1 /**
2 ******************************************************************************
3 * @file stm32l5xx_ll_usart.h
4 * @author MCD Application Team
5 * @brief Header file of USART LL module.
6 ******************************************************************************
7 * @attention
8 *
9 * Copyright (c) 2019 STMicroelectronics.
10 * All rights reserved.
11 *
12 * This software is licensed under terms that can be found in the LICENSE file
13 * in the root directory of this software component.
14 * If no LICENSE file comes with this software, it is provided AS-IS.
15 *
16 ******************************************************************************
17 */
18
19 /* Define to prevent recursive inclusion -------------------------------------*/
20 #ifndef STM32L5xx_LL_USART_H
21 #define STM32L5xx_LL_USART_H
22
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26
27 /* Includes ------------------------------------------------------------------*/
28 #include "stm32l5xx.h"
29
30 /** @addtogroup STM32L5xx_LL_Driver
31 * @{
32 */
33
34 #if defined(USART1) || defined(USART2) || defined(USART3) || defined(UART4) || defined(UART5)
35
36 /** @defgroup USART_LL USART
37 * @{
38 */
39
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /** @defgroup USART_LL_Private_Variables USART Private Variables
43 * @{
44 */
45 /* Array used to get the USART prescaler division decimal values versus @ref USART_LL_EC_PRESCALER values */
46 static const uint32_t USART_PRESCALER_TAB[] =
47 {
48 1UL,
49 2UL,
50 4UL,
51 6UL,
52 8UL,
53 10UL,
54 12UL,
55 16UL,
56 32UL,
57 64UL,
58 128UL,
59 256UL
60 };
61 /**
62 * @}
63 */
64
65 /* Private constants ---------------------------------------------------------*/
66 /** @defgroup USART_LL_Private_Constants USART Private Constants
67 * @{
68 */
69 /**
70 * @}
71 */
72 /* Private macros ------------------------------------------------------------*/
73 #if defined(USE_FULL_LL_DRIVER)
74 /** @defgroup USART_LL_Private_Macros USART Private Macros
75 * @{
76 */
77 /**
78 * @}
79 */
80 #endif /*USE_FULL_LL_DRIVER*/
81
82 /* Exported types ------------------------------------------------------------*/
83 #if defined(USE_FULL_LL_DRIVER)
84 /** @defgroup USART_LL_ES_INIT USART Exported Init structures
85 * @{
86 */
87
88 /**
89 * @brief LL USART Init Structure definition
90 */
91 typedef struct
92 {
93 uint32_t PrescalerValue; /*!< Specifies the Prescaler to compute the communication baud rate.
94 This parameter can be a value of @ref USART_LL_EC_PRESCALER.
95
96 This feature can be modified afterwards using unitary
97 function @ref LL_USART_SetPrescaler().*/
98
99 uint32_t BaudRate; /*!< This field defines expected Usart communication baud rate.
100
101 This feature can be modified afterwards using unitary
102 function @ref LL_USART_SetBaudRate().*/
103
104 uint32_t DataWidth; /*!< Specifies the number of data bits transmitted or received in a frame.
105 This parameter can be a value of @ref USART_LL_EC_DATAWIDTH.
106
107 This feature can be modified afterwards using unitary
108 function @ref LL_USART_SetDataWidth().*/
109
110 uint32_t StopBits; /*!< Specifies the number of stop bits transmitted.
111 This parameter can be a value of @ref USART_LL_EC_STOPBITS.
112
113 This feature can be modified afterwards using unitary
114 function @ref LL_USART_SetStopBitsLength().*/
115
116 uint32_t Parity; /*!< Specifies the parity mode.
117 This parameter can be a value of @ref USART_LL_EC_PARITY.
118
119 This feature can be modified afterwards using unitary
120 function @ref LL_USART_SetParity().*/
121
122 uint32_t TransferDirection; /*!< Specifies whether the Receive and/or Transmit mode is enabled or disabled.
123 This parameter can be a value of @ref USART_LL_EC_DIRECTION.
124
125 This feature can be modified afterwards using unitary
126 function @ref LL_USART_SetTransferDirection().*/
127
128 uint32_t HardwareFlowControl; /*!< Specifies whether the hardware flow control mode is enabled or disabled.
129 This parameter can be a value of @ref USART_LL_EC_HWCONTROL.
130
131 This feature can be modified afterwards using unitary
132 function @ref LL_USART_SetHWFlowCtrl().*/
133
134 uint32_t OverSampling; /*!< Specifies whether USART oversampling mode is 16 or 8.
135 This parameter can be a value of @ref USART_LL_EC_OVERSAMPLING.
136
137 This feature can be modified afterwards using unitary
138 function @ref LL_USART_SetOverSampling().*/
139
140 } LL_USART_InitTypeDef;
141
142 /**
143 * @brief LL USART Clock Init Structure definition
144 */
145 typedef struct
146 {
147 uint32_t ClockOutput; /*!< Specifies whether the USART clock is enabled or disabled.
148 This parameter can be a value of @ref USART_LL_EC_CLOCK.
149
150 USART HW configuration can be modified afterwards using unitary functions
151 @ref LL_USART_EnableSCLKOutput() or @ref LL_USART_DisableSCLKOutput().
152 For more details, refer to description of this function. */
153
154 uint32_t ClockPolarity; /*!< Specifies the steady state of the serial clock.
155 This parameter can be a value of @ref USART_LL_EC_POLARITY.
156
157 USART HW configuration can be modified afterwards using unitary
158 functions @ref LL_USART_SetClockPolarity().
159 For more details, refer to description of this function. */
160
161 uint32_t ClockPhase; /*!< Specifies the clock transition on which the bit capture is made.
162 This parameter can be a value of @ref USART_LL_EC_PHASE.
163
164 USART HW configuration can be modified afterwards using unitary
165 functions @ref LL_USART_SetClockPhase().
166 For more details, refer to description of this function. */
167
168 uint32_t LastBitClockPulse; /*!< Specifies whether the clock pulse corresponding to the last transmitted
169 data bit (MSB) has to be output on the SCLK pin in synchronous mode.
170 This parameter can be a value of @ref USART_LL_EC_LASTCLKPULSE.
171
172 USART HW configuration can be modified afterwards using unitary
173 functions @ref LL_USART_SetLastClkPulseOutput().
174 For more details, refer to description of this function. */
175
176 } LL_USART_ClockInitTypeDef;
177
178 /**
179 * @}
180 */
181 #endif /* USE_FULL_LL_DRIVER */
182
183 /* Exported constants --------------------------------------------------------*/
184 /** @defgroup USART_LL_Exported_Constants USART Exported Constants
185 * @{
186 */
187
188 /** @defgroup USART_LL_EC_CLEAR_FLAG Clear Flags Defines
189 * @brief Flags defines which can be used with LL_USART_WriteReg function
190 * @{
191 */
192 #define LL_USART_ICR_PECF USART_ICR_PECF /*!< Parity error clear flag */
193 #define LL_USART_ICR_FECF USART_ICR_FECF /*!< Framing error clear flag */
194 #define LL_USART_ICR_NECF USART_ICR_NECF /*!< Noise error detected clear flag */
195 #define LL_USART_ICR_ORECF USART_ICR_ORECF /*!< Overrun error clear flag */
196 #define LL_USART_ICR_IDLECF USART_ICR_IDLECF /*!< Idle line detected clear flag */
197 #define LL_USART_ICR_TXFECF USART_ICR_TXFECF /*!< TX FIFO Empty clear flag */
198 #define LL_USART_ICR_TCCF USART_ICR_TCCF /*!< Transmission complete clear flag */
199 #define LL_USART_ICR_TCBGTCF USART_ICR_TCBGTCF /*!< Transmission completed before guard time clear flag */
200 #define LL_USART_ICR_LBDCF USART_ICR_LBDCF /*!< LIN break detection clear flag */
201 #define LL_USART_ICR_CTSCF USART_ICR_CTSCF /*!< CTS clear flag */
202 #define LL_USART_ICR_RTOCF USART_ICR_RTOCF /*!< Receiver timeout clear flag */
203 #define LL_USART_ICR_EOBCF USART_ICR_EOBCF /*!< End of block clear flag */
204 #define LL_USART_ICR_UDRCF USART_ICR_UDRCF /*!< SPI Slave Underrun clear flag */
205 #define LL_USART_ICR_CMCF USART_ICR_CMCF /*!< Character match clear flag */
206 #define LL_USART_ICR_WUCF USART_ICR_WUCF /*!< Wakeup from Stop mode clear flag */
207 /**
208 * @}
209 */
210
211 /** @defgroup USART_LL_EC_GET_FLAG Get Flags Defines
212 * @brief Flags defines which can be used with LL_USART_ReadReg function
213 * @{
214 */
215 #define LL_USART_ISR_PE USART_ISR_PE /*!< Parity error flag */
216 #define LL_USART_ISR_FE USART_ISR_FE /*!< Framing error flag */
217 #define LL_USART_ISR_NE USART_ISR_NE /*!< Noise detected flag */
218 #define LL_USART_ISR_ORE USART_ISR_ORE /*!< Overrun error flag */
219 #define LL_USART_ISR_IDLE USART_ISR_IDLE /*!< Idle line detected flag */
220 #define LL_USART_ISR_RXNE_RXFNE USART_ISR_RXNE_RXFNE /*!< Read data register or RX FIFO not empty flag */
221 #define LL_USART_ISR_TC USART_ISR_TC /*!< Transmission complete flag */
222 #define LL_USART_ISR_TXE_TXFNF USART_ISR_TXE_TXFNF /*!< Transmit data register empty or TX FIFO Not Full flag*/
223 #define LL_USART_ISR_LBDF USART_ISR_LBDF /*!< LIN break detection flag */
224 #define LL_USART_ISR_CTSIF USART_ISR_CTSIF /*!< CTS interrupt flag */
225 #define LL_USART_ISR_CTS USART_ISR_CTS /*!< CTS flag */
226 #define LL_USART_ISR_RTOF USART_ISR_RTOF /*!< Receiver timeout flag */
227 #define LL_USART_ISR_EOBF USART_ISR_EOBF /*!< End of block flag */
228 #define LL_USART_ISR_UDR USART_ISR_UDR /*!< SPI Slave underrun error flag */
229 #define LL_USART_ISR_ABRE USART_ISR_ABRE /*!< Auto baud rate error flag */
230 #define LL_USART_ISR_ABRF USART_ISR_ABRF /*!< Auto baud rate flag */
231 #define LL_USART_ISR_BUSY USART_ISR_BUSY /*!< Busy flag */
232 #define LL_USART_ISR_CMF USART_ISR_CMF /*!< Character match flag */
233 #define LL_USART_ISR_SBKF USART_ISR_SBKF /*!< Send break flag */
234 #define LL_USART_ISR_RWU USART_ISR_RWU /*!< Receiver wakeup from Mute mode flag */
235 #define LL_USART_ISR_WUF USART_ISR_WUF /*!< Wakeup from Stop mode flag */
236 #define LL_USART_ISR_TEACK USART_ISR_TEACK /*!< Transmit enable acknowledge flag */
237 #define LL_USART_ISR_REACK USART_ISR_REACK /*!< Receive enable acknowledge flag */
238 #define LL_USART_ISR_TXFE USART_ISR_TXFE /*!< TX FIFO empty flag */
239 #define LL_USART_ISR_RXFF USART_ISR_RXFF /*!< RX FIFO full flag */
240 #define LL_USART_ISR_TCBGT USART_ISR_TCBGT /*!< Transmission complete before guard time completion flag */
241 #define LL_USART_ISR_RXFT USART_ISR_RXFT /*!< RX FIFO threshold flag */
242 #define LL_USART_ISR_TXFT USART_ISR_TXFT /*!< TX FIFO threshold flag */
243 /**
244 * @}
245 */
246
247 /** @defgroup USART_LL_EC_IT IT Defines
248 * @brief IT defines which can be used with LL_USART_ReadReg and LL_USART_WriteReg functions
249 * @{
250 */
251 #define LL_USART_CR1_IDLEIE USART_CR1_IDLEIE /*!< IDLE interrupt enable */
252 #define LL_USART_CR1_RXNEIE_RXFNEIE USART_CR1_RXNEIE_RXFNEIE /*!< Read data register and RXFIFO not empty interrupt enable */
253 #define LL_USART_CR1_TCIE USART_CR1_TCIE /*!< Transmission complete interrupt enable */
254 #define LL_USART_CR1_TXEIE_TXFNFIE USART_CR1_TXEIE_TXFNFIE /*!< Transmit data register empty and TX FIFO not full interrupt enable */
255 #define LL_USART_CR1_PEIE USART_CR1_PEIE /*!< Parity error */
256 #define LL_USART_CR1_CMIE USART_CR1_CMIE /*!< Character match interrupt enable */
257 #define LL_USART_CR1_RTOIE USART_CR1_RTOIE /*!< Receiver timeout interrupt enable */
258 #define LL_USART_CR1_EOBIE USART_CR1_EOBIE /*!< End of Block interrupt enable */
259 #define LL_USART_CR1_TXFEIE USART_CR1_TXFEIE /*!< TX FIFO empty interrupt enable */
260 #define LL_USART_CR1_RXFFIE USART_CR1_RXFFIE /*!< RX FIFO full interrupt enable */
261 #define LL_USART_CR2_LBDIE USART_CR2_LBDIE /*!< LIN break detection interrupt enable */
262 #define LL_USART_CR3_EIE USART_CR3_EIE /*!< Error interrupt enable */
263 #define LL_USART_CR3_CTSIE USART_CR3_CTSIE /*!< CTS interrupt enable */
264 #define LL_USART_CR3_WUFIE USART_CR3_WUFIE /*!< Wakeup from Stop mode interrupt enable */
265 #define LL_USART_CR3_TXFTIE USART_CR3_TXFTIE /*!< TX FIFO threshold interrupt enable */
266 #define LL_USART_CR3_TCBGTIE USART_CR3_TCBGTIE /*!< Transmission complete before guard time interrupt enable */
267 #define LL_USART_CR3_RXFTIE USART_CR3_RXFTIE /*!< RX FIFO threshold interrupt enable */
268 /**
269 * @}
270 */
271
272 /** @defgroup USART_LL_EC_FIFOTHRESHOLD FIFO Threshold
273 * @{
274 */
275 #define LL_USART_FIFOTHRESHOLD_1_8 0x00000000U /*!< FIFO reaches 1/8 of its depth */
276 #define LL_USART_FIFOTHRESHOLD_1_4 0x00000001U /*!< FIFO reaches 1/4 of its depth */
277 #define LL_USART_FIFOTHRESHOLD_1_2 0x00000002U /*!< FIFO reaches 1/2 of its depth */
278 #define LL_USART_FIFOTHRESHOLD_3_4 0x00000003U /*!< FIFO reaches 3/4 of its depth */
279 #define LL_USART_FIFOTHRESHOLD_7_8 0x00000004U /*!< FIFO reaches 7/8 of its depth */
280 #define LL_USART_FIFOTHRESHOLD_8_8 0x00000005U /*!< FIFO becomes empty for TX and full for RX */
281 /**
282 * @}
283 */
284
285 /** @defgroup USART_LL_EC_DIRECTION Communication Direction
286 * @{
287 */
288 #define LL_USART_DIRECTION_NONE 0x00000000U /*!< Transmitter and Receiver are disabled */
289 #define LL_USART_DIRECTION_RX USART_CR1_RE /*!< Transmitter is disabled and Receiver is enabled */
290 #define LL_USART_DIRECTION_TX USART_CR1_TE /*!< Transmitter is enabled and Receiver is disabled */
291 #define LL_USART_DIRECTION_TX_RX (USART_CR1_TE |USART_CR1_RE) /*!< Transmitter and Receiver are enabled */
292 /**
293 * @}
294 */
295
296 /** @defgroup USART_LL_EC_PARITY Parity Control
297 * @{
298 */
299 #define LL_USART_PARITY_NONE 0x00000000U /*!< Parity control disabled */
300 #define LL_USART_PARITY_EVEN USART_CR1_PCE /*!< Parity control enabled and Even Parity is selected */
301 #define LL_USART_PARITY_ODD (USART_CR1_PCE | USART_CR1_PS) /*!< Parity control enabled and Odd Parity is selected */
