1 /*
2 ** ###################################################################
3 **     Processors:          MK26FN2M0CAC18
4 **                          MK26FN2M0VLQ18
5 **                          MK26FN2M0VMD18
6 **                          MK26FN2M0VMI18
7 **
8 **     Compilers:           Freescale C/C++ for Embedded ARM
9 **                          GNU C Compiler
10 **                          IAR ANSI C/C++ Compiler for ARM
11 **                          Keil ARM C/C++ Compiler
12 **                          MCUXpresso Compiler
13 **
14 **     Reference manual:    MK26P169M180SF5RM, Rev. 1, Mar 2015
15 **     Version:             rev. 2.0, 2015-03-25
16 **     Build:               b201013
17 **
18 **     Abstract:
19 **         Provides a system configuration function and a global variable that
20 **         contains the system frequency. It configures the device and initializes
21 **         the oscillator (PLL) that is part of the microcontroller device.
22 **
23 **     Copyright 2016 Freescale Semiconductor, Inc.
24 **     Copyright 2016-2020 NXP
25 **     All rights reserved.
26 **
27 **     SPDX-License-Identifier: BSD-3-Clause
28 **
29 **     http:                 www.nxp.com
30 **     mail:                 support@nxp.com
31 **
32 **     Revisions:
33 **     - rev. 1.0 (2014-12-04)
34 **         Initial version.
35 **     - rev. 1.1 (2015-02-19)
36 **         Renamed interrupt vector LLW to LLWU.
37 **     - rev. 2.0 (2015-03-25)
38 **         Registers updated according to the reference manual revision 1, March 2015
39 **
40 ** ###################################################################
41 */
42 
43 /*!
44  * @file MK26F18
45  * @version 2.0
46  * @date 2015-03-25
47  * @brief Device specific configuration file for MK26F18 (implementation file)
48  *
49  * Provides a system configuration function and a global variable that contains
50  * the system frequency. It configures the device and initializes the oscillator
51  * (PLL) that is part of the microcontroller device.
52  */
53 
54 #include <stdint.h>
55 #include "fsl_device_registers.h"
56 
57 
58 
59 /* ----------------------------------------------------------------------------
60    -- Core clock
61    ---------------------------------------------------------------------------- */
62 
63 uint32_t SystemCoreClock = DEFAULT_SYSTEM_CLOCK;
64 
65 /* ----------------------------------------------------------------------------
66    -- SystemInit()
67    ---------------------------------------------------------------------------- */
68 
SystemInit(void)69 void SystemInit (void) {
70 #if ((__FPU_PRESENT == 1) && (__FPU_USED == 1))
71   SCB->CPACR |= ((3UL << 10*2) | (3UL << 11*2));    /* set CP10, CP11 Full Access */
72 #endif /* ((__FPU_PRESENT == 1) && (__FPU_USED == 1)) */
73   /* Watchdog disable */
74 #if (DISABLE_WDOG)
75   /* WDOG->UNLOCK: WDOGUNLOCK=0xC520 */
76   WDOG->UNLOCK = WDOG_UNLOCK_WDOGUNLOCK(0xC520); /* Key 1 */
77   /* WDOG->UNLOCK: WDOGUNLOCK=0xD928 */
78   WDOG->UNLOCK = WDOG_UNLOCK_WDOGUNLOCK(0xD928); /* Key 2 */
79   /* WDOG->STCTRLH: ?=0,DISTESTWDOG=0,BYTESEL=0,TESTSEL=0,TESTWDOG=0,?=0,?=1,WAITEN=1,STOPEN=1,DBGEN=0,ALLOWUPDATE=1,WINEN=0,IRQRSTEN=0,CLKSRC=1,WDOGEN=0 */
80   WDOG->STCTRLH = WDOG_STCTRLH_BYTESEL(0x00) |
81                  WDOG_STCTRLH_WAITEN_MASK |
