1 /***************************************************************************//**
2  * @file
3  * @brief Threadsafe utilities for RADIOAES peripheral.
4  *******************************************************************************
5  * # License
6  * <b>Copyright 2020 Silicon Laboratories Inc. www.silabs.com</b>
7  *******************************************************************************
8  *
9  * SPDX-License-Identifier: Zlib
10  *
11  * The licensor of this software is Silicon Laboratories Inc.
12  *
13  * This software is provided 'as-is', without any express or implied
14  * warranty. In no event will the authors be held liable for any damages
15  * arising from the use of this software.
16  *
17  * Permission is granted to anyone to use this software for any purpose,
18  * including commercial applications, and to alter it and redistribute it
19  * freely, subject to the following restrictions:
20  *
21  * 1. The origin of this software must not be misrepresented; you must not
22  *    claim that you wrote the original software. If you use this software
23  *    in a product, an acknowledgment in the product documentation would be
24  *    appreciated but is not required.
25  * 2. Altered source versions must be plainly marked as such, and must not be
26  *    misrepresented as being the original software.
27  * 3. This notice may not be removed or altered from any source distribution.
28  *
29  ******************************************************************************/
30 #include "em_device.h"
31 
32 #if defined(RADIOAES_PRESENT)
33 /// @cond DO_NOT_INCLUDE_WITH_DOXYGEN
34 
35 #include "sli_radioaes_management.h"
36 #include "sli_se_manager_osal.h"
37 #include "em_core.h"
38 
39 #if defined(SL_SE_MANAGER_THREADING)
40 static se_manager_osal_mutex_t      radioaes_lock = { 0 };
41 static volatile bool                radioaes_lock_initialized = false;
42 #endif
43 
44 #if defined(SLI_RADIOAES_REQUIRES_MASKING)
45 
46 #if defined(SL_COMPONENT_CATALOG_PRESENT)
47 #include "sl_component_catalog.h"
48 #endif
49 
50 #if defined(SL_CATALOG_PSA_CRYPTO_PRESENT)
51 // If the PSA Crypto core is present, use its randomness abstraction to get
52 // the initial mask seed.
53 #include "psa/crypto.h"
54 #else
55 // If the PSA Crypto core is not present, we need to target the TRNG driver
56 // directly to get the initial mask seed. We'll always have an external randomness
57 // provider function on devices containing a RADIOAES instance.
58 #include "sli_psa_driver_common.h"
59 #endif
60 #include "sl_assert.h"
61 
62 uint32_t sli_radioaes_mask = 0;
63 
sli_radioaes_update_mask(void)64 static void sli_radioaes_update_mask(void)
65 {
66   if (sli_radioaes_mask == 0) {
67     // Mask has not been initialized yet, get a random value to start
68 #if defined(SL_CATALOG_PSA_CRYPTO_PRESENT)
69     psa_status_t status = psa_generate_random((uint8_t*)&sli_radioaes_mask, sizeof(sli_radioaes_mask));
70     EFM_ASSERT(status == PSA_SUCCESS);
71 #else
72     size_t out_len = 0;
73     psa_status_t status = mbedtls_psa_external_get_random(NULL, (uint8_t*)&sli_radioaes_mask, sizeof(sli_radioaes_mask), &out_len);
74     EFM_ASSERT(status == PSA_SUCCESS);
75     EFM_ASSERT(out_len == sizeof(sli_radioaes_mask));
76 #endif
77   }
78 
79   // Use a different mask for each new operation
80   // The masking logic requires the upper mask bit to be set
81   sli_radioaes_mask = (sli_radioaes_mask + 1) | (1UL << 31);
82 }
83 #endif // SLI_RADIOAES_REQUIRES_MASKING
84 
sli_radioaes_acquire(void)85 sl_status_t sli_radioaes_acquire(void)
86 {
87 #if defined(_CMU_CLKEN0_MASK)
88   CMU->CLKEN0 |= CMU_CLKEN0_RADIOAES;
89 #endif
90   CMU->RADIOCLKCTRL |= CMU_RADIOCLKCTRL_EN;
91   if ((SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk) != 0U) {
92     // IRQ: need to store & restore RADIOAES registers
93     while (RADIOAES->STATUS & (AES_STATUS_FETCHERBSY | AES_STATUS_PUSHERBSY | AES_STATUS_SOFTRSTBSY)) {
94       // Wait for completion of the previous operation, since the RADIOAES
95       // peripheral does not support preemption of an operation in progress.
