1 /*
2 * Copyright (c) 2017 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7
8 #include <kernel.h>
9 #include <string.h>
10 #include <sys/math_extras.h>
11 #include <sys/rb.h>
12 #include <kernel_structs.h>
13 #include <sys/sys_io.h>
14 #include <ksched.h>
15 #include <syscall.h>
16 #include <syscall_handler.h>
17 #include <device.h>
18 #include <init.h>
19 #include <stdbool.h>
20 #include <app_memory/app_memdomain.h>
21 #include <sys/libc-hooks.h>
22 #include <sys/mutex.h>
23 #include <inttypes.h>
24 #include <linker/linker-defs.h>
25
26 #ifdef Z_LIBC_PARTITION_EXISTS
27 K_APPMEM_PARTITION_DEFINE(z_libc_partition);
28 #endif
29
30 /* TODO: Find a better place to put this. Since we pull the entire
31 * lib..__modules__crypto__mbedtls.a globals into app shared memory
32 * section, we can't put this in zephyr_init.c of the mbedtls module.
33 */
34 #ifdef CONFIG_MBEDTLS
35 K_APPMEM_PARTITION_DEFINE(k_mbedtls_partition);
36 #endif
37
38 #include <logging/log.h>
39 LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
40
41 /* The originally synchronization strategy made heavy use of recursive
42 * irq_locking, which ports poorly to spinlocks which are
43 * non-recursive. Rather than try to redesign as part of
44 * spinlockification, this uses multiple locks to preserve the
45 * original semantics exactly. The locks are named for the data they
46 * protect where possible, or just for the code that uses them where
47 * not.
48 */
49 #ifdef CONFIG_DYNAMIC_OBJECTS
50 static struct k_spinlock lists_lock; /* kobj rbtree/dlist */
51 static struct k_spinlock objfree_lock; /* k_object_free */
52 #endif
53 static struct k_spinlock obj_lock; /* kobj struct data */
54
55 #define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * 8)
56
57 #ifdef CONFIG_DYNAMIC_OBJECTS
58 extern uint8_t _thread_idx_map[CONFIG_MAX_THREAD_BYTES];
59 #endif
60
61 static void clear_perms_cb(struct z_object *ko, void *ctx_ptr);
62
otype_to_str(enum k_objects otype)63 const char *otype_to_str(enum k_objects otype)
64 {
65 const char *ret;
66 /* -fdata-sections doesn't work right except in very very recent
67 * GCC and these literal strings would appear in the binary even if
68 * otype_to_str was omitted by the linker
69 */
70 #ifdef CONFIG_LOG
71 switch (otype) {
72 /* otype-to-str.h is generated automatically during build by
73 * gen_kobject_list.py
74 */
75 case K_OBJ_ANY:
76 ret = "generic";
77 break;
78 #include <otype-to-str.h>
79 default:
80 ret = "?";
81 break;
82 }
83 #else
84 ARG_UNUSED(otype);
85 ret = NULL;
86 #endif
87 return ret;
88 }
89
90 struct perm_ctx {
91 int parent_id;
92 int child_id;
93 struct k_thread *parent;
94 };
95
96 #ifdef CONFIG_GEN_PRIV_STACKS
97 /* See write_gperf_table() in scripts/gen_kobject_list.py. The privilege
98 * mode stacks are allocated as an array. The base of the array is
99 * aligned to Z_PRIVILEGE_STACK_ALIGN, and all members must be as well.
100 */
z_priv_stack_find(k_thread_stack_t * stack)101 uint8_t *z_priv_stack_find(k_thread_stack_t *stack)
102 {
103 struct z_object *obj = z_object_find(stack);
104
105 __ASSERT(obj != NULL, "stack object not found");
106 __ASSERT(obj->type == K_OBJ_THREAD_STACK_ELEMENT,
107 "bad stack object");
108
109 return obj->data.stack_data->priv;
110 }
111 #endif /* CONFIG_GEN_PRIV_STACKS */
112
113 #ifdef CONFIG_DYNAMIC_OBJECTS
114
115 /*
116 * Note that dyn_obj->data is where the kernel object resides
117 * so it is the one that actually needs to be aligned.