302 /**
303 * @}
304 */
305
306 /** @defgroup USART_LL_EC_WAKEUP Wakeup
307 * @{
308 */
309 #define LL_USART_WAKEUP_IDLELINE 0x00000000U /*!< USART wake up from Mute mode on Idle Line */
310 #define LL_USART_WAKEUP_ADDRESSMARK USART_CR1_WAKE /*!< USART wake up from Mute mode on Address Mark */
311 /**
312 * @}
313 */
314
315 /** @defgroup USART_LL_EC_DATAWIDTH Datawidth
316 * @{
317 */
318 #define LL_USART_DATAWIDTH_7B USART_CR1_M1 /*!< 7 bits word length : Start bit, 7 data bits, n stop bits */
319 #define LL_USART_DATAWIDTH_8B 0x00000000U /*!< 8 bits word length : Start bit, 8 data bits, n stop bits */
320 #define LL_USART_DATAWIDTH_9B USART_CR1_M0 /*!< 9 bits word length : Start bit, 9 data bits, n stop bits */
321 /**
322 * @}
323 */
324
325 /** @defgroup USART_LL_EC_OVERSAMPLING Oversampling
326 * @{
327 */
328 #define LL_USART_OVERSAMPLING_16 0x00000000U /*!< Oversampling by 16 */
329 #define LL_USART_OVERSAMPLING_8 USART_CR1_OVER8 /*!< Oversampling by 8 */
330 /**
331 * @}
332 */
333
334 #if defined(USE_FULL_LL_DRIVER)
335 /** @defgroup USART_LL_EC_CLOCK Clock Signal
336 * @{
337 */
338
339 #define LL_USART_CLOCK_DISABLE 0x00000000U /*!< Clock signal not provided */
340 #define LL_USART_CLOCK_ENABLE USART_CR2_CLKEN /*!< Clock signal provided */
341 /**
342 * @}
343 */
344 #endif /*USE_FULL_LL_DRIVER*/
345
346 /** @defgroup USART_LL_EC_LASTCLKPULSE Last Clock Pulse
347 * @{
348 */
349 #define LL_USART_LASTCLKPULSE_NO_OUTPUT 0x00000000U /*!< The clock pulse of the last data bit is not output to the SCLK pin */
350 #define LL_USART_LASTCLKPULSE_OUTPUT USART_CR2_LBCL /*!< The clock pulse of the last data bit is output to the SCLK pin */
351 /**
352 * @}
353 */
354
355 /** @defgroup USART_LL_EC_PHASE Clock Phase
356 * @{
357 */
358 #define LL_USART_PHASE_1EDGE 0x00000000U /*!< The first clock transition is the first data capture edge */
359 #define LL_USART_PHASE_2EDGE USART_CR2_CPHA /*!< The second clock transition is the first data capture edge */
360 /**
361 * @}
362 */
363
364 /** @defgroup USART_LL_EC_POLARITY Clock Polarity
365 * @{
366 */
367 #define LL_USART_POLARITY_LOW 0x00000000U /*!< Steady low value on SCLK pin outside transmission window*/
368 #define LL_USART_POLARITY_HIGH USART_CR2_CPOL /*!< Steady high value on SCLK pin outside transmission window */
369 /**
370 * @}
371 */
372
373 /** @defgroup USART_LL_EC_PRESCALER Clock Source Prescaler
374 * @{
375 */
376 #define LL_USART_PRESCALER_DIV1 0x00000000U /*!< Input clock not divided */
377 #define LL_USART_PRESCALER_DIV2 (USART_PRESC_PRESCALER_0) /*!< Input clock divided by 2 */
378 #define LL_USART_PRESCALER_DIV4 (USART_PRESC_PRESCALER_1) /*!< Input clock divided by 4 */
379 #define LL_USART_PRESCALER_DIV6 (USART_PRESC_PRESCALER_1 | USART_PRESC_PRESCALER_0) /*!< Input clock divided by 6 */
380 #define LL_USART_PRESCALER_DIV8 (USART_PRESC_PRESCALER_2) /*!< Input clock divided by 8 */
381 #define LL_USART_PRESCALER_DIV10 (USART_PRESC_PRESCALER_2 | USART_PRESC_PRESCALER_0) /*!< Input clock divided by 10 */
382 #define LL_USART_PRESCALER_DIV12 (USART_PRESC_PRESCALER_2 | USART_PRESC_PRESCALER_1) /*!< Input clock divided by 12 */
383 #define LL_USART_PRESCALER_DIV16 (USART_PRESC_PRESCALER_2 | USART_PRESC_PRESCALER_1 | USART_PRESC_PRESCALER_0) /*!< Input clock divided by 16 */
384 #define LL_USART_PRESCALER_DIV32 (USART_PRESC_PRESCALER_3) /*!< Input clock divided by 32 */
385 #define LL_USART_PRESCALER_DIV64 (USART_PRESC_PRESCALER_3 | USART_PRESC_PRESCALER_0) /*!< Input clock divided by 64 */
386 #define LL_USART_PRESCALER_DIV128 (USART_PRESC_PRESCALER_3 | USART_PRESC_PRESCALER_1) /*!< Input clock divided by 128 */
387 #define LL_USART_PRESCALER_DIV256 (USART_PRESC_PRESCALER_3 | USART_PRESC_PRESCALER_1 | USART_PRESC_PRESCALER_0) /*!< Input clock divided by 256 */
388 /**
389 * @}
390 */
391
392 /** @defgroup USART_LL_EC_STOPBITS Stop Bits
393 * @{
394 */
395 #define LL_USART_STOPBITS_0_5 USART_CR2_STOP_0 /*!< 0.5 stop bit */
396 #define LL_USART_STOPBITS_1 0x00000000U /*!< 1 stop bit */
397 #define LL_USART_STOPBITS_1_5 (USART_CR2_STOP_0 | USART_CR2_STOP_1) /*!< 1.5 stop bits */
398 #define LL_USART_STOPBITS_2 USART_CR2_STOP_1 /*!< 2 stop bits */
399 /**
400 * @}
401 */
402
403 /** @defgroup USART_LL_EC_TXRX TX RX Pins Swap
404 * @{
405 */
406 #define LL_USART_TXRX_STANDARD 0x00000000U /*!< TX/RX pins are used as defined in standard pinout */
407 #define LL_USART_TXRX_SWAPPED (USART_CR2_SWAP) /*!< TX and RX pins functions are swapped. */
408 /**
409 * @}
410 */
411
412 /** @defgroup USART_LL_EC_RXPIN_LEVEL RX Pin Active Level Inversion
413 * @{
414 */
415 #define LL_USART_RXPIN_LEVEL_STANDARD 0x00000000U /*!< RX pin signal works using the standard logic levels */
416 #define LL_USART_RXPIN_LEVEL_INVERTED (USART_CR2_RXINV) /*!< RX pin signal values are inverted. */
417 /**
418 * @}
419 */
420
421 /** @defgroup USART_LL_EC_TXPIN_LEVEL TX Pin Active Level Inversion
422 * @{
423 */
424 #define LL_USART_TXPIN_LEVEL_STANDARD 0x00000000U /*!< TX pin signal works using the standard logic levels */
425 #define LL_USART_TXPIN_LEVEL_INVERTED (USART_CR2_TXINV) /*!< TX pin signal values are inverted. */
426 /**
427 * @}
428 */
429
430 /** @defgroup USART_LL_EC_BINARY_LOGIC Binary Data Inversion
431 * @{
432 */
433 #define LL_USART_BINARY_LOGIC_POSITIVE 0x00000000U /*!< Logical data from the data register are send/received in positive/direct logic. (1=H, 0=L) */
434 #define LL_USART_BINARY_LOGIC_NEGATIVE USART_CR2_DATAINV /*!< Logical data from the data register are send/received in negative/inverse logic. (1=L, 0=H). The parity bit is also inverted. */
435 /**
436 * @}
437 */
438
439 /** @defgroup USART_LL_EC_BITORDER Bit Order
440 * @{
441 */
442 #define LL_USART_BITORDER_LSBFIRST 0x00000000U /*!< data is transmitted/received with data bit 0 first, following the start bit */
443 #define LL_USART_BITORDER_MSBFIRST USART_CR2_MSBFIRST /*!< data is transmitted/received with the MSB first, following the start bit */
444 /**
445 * @}
446 */
447
448 /** @defgroup USART_LL_EC_AUTOBAUD_DETECT_ON Autobaud Detection
449 * @{
450 */
451 #define LL_USART_AUTOBAUD_DETECT_ON_STARTBIT 0x00000000U /*!< Measurement of the start bit is used to detect the baud rate */
452 #define LL_USART_AUTOBAUD_DETECT_ON_FALLINGEDGE USART_CR2_ABRMODE_0 /*!< Falling edge to falling edge measurement. Received frame must start with a single bit = 1 -> Frame = Start10xxxxxx */
453 #define LL_USART_AUTOBAUD_DETECT_ON_7F_FRAME USART_CR2_ABRMODE_1 /*!< 0x7F frame detection */
454 #define LL_USART_AUTOBAUD_DETECT_ON_55_FRAME (USART_CR2_ABRMODE_1 | USART_CR2_ABRMODE_0) /*!< 0x55 frame detection */
455 /**
456 * @}
457 */
458
459 /** @defgroup USART_LL_EC_ADDRESS_DETECT Address Length Detection
460 * @{
461 */
462 #define LL_USART_ADDRESS_DETECT_4B 0x00000000U /*!< 4-bit address detection method selected */
463 #define LL_USART_ADDRESS_DETECT_7B USART_CR2_ADDM7 /*!< 7-bit address detection (in 8-bit data mode) method selected */
464 /**
465 * @}
466 */
467
468 /** @defgroup USART_LL_EC_HWCONTROL Hardware Control
469 * @{
470 */
471 #define LL_USART_HWCONTROL_NONE 0x00000000U /*!< CTS and RTS hardware flow control disabled */
472 #define LL_USART_HWCONTROL_RTS USART_CR3_RTSE /*!< RTS output enabled, data is only requested when there is space in the receive buffer */
473 #define LL_USART_HWCONTROL_CTS USART_CR3_CTSE /*!< CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0) */
474 #define LL_USART_HWCONTROL_RTS_CTS (USART_CR3_RTSE | USART_CR3_CTSE) /*!< CTS and RTS hardware flow control enabled */
475 /**
476 * @}
477 */
478
479 /** @defgroup USART_LL_EC_WAKEUP_ON Wakeup Activation
480 * @{
481 */
482 #define LL_USART_WAKEUP_ON_ADDRESS 0x00000000U /*!< Wake up active on address match */
483 #define LL_USART_WAKEUP_ON_STARTBIT USART_CR3_WUS_1 /*!< Wake up active on Start bit detection */
484 #define LL_USART_WAKEUP_ON_RXNE (USART_CR3_WUS_0 | USART_CR3_WUS_1) /*!< Wake up active on RXNE */
485 /**
486 * @}
487 */
488
489 /** @defgroup USART_LL_EC_IRDA_POWER IrDA Power
490 * @{
491 */
492 #define LL_USART_IRDA_POWER_NORMAL 0x00000000U /*!< IrDA normal power mode */
493 #define LL_USART_IRDA_POWER_LOW USART_CR3_IRLP /*!< IrDA low power mode */
494 /**
495 * @}
496 */
497
498 /** @defgroup USART_LL_EC_LINBREAK_DETECT LIN Break Detection Length
499 * @{
500 */
501 #define LL_USART_LINBREAK_DETECT_10B 0x00000000U /*!< 10-bit break detection method selected */
502 #define LL_USART_LINBREAK_DETECT_11B USART_CR2_LBDL /*!< 11-bit break detection method selected */
503 /**
504 * @}
505 */
506
507 /** @defgroup USART_LL_EC_DE_POLARITY Driver Enable Polarity
508 * @{
509 */
510 #define LL_USART_DE_POLARITY_HIGH 0x00000000U /*!< DE signal is active high */
511 #define LL_USART_DE_POLARITY_LOW USART_CR3_DEP /*!< DE signal is active low */
512 /**
513 * @}
514 */
515
516 /** @defgroup USART_LL_EC_DMA_REG_DATA DMA Register Data
517 * @{
518 */
519 #define LL_USART_DMA_REG_DATA_TRANSMIT 0x00000000U /*!< Get address of data register used for transmission */
520 #define LL_USART_DMA_REG_DATA_RECEIVE 0x00000001U /*!< Get address of data register used for reception */
521 /**
522 * @}
523 */
524
525 /**
526 * @}
527 */
528
529 /* Exported macro ------------------------------------------------------------*/
530 /** @defgroup USART_LL_Exported_Macros USART Exported Macros
531 * @{
532 */
533
534 /** @defgroup USART_LL_EM_WRITE_READ Common Write and read registers Macros
535 * @{
536 */
537
538 /**
539 * @brief Write a value in USART register
540 * @param __INSTANCE__ USART Instance
541 * @param __REG__ Register to be written
542 * @param __VALUE__ Value to be written in the register
543 * @retval None
544 */
545 #define LL_USART_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
546
547 /**
548 * @brief Read a value in USART register
549 * @param __INSTANCE__ USART Instance
550 * @param __REG__ Register to be read
551 * @retval Register value
552 */
553 #define LL_USART_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
554 /**
555 * @}
556 */
557
558 /** @defgroup USART_LL_EM_Exported_Macros_Helper Exported_Macros_Helper
559 * @{
560 */
561
562 /**
563 * @brief Compute USARTDIV value according to Peripheral Clock and
564 * expected Baud Rate in 8 bits sampling mode (32 bits value of USARTDIV is returned)
565 * @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance
566 * @param __PRESCALER__ This parameter can be one of the following values:
567 * @arg @ref LL_USART_PRESCALER_DIV1
568 * @arg @ref LL_USART_PRESCALER_DIV2
569 * @arg @ref LL_USART_PRESCALER_DIV4
570 * @arg @ref LL_USART_PRESCALER_DIV6
571 * @arg @ref LL_USART_PRESCALER_DIV8
572 * @arg @ref LL_USART_PRESCALER_DIV10
573 * @arg @ref LL_USART_PRESCALER_DIV12
574 * @arg @ref LL_USART_PRESCALER_DIV16
575 * @arg @ref LL_USART_PRESCALER_DIV32
576 * @arg @ref LL_USART_PRESCALER_DIV64
577 * @arg @ref LL_USART_PRESCALER_DIV128
578 * @arg @ref LL_USART_PRESCALER_DIV256
579 * @param __BAUDRATE__ Baud rate value to achieve
580 * @retval USARTDIV value to be used for BRR register filling in OverSampling_8 case
581 */
582 #define __LL_USART_DIV_SAMPLING8(__PERIPHCLK__, __PRESCALER__, __BAUDRATE__) \
583 (((((__PERIPHCLK__)/(USART_PRESCALER_TAB[(__PRESCALER__)]))*2U)\
584 + ((__BAUDRATE__)/2U))/(__BAUDRATE__))
585
586 /**
587 * @brief Compute USARTDIV value according to Peripheral Clock and
588 * expected Baud Rate in 16 bits sampling mode (32 bits value of USARTDIV is returned)
589 * @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance
590 * @param __PRESCALER__ This parameter can be one of the following values:
591 * @arg @ref LL_USART_PRESCALER_DIV1
592 * @arg @ref LL_USART_PRESCALER_DIV2
593 * @arg @ref LL_USART_PRESCALER_DIV4
594 * @arg @ref LL_USART_PRESCALER_DIV6
595 * @arg @ref LL_USART_PRESCALER_DIV8
596 * @arg @ref LL_USART_PRESCALER_DIV10
597 * @arg @ref LL_USART_PRESCALER_DIV12
598 * @arg @ref LL_USART_PRESCALER_DIV16
599 * @arg @ref LL_USART_PRESCALER_DIV32
600 * @arg @ref LL_USART_PRESCALER_DIV64
601 * @arg @ref LL_USART_PRESCALER_DIV128
602 * @arg @ref LL_USART_PRESCALER_DIV256
603 * @param __BAUDRATE__ Baud rate value to achieve
604 * @retval USARTDIV value to be used for BRR register filling in OverSampling_16 case
605 */
606 #define __LL_USART_DIV_SAMPLING16(__PERIPHCLK__, __PRESCALER__, __BAUDRATE__) \
607 ((((__PERIPHCLK__)/(USART_PRESCALER_TAB[(__PRESCALER__)]))\
608 + ((__BAUDRATE__)/2U))/(__BAUDRATE__))
609
610 /**
611 * @}
612 */
613
614 /**
615 * @}
616 */
617
618 /* Exported functions --------------------------------------------------------*/
619
620 /** @defgroup USART_LL_Exported_Functions USART Exported Functions
621 * @{
622 */
623
624 /** @defgroup USART_LL_EF_Configuration Configuration functions
625 * @{
626 */
627
628 /**
629 * @brief USART Enable
630 * @rmtoll CR1 UE LL_USART_Enable
631 * @param USARTx USART Instance
632 * @retval None
633 */
LL_USART_Enable(USART_TypeDef * USARTx)634 __STATIC_INLINE void LL_USART_Enable(USART_TypeDef *USARTx)
635 {
636 SET_BIT(USARTx->CR1, USART_CR1_UE);
637 }
638
639 /**
640 * @brief USART Disable (all USART prescalers and outputs are disabled)
641 * @note When USART is disabled, USART prescalers and outputs are stopped immediately,
642 * and current operations are discarded. The configuration of the USART is kept, but all the status
643 * flags, in the USARTx_ISR are set to their default values.