82                  WDOG_STCTRLH_STOPEN_MASK |
83                  WDOG_STCTRLH_ALLOWUPDATE_MASK |
84                  WDOG_STCTRLH_CLKSRC_MASK |
85                  0x0100U;
86 #endif /* (DISABLE_WDOG) */
87 
88   SystemInitHook();
89 }
90 
91 /* ----------------------------------------------------------------------------
92    -- SystemCoreClockUpdate()
93    ---------------------------------------------------------------------------- */
94 
SystemCoreClockUpdate(void)95 void SystemCoreClockUpdate (void) {
96   uint32_t MCGOUTClock;                                                        /* Variable to store output clock frequency of the MCG module */
97   uint16_t Divider;
98   uint8_t  tmpC7 = 0;
99 
100   if ((MCG->C1 & MCG_C1_CLKS_MASK) == 0x00U) {
101     /* Output of FLL or PLL is selected */
102     if ((MCG->C6 & MCG_C6_PLLS_MASK) == 0x00U) {
103       /* FLL is selected */
104       if ((MCG->C1 & MCG_C1_IREFS_MASK) == 0x00U) {
105         /* External reference clock is selected */
106         switch (MCG->C7 & MCG_C7_OSCSEL_MASK) {
107         case 0x00U:
108           MCGOUTClock = CPU_XTAL_CLK_HZ; /* System oscillator drives MCG clock */
109           break;
110         case 0x01U:
111           MCGOUTClock = CPU_XTAL32k_CLK_HZ; /* RTC 32 kHz oscillator drives MCG clock */
112           break;
113         case 0x02U:
114         default:
115           MCGOUTClock = CPU_INT_IRC_CLK_HZ; /* IRC 48MHz oscillator drives MCG clock */
116           break;
117         }
118         tmpC7 = MCG->C7;
119         if (((MCG->C2 & MCG_C2_RANGE_MASK) != 0x00U) && ((tmpC7 & MCG_C7_OSCSEL_MASK) != 0x01U)) {
120           switch (MCG->C1 & MCG_C1_FRDIV_MASK) {
121           case 0x38U:
122             Divider = 1536U;
123             break;
124           case 0x30U:
125             Divider = 1280U;
126             break;
127           default:
128             Divider = (uint16_t)(32LU << ((MCG->C1 & MCG_C1_FRDIV_MASK) >> MCG_C1_FRDIV_SHIFT));
129             break;
130           }
131         } else {/* ((MCG->C2 & MCG_C2_RANGE_MASK) != 0x00U) */
132           Divider = (uint16_t)(1LU << ((MCG->C1 & MCG_C1_FRDIV_MASK) >> MCG_C1_FRDIV_SHIFT));
133         }
134         MCGOUTClock = (MCGOUTClock / Divider); /* Calculate the divided FLL reference clock */
135       } else { /* (!((MCG->C1 & MCG_C1_IREFS_MASK) == 0x00U)) */
136         MCGOUTClock = CPU_INT_SLOW_CLK_HZ; /* The slow internal reference clock is selected */
137       } /* (!((MCG->C1 & MCG_C1_IREFS_MASK) == 0x00U)) */
138       /* Select correct multiplier to calculate the MCG output clock  */
139       switch (MCG->C4 & (MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) {
140         case 0x00U:
141           MCGOUTClock *= 640U;
142           break;
143         case 0x20U:
144           MCGOUTClock *= 1280U;
145           break;
146         case 0x40U:
147           MCGOUTClock *= 1920U;
148           break;
149         case 0x60U:
150           MCGOUTClock *= 2560U;
151           break;
152         case 0x80U:
153           MCGOUTClock *= 732U;
154           break;
155         case 0xA0U:
156           MCGOUTClock *= 1464U;
157           break;
158         case 0xC0U:
159           MCGOUTClock *= 2197U;
160           break;
161         case 0xE0U:
162           MCGOUTClock *= 2929U;