118 * Due to the need to get the the fields inside struct dyn_obj
119 * from kernel object pointers (i.e. from data[]), the offset
120 * from data[] needs to be fixed at build time. Therefore,
121 * data[] is declared with __aligned(), such that when dyn_obj
122 * is allocated with alignment, data[] is also aligned.
123 * Due to this requirement, data[] needs to be aligned with
124 * the maximum alignment needed for all kernel objects
125 * (hence the following DYN_OBJ_DATA_ALIGN).
126 */
127 #ifdef ARCH_DYMANIC_OBJ_K_THREAD_ALIGNMENT
128 #define DYN_OBJ_DATA_ALIGN_K_THREAD (ARCH_DYMANIC_OBJ_K_THREAD_ALIGNMENT)
129 #else
130 #define DYN_OBJ_DATA_ALIGN_K_THREAD (sizeof(void *))
131 #endif
132
133 #define DYN_OBJ_DATA_ALIGN \
134 MAX(DYN_OBJ_DATA_ALIGN_K_THREAD, (sizeof(void *)))
135
136 struct dyn_obj {
137 struct z_object kobj;
138 sys_dnode_t dobj_list;
139 struct rbnode node; /* must be immediately before data member */
140
141 /* The object itself */
142 uint8_t data[] __aligned(DYN_OBJ_DATA_ALIGN_K_THREAD);
143 };
144
145 extern struct z_object *z_object_gperf_find(const void *obj);
146 extern void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func,
147 void *context);
148
149 static bool node_lessthan(struct rbnode *a, struct rbnode *b);
150
151 /*
152 * Red/black tree of allocated kernel objects, for reasonably fast lookups
153 * based on object pointer values.
154 */
155 static struct rbtree obj_rb_tree = {
156 .lessthan_fn = node_lessthan
157 };
158
159 /*
160 * Linked list of allocated kernel objects, for iteration over all allocated
161 * objects (and potentially deleting them during iteration).
162 */
163 static sys_dlist_t obj_list = SYS_DLIST_STATIC_INIT(&obj_list);
164
165 /*
166 * TODO: Write some hash table code that will replace both obj_rb_tree
167 * and obj_list.
168 */
169
obj_size_get(enum k_objects otype)170 static size_t obj_size_get(enum k_objects otype)
171 {
172 size_t ret;
173
174 switch (otype) {
175 #include <otype-to-size.h>
176 default:
177 ret = sizeof(const struct device);
178 break;
179 }
180
181 return ret;
182 }
183
obj_align_get(enum k_objects otype)184 static size_t obj_align_get(enum k_objects otype)
185 {
186 size_t ret;
187
188 switch (otype) {
189 case K_OBJ_THREAD:
190 #ifdef ARCH_DYMANIC_OBJ_K_THREAD_ALIGNMENT
191 ret = ARCH_DYMANIC_OBJ_K_THREAD_ALIGNMENT;
192 #else
193 ret = sizeof(void *);
194 #endif
195 break;
196 default:
197 ret = sizeof(void *);
198 break;
199 }
200
201 return ret;
202 }
203
node_lessthan(struct rbnode * a,struct rbnode * b)204 static bool node_lessthan(struct rbnode *a, struct rbnode *b)
205 {
206 return a < b;
207 }
208
node_to_dyn_obj(struct rbnode * node)209 static inline struct dyn_obj *node_to_dyn_obj(struct rbnode *node)
210 {
211 return CONTAINER_OF(node, struct dyn_obj, node);
212 }
213
dyn_obj_to_node(void * obj)214 static inline struct rbnode *dyn_obj_to_node(void *obj)
215 {
216 struct dyn_obj *dobj = CONTAINER_OF(obj, struct dyn_obj, data);
217
218 return &dobj->node;
219 }
220
dyn_object_find(void * obj)221 static struct dyn_obj *dyn_object_find(void *obj)
222 {
223 struct rbnode *node;
224 struct dyn_obj *ret;
225
226 /* For any dynamically allocated kernel object, the object
227 * pointer is just a member of the containing struct dyn_obj,
228 * so just a little arithmetic is necessary to locate the
229 * corresponding struct rbnode
230 */
231 node = dyn_obj_to_node(obj);
232
233 k_spinlock_key_t key = k_spin_lock(&lists_lock);
234 if (rb_contains(&obj_rb_tree, node)) {
235 ret = node_to_dyn_obj(node);
236 } else {
237 ret = NULL;
238 }
239 k_spin_unlock(&lists_lock, key);
240
241 return ret;
242 }
243
244 /**
245 * @internal
246 *
247 * @brief Allocate a new thread index for a new thread.