644 * @rmtoll CR1 UE LL_USART_Disable
645 * @param USARTx USART Instance
646 * @retval None
647 */
LL_USART_Disable(USART_TypeDef * USARTx)648 __STATIC_INLINE void LL_USART_Disable(USART_TypeDef *USARTx)
649 {
650 CLEAR_BIT(USARTx->CR1, USART_CR1_UE);
651 }
652
653 /**
654 * @brief Indicate if USART is enabled
655 * @rmtoll CR1 UE LL_USART_IsEnabled
656 * @param USARTx USART Instance
657 * @retval State of bit (1 or 0).
658 */
LL_USART_IsEnabled(const USART_TypeDef * USARTx)659 __STATIC_INLINE uint32_t LL_USART_IsEnabled(const USART_TypeDef *USARTx)
660 {
661 return ((READ_BIT(USARTx->CR1, USART_CR1_UE) == (USART_CR1_UE)) ? 1UL : 0UL);
662 }
663
664 /**
665 * @brief FIFO Mode Enable
666 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
667 * FIFO mode feature is supported by the USARTx instance.
668 * @rmtoll CR1 FIFOEN LL_USART_EnableFIFO
669 * @param USARTx USART Instance
670 * @retval None
671 */
LL_USART_EnableFIFO(USART_TypeDef * USARTx)672 __STATIC_INLINE void LL_USART_EnableFIFO(USART_TypeDef *USARTx)
673 {
674 SET_BIT(USARTx->CR1, USART_CR1_FIFOEN);
675 }
676
677 /**
678 * @brief FIFO Mode Disable
679 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
680 * FIFO mode feature is supported by the USARTx instance.
681 * @rmtoll CR1 FIFOEN LL_USART_DisableFIFO
682 * @param USARTx USART Instance
683 * @retval None
684 */
LL_USART_DisableFIFO(USART_TypeDef * USARTx)685 __STATIC_INLINE void LL_USART_DisableFIFO(USART_TypeDef *USARTx)
686 {
687 CLEAR_BIT(USARTx->CR1, USART_CR1_FIFOEN);
688 }
689
690 /**
691 * @brief Indicate if FIFO Mode is enabled
692 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
693 * FIFO mode feature is supported by the USARTx instance.
694 * @rmtoll CR1 FIFOEN LL_USART_IsEnabledFIFO
695 * @param USARTx USART Instance
696 * @retval State of bit (1 or 0).
697 */
LL_USART_IsEnabledFIFO(const USART_TypeDef * USARTx)698 __STATIC_INLINE uint32_t LL_USART_IsEnabledFIFO(const USART_TypeDef *USARTx)
699 {
700 return ((READ_BIT(USARTx->CR1, USART_CR1_FIFOEN) == (USART_CR1_FIFOEN)) ? 1UL : 0UL);
701 }
702
703 /**
704 * @brief Configure TX FIFO Threshold
705 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
706 * FIFO mode feature is supported by the USARTx instance.
707 * @rmtoll CR3 TXFTCFG LL_USART_SetTXFIFOThreshold
708 * @param USARTx USART Instance
709 * @param Threshold This parameter can be one of the following values:
710 * @arg @ref LL_USART_FIFOTHRESHOLD_1_8
711 * @arg @ref LL_USART_FIFOTHRESHOLD_1_4
712 * @arg @ref LL_USART_FIFOTHRESHOLD_1_2
713 * @arg @ref LL_USART_FIFOTHRESHOLD_3_4
714 * @arg @ref LL_USART_FIFOTHRESHOLD_7_8
715 * @arg @ref LL_USART_FIFOTHRESHOLD_8_8
716 * @retval None
717 */
LL_USART_SetTXFIFOThreshold(USART_TypeDef * USARTx,uint32_t Threshold)718 __STATIC_INLINE void LL_USART_SetTXFIFOThreshold(USART_TypeDef *USARTx, uint32_t Threshold)
719 {
720 ATOMIC_MODIFY_REG(USARTx->CR3, USART_CR3_TXFTCFG, Threshold << USART_CR3_TXFTCFG_Pos);
721 }
722
723 /**
724 * @brief Return TX FIFO Threshold Configuration
725 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
726 * FIFO mode feature is supported by the USARTx instance.
727 * @rmtoll CR3 TXFTCFG LL_USART_GetTXFIFOThreshold
728 * @param USARTx USART Instance
729 * @retval Returned value can be one of the following values:
730 * @arg @ref LL_USART_FIFOTHRESHOLD_1_8
731 * @arg @ref LL_USART_FIFOTHRESHOLD_1_4
732 * @arg @ref LL_USART_FIFOTHRESHOLD_1_2
733 * @arg @ref LL_USART_FIFOTHRESHOLD_3_4
734 * @arg @ref LL_USART_FIFOTHRESHOLD_7_8
735 * @arg @ref LL_USART_FIFOTHRESHOLD_8_8
736 */
LL_USART_GetTXFIFOThreshold(const USART_TypeDef * USARTx)737 __STATIC_INLINE uint32_t LL_USART_GetTXFIFOThreshold(const USART_TypeDef *USARTx)
738 {
739 return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_TXFTCFG) >> USART_CR3_TXFTCFG_Pos);
740 }
741
742 /**
743 * @brief Configure RX FIFO Threshold
744 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
745 * FIFO mode feature is supported by the USARTx instance.
746 * @rmtoll CR3 RXFTCFG LL_USART_SetRXFIFOThreshold
747 * @param USARTx USART Instance
748 * @param Threshold This parameter can be one of the following values:
749 * @arg @ref LL_USART_FIFOTHRESHOLD_1_8
750 * @arg @ref LL_USART_FIFOTHRESHOLD_1_4
751 * @arg @ref LL_USART_FIFOTHRESHOLD_1_2
752 * @arg @ref LL_USART_FIFOTHRESHOLD_3_4
753 * @arg @ref LL_USART_FIFOTHRESHOLD_7_8
754 * @arg @ref LL_USART_FIFOTHRESHOLD_8_8
755 * @retval None
756 */
LL_USART_SetRXFIFOThreshold(USART_TypeDef * USARTx,uint32_t Threshold)757 __STATIC_INLINE void LL_USART_SetRXFIFOThreshold(USART_TypeDef *USARTx, uint32_t Threshold)
758 {
759 ATOMIC_MODIFY_REG(USARTx->CR3, USART_CR3_RXFTCFG, Threshold << USART_CR3_RXFTCFG_Pos);
760 }
761
762 /**
763 * @brief Return RX FIFO Threshold Configuration
764 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
765 * FIFO mode feature is supported by the USARTx instance.
766 * @rmtoll CR3 RXFTCFG LL_USART_GetRXFIFOThreshold
767 * @param USARTx USART Instance
768 * @retval Returned value can be one of the following values:
769 * @arg @ref LL_USART_FIFOTHRESHOLD_1_8
770 * @arg @ref LL_USART_FIFOTHRESHOLD_1_4
771 * @arg @ref LL_USART_FIFOTHRESHOLD_1_2
772 * @arg @ref LL_USART_FIFOTHRESHOLD_3_4
773 * @arg @ref LL_USART_FIFOTHRESHOLD_7_8
774 * @arg @ref LL_USART_FIFOTHRESHOLD_8_8
775 */
LL_USART_GetRXFIFOThreshold(const USART_TypeDef * USARTx)776 __STATIC_INLINE uint32_t LL_USART_GetRXFIFOThreshold(const USART_TypeDef *USARTx)
777 {
778 return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_RXFTCFG) >> USART_CR3_RXFTCFG_Pos);
779 }
780
781 /**
782 * @brief Configure TX and RX FIFOs Threshold
783 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
784 * FIFO mode feature is supported by the USARTx instance.
785 * @rmtoll CR3 TXFTCFG LL_USART_ConfigFIFOsThreshold\n
786 * CR3 RXFTCFG LL_USART_ConfigFIFOsThreshold
787 * @param USARTx USART Instance
788 * @param TXThreshold This parameter can be one of the following values:
789 * @arg @ref LL_USART_FIFOTHRESHOLD_1_8
790 * @arg @ref LL_USART_FIFOTHRESHOLD_1_4
791 * @arg @ref LL_USART_FIFOTHRESHOLD_1_2
792 * @arg @ref LL_USART_FIFOTHRESHOLD_3_4
793 * @arg @ref LL_USART_FIFOTHRESHOLD_7_8
794 * @arg @ref LL_USART_FIFOTHRESHOLD_8_8
795 * @param RXThreshold This parameter can be one of the following values:
796 * @arg @ref LL_USART_FIFOTHRESHOLD_1_8
797 * @arg @ref LL_USART_FIFOTHRESHOLD_1_4
798 * @arg @ref LL_USART_FIFOTHRESHOLD_1_2
799 * @arg @ref LL_USART_FIFOTHRESHOLD_3_4
800 * @arg @ref LL_USART_FIFOTHRESHOLD_7_8
801 * @arg @ref LL_USART_FIFOTHRESHOLD_8_8
802 * @retval None
803 */
LL_USART_ConfigFIFOsThreshold(USART_TypeDef * USARTx,uint32_t TXThreshold,uint32_t RXThreshold)804 __STATIC_INLINE void LL_USART_ConfigFIFOsThreshold(USART_TypeDef *USARTx, uint32_t TXThreshold, uint32_t RXThreshold)
805 {
806 ATOMIC_MODIFY_REG(USARTx->CR3, USART_CR3_TXFTCFG | USART_CR3_RXFTCFG, (TXThreshold << USART_CR3_TXFTCFG_Pos) |
807 (RXThreshold << USART_CR3_RXFTCFG_Pos));
808 }
809
810 /**
811 * @brief USART enabled in STOP Mode.
812 * @note When this function is enabled, USART is able to wake up the MCU from Stop mode, provided that
813 * USART clock selection is HSI or LSE in RCC.
814 * @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
815 * Wake-up from Stop mode feature is supported by the USARTx instance.
816 * @rmtoll CR1 UESM LL_USART_EnableInStopMode
817 * @param USARTx USART Instance
818 * @retval None
819 */
LL_USART_EnableInStopMode(USART_TypeDef * USARTx)820 __STATIC_INLINE void LL_USART_EnableInStopMode(USART_TypeDef *USARTx)
821 {
822 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_UESM);
823 }
824
825 /**
826 * @brief USART disabled in STOP Mode.
827 * @note When this function is disabled, USART is not able to wake up the MCU from Stop mode
828 * @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
829 * Wake-up from Stop mode feature is supported by the USARTx instance.
830 * @rmtoll CR1 UESM LL_USART_DisableInStopMode
831 * @param USARTx USART Instance
832 * @retval None
833 */
LL_USART_DisableInStopMode(USART_TypeDef * USARTx)834 __STATIC_INLINE void LL_USART_DisableInStopMode(USART_TypeDef *USARTx)
835 {
836 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_UESM);
837 }
838
839 /**
840 * @brief Indicate if USART is enabled in STOP Mode (able to wake up MCU from Stop mode or not)
841 * @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
842 * Wake-up from Stop mode feature is supported by the USARTx instance.
843 * @rmtoll CR1 UESM LL_USART_IsEnabledInStopMode
844 * @param USARTx USART Instance
845 * @retval State of bit (1 or 0).
846 */
LL_USART_IsEnabledInStopMode(const USART_TypeDef * USARTx)847 __STATIC_INLINE uint32_t LL_USART_IsEnabledInStopMode(const USART_TypeDef *USARTx)
848 {
849 return ((READ_BIT(USARTx->CR1, USART_CR1_UESM) == (USART_CR1_UESM)) ? 1UL : 0UL);
850 }
851
852 /**
853 * @brief Receiver Enable (Receiver is enabled and begins searching for a start bit)
854 * @rmtoll CR1 RE LL_USART_EnableDirectionRx
855 * @param USARTx USART Instance
856 * @retval None
857 */
LL_USART_EnableDirectionRx(USART_TypeDef * USARTx)858 __STATIC_INLINE void LL_USART_EnableDirectionRx(USART_TypeDef *USARTx)
859 {
860 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_RE);
861 }
862
863 /**
864 * @brief Receiver Disable
865 * @rmtoll CR1 RE LL_USART_DisableDirectionRx
866 * @param USARTx USART Instance
867 * @retval None
868 */
LL_USART_DisableDirectionRx(USART_TypeDef * USARTx)869 __STATIC_INLINE void LL_USART_DisableDirectionRx(USART_TypeDef *USARTx)
870 {
871 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_RE);
872 }
873
874 /**
875 * @brief Transmitter Enable
876 * @rmtoll CR1 TE LL_USART_EnableDirectionTx
877 * @param USARTx USART Instance
878 * @retval None
879 */
LL_USART_EnableDirectionTx(USART_TypeDef * USARTx)880 __STATIC_INLINE void LL_USART_EnableDirectionTx(USART_TypeDef *USARTx)
881 {
882 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_TE);
883 }
884
885 /**
886 * @brief Transmitter Disable
887 * @rmtoll CR1 TE LL_USART_DisableDirectionTx
888 * @param USARTx USART Instance
889 * @retval None
890 */
LL_USART_DisableDirectionTx(USART_TypeDef * USARTx)891 __STATIC_INLINE void LL_USART_DisableDirectionTx(USART_TypeDef *USARTx)
892 {
893 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_TE);
894 }
895
896 /**
897 * @brief Configure simultaneously enabled/disabled states
898 * of Transmitter and Receiver
899 * @rmtoll CR1 RE LL_USART_SetTransferDirection\n
900 * CR1 TE LL_USART_SetTransferDirection
901 * @param USARTx USART Instance
902 * @param TransferDirection This parameter can be one of the following values:
903 * @arg @ref LL_USART_DIRECTION_NONE
904 * @arg @ref LL_USART_DIRECTION_RX
905 * @arg @ref LL_USART_DIRECTION_TX
906 * @arg @ref LL_USART_DIRECTION_TX_RX
907 * @retval None
908 */
LL_USART_SetTransferDirection(USART_TypeDef * USARTx,uint32_t TransferDirection)909 __STATIC_INLINE void LL_USART_SetTransferDirection(USART_TypeDef *USARTx, uint32_t TransferDirection)
910 {
911 ATOMIC_MODIFY_REG(USARTx->CR1, USART_CR1_RE | USART_CR1_TE, TransferDirection);
912 }
913
914 /**
915 * @brief Return enabled/disabled states of Transmitter and Receiver
916 * @rmtoll CR1 RE LL_USART_GetTransferDirection\n
917 * CR1 TE LL_USART_GetTransferDirection
918 * @param USARTx USART Instance
919 * @retval Returned value can be one of the following values:
920 * @arg @ref LL_USART_DIRECTION_NONE
921 * @arg @ref LL_USART_DIRECTION_RX
922 * @arg @ref LL_USART_DIRECTION_TX
923 * @arg @ref LL_USART_DIRECTION_TX_RX
924 */
LL_USART_GetTransferDirection(const USART_TypeDef * USARTx)925 __STATIC_INLINE uint32_t LL_USART_GetTransferDirection(const USART_TypeDef *USARTx)
926 {
927 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_RE | USART_CR1_TE));
928 }
929
930 /**
931 * @brief Configure Parity (enabled/disabled and parity mode if enabled).
932 * @note This function selects if hardware parity control (generation and detection) is enabled or disabled.
933 * When the parity control is enabled (Odd or Even), computed parity bit is inserted at the MSB position
934 * (9th or 8th bit depending on data width) and parity is checked on the received data.
935 * @rmtoll CR1 PS LL_USART_SetParity\n
936 * CR1 PCE LL_USART_SetParity
937 * @param USARTx USART Instance
938 * @param Parity This parameter can be one of the following values:
939 * @arg @ref LL_USART_PARITY_NONE
940 * @arg @ref LL_USART_PARITY_EVEN
941 * @arg @ref LL_USART_PARITY_ODD
942 * @retval None
943 */
LL_USART_SetParity(USART_TypeDef * USARTx,uint32_t Parity)944 __STATIC_INLINE void LL_USART_SetParity(USART_TypeDef *USARTx, uint32_t Parity)
945 {
946 MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE, Parity);
947 }
948
949 /**
950 * @brief Return Parity configuration (enabled/disabled and parity mode if enabled)
951 * @rmtoll CR1 PS LL_USART_GetParity\n
952 * CR1 PCE LL_USART_GetParity
953 * @param USARTx USART Instance
954 * @retval Returned value can be one of the following values:
955 * @arg @ref LL_USART_PARITY_NONE
956 * @arg @ref LL_USART_PARITY_EVEN
957 * @arg @ref LL_USART_PARITY_ODD
958 */
LL_USART_GetParity(const USART_TypeDef * USARTx)959 __STATIC_INLINE uint32_t LL_USART_GetParity(const USART_TypeDef *USARTx)
960 {
961 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE));
962 }
963
964 /**
965 * @brief Set Receiver Wake Up method from Mute mode.
