSUP If the floating point disabling is not implemented.
5995 * -EINVAL If the floating point disabling could not be performed.
5996 */
5997 __syscall int k_float_disable(struct k_thread *thread);
5998
5999 /**
6000 * @brief Enable preservation of floating point context information.
6001 *
6002 * This routine informs the kernel that the specified thread
6003 * will use the floating point registers.
6004
6005 * Invoking this routine initializes the thread's floating point context info
6006 * to that of an FPU that has been reset. The next time the thread is scheduled
6007 * by z_swap() it will either inherit an FPU that is guaranteed to be in a
6008 * "sane" state (if the most recent user of the FPU was cooperatively swapped
6009 * out) or the thread's own floating point context will be loaded (if the most
6010 * recent user of the FPU was preempted, or if this thread is the first user
6011 * of the FPU). Thereafter, the kernel will protect the thread's FP context
6012 * so that it is not altered during a preemptive context switch.
6013 *
6014 * The @a options parameter indicates which floating point register sets will
6015 * be used by the specified thread.
6016 *
6017 * For x86 options:
6018 *
6019 * - K_FP_REGS indicates x87 FPU and MMX registers only
6020 * - K_SSE_REGS indicates SSE registers (and also x87 FPU and MMX registers)
6021 *
6022 * @warning
6023 * Some architectures apply restrictions on how the enabling of floating
6024 * point preservation may be requested, see arch_float_enable.
6025 *
6026 * @warning
6027 * This routine should only be used to enable floating point support for
6028 * a thread that currently has such support enabled.
6029 *
6030 * @param thread ID of thread.
6031 * @param options architecture dependent options
6032 *
6033 * @retval 0 On success.
6034 * @retval -ENOTSUP If the floating point enabling is not implemented.
6035 * -EINVAL If the floating point enabling could not be performed.
6036 */
6037 __syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6038
6039 /**
6040 * @brief Get the runtime statistics of a thread
6041 *
6042 * @param thread ID of thread.
6043 * @param stats Pointer to struct to copy statistics into.
6044 * @return -EINVAL if null pointers, otherwise 0
6045 */
6046 int k_thread_runtime_stats_get(k_tid_t thread,
6047 k_thread_runtime_stats_t *stats);
6048
6049 /**
6050 * @brief Get the runtime statistics of all threads
6051 *
6052 * @param stats Pointer to struct to copy statistics into.
6053 * @return -EINVAL if null pointers, otherwise 0
6054 */
6055 int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats);
6056
6057 /**
6058 * @brief Enable gathering of runtime statistics for specified thread
6059 *
6060 * This routine enables the gathering of runtime statistics for the specified
6061 * thread.
6062 *
6063 * @param thread ID of thread
6064 * @return -EINVAL if invalid thread ID, otherwise 0
6065 */
6066 extern int k_thread_runtime_stats_enable(k_tid_t thread);
6067
6068 /**
6069 * @brief Disable gathering of runtime statistics for specified thread
6070 *
6071 * This routine disables the gathering of runtime statistics for the specified
6072 * thread.
6073 *
6074 * @param thread ID of thread
6075 * @return -EINVAL if invalid thread ID, otherwise 0
6076 */
6077 extern int k_thread_runtime_stats_disable(k_tid_t thread);
6078
6079 /**
6080 * @brief Enable gathering of system runtime statistics
6081 *
6082 * This routine enables the gathering of system runtime statistics. Note that
6083 * it does not affect the gathering of similar statistics for individual
6084 * threads.
6085 */
6086 extern void k_sys_runtime_stats_enable(void);
6087
6088 /**
6089 * @brief Disable gathering of system runtime statistics
6090 *
6091 * This routine disables the gathering of system runtime statistics. Note that
6092 * it does not affect the gathering of similar statistics for individual
6093 * threads.
6094 */
6095 extern void k_sys_runtime_stats_disable(void);
6096
6097 #ifdef __cplusplus
6098 }
6099 #endif
6100
6101 #include <zephyr/tracing/tracing.h>
6102 #include <syscalls/kernel.h>
6103
6104 #endif /* !_ASMLANGUAGE */
6105
6106 #endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
6107