248 *
249 * This finds an unused thread index that can be assigned to a new
250 * thread. If too many threads have been allocated, the kernel will
251 * run out of indexes and this function will fail.
252 *
253 * Note that if an unused index is found, that index will be marked as
254 * used after return of this function.
255 *
256 * @param tidx The new thread index if successful
257 *
258 * @return true if successful, false if failed
259 **/
thread_idx_alloc(uintptr_t * tidx)260 static bool thread_idx_alloc(uintptr_t *tidx)
261 {
262 int i;
263 int idx;
264 int base;
265
266 base = 0;
267 for (i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
268 idx = find_lsb_set(_thread_idx_map[i]);
269
270 if (idx != 0) {
271 *tidx = base + (idx - 1);
272
273 sys_bitfield_clear_bit((mem_addr_t)_thread_idx_map,
274 *tidx);
275
276 /* Clear permission from all objects */
277 z_object_wordlist_foreach(clear_perms_cb,
278 (void *)*tidx);
279
280 return true;
281 }
282
283 base += 8;
284 }
285
286 return false;
287 }
288
289 /**
290 * @internal
291 *
292 * @brief Free a thread index.
293 *
294 * This frees a thread index so it can be used by another
295 * thread.
296 *
297 * @param tidx The thread index to be freed
298 **/
thread_idx_free(uintptr_t tidx)299 static void thread_idx_free(uintptr_t tidx)
300 {
301 /* To prevent leaked permission when index is recycled */
302 z_object_wordlist_foreach(clear_perms_cb, (void *)tidx);
303
304 sys_bitfield_set_bit((mem_addr_t)_thread_idx_map, tidx);
305 }
306
z_dynamic_object_aligned_create(size_t align,size_t size)307 struct z_object *z_dynamic_object_aligned_create(size_t align, size_t size)
308 {
309 struct dyn_obj *dyn;
310
311 dyn = z_thread_aligned_alloc(align, sizeof(*dyn) + size);
312 if (dyn == NULL) {
313 LOG_ERR("could not allocate kernel object, out of memory");
314 return NULL;
315 }
316
317 dyn->kobj.name = &dyn->data;
318 dyn->kobj.type = K_OBJ_ANY;
319 dyn->kobj.flags = 0;
320 (void)memset(dyn->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES);
321
322 k_spinlock_key_t key = k_spin_lock(&lists_lock);
323
324 rb_insert(&obj_rb_tree, &dyn->node);
325 sys_dlist_append(&obj_list, &dyn->dobj_list);
326 k_spin_unlock(&lists_lock, key);
327
328 return &dyn->kobj;
329 }
330
z_impl_k_object_alloc(enum k_objects otype)331 void *z_impl_k_object_alloc(enum k_objects otype)
332 {
333 struct z_object *zo;
334 uintptr_t tidx = 0;
335
336 if (otype <= K_OBJ_ANY || otype >= K_OBJ_LAST) {
337 LOG_ERR("bad object type %d requested", otype);
338 return NULL;
339 }
340
341 switch (otype) {
342 case K_OBJ_THREAD:
343 if (!thread_idx_alloc(&tidx)) {
344 LOG_ERR("out of free thread indexes");
345 return NULL;
346 }
347 break;
348 /* The following are currently not allowed at all */
349 case K_OBJ_FUTEX: /* Lives in user memory */
350 case K_OBJ_SYS_MUTEX: /* Lives in user memory */
351 case K_OBJ_THREAD_STACK_ELEMENT: /* No aligned allocator */
352 case K_OBJ_NET_SOCKET: /* Indeterminate size */
353 LOG_ERR("forbidden object type '%s' requested",
354 otype_to_str(otype));
355 return NULL;
356 default:
357 /* Remainder within bounds are permitted */
358 break;
359 }
360
361 zo = z_dynamic_object_aligned_create(obj_align_get(otype),
362 obj_size_get(otype));
363 if (zo == NULL) {