966 * @rmtoll CR1 WAKE LL_USART_SetWakeUpMethod
967 * @param USARTx USART Instance
968 * @param Method This parameter can be one of the following values:
969 * @arg @ref LL_USART_WAKEUP_IDLELINE
970 * @arg @ref LL_USART_WAKEUP_ADDRESSMARK
971 * @retval None
972 */
LL_USART_SetWakeUpMethod(USART_TypeDef * USARTx,uint32_t Method)973 __STATIC_INLINE void LL_USART_SetWakeUpMethod(USART_TypeDef *USARTx, uint32_t Method)
974 {
975 MODIFY_REG(USARTx->CR1, USART_CR1_WAKE, Method);
976 }
977
978 /**
979 * @brief Return Receiver Wake Up method from Mute mode
980 * @rmtoll CR1 WAKE LL_USART_GetWakeUpMethod
981 * @param USARTx USART Instance
982 * @retval Returned value can be one of the following values:
983 * @arg @ref LL_USART_WAKEUP_IDLELINE
984 * @arg @ref LL_USART_WAKEUP_ADDRESSMARK
985 */
LL_USART_GetWakeUpMethod(const USART_TypeDef * USARTx)986 __STATIC_INLINE uint32_t LL_USART_GetWakeUpMethod(const USART_TypeDef *USARTx)
987 {
988 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_WAKE));
989 }
990
991 /**
992 * @brief Set Word length (i.e. nb of data bits, excluding start and stop bits)
993 * @rmtoll CR1 M0 LL_USART_SetDataWidth\n
994 * CR1 M1 LL_USART_SetDataWidth
995 * @param USARTx USART Instance
996 * @param DataWidth This parameter can be one of the following values:
997 * @arg @ref LL_USART_DATAWIDTH_7B
998 * @arg @ref LL_USART_DATAWIDTH_8B
999 * @arg @ref LL_USART_DATAWIDTH_9B
1000 * @retval None
1001 */
LL_USART_SetDataWidth(USART_TypeDef * USARTx,uint32_t DataWidth)1002 __STATIC_INLINE void LL_USART_SetDataWidth(USART_TypeDef *USARTx, uint32_t DataWidth)
1003 {
1004 MODIFY_REG(USARTx->CR1, USART_CR1_M, DataWidth);
1005 }
1006
1007 /**
1008 * @brief Return Word length (i.e. nb of data bits, excluding start and stop bits)
1009 * @rmtoll CR1 M0 LL_USART_GetDataWidth\n
1010 * CR1 M1 LL_USART_GetDataWidth
1011 * @param USARTx USART Instance
1012 * @retval Returned value can be one of the following values:
1013 * @arg @ref LL_USART_DATAWIDTH_7B
1014 * @arg @ref LL_USART_DATAWIDTH_8B
1015 * @arg @ref LL_USART_DATAWIDTH_9B
1016 */
LL_USART_GetDataWidth(const USART_TypeDef * USARTx)1017 __STATIC_INLINE uint32_t LL_USART_GetDataWidth(const USART_TypeDef *USARTx)
1018 {
1019 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_M));
1020 }
1021
1022 /**
1023 * @brief Allow switch between Mute Mode and Active mode
1024 * @rmtoll CR1 MME LL_USART_EnableMuteMode
1025 * @param USARTx USART Instance
1026 * @retval None
1027 */
LL_USART_EnableMuteMode(USART_TypeDef * USARTx)1028 __STATIC_INLINE void LL_USART_EnableMuteMode(USART_TypeDef *USARTx)
1029 {
1030 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_MME);
1031 }
1032
1033 /**
1034 * @brief Prevent Mute Mode use. Set Receiver in active mode permanently.
1035 * @rmtoll CR1 MME LL_USART_DisableMuteMode
1036 * @param USARTx USART Instance
1037 * @retval None
1038 */
LL_USART_DisableMuteMode(USART_TypeDef * USARTx)1039 __STATIC_INLINE void LL_USART_DisableMuteMode(USART_TypeDef *USARTx)
1040 {
1041 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_MME);
1042 }
1043
1044 /**
1045 * @brief Indicate if switch between Mute Mode and Active mode is allowed
1046 * @rmtoll CR1 MME LL_USART_IsEnabledMuteMode
1047 * @param USARTx USART Instance
1048 * @retval State of bit (1 or 0).
1049 */
LL_USART_IsEnabledMuteMode(const USART_TypeDef * USARTx)1050 __STATIC_INLINE uint32_t LL_USART_IsEnabledMuteMode(const USART_TypeDef *USARTx)
1051 {
1052 return ((READ_BIT(USARTx->CR1, USART_CR1_MME) == (USART_CR1_MME)) ? 1UL : 0UL);
1053 }
1054
1055 /**
1056 * @brief Set Oversampling to 8-bit or 16-bit mode
1057 * @rmtoll CR1 OVER8 LL_USART_SetOverSampling
1058 * @param USARTx USART Instance
1059 * @param OverSampling This parameter can be one of the following values:
1060 * @arg @ref LL_USART_OVERSAMPLING_16
1061 * @arg @ref LL_USART_OVERSAMPLING_8
1062 * @retval None
1063 */
LL_USART_SetOverSampling(USART_TypeDef * USARTx,uint32_t OverSampling)1064 __STATIC_INLINE void LL_USART_SetOverSampling(USART_TypeDef *USARTx, uint32_t OverSampling)
1065 {
1066 MODIFY_REG(USARTx->CR1, USART_CR1_OVER8, OverSampling);
1067 }
1068
1069 /**
1070 * @brief Return Oversampling mode
1071 * @rmtoll CR1 OVER8 LL_USART_GetOverSampling
1072 * @param USARTx USART Instance
1073 * @retval Returned value can be one of the following values:
1074 * @arg @ref LL_USART_OVERSAMPLING_16
1075 * @arg @ref LL_USART_OVERSAMPLING_8
1076 */
LL_USART_GetOverSampling(const USART_TypeDef * USARTx)1077 __STATIC_INLINE uint32_t LL_USART_GetOverSampling(const USART_TypeDef *USARTx)
1078 {
1079 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_OVER8));
1080 }
1081
1082 /**
1083 * @brief Configure if Clock pulse of the last data bit is output to the SCLK pin or not
1084 * @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
1085 * Synchronous mode is supported by the USARTx instance.
1086 * @rmtoll CR2 LBCL LL_USART_SetLastClkPulseOutput
1087 * @param USARTx USART Instance
1088 * @param LastBitClockPulse This parameter can be one of the following values:
1089 * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
1090 * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
1091 * @retval None
1092 */
LL_USART_SetLastClkPulseOutput(USART_TypeDef * USARTx,uint32_t LastBitClockPulse)1093 __STATIC_INLINE void LL_USART_SetLastClkPulseOutput(USART_TypeDef *USARTx, uint32_t LastBitClockPulse)
1094 {
1095 MODIFY_REG(USARTx->CR2, USART_CR2_LBCL, LastBitClockPulse);
1096 }
1097
1098 /**
1099 * @brief Retrieve Clock pulse of the last data bit output configuration
1100 * (Last bit Clock pulse output to the SCLK pin or not)
1101 * @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
1102 * Synchronous mode is supported by the USARTx instance.
1103 * @rmtoll CR2 LBCL LL_USART_GetLastClkPulseOutput
1104 * @param USARTx USART Instance
1105 * @retval Returned value can be one of the following values:
1106 * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
1107 * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
1108 */
LL_USART_GetLastClkPulseOutput(const USART_TypeDef * USARTx)1109 __STATIC_INLINE uint32_t LL_USART_GetLastClkPulseOutput(const USART_TypeDef *USARTx)
1110 {
1111 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBCL));
1112 }
1113
1114 /**
1115 * @brief Select the phase of the clock output on the SCLK pin in synchronous mode
1116 * @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
1117 * Synchronous mode is supported by the USARTx instance.
1118 * @rmtoll CR2 CPHA LL_USART_SetClockPhase
1119 * @param USARTx USART Instance
1120 * @param ClockPhase This parameter can be one of the following values:
1121 * @arg @ref LL_USART_PHASE_1EDGE
1122 * @arg @ref LL_USART_PHASE_2EDGE
1123 * @retval None
1124 */
LL_USART_SetClockPhase(USART_TypeDef * USARTx,uint32_t ClockPhase)1125 __STATIC_INLINE void LL_USART_SetClockPhase(USART_TypeDef *USARTx, uint32_t ClockPhase)
1126 {
1127 MODIFY_REG(USARTx->CR2, USART_CR2_CPHA, ClockPhase);
1128 }
1129
1130 /**
1131 * @brief Return phase of the clock output on the SCLK pin in synchronous mode
1132 * @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
1133 * Synchronous mode is supported by the USARTx instance.
1134 * @rmtoll CR2 CPHA LL_USART_GetClockPhase
1135 * @param USARTx USART Instance
1136 * @retval Returned value can be one of the following values:
1137 * @arg @ref LL_USART_PHASE_1EDGE
1138 * @arg @ref LL_USART_PHASE_2EDGE
1139 */
LL_USART_GetClockPhase(const USART_TypeDef * USARTx)1140 __STATIC_INLINE uint32_t LL_USART_GetClockPhase(const USART_TypeDef *USARTx)
1141 {
1142 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPHA));
1143 }
1144
1145 /**
1146 * @brief Select the polarity of the clock output on the SCLK pin in synchronous mode
1147 * @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
1148 * Synchronous mode is supported by the USARTx instance.
1149 * @rmtoll CR2 CPOL LL_USART_SetClockPolarity
1150 * @param USARTx USART Instance
1151 * @param ClockPolarity This parameter can be one of the following values:
1152 * @arg @ref LL_USART_POLARITY_LOW
1153 * @arg @ref LL_USART_POLARITY_HIGH
1154 * @retval None
1155 */
LL_USART_SetClockPolarity(USART_TypeDef * USARTx,uint32_t ClockPolarity)1156 __STATIC_INLINE void LL_USART_SetClockPolarity(USART_TypeDef *USARTx, uint32_t ClockPolarity)
1157 {
1158 MODIFY_REG(USARTx->CR2, USART_CR2_CPOL, ClockPolarity);
1159 }
1160
1161 /**
1162 * @brief Return polarity of the clock output on the SCLK pin in synchronous mode
1163 * @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
1164 * Synchronous mode is supported by the USARTx instance.
1165 * @rmtoll CR2 CPOL LL_USART_GetClockPolarity
1166 * @param USARTx USART Instance
1167 * @retval Returned value can be one of the following values:
1168 * @arg @ref LL_USART_POLARITY_LOW
1169 * @arg @ref LL_USART_POLARITY_HIGH
1170 */
LL_USART_GetClockPolarity(const USART_TypeDef * USARTx)1171 __STATIC_INLINE uint32_t LL_USART_GetClockPolarity(const USART_TypeDef *USARTx)
1172 {
1173 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPOL));
1174 }
1175
1176 /**
1177 * @brief Configure Clock signal format (Phase Polarity and choice about output of last bit clock pulse)
1178 * @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
1179 * Synchronous mode is supported by the USARTx instance.
1180 * @note Call of this function is equivalent to following function call sequence :
1181 * - Clock Phase configuration using @ref LL_USART_SetClockPhase() function
1182 * - Clock Polarity configuration using @ref LL_USART_SetClockPolarity() function
1183 * - Output of Last bit Clock pulse configuration using @ref LL_USART_SetLastClkPulseOutput() function
1184 * @rmtoll CR2 CPHA LL_USART_ConfigClock\n
1185 * CR2 CPOL LL_USART_ConfigClock\n
1186 * CR2 LBCL LL_USART_ConfigClock
1187 * @param USARTx USART Instance
1188 * @param Phase This parameter can be one of the following values:
1189 * @arg @ref LL_USART_PHASE_1EDGE
1190 * @arg @ref LL_USART_PHASE_2EDGE
1191 * @param Polarity This parameter can be one of the following values:
1192 * @arg @ref LL_USART_POLARITY_LOW
1193 * @arg @ref LL_USART_POLARITY_HIGH
1194 * @param LBCPOutput This parameter can be one of the following values:
1195 * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
1196 * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
1197 * @retval None
1198 */
LL_USART_ConfigClock(USART_TypeDef * USARTx,uint32_t Phase,uint32_t Polarity,uint32_t LBCPOutput)1199 __STATIC_INLINE void LL_USART_ConfigClock(USART_TypeDef *USARTx, uint32_t Phase, uint32_t Polarity, uint32_t LBCPOutput)
1200 {
1201 MODIFY_REG(USARTx->CR2, USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL, Phase | Polarity | LBCPOutput);
1202 }
1203
1204 /**
1205 * @brief Configure Clock source prescaler for baudrate generator and oversampling
1206 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
1207 * FIFO mode feature is supported by the USARTx instance.
1208 * @rmtoll PRESC PRESCALER LL_USART_SetPrescaler
1209 * @param USARTx USART Instance
1210 * @param PrescalerValue This parameter can be one of the following values:
1211 * @arg @ref LL_USART_PRESCALER_DIV1
1212 * @arg @ref LL_USART_PRESCALER_DIV2
1213 * @arg @ref LL_USART_PRESCALER_DIV4
1214 * @arg @ref LL_USART_PRESCALER_DIV6
1215 * @arg @ref LL_USART_PRESCALER_DIV8
1216 * @arg @ref LL_USART_PRESCALER_DIV10
1217 * @arg @ref LL_USART_PRESCALER_DIV12
1218 * @arg @ref LL_USART_PRESCALER_DIV16
1219 * @arg @ref LL_USART_PRESCALER_DIV32
1220 * @arg @ref LL_USART_PRESCALER_DIV64
1221 * @arg @ref LL_USART_PRESCALER_DIV128
1222 * @arg @ref LL_USART_PRESCALER_DIV256
1223 * @retval None
1224 */
LL_USART_SetPrescaler(USART_TypeDef * USARTx,uint32_t PrescalerValue)1225 __STATIC_INLINE void LL_USART_SetPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
1226 {
1227 MODIFY_REG(USARTx->PRESC, USART_PRESC_PRESCALER, (uint16_t)PrescalerValue);
1228 }
1229
1230 /**
1231 * @brief Retrieve the Clock source prescaler for baudrate generator and oversampling
1232 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
1233 * FIFO mode feature is supported by the USARTx instance.
1234 * @rmtoll PRESC PRESCALER LL_USART_GetPrescaler
1235 * @param USARTx USART Instance
1236 * @retval Returned value can be one of the following values:
1237 * @arg @ref LL_USART_PRESCALER_DIV1
1238 * @arg @ref LL_USART_PRESCALER_DIV2
1239 * @arg @ref LL_USART_PRESCALER_DIV4
1240 * @arg @ref LL_USART_PRESCALER_DIV6
1241 * @arg @ref LL_USART_PRESCALER_DIV8
1242 * @arg @ref LL_USART_PRESCALER_DIV10
1243 * @arg @ref LL_USART_PRESCALER_DIV12
1244 * @arg @ref LL_USART_PRESCALER_DIV16
1245 * @arg @ref LL_USART_PRESCALER_DIV32
1246 * @arg @ref LL_USART_PRESCALER_DIV64
1247 * @arg @ref LL_USART_PRESCALER_DIV128
1248 * @arg @ref LL_USART_PRESCALER_DIV256
1249 */
LL_USART_GetPrescaler(const USART_TypeDef * USARTx)1250 __STATIC_INLINE uint32_t LL_USART_GetPrescaler(const USART_TypeDef *USARTx)
1251 {
1252 return (uint32_t)(READ_BIT(USARTx->PRESC, USART_PRESC_PRESCALER));
1253 }
1254
1255 /**
1256 * @brief Enable Clock output on SCLK pin
1257 * @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
1258 * Synchronous mode is supported by the USARTx instance.
1259 * @rmtoll CR2 CLKEN LL_USART_EnableSCLKOutput
1260 * @param USARTx USART Instance
1261 * @retval None
1262 */
LL_USART_EnableSCLKOutput(USART_TypeDef * USARTx)1263 __STATIC_INLINE void LL_USART_EnableSCLKOutput(USART_TypeDef *USARTx)
1264 {
1265 SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
1266 }
1267
1268 /**
1269 * @brief Disable Clock output on SCLK pin
1270 * @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
1271 * Synchronous mode is supported by the USARTx instance.
1272 * @rmtoll CR2 CLKEN LL_USART_DisableSCLKOutput
1273 * @param USARTx USART Instance
1274 * @retval None
1275 */
LL_USART_DisableSCLKOutput(USART_TypeDef * USARTx)1276 __STATIC_INLINE void LL_USART_DisableSCLKOutput(USART_TypeDef *USARTx)
1277 {
1278 CLEAR_BIT(USARTx->CR2, USART_CR2_CLKEN);
1279 }
1280
1281 /**
1282 * @brief Indicate if Clock output on SCLK pin is enabled
1283 * @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
1284 * Synchronous mode is supported by the USARTx instance.
1285 * @rmtoll CR2 CLKEN LL_USART_IsEnabledSCLKOutput
1286 * @param USARTx USART Instance
1287 * @retval State of bit (1 or 0).