163           break;
164         default:
165           MCGOUTClock *= 640U;
166           break;
167       }
168     } else { /* (!((MCG->C6 & MCG_C6_PLLS_MASK) == 0x00U)) */
169       if ((MCG->C11 & MCG_C11_PLLCS_MASK) == 0x00U) {
170         /* PLL is selected */
171         Divider = (((uint16_t)MCG->C5 & MCG_C5_PRDIV_MASK) + 0x01U);
172         MCGOUTClock = (uint32_t)(CPU_XTAL_CLK_HZ / Divider); /* Calculate the PLL reference clock */
173         Divider = (((uint16_t)MCG->C6 & MCG_C6_VDIV_MASK) + 16U);
174         MCGOUTClock *= Divider;        /* Calculate the VCO output clock */
175         MCGOUTClock /= 2U;             /* Calculate the MCG output clock */
176       } else {
177         /* External PLL is selected */
178         if ((USBPHY->ANACTRL & USBPHY_ANACTRL_PFD_CLK_SEL_MASK) == 0x00U) {
179           MCGOUTClock = CPU_XTAL_CLK_HZ;
180         } else {
181           Divider = (((uint16_t)USBPHY->ANACTRL & USBPHY_ANACTRL_PFD_FRAC_MASK) >> 4);
182           if ((USBPHY->ANACTRL & USBPHY_ANACTRL_PFD_CLK_SEL_MASK) == USBPHY_ANACTRL_PFD_CLK_SEL(1)) {
183             Divider *= 0x04U;
184           } else if ((USBPHY->ANACTRL & USBPHY_ANACTRL_PFD_CLK_SEL_MASK) == USBPHY_ANACTRL_PFD_CLK_SEL(2)) {
185             Divider *= 0x02U;
186           } else {
187             Divider *= 0x01U;
188           }
189           MCGOUTClock = (uint32_t)(480000000U / Divider);
190           MCGOUTClock *= 18U;
191         }
192       }
193     } /* (!((MCG->C6 & MCG_C6_PLLS_MASK) == 0x00U)) */
194   } else if ((MCG->C1 & MCG_C1_CLKS_MASK) == 0x40U) {
195     /* Internal reference clock is selected */
196     if ((MCG->C2 & MCG_C2_IRCS_MASK) == 0x00U) {
197       MCGOUTClock = CPU_INT_SLOW_CLK_HZ; /* Slow internal reference clock selected */
198     } else { /* (!((MCG->C2 & MCG_C2_IRCS_MASK) == 0x00U)) */
199       Divider = (uint16_t)(0x01LU << ((MCG->SC & MCG_SC_FCRDIV_MASK) >> MCG_SC_FCRDIV_SHIFT));
200       MCGOUTClock = (uint32_t) (CPU_INT_FAST_CLK_HZ / Divider); /* Fast internal reference clock selected */
201     } /* (!((MCG->C2 & MCG_C2_IRCS_MASK) == 0x00U)) */
202   } else if ((MCG->C1 & MCG_C1_CLKS_MASK) == 0x80U) {
203     /* External reference clock is selected */
204     switch (MCG->C7 & MCG_C7_OSCSEL_MASK) {
205     case 0x00U:
206       MCGOUTClock = CPU_XTAL_CLK_HZ;   /* System oscillator drives MCG clock */
207       break;
208     case 0x01U:
209       MCGOUTClock = CPU_XTAL32k_CLK_HZ; /* RTC 32 kHz oscillator drives MCG clock */
210       break;
211     case 0x02U:
212     default:
213       MCGOUTClock = CPU_INT_IRC_CLK_HZ; /* IRC 48MHz oscillator drives MCG clock */
214       break;
215     }
216   } else { /* (!((MCG->C1 & MCG_C1_CLKS_MASK) == 0x80U)) */
217     /* Reserved value */
218     return;
219   } /* (!((MCG->C1 & MCG_C1_CLKS_MASK) == 0x80U)) */
220   SystemCoreClock = (MCGOUTClock / (0x01U + ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV1_MASK) >> SIM_CLKDIV1_OUTDIV1_SHIFT)));
221 }
222 
223 /* ----------------------------------------------------------------------------
224    -- SystemInitHook()
225    ---------------------------------------------------------------------------- */
226 
SystemInitHook(void)227 __attribute__ ((weak)) void SystemInitHook (void) {
228   /* Void implementation of the weak function. */
229 }
230