364 return NULL;
365 }
366 zo->type = otype;
367
368 if (otype == K_OBJ_THREAD) {
369 zo->data.thread_id = tidx;
370 }
371
372 /* The allocating thread implicitly gets permission on kernel objects
373 * that it allocates
374 */
375 z_thread_perms_set(zo, _current);
376
377 /* Activates reference counting logic for automatic disposal when
378 * all permissions have been revoked
379 */
380 zo->flags |= K_OBJ_FLAG_ALLOC;
381
382 return zo->name;
383 }
384
k_object_free(void * obj)385 void k_object_free(void *obj)
386 {
387 struct dyn_obj *dyn;
388
389 /* This function is intentionally not exposed to user mode.
390 * There's currently no robust way to track that an object isn't
391 * being used by some other thread
392 */
393
394 k_spinlock_key_t key = k_spin_lock(&objfree_lock);
395
396 dyn = dyn_object_find(obj);
397 if (dyn != NULL) {
398 rb_remove(&obj_rb_tree, &dyn->node);
399 sys_dlist_remove(&dyn->dobj_list);
400
401 if (dyn->kobj.type == K_OBJ_THREAD) {
402 thread_idx_free(dyn->kobj.data.thread_id);
403 }
404 }
405 k_spin_unlock(&objfree_lock, key);
406
407 if (dyn != NULL) {
408 k_free(dyn);
409 }
410 }
411
z_object_find(const void * obj)412 struct z_object *z_object_find(const void *obj)
413 {
414 struct z_object *ret;
415
416 ret = z_object_gperf_find(obj);
417
418 if (ret == NULL) {
419 struct dyn_obj *dynamic_obj;
420
421 /* The cast to pointer-to-non-const violates MISRA
422 * 11.8 but is justified since we know dynamic objects
423 * were not declared with a const qualifier.
424 */
425 dynamic_obj = dyn_object_find((void *)obj);
426 if (dynamic_obj != NULL) {
427 ret = &dynamic_obj->kobj;
428 }
429 }
430
431 return ret;
432 }
433
z_object_wordlist_foreach(_wordlist_cb_func_t func,void * context)434 void z_object_wordlist_foreach(_wordlist_cb_func_t func, void *context)
435 {
436 struct dyn_obj *obj, *next;
437
438 z_object_gperf_wordlist_foreach(func, context);
439
440 k_spinlock_key_t key = k_spin_lock(&lists_lock);
441
442 SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&obj_list, obj, next, dobj_list) {
443 func(&obj->kobj, context);
444 }
445 k_spin_unlock(&lists_lock, key);
446 }
447 #endif /* CONFIG_DYNAMIC_OBJECTS */
448
thread_index_get(struct k_thread * thread)449 static unsigned int thread_index_get(struct k_thread *thread)
450 {
451 struct z_object *ko;
452
453 ko = z_object_find(thread);
454
455 if (ko == NULL) {
456 return -1;
457 }
458
459 return ko->data.thread_id;
460 }
461
unref_check(struct z_object * ko,uintptr_t index)462 static void unref_check(struct z_object *ko, uintptr_t index)
463 {
464 k_spinlock_key_t key = k_spin_lock(&obj_lock);
465
466 sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
467
468 #ifdef CONFIG_DYNAMIC_OBJECTS
469 struct dyn_obj *dyn =
470 CONTAINER_OF(ko, struct dyn_obj, kobj);
471
472 if ((ko->flags & K_OBJ_FLAG_ALLOC) == 0U) {
473 goto out;
474 }
475
476 for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
477 if (ko->perms[i] != 0U) {
478 goto out;
479 }
480 }
481
482 /* This object has no more references. Some objects may have
483 * dynamically allocated resources, require cleanup, or need to be
484 * marked as uninitailized when all references are gone. What
485 * specifically needs to happen depends on the object type.