1288 */
LL_USART_IsEnabledSCLKOutput(const USART_TypeDef * USARTx)1289 __STATIC_INLINE uint32_t LL_USART_IsEnabledSCLKOutput(const USART_TypeDef *USARTx)
1290 {
1291 return ((READ_BIT(USARTx->CR2, USART_CR2_CLKEN) == (USART_CR2_CLKEN)) ? 1UL : 0UL);
1292 }
1293
1294 /**
1295 * @brief Set the length of the stop bits
1296 * @rmtoll CR2 STOP LL_USART_SetStopBitsLength
1297 * @param USARTx USART Instance
1298 * @param StopBits This parameter can be one of the following values:
1299 * @arg @ref LL_USART_STOPBITS_0_5
1300 * @arg @ref LL_USART_STOPBITS_1
1301 * @arg @ref LL_USART_STOPBITS_1_5
1302 * @arg @ref LL_USART_STOPBITS_2
1303 * @retval None
1304 */
LL_USART_SetStopBitsLength(USART_TypeDef * USARTx,uint32_t StopBits)1305 __STATIC_INLINE void LL_USART_SetStopBitsLength(USART_TypeDef *USARTx, uint32_t StopBits)
1306 {
1307 MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
1308 }
1309
1310 /**
1311 * @brief Retrieve the length of the stop bits
1312 * @rmtoll CR2 STOP LL_USART_GetStopBitsLength
1313 * @param USARTx USART Instance
1314 * @retval Returned value can be one of the following values:
1315 * @arg @ref LL_USART_STOPBITS_0_5
1316 * @arg @ref LL_USART_STOPBITS_1
1317 * @arg @ref LL_USART_STOPBITS_1_5
1318 * @arg @ref LL_USART_STOPBITS_2
1319 */
LL_USART_GetStopBitsLength(const USART_TypeDef * USARTx)1320 __STATIC_INLINE uint32_t LL_USART_GetStopBitsLength(const USART_TypeDef *USARTx)
1321 {
1322 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_STOP));
1323 }
1324
1325 /**
1326 * @brief Configure Character frame format (Datawidth, Parity control, Stop Bits)
1327 * @note Call of this function is equivalent to following function call sequence :
1328 * - Data Width configuration using @ref LL_USART_SetDataWidth() function
1329 * - Parity Control and mode configuration using @ref LL_USART_SetParity() function
1330 * - Stop bits configuration using @ref LL_USART_SetStopBitsLength() function
1331 * @rmtoll CR1 PS LL_USART_ConfigCharacter\n
1332 * CR1 PCE LL_USART_ConfigCharacter\n
1333 * CR1 M0 LL_USART_ConfigCharacter\n
1334 * CR1 M1 LL_USART_ConfigCharacter\n
1335 * CR2 STOP LL_USART_ConfigCharacter
1336 * @param USARTx USART Instance
1337 * @param DataWidth This parameter can be one of the following values:
1338 * @arg @ref LL_USART_DATAWIDTH_7B
1339 * @arg @ref LL_USART_DATAWIDTH_8B
1340 * @arg @ref LL_USART_DATAWIDTH_9B
1341 * @param Parity This parameter can be one of the following values:
1342 * @arg @ref LL_USART_PARITY_NONE
1343 * @arg @ref LL_USART_PARITY_EVEN
1344 * @arg @ref LL_USART_PARITY_ODD
1345 * @param StopBits This parameter can be one of the following values:
1346 * @arg @ref LL_USART_STOPBITS_0_5
1347 * @arg @ref LL_USART_STOPBITS_1
1348 * @arg @ref LL_USART_STOPBITS_1_5
1349 * @arg @ref LL_USART_STOPBITS_2
1350 * @retval None
1351 */
LL_USART_ConfigCharacter(USART_TypeDef * USARTx,uint32_t DataWidth,uint32_t Parity,uint32_t StopBits)1352 __STATIC_INLINE void LL_USART_ConfigCharacter(USART_TypeDef *USARTx, uint32_t DataWidth, uint32_t Parity,
1353 uint32_t StopBits)
1354 {
1355 MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE | USART_CR1_M, Parity | DataWidth);
1356 MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
1357 }
1358
1359 /**
1360 * @brief Configure TX/RX pins swapping setting.
1361 * @rmtoll CR2 SWAP LL_USART_SetTXRXSwap
1362 * @param USARTx USART Instance
1363 * @param SwapConfig This parameter can be one of the following values:
1364 * @arg @ref LL_USART_TXRX_STANDARD
1365 * @arg @ref LL_USART_TXRX_SWAPPED
1366 * @retval None
1367 */
LL_USART_SetTXRXSwap(USART_TypeDef * USARTx,uint32_t SwapConfig)1368 __STATIC_INLINE void LL_USART_SetTXRXSwap(USART_TypeDef *USARTx, uint32_t SwapConfig)
1369 {
1370 MODIFY_REG(USARTx->CR2, USART_CR2_SWAP, SwapConfig);
1371 }
1372
1373 /**
1374 * @brief Retrieve TX/RX pins swapping configuration.
1375 * @rmtoll CR2 SWAP LL_USART_GetTXRXSwap
1376 * @param USARTx USART Instance
1377 * @retval Returned value can be one of the following values:
1378 * @arg @ref LL_USART_TXRX_STANDARD
1379 * @arg @ref LL_USART_TXRX_SWAPPED
1380 */
LL_USART_GetTXRXSwap(const USART_TypeDef * USARTx)1381 __STATIC_INLINE uint32_t LL_USART_GetTXRXSwap(const USART_TypeDef *USARTx)
1382 {
1383 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_SWAP));
1384 }
1385
1386 /**
1387 * @brief Configure RX pin active level logic
1388 * @rmtoll CR2 RXINV LL_USART_SetRXPinLevel
1389 * @param USARTx USART Instance
1390 * @param PinInvMethod This parameter can be one of the following values:
1391 * @arg @ref LL_USART_RXPIN_LEVEL_STANDARD
1392 * @arg @ref LL_USART_RXPIN_LEVEL_INVERTED
1393 * @retval None
1394 */
LL_USART_SetRXPinLevel(USART_TypeDef * USARTx,uint32_t PinInvMethod)1395 __STATIC_INLINE void LL_USART_SetRXPinLevel(USART_TypeDef *USARTx, uint32_t PinInvMethod)
1396 {
1397 MODIFY_REG(USARTx->CR2, USART_CR2_RXINV, PinInvMethod);
1398 }
1399
1400 /**
1401 * @brief Retrieve RX pin active level logic configuration
1402 * @rmtoll CR2 RXINV LL_USART_GetRXPinLevel
1403 * @param USARTx USART Instance
1404 * @retval Returned value can be one of the following values:
1405 * @arg @ref LL_USART_RXPIN_LEVEL_STANDARD
1406 * @arg @ref LL_USART_RXPIN_LEVEL_INVERTED
1407 */
LL_USART_GetRXPinLevel(const USART_TypeDef * USARTx)1408 __STATIC_INLINE uint32_t LL_USART_GetRXPinLevel(const USART_TypeDef *USARTx)
1409 {
1410 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_RXINV));
1411 }
1412
1413 /**
1414 * @brief Configure TX pin active level logic
1415 * @rmtoll CR2 TXINV LL_USART_SetTXPinLevel
1416 * @param USARTx USART Instance
1417 * @param PinInvMethod This parameter can be one of the following values:
1418 * @arg @ref LL_USART_TXPIN_LEVEL_STANDARD
1419 * @arg @ref LL_USART_TXPIN_LEVEL_INVERTED
1420 * @retval None
1421 */
LL_USART_SetTXPinLevel(USART_TypeDef * USARTx,uint32_t PinInvMethod)1422 __STATIC_INLINE void LL_USART_SetTXPinLevel(USART_TypeDef *USARTx, uint32_t PinInvMethod)
1423 {
1424 MODIFY_REG(USARTx->CR2, USART_CR2_TXINV, PinInvMethod);
1425 }
1426
1427 /**
1428 * @brief Retrieve TX pin active level logic configuration
1429 * @rmtoll CR2 TXINV LL_USART_GetTXPinLevel
1430 * @param USARTx USART Instance
1431 * @retval Returned value can be one of the following values:
1432 * @arg @ref LL_USART_TXPIN_LEVEL_STANDARD
1433 * @arg @ref LL_USART_TXPIN_LEVEL_INVERTED
1434 */
LL_USART_GetTXPinLevel(const USART_TypeDef * USARTx)1435 __STATIC_INLINE uint32_t LL_USART_GetTXPinLevel(const USART_TypeDef *USARTx)
1436 {
1437 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_TXINV));
1438 }
1439
1440 /**
1441 * @brief Configure Binary data logic.
1442 * @note Allow to define how Logical data from the data register are send/received :
1443 * either in positive/direct logic (1=H, 0=L) or in negative/inverse logic (1=L, 0=H)
1444 * @rmtoll CR2 DATAINV LL_USART_SetBinaryDataLogic
1445 * @param USARTx USART Instance
1446 * @param DataLogic This parameter can be one of the following values:
1447 * @arg @ref LL_USART_BINARY_LOGIC_POSITIVE
1448 * @arg @ref LL_USART_BINARY_LOGIC_NEGATIVE
1449 * @retval None
1450 */
LL_USART_SetBinaryDataLogic(USART_TypeDef * USARTx,uint32_t DataLogic)1451 __STATIC_INLINE void LL_USART_SetBinaryDataLogic(USART_TypeDef *USARTx, uint32_t DataLogic)
1452 {
1453 MODIFY_REG(USARTx->CR2, USART_CR2_DATAINV, DataLogic);
1454 }
1455
1456 /**
1457 * @brief Retrieve Binary data configuration
1458 * @rmtoll CR2 DATAINV LL_USART_GetBinaryDataLogic
1459 * @param USARTx USART Instance
1460 * @retval Returned value can be one of the following values:
1461 * @arg @ref LL_USART_BINARY_LOGIC_POSITIVE
1462 * @arg @ref LL_USART_BINARY_LOGIC_NEGATIVE
1463 */
LL_USART_GetBinaryDataLogic(const USART_TypeDef * USARTx)1464 __STATIC_INLINE uint32_t LL_USART_GetBinaryDataLogic(const USART_TypeDef *USARTx)
1465 {
1466 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_DATAINV));
1467 }
1468
1469 /**
1470 * @brief Configure transfer bit order (either Less or Most Significant Bit First)
1471 * @note MSB First means data is transmitted/received with the MSB first, following the start bit.
1472 * LSB First means data is transmitted/received with data bit 0 first, following the start bit.
1473 * @rmtoll CR2 MSBFIRST LL_USART_SetTransferBitOrder
1474 * @param USARTx USART Instance
1475 * @param BitOrder This parameter can be one of the following values:
1476 * @arg @ref LL_USART_BITORDER_LSBFIRST
1477 * @arg @ref LL_USART_BITORDER_MSBFIRST
1478 * @retval None
1479 */
LL_USART_SetTransferBitOrder(USART_TypeDef * USARTx,uint32_t BitOrder)1480 __STATIC_INLINE void LL_USART_SetTransferBitOrder(USART_TypeDef *USARTx, uint32_t BitOrder)
1481 {
1482 MODIFY_REG(USARTx->CR2, USART_CR2_MSBFIRST, BitOrder);
1483 }
1484
1485 /**
1486 * @brief Return transfer bit order (either Less or Most Significant Bit First)
1487 * @note MSB First means data is transmitted/received with the MSB first, following the start bit.
1488 * LSB First means data is transmitted/received with data bit 0 first, following the start bit.
1489 * @rmtoll CR2 MSBFIRST LL_USART_GetTransferBitOrder
1490 * @param USARTx USART Instance
1491 * @retval Returned value can be one of the following values:
1492 * @arg @ref LL_USART_BITORDER_LSBFIRST
1493 * @arg @ref LL_USART_BITORDER_MSBFIRST
1494 */
LL_USART_GetTransferBitOrder(const USART_TypeDef * USARTx)1495 __STATIC_INLINE uint32_t LL_USART_GetTransferBitOrder(const USART_TypeDef *USARTx)
1496 {
1497 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_MSBFIRST));
1498 }
1499
1500 /**
1501 * @brief Enable Auto Baud-Rate Detection
1502 * @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
1503 * Auto Baud Rate detection feature is supported by the USARTx instance.
1504 * @rmtoll CR2 ABREN LL_USART_EnableAutoBaudRate
1505 * @param USARTx USART Instance
1506 * @retval None
1507 */
LL_USART_EnableAutoBaudRate(USART_TypeDef * USARTx)1508 __STATIC_INLINE void LL_USART_EnableAutoBaudRate(USART_TypeDef *USARTx)
1509 {
1510 SET_BIT(USARTx->CR2, USART_CR2_ABREN);
1511 }
1512
1513 /**
1514 * @brief Disable Auto Baud-Rate Detection
1515 * @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
1516 * Auto Baud Rate detection feature is supported by the USARTx instance.
1517 * @rmtoll CR2 ABREN LL_USART_DisableAutoBaudRate
1518 * @param USARTx USART Instance
1519 * @retval None
1520 */
LL_USART_DisableAutoBaudRate(USART_TypeDef * USARTx)1521 __STATIC_INLINE void LL_USART_DisableAutoBaudRate(USART_TypeDef *USARTx)
1522 {
1523 CLEAR_BIT(USARTx->CR2, USART_CR2_ABREN);
1524 }
1525
1526 /**
1527 * @brief Indicate if Auto Baud-Rate Detection mechanism is enabled
1528 * @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
1529 * Auto Baud Rate detection feature is supported by the USARTx instance.
1530 * @rmtoll CR2 ABREN LL_USART_IsEnabledAutoBaud
1531 * @param USARTx USART Instance
1532 * @retval State of bit (1 or 0).
1533 */
LL_USART_IsEnabledAutoBaud(const USART_TypeDef * USARTx)1534 __STATIC_INLINE uint32_t LL_USART_IsEnabledAutoBaud(const USART_TypeDef *USARTx)
1535 {
1536 return ((READ_BIT(USARTx->CR2, USART_CR2_ABREN) == (USART_CR2_ABREN)) ? 1UL : 0UL);
1537 }
1538
1539 /**
1540 * @brief Set Auto Baud-Rate mode bits
1541 * @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
1542 * Auto Baud Rate detection feature is supported by the USARTx instance.
1543 * @rmtoll CR2 ABRMODE LL_USART_SetAutoBaudRateMode
1544 * @param USARTx USART Instance
1545 * @param AutoBaudRateMode This parameter can be one of the following values:
1546 * @arg @ref LL_USART_AUTOBAUD_DETECT_ON_STARTBIT
1547 * @arg @ref LL_USART_AUTOBAUD_DETECT_ON_FALLINGEDGE
1548 * @arg @ref LL_USART_AUTOBAUD_DETECT_ON_7F_FRAME
1549 * @arg @ref LL_USART_AUTOBAUD_DETECT_ON_55_FRAME
1550 * @retval None
1551 */
LL_USART_SetAutoBaudRateMode(USART_TypeDef * USARTx,uint32_t AutoBaudRateMode)1552 __STATIC_INLINE void LL_USART_SetAutoBaudRateMode(USART_TypeDef *USARTx, uint32_t AutoBaudRateMode)
1553 {
1554 MODIFY_REG(USARTx->CR2, USART_CR2_ABRMODE, AutoBaudRateMode);
1555 }
1556
1557 /**
1558 * @brief Return Auto Baud-Rate mode
1559 * @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
1560 * Auto Baud Rate detection feature is supported by the USARTx instance.
1561 * @rmtoll CR2 ABRMODE LL_USART_GetAutoBaudRateMode
1562 * @param USARTx USART Instance
1563 * @retval Returned value can be one of the following values:
1564 * @arg @ref LL_USART_AUTOBAUD_DETECT_ON_STARTBIT
1565 * @arg @ref LL_USART_AUTOBAUD_DETECT_ON_FALLINGEDGE
1566 * @arg @ref LL_USART_AUTOBAUD_DETECT_ON_7F_FRAME
1567 * @arg @ref LL_USART_AUTOBAUD_DETECT_ON_55_FRAME
1568 */
LL_USART_GetAutoBaudRateMode(USART_TypeDef * USARTx)1569 __STATIC_INLINE uint32_t LL_USART_GetAutoBaudRateMode(USART_TypeDef *USARTx)
1570 {
1571 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ABRMODE));
1572 }
1573
1574 /**
1575 * @brief Enable Receiver Timeout
1576 * @rmtoll CR2 RTOEN LL_USART_EnableRxTimeout
1577 * @param USARTx USART Instance
1578 * @retval None
1579 */
LL_USART_EnableRxTimeout(USART_TypeDef * USARTx)1580 __STATIC_INLINE void LL_USART_EnableRxTimeout(USART_TypeDef *USARTx)
1581 {
1582 SET_BIT(USARTx->CR2, USART_CR2_RTOEN);
1583 }
1584
1585 /**
1586 * @brief Disable Receiver Timeout
1587 * @rmtoll CR2 RTOEN LL_USART_DisableRxTimeout
1588 * @param USARTx USART Instance
1589 * @retval None
1590 */
LL_USART_DisableRxTimeout(USART_TypeDef * USARTx)1591 __STATIC_INLINE void LL_USART_DisableRxTimeout(USART_TypeDef *USARTx)
1592 {
1593 CLEAR_BIT(USARTx->CR2, USART_CR2_RTOEN);
1594 }
1595
1596 /**
1597 * @brief Indicate if Receiver Timeout feature is enabled
1598 * @rmtoll CR2 RTOEN LL_USART_IsEnabledRxTimeout
1599 * @param USARTx USART Instance
1600 * @retval State of bit (1 or 0).