96     }
97     #if defined(SLI_RADIOAES_REQUIRES_MASKING)
98     // The mask should have been initialized from non-ISR context by calling
99     // sl_mbedtls_init, before using the radioaes.
100     EFM_ASSERT(sli_radioaes_mask != 0);
101     #endif
102     return SL_STATUS_ISR;
103   } else {
104 #if defined(SL_SE_MANAGER_THREADING)
105     sl_status_t ret = SL_STATUS_OK;
106 
107     // Non-IRQ, RTOS available: take mutex
108     // Initialize mutex if that hasn't happened yet
109 
110     // Check flag first before going into a critical section, to avoid going into
111     // a critical section on every single acquire() call. Since the _initialized
112     // flag only transitions false -> true, we can in 99% of the calls avoid the
113     // critical section.
114     if (!radioaes_lock_initialized) {
115       int32_t kernel_lock_state = 0;
116       osKernelState_t kernel_state = se_manager_osal_kernel_get_state();
117       if (kernel_state != osKernelInactive && kernel_state != osKernelReady) {
118         kernel_lock_state = se_manager_osal_kernel_lock();
119         if (kernel_lock_state < 0) {
120           return SL_STATUS_SUSPENDED;
121         }
122       }
123 
124       // Check the flag again after entering the critical section. Now that we're
125       // in the critical section, we can be sure that we are the only ones looking
126       // at the flag and no-one is interrupting us during its manipulation.
127       if (!radioaes_lock_initialized) {
128         ret = se_manager_osal_init_mutex(&radioaes_lock);
129         if (ret == SL_STATUS_OK) {
130           radioaes_lock_initialized = true;
131         }
132       }
133 
134       if (kernel_state != osKernelInactive && kernel_state != osKernelReady) {
135         if (se_manager_osal_kernel_restore_lock(kernel_lock_state) < 0) {
136           return SL_STATUS_INVALID_STATE;
137         }
138       }
139     }
140 
141     if (ret == SL_STATUS_OK) {
142       ret = se_manager_osal_take_mutex(&radioaes_lock);
143     }
144 
145     #if defined(SLI_RADIOAES_REQUIRES_MASKING)
146     if (ret == SL_STATUS_OK) {
147       sli_radioaes_update_mask();
148     }
149     #endif
150 
151     return ret;
152 #else
153     // Non-IRQ, no RTOS: busywait
154     while (RADIOAES->STATUS & (AES_STATUS_FETCHERBSY | AES_STATUS_PUSHERBSY | AES_STATUS_SOFTRSTBSY)) {
155       // Wait for completion
156     }
157     #if defined(SLI_RADIOAES_REQUIRES_MASKING)
158     sli_radioaes_update_mask();
159     #endif
160     return SL_STATUS_OK;
161 #endif
162   }
163 }
164 
sli_radioaes_release(void)165 sl_status_t sli_radioaes_release(void)
166 {
167   // IRQ: nothing to do
168   if ((SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk) != 0U) {
169     return SL_STATUS_OK;
170   }
171 #if defined(SL_SE_MANAGER_THREADING)
172   // Non-IRQ, RTOS available: free mutex
173   return se_manager_osal_give_mutex(&radioaes_lock);
174 #else
175   // Non-IRQ, no RTOS: nothing to do.
176   return SL_STATUS_OK;
177 #endif
178 }
179 
sli_radioaes_save_state(sli_radioaes_state_t * ctx)180 sl_status_t sli_radioaes_save_state(sli_radioaes_state_t *ctx)
181 {
182   CORE_DECLARE_IRQ_STATE;
183   CORE_ENTER_CRITICAL();
184   ctx->FETCHADDR = RADIOAES->FETCHADDR;
185   ctx->PUSHADDR = RADIOAES->PUSHADDR;
186 
187   CORE_EXIT_CRITICAL();
188   return SL_STATUS_OK;
189 }
190 
sli_radioaes_restore_state(sli_radioaes_state_t * ctx)191 sl_status_t sli_radioaes_restore_state(sli_radioaes_state_t *ctx)
192 {
193   CORE_DECLARE_IRQ_STATE;
194   CORE_ENTER_CRITICAL();
195   RADIOAES->FETCHADDR = ctx->FETCHADDR;
196   RADIOAES->PUSHADDR = ctx->PUSHADDR;
197 
198   CORE_EXIT_CRITICAL();
199   return SL_STATUS_OK;
200 }
201 
202 /// @endcond
203 #endif //defined(RADIOAES_PRESENT)
204