486 */
487 switch (ko->type) {
488 case K_OBJ_PIPE:
489 k_pipe_cleanup((struct k_pipe *)ko->name);
490 break;
491 case K_OBJ_MSGQ:
492 k_msgq_cleanup((struct k_msgq *)ko->name);
493 break;
494 case K_OBJ_STACK:
495 k_stack_cleanup((struct k_stack *)ko->name);
496 break;
497 default:
498 /* Nothing to do */
499 break;
500 }
501
502 rb_remove(&obj_rb_tree, &dyn->node);
503 sys_dlist_remove(&dyn->dobj_list);
504 k_free(dyn);
505 out:
506 #endif
507 k_spin_unlock(&obj_lock, key);
508 }
509
wordlist_cb(struct z_object * ko,void * ctx_ptr)510 static void wordlist_cb(struct z_object *ko, void *ctx_ptr)
511 {
512 struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr;
513
514 if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) &&
515 (struct k_thread *)ko->name != ctx->parent) {
516 sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id);
517 }
518 }
519
z_thread_perms_inherit(struct k_thread * parent,struct k_thread * child)520 void z_thread_perms_inherit(struct k_thread *parent, struct k_thread *child)
521 {
522 struct perm_ctx ctx = {
523 thread_index_get(parent),
524 thread_index_get(child),
525 parent
526 };
527
528 if ((ctx.parent_id != -1) && (ctx.child_id != -1)) {
529 z_object_wordlist_foreach(wordlist_cb, &ctx);
530 }
531 }
532
z_thread_perms_set(struct z_object * ko,struct k_thread * thread)533 void z_thread_perms_set(struct z_object *ko, struct k_thread *thread)
534 {
535 int index = thread_index_get(thread);
536
537 if (index != -1) {
538 sys_bitfield_set_bit((mem_addr_t)&ko->perms, index);
539 }
540 }
541
z_thread_perms_clear(struct z_object * ko,struct k_thread * thread)542 void z_thread_perms_clear(struct z_object *ko, struct k_thread *thread)
543 {
544 int index = thread_index_get(thread);
545
546 if (index != -1) {
547 sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
548 unref_check(ko, index);
549 }
550 }
551
clear_perms_cb(struct z_object * ko,void * ctx_ptr)552 static void clear_perms_cb(struct z_object *ko, void *ctx_ptr)
553 {
554 uintptr_t id = (uintptr_t)ctx_ptr;
555
556 unref_check(ko, id);
557 }
558
z_thread_perms_all_clear(struct k_thread * thread)559 void z_thread_perms_all_clear(struct k_thread *thread)
560 {
561 uintptr_t index = thread_index_get(thread);
562
563 if ((int)index != -1) {
564 z_object_wordlist_foreach(clear_perms_cb, (void *)index);
565 }
566 }
567
thread_perms_test(struct z_object * ko)568 static int thread_perms_test(struct z_object *ko)
569 {
570 int index;
571
572 if ((ko->flags & K_OBJ_FLAG_PUBLIC) != 0U) {
573 return 1;
574 }
575
576 index = thread_index_get(_current);
577 if (index != -1) {
578 return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index);
579 }
580 return 0;
581 }
582
dump_permission_error(struct z_object * ko)583 static void dump_permission_error(struct z_object *ko)
584 {
585 int index = thread_index_get(_current);
586 LOG_ERR("thread %p (%d) does not have permission on %s %p",
587 _current, index,
588 otype_to_str(ko->type), ko->name);
589 LOG_HEXDUMP_ERR(ko->perms, sizeof(ko->perms), "permission bitmap");
590 }
591