1601 */
LL_USART_IsEnabledRxTimeout(const USART_TypeDef * USARTx)1602 __STATIC_INLINE uint32_t LL_USART_IsEnabledRxTimeout(const USART_TypeDef *USARTx)
1603 {
1604 return ((READ_BIT(USARTx->CR2, USART_CR2_RTOEN) == (USART_CR2_RTOEN)) ? 1UL : 0UL);
1605 }
1606
1607 /**
1608 * @brief Set Address of the USART node.
1609 * @note This is used in multiprocessor communication during Mute mode or Stop mode,
1610 * for wake up with address mark detection.
1611 * @note 4bits address node is used when 4-bit Address Detection is selected in ADDM7.
1612 * (b7-b4 should be set to 0)
1613 * 8bits address node is used when 7-bit Address Detection is selected in ADDM7.
1614 * (This is used in multiprocessor communication during Mute mode or Stop mode,
1615 * for wake up with 7-bit address mark detection.
1616 * The MSB of the character sent by the transmitter should be equal to 1.
1617 * It may also be used for character detection during normal reception,
1618 * Mute mode inactive (for example, end of block detection in ModBus protocol).
1619 * In this case, the whole received character (8-bit) is compared to the ADD[7:0]
1620 * value and CMF flag is set on match)
1621 * @rmtoll CR2 ADD LL_USART_ConfigNodeAddress\n
1622 * CR2 ADDM7 LL_USART_ConfigNodeAddress
1623 * @param USARTx USART Instance
1624 * @param AddressLen This parameter can be one of the following values:
1625 * @arg @ref LL_USART_ADDRESS_DETECT_4B
1626 * @arg @ref LL_USART_ADDRESS_DETECT_7B
1627 * @param NodeAddress 4 or 7 bit Address of the USART node.
1628 * @retval None
1629 */
LL_USART_ConfigNodeAddress(USART_TypeDef * USARTx,uint32_t AddressLen,uint32_t NodeAddress)1630 __STATIC_INLINE void LL_USART_ConfigNodeAddress(USART_TypeDef *USARTx, uint32_t AddressLen, uint32_t NodeAddress)
1631 {
1632 MODIFY_REG(USARTx->CR2, USART_CR2_ADD | USART_CR2_ADDM7,
1633 (uint32_t)(AddressLen | (NodeAddress << USART_CR2_ADD_Pos)));
1634 }
1635
1636 /**
1637 * @brief Return 8 bit Address of the USART node as set in ADD field of CR2.
1638 * @note If 4-bit Address Detection is selected in ADDM7,
1639 * only 4bits (b3-b0) of returned value are relevant (b31-b4 are not relevant)
1640 * If 7-bit Address Detection is selected in ADDM7,
1641 * only 8bits (b7-b0) of returned value are relevant (b31-b8 are not relevant)
1642 * @rmtoll CR2 ADD LL_USART_GetNodeAddress
1643 * @param USARTx USART Instance
1644 * @retval Address of the USART node (Value between Min_Data=0 and Max_Data=255)
1645 */
LL_USART_GetNodeAddress(const USART_TypeDef * USARTx)1646 __STATIC_INLINE uint32_t LL_USART_GetNodeAddress(const USART_TypeDef *USARTx)
1647 {
1648 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ADD) >> USART_CR2_ADD_Pos);
1649 }
1650
1651 /**
1652 * @brief Return Length of Node Address used in Address Detection mode (7-bit or 4-bit)
1653 * @rmtoll CR2 ADDM7 LL_USART_GetNodeAddressLen
1654 * @param USARTx USART Instance
1655 * @retval Returned value can be one of the following values:
1656 * @arg @ref LL_USART_ADDRESS_DETECT_4B
1657 * @arg @ref LL_USART_ADDRESS_DETECT_7B
1658 */
LL_USART_GetNodeAddressLen(const USART_TypeDef * USARTx)1659 __STATIC_INLINE uint32_t LL_USART_GetNodeAddressLen(const USART_TypeDef *USARTx)
1660 {
1661 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ADDM7));
1662 }
1663
1664 /**
1665 * @brief Enable RTS HW Flow Control
1666 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
1667 * Hardware Flow control feature is supported by the USARTx instance.
1668 * @rmtoll CR3 RTSE LL_USART_EnableRTSHWFlowCtrl
1669 * @param USARTx USART Instance
1670 * @retval None
1671 */
LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef * USARTx)1672 __STATIC_INLINE void LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef *USARTx)
1673 {
1674 SET_BIT(USARTx->CR3, USART_CR3_RTSE);
1675 }
1676
1677 /**
1678 * @brief Disable RTS HW Flow Control
1679 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
1680 * Hardware Flow control feature is supported by the USARTx instance.
1681 * @rmtoll CR3 RTSE LL_USART_DisableRTSHWFlowCtrl
1682 * @param USARTx USART Instance
1683 * @retval None
1684 */
LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef * USARTx)1685 __STATIC_INLINE void LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef *USARTx)
1686 {
1687 CLEAR_BIT(USARTx->CR3, USART_CR3_RTSE);
1688 }
1689
1690 /**
1691 * @brief Enable CTS HW Flow Control
1692 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
1693 * Hardware Flow control feature is supported by the USARTx instance.
1694 * @rmtoll CR3 CTSE LL_USART_EnableCTSHWFlowCtrl
1695 * @param USARTx USART Instance
1696 * @retval None
1697 */
LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef * USARTx)1698 __STATIC_INLINE void LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef *USARTx)
1699 {
1700 SET_BIT(USARTx->CR3, USART_CR3_CTSE);
1701 }
1702
1703 /**
1704 * @brief Disable CTS HW Flow Control
1705 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
1706 * Hardware Flow control feature is supported by the USARTx instance.
1707 * @rmtoll CR3 CTSE LL_USART_DisableCTSHWFlowCtrl
1708 * @param USARTx USART Instance
1709 * @retval None
1710 */
LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef * USARTx)1711 __STATIC_INLINE void LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef *USARTx)
1712 {
1713 CLEAR_BIT(USARTx->CR3, USART_CR3_CTSE);
1714 }
1715
1716 /**
1717 * @brief Configure HW Flow Control mode (both CTS and RTS)
1718 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
1719 * Hardware Flow control feature is supported by the USARTx instance.
1720 * @rmtoll CR3 RTSE LL_USART_SetHWFlowCtrl\n
1721 * CR3 CTSE LL_USART_SetHWFlowCtrl
1722 * @param USARTx USART Instance
1723 * @param HardwareFlowControl This parameter can be one of the following values:
1724 * @arg @ref LL_USART_HWCONTROL_NONE
1725 * @arg @ref LL_USART_HWCONTROL_RTS
1726 * @arg @ref LL_USART_HWCONTROL_CTS
1727 * @arg @ref LL_USART_HWCONTROL_RTS_CTS
1728 * @retval None
1729 */
LL_USART_SetHWFlowCtrl(USART_TypeDef * USARTx,uint32_t HardwareFlowControl)1730 __STATIC_INLINE void LL_USART_SetHWFlowCtrl(USART_TypeDef *USARTx, uint32_t HardwareFlowControl)
1731 {
1732 MODIFY_REG(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE, HardwareFlowControl);
1733 }
1734
1735 /**
1736 * @brief Return HW Flow Control configuration (both CTS and RTS)
1737 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
1738 * Hardware Flow control feature is supported by the USARTx instance.
1739 * @rmtoll CR3 RTSE LL_USART_GetHWFlowCtrl\n
1740 * CR3 CTSE LL_USART_GetHWFlowCtrl
1741 * @param USARTx USART Instance
1742 * @retval Returned value can be one of the following values:
1743 * @arg @ref LL_USART_HWCONTROL_NONE
1744 * @arg @ref LL_USART_HWCONTROL_RTS
1745 * @arg @ref LL_USART_HWCONTROL_CTS
1746 * @arg @ref LL_USART_HWCONTROL_RTS_CTS
1747 */
LL_USART_GetHWFlowCtrl(const USART_TypeDef * USARTx)1748 __STATIC_INLINE uint32_t LL_USART_GetHWFlowCtrl(const USART_TypeDef *USARTx)
1749 {
1750 return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE));
1751 }
1752
1753 /**
1754 * @brief Enable One bit sampling method
1755 * @rmtoll CR3 ONEBIT LL_USART_EnableOneBitSamp
1756 * @param USARTx USART Instance
1757 * @retval None
1758 */
LL_USART_EnableOneBitSamp(USART_TypeDef * USARTx)1759 __STATIC_INLINE void LL_USART_EnableOneBitSamp(USART_TypeDef *USARTx)
1760 {
1761 SET_BIT(USARTx->CR3, USART_CR3_ONEBIT);
1762 }
1763
1764 /**
1765 * @brief Disable One bit sampling method
1766 * @rmtoll CR3 ONEBIT LL_USART_DisableOneBitSamp
1767 * @param USARTx USART Instance
1768 * @retval None
1769 */
LL_USART_DisableOneBitSamp(USART_TypeDef * USARTx)1770 __STATIC_INLINE void LL_USART_DisableOneBitSamp(USART_TypeDef *USARTx)
1771 {
1772 CLEAR_BIT(USARTx->CR3, USART_CR3_ONEBIT);
1773 }
1774
1775 /**
1776 * @brief Indicate if One bit sampling method is enabled
1777 * @rmtoll CR3 ONEBIT LL_USART_IsEnabledOneBitSamp
1778 * @param USARTx USART Instance
1779 * @retval State of bit (1 or 0).
1780 */
LL_USART_IsEnabledOneBitSamp(const USART_TypeDef * USARTx)1781 __STATIC_INLINE uint32_t LL_USART_IsEnabledOneBitSamp(const USART_TypeDef *USARTx)
1782 {
1783 return ((READ_BIT(USARTx->CR3, USART_CR3_ONEBIT) == (USART_CR3_ONEBIT)) ? 1UL : 0UL);
1784 }
1785
1786 /**
1787 * @brief Enable Overrun detection
1788 * @rmtoll CR3 OVRDIS LL_USART_EnableOverrunDetect
1789 * @param USARTx USART Instance
1790 * @retval None
1791 */
LL_USART_EnableOverrunDetect(USART_TypeDef * USARTx)1792 __STATIC_INLINE void LL_USART_EnableOverrunDetect(USART_TypeDef *USARTx)
1793 {
1794 CLEAR_BIT(USARTx->CR3, USART_CR3_OVRDIS);
1795 }
1796
1797 /**
1798 * @brief Disable Overrun detection
1799 * @rmtoll CR3 OVRDIS LL_USART_DisableOverrunDetect
1800 * @param USARTx USART Instance
1801 * @retval None
1802 */
LL_USART_DisableOverrunDetect(USART_TypeDef * USARTx)1803 __STATIC_INLINE void LL_USART_DisableOverrunDetect(USART_TypeDef *USARTx)
1804 {
1805 SET_BIT(USARTx->CR3, USART_CR3_OVRDIS);
1806 }
1807
1808 /**
1809 * @brief Indicate if Overrun detection is enabled
1810 * @rmtoll CR3 OVRDIS LL_USART_IsEnabledOverrunDetect
1811 * @param USARTx USART Instance
1812 * @retval State of bit (1 or 0).
1813 */
LL_USART_IsEnabledOverrunDetect(const USART_TypeDef * USARTx)1814 __STATIC_INLINE uint32_t LL_USART_IsEnabledOverrunDetect(const USART_TypeDef *USARTx)
1815 {
1816 return ((READ_BIT(USARTx->CR3, USART_CR3_OVRDIS) != USART_CR3_OVRDIS) ? 1UL : 0UL);
1817 }
1818
1819 /**
1820 * @brief Select event type for Wake UP Interrupt Flag (WUS[1:0] bits)
1821 * @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
1822 * Wake-up from Stop mode feature is supported by the USARTx instance.
1823 * @rmtoll CR3 WUS LL_USART_SetWKUPType
1824 * @param USARTx USART Instance
1825 * @param Type This parameter can be one of the following values:
1826 * @arg @ref LL_USART_WAKEUP_ON_ADDRESS
1827 * @arg @ref LL_USART_WAKEUP_ON_STARTBIT
1828 * @arg @ref LL_USART_WAKEUP_ON_RXNE
1829 * @retval None
1830 */
LL_USART_SetWKUPType(USART_TypeDef * USARTx,uint32_t Type)1831 __STATIC_INLINE void LL_USART_SetWKUPType(USART_TypeDef *USARTx, uint32_t Type)
1832 {
1833 MODIFY_REG(USARTx->CR3, USART_CR3_WUS, Type);
1834 }
1835
1836 /**
1837 * @brief Return event type for Wake UP Interrupt Flag (WUS[1:0] bits)
1838 * @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
1839 * Wake-up from Stop mode feature is supported by the USARTx instance.
1840 * @rmtoll CR3 WUS LL_USART_GetWKUPType
1841 * @param USARTx USART Instance
1842 * @retval Returned value can be one of the following values:
1843 * @arg @ref LL_USART_WAKEUP_ON_ADDRESS
1844 * @arg @ref LL_USART_WAKEUP_ON_STARTBIT
1845 * @arg @ref LL_USART_WAKEUP_ON_RXNE
1846 */
LL_USART_GetWKUPType(const USART_TypeDef * USARTx)1847 __STATIC_INLINE uint32_t LL_USART_GetWKUPType(const USART_TypeDef *USARTx)
1848 {
1849 return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_WUS));
1850 }
1851
1852 /**
1853 * @brief Configure USART BRR register for achieving expected Baud Rate value.
1854 * @note Compute and set USARTDIV value in BRR Register (full BRR content)
1855 * according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values
1856 * @note Peripheral clock and Baud rate values provided as function parameters should be valid
1857 * (Baud rate value != 0)
1858 * @note In case of oversampling by 16 and 8, BRR content must be greater than or equal to 16d.
1859 * @rmtoll BRR BRR LL_USART_SetBaudRate
1860 * @param USARTx USART Instance
1861 * @param PeriphClk Peripheral Clock
1862 * @param PrescalerValue This parameter can be one of the following values:
1863 * @arg @ref LL_USART_PRESCALER_DIV1
1864 * @arg @ref LL_USART_PRESCALER_DIV2
1865 * @arg @ref LL_USART_PRESCALER_DIV4
1866 * @arg @ref LL_USART_PRESCALER_DIV6
1867 * @arg @ref LL_USART_PRESCALER_DIV8
1868 * @arg @ref LL_USART_PRESCALER_DIV10
1869 * @arg @ref LL_USART_PRESCALER_DIV12
1870 * @arg @ref LL_USART_PRESCALER_DIV16
1871 * @arg @ref LL_USART_PRESCALER_DIV32
1872 * @arg @ref LL_USART_PRESCALER_DIV64
1873 * @arg @ref LL_USART_PRESCALER_DIV128
1874 * @arg @ref LL_USART_PRESCALER_DIV256
1875 * @param OverSampling This parameter can be one of the following values:
1876 * @arg @ref LL_USART_OVERSAMPLING_16
1877 * @arg @ref LL_USART_OVERSAMPLING_8
1878 * @param BaudRate Baud Rate
1879 * @retval None
1880 */
LL_USART_SetBaudRate(USART_TypeDef * USARTx,uint32_t PeriphClk,uint32_t PrescalerValue,uint32_t OverSampling,uint32_t BaudRate)1881 __STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t PrescalerValue,
1882 uint32_t OverSampling,
1883 uint32_t BaudRate)
1884 {
1885 uint32_t usartdiv;
1886 uint32_t brrtemp;
1887
1888 if (PrescalerValue > LL_USART_PRESCALER_DIV256)
1889 {
1890 /* Do not overstep the size of USART_PRESCALER_TAB */
1891 }
1892 else if (BaudRate == 0U)
1893 {
1894 /* Can Not divide per 0 */
1895 }
1896 else if (OverSampling == LL_USART_OVERSAMPLING_8)
1897 {
1898 usartdiv = (uint16_t)(__LL_USART_DIV_SAMPLING8(PeriphClk, (uint8_t)PrescalerValue, BaudRate));
1899 brrtemp = usartdiv & 0xFFF0U;
1900 brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U);
1901 USARTx->BRR = brrtemp;
1902 }
1903 else
1904 {
1905 USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, (uint8_t)PrescalerValue, BaudRate));
1906 }
1907 }
1908
1909 /**
1910 * @brief Return current Baud Rate value, according to USARTDIV present in BRR register
1911 * (full BRR content), and to used Peripheral Clock and Oversampling mode values
1912 * @note In case of non-initialized or invalid value stored in BRR register, value 0 will be returned.
1913 * @note In case of oversampling by 16 and 8, BRR content must be greater than or equal to 16d.