z_dump_object_error(int retval,const void * obj,struct z_object * ko,enum k_objects otype)592 void z_dump_object_error(int retval, const void *obj, struct z_object *ko,
593 enum k_objects otype)
594 {
595 switch (retval) {
596 case -EBADF:
597 LOG_ERR("%p is not a valid %s", obj, otype_to_str(otype));
598 if (ko == NULL) {
599 LOG_ERR("address is not a known kernel object");
600 } else {
601 LOG_ERR("address is actually a %s",
602 otype_to_str(ko->type));
603 }
604 break;
605 case -EPERM:
606 dump_permission_error(ko);
607 break;
608 case -EINVAL:
609 LOG_ERR("%p used before initialization", obj);
610 break;
611 case -EADDRINUSE:
612 LOG_ERR("%p %s in use", obj, otype_to_str(otype));
613 break;
614 default:
615 /* Not handled error */
616 break;
617 }
618 }
619
z_impl_k_object_access_grant(const void * object,struct k_thread * thread)620 void z_impl_k_object_access_grant(const void *object, struct k_thread *thread)
621 {
622 struct z_object *ko = z_object_find(object);
623
624 if (ko != NULL) {
625 z_thread_perms_set(ko, thread);
626 }
627 }
628
k_object_access_revoke(const void * object,struct k_thread * thread)629 void k_object_access_revoke(const void *object, struct k_thread *thread)
630 {
631 struct z_object *ko = z_object_find(object);
632
633 if (ko != NULL) {
634 z_thread_perms_clear(ko, thread);
635 }
636 }
637
z_impl_k_object_release(const void * object)638 void z_impl_k_object_release(const void *object)
639 {
640 k_object_access_revoke(object, _current);
641 }
642
k_object_access_all_grant(const void * object)643 void k_object_access_all_grant(const void *object)
644 {
645 struct z_object *ko = z_object_find(object);
646
647 if (ko != NULL) {
648 ko->flags |= K_OBJ_FLAG_PUBLIC;
649 }
650 }
651
z_object_validate(struct z_object * ko,enum k_objects otype,enum _obj_init_check init)652 int z_object_validate(struct z_object *ko, enum k_objects otype,
653 enum _obj_init_check init)
654 {
655 if (unlikely((ko == NULL) ||
656 (otype != K_OBJ_ANY && ko->type != otype))) {
657 return -EBADF;
658 }
659
660 /* Manipulation of any kernel objects by a user thread requires that
661 * thread be granted access first, even for uninitialized objects
662 */
663 if (unlikely(thread_perms_test(ko) == 0)) {
664 return -EPERM;
665 }
666
667 /* Initialization state checks. _OBJ_INIT_ANY, we don't care */
668 if (likely(init == _OBJ_INIT_TRUE)) {
669 /* Object MUST be initialized */
670 if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0U)) {
671 return -EINVAL;
672 }
673 } else if (init == _OBJ_INIT_FALSE) { /* _OBJ_INIT_FALSE case */
674 /* Object MUST NOT be initialized */
675 if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) != 0U)) {
676 return -EADDRINUSE;
677 }
678 } else {
679 /* _OBJ_INIT_ANY */
680 }
681
682 return 0;
683 }
684
z_object_init(const void * obj)685 void z_object_init(const void *obj)
686 {
687 struct z_object *ko;
688
689 /* By the time we get here, if the caller was from userspace, all the
690 * necessary checks have been done in z_object_validate(), which takes
691 * place before the object is initialized.
692 *
693 * This function runs after the object has been initialized and
694 * finalizes it
695 */
696
697 ko = z_object_find(obj);
698 if (ko == NULL) {
699 /* Supervisor threads can ignore rules about kernel objects
700 * and may declare them on stacks, etc. Such objects will never
701 * be usable from userspace, but we shouldn't explode.
702 */
703 return;
704 }
705
706 /* Allows non-initialization system calls to be made on this object */
707 ko->flags |= K_OBJ_FLAG_INITIALIZED;
708 }
709
z_object_recycle(const void * obj)710 void z_object_recycle(const void *obj)
711 {
712 struct z_object *ko = z_object_find(obj);
713
714 if (ko != NULL) {
715 (void)memset(ko->perms, 0, sizeof(ko->perms));
716 z_thread_perms_set(ko, k_current_get());
717 ko->flags |= K_OBJ_FLAG_INITIALIZED;
718 }
719 }
720
z_object_uninit(const void * obj)721 void z_object_uninit(const void *obj)
722 {
723 struct z_object *ko;
724
725 /* See comments in z_object_init() */
726 ko = z_object_find(obj);
727 if (ko == NULL) {
728 return;
729 }
730
731 ko->flags &= ~K_OBJ_FLAG_INITIALIZED;
732 }
733
734 /*
735 * Copy to/from helper functions used in syscall handlers
736 */
z_user_alloc_from_copy(const void * src,size_t size)737 void *z_user_alloc_from_copy(const void *src, size_t size)
738 {
739 void *dst = NULL;
740
741 /* Does the caller in user mode have access to read this memory? */
742 if (Z_SYSCALL_MEMORY_READ(src, size)) {
743 goto out_err;
744 }
745
746 dst = z_thread_malloc(size);
747 if (dst == NULL) {
748 LOG_ERR("out of thread resource pool memory (%zu)", size);
749 goto out_err;
750 }
751
752 (void)memcpy(dst, src, size);
753 out_err:
754 return dst;
755 }
756
user_copy(void * dst,const void * src,size_t size,bool to_user)757 static int user_copy(void *dst, const void *src, size_t size, bool to_user)
758 {
759 int ret = EFAULT;
760
761 /* Does the caller in user mode have access to this memory? */
762 if (to_user ? Z_SYSCALL_MEMORY_WRITE(dst, size) :
763 Z_SYSCALL_MEMORY_READ(src, size)) {
764 goto out_err;
765 }
766
767 (void)memcpy(dst, src, size);
768 ret = 0;
769 out_err:
770 return ret;
771 }
772
z_user_from_copy(void * dst,const void * src,size_t size)773 int z_user_from_copy(void *dst, const void *src, size_t size)
774 {
775 return user_copy(dst, src, size, false);
776 }
777
z_user_to_copy(void * dst,const void * src,size_t size)778 int z_user_to_copy(void *dst, const void *src, size_t size)
779 {
780 return user_copy(dst, src, size, true);
781 }
782
z_user_string_alloc_copy(const char * src,size_t maxlen)783 char *z_user_string_alloc_copy(const char *src, size_t maxlen)
784 {
785 size_t actual_len;
786 int err;
787 char *ret = NULL;
788
789 actual_len = z_user_string_nlen(src, maxlen, &err);
790 if (err != 0) {
791 goto out;
792 }
793 if (actual_len == maxlen) {
794 /* Not NULL terminated */
795 LOG_ERR("string too long %p (%zu)", src, actual_len);
796 goto out;
797 }
798 if (size_add_overflow(actual_len, 1, &actual_len)) {
799 LOG_ERR("overflow");
800 goto out;
801 }
802
803 ret = z_user_alloc_from_copy(src, actual_len);
804
805 /* Someone may have modified the source string during the above
806 * checks. Ensure what we actually copied is still terminated
807 * properly.