1914 * @rmtoll BRR BRR LL_USART_GetBaudRate
1915 * @param USARTx USART Instance
1916 * @param PeriphClk Peripheral Clock
1917 * @param PrescalerValue This parameter can be one of the following values:
1918 * @arg @ref LL_USART_PRESCALER_DIV1
1919 * @arg @ref LL_USART_PRESCALER_DIV2
1920 * @arg @ref LL_USART_PRESCALER_DIV4
1921 * @arg @ref LL_USART_PRESCALER_DIV6
1922 * @arg @ref LL_USART_PRESCALER_DIV8
1923 * @arg @ref LL_USART_PRESCALER_DIV10
1924 * @arg @ref LL_USART_PRESCALER_DIV12
1925 * @arg @ref LL_USART_PRESCALER_DIV16
1926 * @arg @ref LL_USART_PRESCALER_DIV32
1927 * @arg @ref LL_USART_PRESCALER_DIV64
1928 * @arg @ref LL_USART_PRESCALER_DIV128
1929 * @arg @ref LL_USART_PRESCALER_DIV256
1930 * @param OverSampling This parameter can be one of the following values:
1931 * @arg @ref LL_USART_OVERSAMPLING_16
1932 * @arg @ref LL_USART_OVERSAMPLING_8
1933 * @retval Baud Rate
1934 */
LL_USART_GetBaudRate(const USART_TypeDef * USARTx,uint32_t PeriphClk,uint32_t PrescalerValue,uint32_t OverSampling)1935 __STATIC_INLINE uint32_t LL_USART_GetBaudRate(const USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t PrescalerValue,
1936 uint32_t OverSampling)
1937 {
1938 uint32_t usartdiv;
1939 uint32_t brrresult = 0x0U;
1940 uint32_t periphclkpresc = (uint32_t)(PeriphClk / (USART_PRESCALER_TAB[(uint8_t)PrescalerValue]));
1941
1942 usartdiv = USARTx->BRR;
1943
1944 if (usartdiv == 0U)
1945 {
1946 /* Do not perform a division by 0 */
1947 }
1948 else if (OverSampling == LL_USART_OVERSAMPLING_8)
1949 {
1950 usartdiv = (uint16_t)((usartdiv & 0xFFF0U) | ((usartdiv & 0x0007U) << 1U)) ;
1951 if (usartdiv != 0U)
1952 {
1953 brrresult = (periphclkpresc * 2U) / usartdiv;
1954 }
1955 }
1956 else
1957 {
1958 if ((usartdiv & 0xFFFFU) != 0U)
1959 {
1960 brrresult = periphclkpresc / usartdiv;
1961 }
1962 }
1963 return (brrresult);
1964 }
1965
1966 /**
1967 * @brief Set Receiver Time Out Value (expressed in nb of bits duration)
1968 * @rmtoll RTOR RTO LL_USART_SetRxTimeout
1969 * @param USARTx USART Instance
1970 * @param Timeout Value between Min_Data=0x00 and Max_Data=0x00FFFFFF
1971 * @retval None
1972 */
LL_USART_SetRxTimeout(USART_TypeDef * USARTx,uint32_t Timeout)1973 __STATIC_INLINE void LL_USART_SetRxTimeout(USART_TypeDef *USARTx, uint32_t Timeout)
1974 {
1975 MODIFY_REG(USARTx->RTOR, USART_RTOR_RTO, Timeout);
1976 }
1977
1978 /**
1979 * @brief Get Receiver Time Out Value (expressed in nb of bits duration)
1980 * @rmtoll RTOR RTO LL_USART_GetRxTimeout
1981 * @param USARTx USART Instance
1982 * @retval Value between Min_Data=0x00 and Max_Data=0x00FFFFFF
1983 */
LL_USART_GetRxTimeout(const USART_TypeDef * USARTx)1984 __STATIC_INLINE uint32_t LL_USART_GetRxTimeout(const USART_TypeDef *USARTx)
1985 {
1986 return (uint32_t)(READ_BIT(USARTx->RTOR, USART_RTOR_RTO));
1987 }
1988
1989 /**
1990 * @brief Set Block Length value in reception
1991 * @rmtoll RTOR BLEN LL_USART_SetBlockLength
1992 * @param USARTx USART Instance
1993 * @param BlockLength Value between Min_Data=0x00 and Max_Data=0xFF
1994 * @retval None
1995 */
LL_USART_SetBlockLength(USART_TypeDef * USARTx,uint32_t BlockLength)1996 __STATIC_INLINE void LL_USART_SetBlockLength(USART_TypeDef *USARTx, uint32_t BlockLength)
1997 {
1998 MODIFY_REG(USARTx->RTOR, USART_RTOR_BLEN, BlockLength << USART_RTOR_BLEN_Pos);
1999 }
2000
2001 /**
2002 * @brief Get Block Length value in reception
2003 * @rmtoll RTOR BLEN LL_USART_GetBlockLength
2004 * @param USARTx USART Instance
2005 * @retval Value between Min_Data=0x00 and Max_Data=0xFF
2006 */
LL_USART_GetBlockLength(const USART_TypeDef * USARTx)2007 __STATIC_INLINE uint32_t LL_USART_GetBlockLength(const USART_TypeDef *USARTx)
2008 {
2009 return (uint32_t)(READ_BIT(USARTx->RTOR, USART_RTOR_BLEN) >> USART_RTOR_BLEN_Pos);
2010 }
2011
2012 /**
2013 * @}
2014 */
2015
2016 /** @defgroup USART_LL_EF_Configuration_IRDA Configuration functions related to Irda feature
2017 * @{
2018 */
2019
2020 /**
2021 * @brief Enable IrDA mode
2022 * @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
2023 * IrDA feature is supported by the USARTx instance.
2024 * @rmtoll CR3 IREN LL_USART_EnableIrda
2025 * @param USARTx USART Instance
2026 * @retval None
2027 */
LL_USART_EnableIrda(USART_TypeDef * USARTx)2028 __STATIC_INLINE void LL_USART_EnableIrda(USART_TypeDef *USARTx)
2029 {
2030 SET_BIT(USARTx->CR3, USART_CR3_IREN);
2031 }
2032
2033 /**
2034 * @brief Disable IrDA mode
2035 * @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
2036 * IrDA feature is supported by the USARTx instance.
2037 * @rmtoll CR3 IREN LL_USART_DisableIrda
2038 * @param USARTx USART Instance
2039 * @retval None
2040 */
LL_USART_DisableIrda(USART_TypeDef * USARTx)2041 __STATIC_INLINE void LL_USART_DisableIrda(USART_TypeDef *USARTx)
2042 {
2043 CLEAR_BIT(USARTx->CR3, USART_CR3_IREN);
2044 }
2045
2046 /**
2047 * @brief Indicate if IrDA mode is enabled
2048 * @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
2049 * IrDA feature is supported by the USARTx instance.
2050 * @rmtoll CR3 IREN LL_USART_IsEnabledIrda
2051 * @param USARTx USART Instance
2052 * @retval State of bit (1 or 0).
2053 */
LL_USART_IsEnabledIrda(const USART_TypeDef * USARTx)2054 __STATIC_INLINE uint32_t LL_USART_IsEnabledIrda(const USART_TypeDef *USARTx)
2055 {
2056 return ((READ_BIT(USARTx->CR3, USART_CR3_IREN) == (USART_CR3_IREN)) ? 1UL : 0UL);
2057 }
2058
2059 /**
2060 * @brief Configure IrDA Power Mode (Normal or Low Power)
2061 * @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
2062 * IrDA feature is supported by the USARTx instance.
2063 * @rmtoll CR3 IRLP LL_USART_SetIrdaPowerMode
2064 * @param USARTx USART Instance
2065 * @param PowerMode This parameter can be one of the following values:
2066 * @arg @ref LL_USART_IRDA_POWER_NORMAL
2067 * @arg @ref LL_USART_IRDA_POWER_LOW
2068 * @retval None
2069 */
LL_USART_SetIrdaPowerMode(USART_TypeDef * USARTx,uint32_t PowerMode)2070 __STATIC_INLINE void LL_USART_SetIrdaPowerMode(USART_TypeDef *USARTx, uint32_t PowerMode)
2071 {
2072 MODIFY_REG(USARTx->CR3, USART_CR3_IRLP, PowerMode);
2073 }
2074
2075 /**
2076 * @brief Retrieve IrDA Power Mode configuration (Normal or Low Power)
2077 * @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
2078 * IrDA feature is supported by the USARTx instance.
2079 * @rmtoll CR3 IRLP LL_USART_GetIrdaPowerMode
2080 * @param USARTx USART Instance
2081 * @retval Returned value can be one of the following values:
2082 * @arg @ref LL_USART_IRDA_POWER_NORMAL
2083 * @arg @ref LL_USART_PHASE_2EDGE
2084 */
LL_USART_GetIrdaPowerMode(const USART_TypeDef * USARTx)2085 __STATIC_INLINE uint32_t LL_USART_GetIrdaPowerMode(const USART_TypeDef *USARTx)
2086 {
2087 return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_IRLP));
2088 }
2089
2090 /**
2091 * @brief Set Irda prescaler value, used for dividing the USART clock source
2092 * to achieve the Irda Low Power frequency (8 bits value)
2093 * @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
2094 * IrDA feature is supported by the USARTx instance.
2095 * @rmtoll GTPR PSC LL_USART_SetIrdaPrescaler
2096 * @param USARTx USART Instance
2097 * @param PrescalerValue Value between Min_Data=0x00 and Max_Data=0xFF
2098 * @retval None
2099 */
LL_USART_SetIrdaPrescaler(USART_TypeDef * USARTx,uint32_t PrescalerValue)2100 __STATIC_INLINE void LL_USART_SetIrdaPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
2101 {
2102 MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, (uint16_t)PrescalerValue);
2103 }
2104
2105 /**
2106 * @brief Return Irda prescaler value, used for dividing the USART clock source
2107 * to achieve the Irda Low Power frequency (8 bits value)
2108 * @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
2109 * IrDA feature is supported by the USARTx instance.
2110 * @rmtoll GTPR PSC LL_USART_GetIrdaPrescaler
2111 * @param USARTx USART Instance
2112 * @retval Irda prescaler value (Value between Min_Data=0x00 and Max_Data=0xFF)
2113 */
LL_USART_GetIrdaPrescaler(const USART_TypeDef * USARTx)2114 __STATIC_INLINE uint32_t LL_USART_GetIrdaPrescaler(const USART_TypeDef *USARTx)
2115 {
2116 return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
2117 }
2118
2119 /**
2120 * @}
2121 */
2122
2123 /** @defgroup USART_LL_EF_Configuration_Smartcard Configuration functions related to Smartcard feature
2124 * @{
2125 */
2126
2127 /**
2128 * @brief Enable Smartcard NACK transmission
2129 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2130 * Smartcard feature is supported by the USARTx instance.
2131 * @rmtoll CR3 NACK LL_USART_EnableSmartcardNACK
2132 * @param USARTx USART Instance
2133 * @retval None
2134 */
LL_USART_EnableSmartcardNACK(USART_TypeDef * USARTx)2135 __STATIC_INLINE void LL_USART_EnableSmartcardNACK(USART_TypeDef *USARTx)
2136 {
2137 SET_BIT(USARTx->CR3, USART_CR3_NACK);
2138 }
2139
2140 /**
2141 * @brief Disable Smartcard NACK transmission
2142 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2143 * Smartcard feature is supported by the USARTx instance.
2144 * @rmtoll CR3 NACK LL_USART_DisableSmartcardNACK
2145 * @param USARTx USART Instance
2146 * @retval None
2147 */
LL_USART_DisableSmartcardNACK(USART_TypeDef * USARTx)2148 __STATIC_INLINE void LL_USART_DisableSmartcardNACK(USART_TypeDef *USARTx)
2149 {
2150 CLEAR_BIT(USARTx->CR3, USART_CR3_NACK);
2151 }
2152
2153 /**
2154 * @brief Indicate if Smartcard NACK transmission is enabled
2155 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2156 * Smartcard feature is supported by the USARTx instance.
2157 * @rmtoll CR3 NACK LL_USART_IsEnabledSmartcardNACK
2158 * @param USARTx USART Instance
2159 * @retval State of bit (1 or 0).
2160 */
LL_USART_IsEnabledSmartcardNACK(const USART_TypeDef * USARTx)2161 __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcardNACK(const USART_TypeDef *USARTx)
2162 {
2163 return ((READ_BIT(USARTx->CR3, USART_CR3_NACK) == (USART_CR3_NACK)) ? 1UL : 0UL);
2164 }
2165
2166 /**
2167 * @brief Enable Smartcard mode
2168 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2169 * Smartcard feature is supported by the USARTx instance.
2170 * @rmtoll CR3 SCEN LL_USART_EnableSmartcard
2171 * @param USARTx USART Instance
2172 * @retval None
2173 */
LL_USART_EnableSmartcard(USART_TypeDef * USARTx)2174 __STATIC_INLINE void LL_USART_EnableSmartcard(USART_TypeDef *USARTx)
2175 {
2176 SET_BIT(USARTx->CR3, USART_CR3_SCEN);
2177 }
2178
2179 /**
2180 * @brief Disable Smartcard mode
2181 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2182 * Smartcard feature is supported by the USARTx instance.
2183 * @rmtoll CR3 SCEN LL_USART_DisableSmartcard
2184 * @param USARTx USART Instance
2185 * @retval None
2186 */
LL_USART_DisableSmartcard(USART_TypeDef * USARTx)2187 __STATIC_INLINE void LL_USART_DisableSmartcard(USART_TypeDef *USARTx)
2188 {
2189 CLEAR_BIT(USARTx->CR3, USART_CR3_SCEN);
2190 }
2191
2192 /**
2193 * @brief Indicate if Smartcard mode is enabled
2194 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2195 * Smartcard feature is supported by the USARTx instance.
2196 * @rmtoll CR3 SCEN LL_USART_IsEnabledSmartcard
2197 * @param USARTx USART Instance
2198 * @retval State of bit (1 or 0).
2199 */
LL_USART_IsEnabledSmartcard(const USART_TypeDef * USARTx)2200 __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcard(const USART_TypeDef *USARTx)
2201 {
2202 return ((READ_BIT(USARTx->CR3, USART_CR3_SCEN) == (USART_CR3_SCEN)) ? 1UL : 0UL);
2203 }
2204
2205 /**
2206 * @brief Set Smartcard Auto-Retry Count value (SCARCNT[2:0] bits)
2207 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2208 * Smartcard feature is supported by the USARTx instance.
2209 * @note This bit-field specifies the number of retries in transmit and receive, in Smartcard mode.
2210 * In transmission mode, it specifies the number of automatic retransmission retries, before
2211 * generating a transmission error (FE bit set).
2212 * In reception mode, it specifies the number or erroneous reception trials, before generating a
2213 * reception error (RXNE and PE bits set)
2214 * @rmtoll CR3 SCARCNT LL_USART_SetSmartcardAutoRetryCount
2215 * @param USARTx USART Instance
2216 * @param AutoRetryCount Value between Min_Data=0 and Max_Data=7
2217 * @retval None
2218 */
LL_USART_SetSmartcardAutoRetryCount(USART_TypeDef * USARTx,uint32_t AutoRetryCount)2219 __STATIC_INLINE void LL_USART_SetSmartcardAutoRetryCount(USART_TypeDef *USARTx, uint32_t AutoRetryCount)
2220 {
2221 MODIFY_REG(USARTx->CR3, USART_CR3_SCARCNT, AutoRetryCount << USART_CR3_SCARCNT_Pos);
2222 }
2223
2224 /**
2225 * @brief Return Smartcard Auto-Retry Count value (SCARCNT[2:0] bits)
2226 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2227 * Smartcard feature is supported by the USARTx instance.
2228 * @rmtoll CR3 SCARCNT LL_USART_GetSmartcardAutoRetryCount
2229 * @param USARTx USART Instance
2230 * @retval Smartcard Auto-Retry Count value (Value between Min_Data=0 and Max_Data=7)
2231 */
LL_USART_GetSmartcardAutoRetryCount(const USART_TypeDef * USARTx)2232 __STATIC_INLINE uint32_t LL_USART_GetSmartcardAutoRetryCount(const USART_TypeDef *USARTx)
2233 {
2234 return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_SCARCNT) >> USART_CR3_SCARCNT_Pos);
2235 }
2236
2237 /**
2238 * @brief Set Smartcard prescaler value, used for dividing the USART clock
2239 * source to provide the SMARTCARD Clock (5 bits value)
2240 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2241 * Smartcard feature is supported by the USARTx instance.
2242 * @rmtoll GTPR PSC LL_USART_SetSmartcardPrescaler
2243 * @param USARTx USART Instance
2244 * @param PrescalerValue Value between Min_Data=0 and Max_Data=31
2245 * @retval None
2246 */
LL_USART_SetSmartcardPrescaler(USART_TypeDef * USARTx,uint32_t PrescalerValue)2247 __STATIC_INLINE void LL_USART_SetSmartcardPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
2248 {
2249 MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, (uint16_t)PrescalerValue);
2250 }
2251
2252 /**
2253 * @brief Return Smartcard prescaler value, used for dividing the USART clock
2254 * source to provide the SMARTCARD Clock (5 bits value)
2255 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2256 * Smartcard feature is supported by the USARTx instance.