808 */
809 if (ret != NULL) {
810 ret[actual_len - 1U] = '\0';
811 }
812 out:
813 return ret;
814 }
815
z_user_string_copy(char * dst,const char * src,size_t maxlen)816 int z_user_string_copy(char *dst, const char *src, size_t maxlen)
817 {
818 size_t actual_len;
819 int ret, err;
820
821 actual_len = z_user_string_nlen(src, maxlen, &err);
822 if (err != 0) {
823 ret = EFAULT;
824 goto out;
825 }
826 if (actual_len == maxlen) {
827 /* Not NULL terminated */
828 LOG_ERR("string too long %p (%zu)", src, actual_len);
829 ret = EINVAL;
830 goto out;
831 }
832 if (size_add_overflow(actual_len, 1, &actual_len)) {
833 LOG_ERR("overflow");
834 ret = EINVAL;
835 goto out;
836 }
837
838 ret = z_user_from_copy(dst, src, actual_len);
839
840 /* See comment above in z_user_string_alloc_copy() */
841 dst[actual_len - 1] = '\0';
842 out:
843 return ret;
844 }
845
846 /*
847 * Application memory region initialization
848 */
849
850 extern char __app_shmem_regions_start[];
851 extern char __app_shmem_regions_end[];
852
app_shmem_bss_zero(const struct device * unused)853 static int app_shmem_bss_zero(const struct device *unused)
854 {
855 struct z_app_region *region, *end;
856
857 ARG_UNUSED(unused);
858
859 end = (struct z_app_region *)&__app_shmem_regions_end;
860 region = (struct z_app_region *)&__app_shmem_regions_start;
861
862 for ( ; region < end; region++) {
863 #if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT)
864 /* When BSS sections are not present at boot, we need to wait for
865 * paging mechanism to be initialized before we can zero out BSS.
866 */
867 extern bool z_sys_post_kernel;
868 bool do_clear = z_sys_post_kernel;
869
870 /* During pre-kernel init, z_sys_post_kernel == false, but
871 * with pinned rodata region, so clear. Otherwise skip.
872 * In post-kernel init, z_sys_post_kernel == true,
873 * skip those in pinned rodata region as they have already
874 * been cleared and possibly already in use. Otherwise clear.
875 */
876 if (((uint8_t *)region->bss_start >= (uint8_t *)_app_smem_pinned_start) &&
877 ((uint8_t *)region->bss_start < (uint8_t *)_app_smem_pinned_end)) {
878 do_clear = !do_clear;
879 }
880
881 if (do_clear)
882 #endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
883 {
884 (void)memset(region->bss_start, 0, region->bss_size);
885 }
886 }
887
888 return 0;
889 }
890
891 SYS_INIT(app_shmem_bss_zero, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
892
893 #if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT)
894 /* When BSS sections are not present at boot, we need to wait for
895 * paging mechanism to be initialized before we can zero out BSS.
896 */
897 SYS_INIT(app_shmem_bss_zero, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
898 #endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
899
900 /*
901 * Default handlers if otherwise unimplemented
902 */
903
handler_bad_syscall(uintptr_t bad_id,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,uintptr_t arg5,uintptr_t arg6,void * ssf)904 static uintptr_t handler_bad_syscall(uintptr_t bad_id, uintptr_t arg2,
905 uintptr_t arg3, uintptr_t arg4,
906 uintptr_t arg5, uintptr_t arg6,
907 void *ssf)
908 {
909 LOG_ERR("Bad system call id %" PRIuPTR " invoked", bad_id);
910 arch_syscall_oops(ssf);
911 CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
912 }
913
handler_no_syscall(uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,uintptr_t arg5,uintptr_t arg6,void * ssf)914 static uintptr_t handler_no_syscall(uintptr_t arg1, uintptr_t arg2,
915 uintptr_t arg3, uintptr_t arg4,
916 uintptr_t arg5, uintptr_t arg6, void *ssf)
917 {
918 LOG_ERR("Unimplemented system call");
919 arch_syscall_oops(ssf);
920 CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
921 }
922
923 #include <syscall_dispatch.c>
924