2257 * @rmtoll GTPR PSC LL_USART_GetSmartcardPrescaler
2258 * @param USARTx USART Instance
2259 * @retval Smartcard prescaler value (Value between Min_Data=0 and Max_Data=31)
2260 */
LL_USART_GetSmartcardPrescaler(const USART_TypeDef * USARTx)2261 __STATIC_INLINE uint32_t LL_USART_GetSmartcardPrescaler(const USART_TypeDef *USARTx)
2262 {
2263 return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
2264 }
2265
2266 /**
2267 * @brief Set Smartcard Guard time value, expressed in nb of baud clocks periods
2268 * (GT[7:0] bits : Guard time value)
2269 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2270 * Smartcard feature is supported by the USARTx instance.
2271 * @rmtoll GTPR GT LL_USART_SetSmartcardGuardTime
2272 * @param USARTx USART Instance
2273 * @param GuardTime Value between Min_Data=0x00 and Max_Data=0xFF
2274 * @retval None
2275 */
LL_USART_SetSmartcardGuardTime(USART_TypeDef * USARTx,uint32_t GuardTime)2276 __STATIC_INLINE void LL_USART_SetSmartcardGuardTime(USART_TypeDef *USARTx, uint32_t GuardTime)
2277 {
2278 MODIFY_REG(USARTx->GTPR, USART_GTPR_GT, (uint16_t)(GuardTime << USART_GTPR_GT_Pos));
2279 }
2280
2281 /**
2282 * @brief Return Smartcard Guard time value, expressed in nb of baud clocks periods
2283 * (GT[7:0] bits : Guard time value)
2284 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2285 * Smartcard feature is supported by the USARTx instance.
2286 * @rmtoll GTPR GT LL_USART_GetSmartcardGuardTime
2287 * @param USARTx USART Instance
2288 * @retval Smartcard Guard time value (Value between Min_Data=0x00 and Max_Data=0xFF)
2289 */
LL_USART_GetSmartcardGuardTime(const USART_TypeDef * USARTx)2290 __STATIC_INLINE uint32_t LL_USART_GetSmartcardGuardTime(const USART_TypeDef *USARTx)
2291 {
2292 return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_GT) >> USART_GTPR_GT_Pos);
2293 }
2294
2295 /**
2296 * @}
2297 */
2298
2299 /** @defgroup USART_LL_EF_Configuration_HalfDuplex Configuration functions related to Half Duplex feature
2300 * @{
2301 */
2302
2303 /**
2304 * @brief Enable Single Wire Half-Duplex mode
2305 * @note Macro IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
2306 * Half-Duplex mode is supported by the USARTx instance.
2307 * @rmtoll CR3 HDSEL LL_USART_EnableHalfDuplex
2308 * @param USARTx USART Instance
2309 * @retval None
2310 */
LL_USART_EnableHalfDuplex(USART_TypeDef * USARTx)2311 __STATIC_INLINE void LL_USART_EnableHalfDuplex(USART_TypeDef *USARTx)
2312 {
2313 SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
2314 }
2315
2316 /**
2317 * @brief Disable Single Wire Half-Duplex mode
2318 * @note Macro IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
2319 * Half-Duplex mode is supported by the USARTx instance.
2320 * @rmtoll CR3 HDSEL LL_USART_DisableHalfDuplex
2321 * @param USARTx USART Instance
2322 * @retval None
2323 */
LL_USART_DisableHalfDuplex(USART_TypeDef * USARTx)2324 __STATIC_INLINE void LL_USART_DisableHalfDuplex(USART_TypeDef *USARTx)
2325 {
2326 CLEAR_BIT(USARTx->CR3, USART_CR3_HDSEL);
2327 }
2328
2329 /**
2330 * @brief Indicate if Single Wire Half-Duplex mode is enabled
2331 * @note Macro IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
2332 * Half-Duplex mode is supported by the USARTx instance.
2333 * @rmtoll CR3 HDSEL LL_USART_IsEnabledHalfDuplex
2334 * @param USARTx USART Instance
2335 * @retval State of bit (1 or 0).
2336 */
LL_USART_IsEnabledHalfDuplex(const USART_TypeDef * USARTx)2337 __STATIC_INLINE uint32_t LL_USART_IsEnabledHalfDuplex(const USART_TypeDef *USARTx)
2338 {
2339 return ((READ_BIT(USARTx->CR3, USART_CR3_HDSEL) == (USART_CR3_HDSEL)) ? 1UL : 0UL);
2340 }
2341
2342 /**
2343 * @}
2344 */
2345
2346 /** @defgroup USART_LL_EF_Configuration_SPI_SLAVE Configuration functions related to SPI Slave feature
2347 * @{
2348 */
2349 /**
2350 * @brief Enable SPI Synchronous Slave mode
2351 * @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
2352 * SPI Slave mode feature is supported by the USARTx instance.
2353 * @rmtoll CR2 SLVEN LL_USART_EnableSPISlave
2354 * @param USARTx USART Instance
2355 * @retval None
2356 */
LL_USART_EnableSPISlave(USART_TypeDef * USARTx)2357 __STATIC_INLINE void LL_USART_EnableSPISlave(USART_TypeDef *USARTx)
2358 {
2359 SET_BIT(USARTx->CR2, USART_CR2_SLVEN);
2360 }
2361
2362 /**
2363 * @brief Disable SPI Synchronous Slave mode
2364 * @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
2365 * SPI Slave mode feature is supported by the USARTx instance.
2366 * @rmtoll CR2 SLVEN LL_USART_DisableSPISlave
2367 * @param USARTx USART Instance
2368 * @retval None
2369 */
LL_USART_DisableSPISlave(USART_TypeDef * USARTx)2370 __STATIC_INLINE void LL_USART_DisableSPISlave(USART_TypeDef *USARTx)
2371 {
2372 CLEAR_BIT(USARTx->CR2, USART_CR2_SLVEN);
2373 }
2374
2375 /**
2376 * @brief Indicate if SPI Synchronous Slave mode is enabled
2377 * @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
2378 * SPI Slave mode feature is supported by the USARTx instance.
2379 * @rmtoll CR2 SLVEN LL_USART_IsEnabledSPISlave
2380 * @param USARTx USART Instance
2381 * @retval State of bit (1 or 0).
2382 */
LL_USART_IsEnabledSPISlave(const USART_TypeDef * USARTx)2383 __STATIC_INLINE uint32_t LL_USART_IsEnabledSPISlave(const USART_TypeDef *USARTx)
2384 {
2385 return ((READ_BIT(USARTx->CR2, USART_CR2_SLVEN) == (USART_CR2_SLVEN)) ? 1UL : 0UL);
2386 }
2387
2388 /**
2389 * @brief Enable SPI Slave Selection using NSS input pin
2390 * @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
2391 * SPI Slave mode feature is supported by the USARTx instance.
2392 * @note SPI Slave Selection depends on NSS input pin
2393 * (The slave is selected when NSS is low and deselected when NSS is high).
2394 * @rmtoll CR2 DIS_NSS LL_USART_EnableSPISlaveSelect
2395 * @param USARTx USART Instance
2396 * @retval None
2397 */
LL_USART_EnableSPISlaveSelect(USART_TypeDef * USARTx)2398 __STATIC_INLINE void LL_USART_EnableSPISlaveSelect(USART_TypeDef *USARTx)
2399 {
2400 CLEAR_BIT(USARTx->CR2, USART_CR2_DIS_NSS);
2401 }
2402
2403 /**
2404 * @brief Disable SPI Slave Selection using NSS input pin
2405 * @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
2406 * SPI Slave mode feature is supported by the USARTx instance.
2407 * @note SPI Slave will be always selected and NSS input pin will be ignored.
2408 * @rmtoll CR2 DIS_NSS LL_USART_DisableSPISlaveSelect
2409 * @param USARTx USART Instance
2410 * @retval None
2411 */
LL_USART_DisableSPISlaveSelect(USART_TypeDef * USARTx)2412 __STATIC_INLINE void LL_USART_DisableSPISlaveSelect(USART_TypeDef *USARTx)
2413 {
2414 SET_BIT(USARTx->CR2, USART_CR2_DIS_NSS);
2415 }
2416
2417 /**
2418 * @brief Indicate if SPI Slave Selection depends on NSS input pin
2419 * @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
2420 * SPI Slave mode feature is supported by the USARTx instance.
2421 * @rmtoll CR2 DIS_NSS LL_USART_IsEnabledSPISlaveSelect
2422 * @param USARTx USART Instance
2423 * @retval State of bit (1 or 0).
2424 */
LL_USART_IsEnabledSPISlaveSelect(const USART_TypeDef * USARTx)2425 __STATIC_INLINE uint32_t LL_USART_IsEnabledSPISlaveSelect(const USART_TypeDef *USARTx)
2426 {
2427 return ((READ_BIT(USARTx->CR2, USART_CR2_DIS_NSS) != (USART_CR2_DIS_NSS)) ? 1UL : 0UL);
2428 }
2429
2430 /**
2431 * @}
2432 */
2433
2434 /** @defgroup USART_LL_EF_Configuration_LIN Configuration functions related to LIN feature
2435 * @{
2436 */
2437
2438 /**
2439 * @brief Set LIN Break Detection Length
2440 * @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2441 * LIN feature is supported by the USARTx instance.
2442 * @rmtoll CR2 LBDL LL_USART_SetLINBrkDetectionLen
2443 * @param USARTx USART Instance
2444 * @param LINBDLength This parameter can be one of the following values:
2445 * @arg @ref LL_USART_LINBREAK_DETECT_10B
2446 * @arg @ref LL_USART_LINBREAK_DETECT_11B
2447 * @retval None
2448 */
LL_USART_SetLINBrkDetectionLen(USART_TypeDef * USARTx,uint32_t LINBDLength)2449 __STATIC_INLINE void LL_USART_SetLINBrkDetectionLen(USART_TypeDef *USARTx, uint32_t LINBDLength)
2450 {
2451 MODIFY_REG(USARTx->CR2, USART_CR2_LBDL, LINBDLength);
2452 }
2453
2454 /**
2455 * @brief Return LIN Break Detection Length
2456 * @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2457 * LIN feature is supported by the USARTx instance.
2458 * @rmtoll CR2 LBDL LL_USART_GetLINBrkDetectionLen
2459 * @param USARTx USART Instance
2460 * @retval Returned value can be one of the following values:
2461 * @arg @ref LL_USART_LINBREAK_DETECT_10B
2462 * @arg @ref LL_USART_LINBREAK_DETECT_11B
2463 */
LL_USART_GetLINBrkDetectionLen(const USART_TypeDef * USARTx)2464 __STATIC_INLINE uint32_t LL_USART_GetLINBrkDetectionLen(const USART_TypeDef *USARTx)
2465 {
2466 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBDL));
2467 }
2468
2469 /**
2470 * @brief Enable LIN mode
2471 * @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2472 * LIN feature is supported by the USARTx instance.
2473 * @rmtoll CR2 LINEN LL_USART_EnableLIN
2474 * @param USARTx USART Instance
2475 * @retval None
2476 */
LL_USART_EnableLIN(USART_TypeDef * USARTx)2477 __STATIC_INLINE void LL_USART_EnableLIN(USART_TypeDef *USARTx)
2478 {
2479 SET_BIT(USARTx->CR2, USART_CR2_LINEN);
2480 }
2481
2482 /**
2483 * @brief Disable LIN mode
2484 * @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2485 * LIN feature is supported by the USARTx instance.
2486 * @rmtoll CR2 LINEN LL_USART_DisableLIN
2487 * @param USARTx USART Instance
2488 * @retval None
2489 */
LL_USART_DisableLIN(USART_TypeDef * USARTx)2490 __STATIC_INLINE void LL_USART_DisableLIN(USART_TypeDef *USARTx)
2491 {
2492 CLEAR_BIT(USARTx->CR2, USART_CR2_LINEN);
2493 }
2494
2495 /**
2496 * @brief Indicate if LIN mode is enabled
2497 * @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2498 * LIN feature is supported by the USARTx instance.
2499 * @rmtoll CR2 LINEN LL_USART_IsEnabledLIN
2500 * @param USARTx USART Instance
2501 * @retval State of bit (1 or 0).
2502 */
LL_USART_IsEnabledLIN(const USART_TypeDef * USARTx)2503 __STATIC_INLINE uint32_t LL_USART_IsEnabledLIN(const USART_TypeDef *USARTx)
2504 {
2505 return ((READ_BIT(USARTx->CR2, USART_CR2_LINEN) == (USART_CR2_LINEN)) ? 1UL : 0UL);
2506 }
2507
2508 /**
2509 * @}
2510 */
2511
2512 /** @defgroup USART_LL_EF_Configuration_DE Configuration functions related to Driver Enable feature
2513 * @{
2514 */
2515
2516 /**
2517 * @brief Set DEDT (Driver Enable De-Assertion Time), Time value expressed on 5 bits ([4:0] bits).
2518 * @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
2519 * Driver Enable feature is supported by the USARTx instance.
2520 * @rmtoll CR1 DEDT LL_USART_SetDEDeassertionTime
2521 * @param USARTx USART Instance
2522 * @param Time Value between Min_Data=0 and Max_Data=31
2523 * @retval None
2524 */
LL_USART_SetDEDeassertionTime(USART_TypeDef * USARTx,uint32_t Time)2525 __STATIC_INLINE void LL_USART_SetDEDeassertionTime(USART_TypeDef *USARTx, uint32_t Time)
2526 {
2527 MODIFY_REG(USARTx->CR1, USART_CR1_DEDT, Time << USART_CR1_DEDT_Pos);
2528 }
2529
2530 /**
2531 * @brief Return DEDT (Driver Enable De-Assertion Time)
2532 * @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
2533 * Driver Enable feature is supported by the USARTx instance.
2534 * @rmtoll CR1 DEDT LL_USART_GetDEDeassertionTime
2535 * @param USARTx USART Instance
2536 * @retval Time value expressed on 5 bits ([4:0] bits) : Value between Min_Data=0 and Max_Data=31
2537 */
LL_USART_GetDEDeassertionTime(const USART_TypeDef * USARTx)2538 __STATIC_INLINE uint32_t LL_USART_GetDEDeassertionTime(const USART_TypeDef *USARTx)
2539 {
2540 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_DEDT) >> USART_CR1_DEDT_Pos);
2541 }
2542
2543 /**
2544 * @brief Set DEAT (Driver Enable Assertion Time), Time value expressed on 5 bits ([4:0] bits).
2545 * @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
2546 * Driver Enable feature is supported by the USARTx instance.
2547 * @rmtoll CR1 DEAT LL_USART_SetDEAssertionTime
2548 * @param USARTx USART Instance
2549 * @param Time Value between Min_Data=0 and Max_Data=31
2550 * @retval None
2551 */
LL_USART_SetDEAssertionTime(USART_TypeDef * USARTx,uint32_t Time)2552 __STATIC_INLINE void LL_USART_SetDEAssertionTime(USART_TypeDef *USARTx, uint32_t Time)
2553 {
2554 MODIFY_REG(USARTx->CR1, USART_CR1_DEAT, Time << USART_CR1_DEAT_Pos);
2555 }
2556
2557 /**
2558 * @brief Return DEAT (Driver Enable Assertion Time)
2559 * @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
2560 * Driver Enable feature is supported by the USARTx instance.
2561 * @rmtoll CR1 DEAT LL_USART_GetDEAssertionTime
2562 * @param USARTx USART Instance
2563 * @retval Time value expressed on 5 bits ([4:0] bits) : Value between Min_Data=0 and Max_Data=31
2564 */
LL_USART_GetDEAssertionTime(const USART_TypeDef * USARTx)2565 __STATIC_INLINE uint32_t LL_USART_GetDEAssertionTime(const USART_TypeDef *USARTx)
2566 {
2567 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_DEAT) >> USART_CR1_DEAT_Pos);
2568 }
2569
2570 /**
2571 * @brief Enable Driver Enable (DE) Mode
2572 * @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
2573 * Driver Enable feature is supported by the USARTx instance.
2574 * @rmtoll CR3 DEM LL_USART_EnableDEMode
2575 * @param USARTx USART Instance
2576 * @retval None
2577 */
LL_USART_EnableDEMode(USART_TypeDef * USARTx)2578 __STATIC_INLINE void LL_USART_EnableDEMode(USART_TypeDef *USARTx)
2579 {
2580 SET_BIT(USARTx->CR3, USART_CR3_DEM);
2581 }
2582
2583 /**
2584 * @brief Disable Driver Enable (DE) Mode
2585 * @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
2586 * Driver Enable feature is supported by the USARTx instance.
2587 * @rmtoll CR3 DEM LL_USART_DisableDEMode
2588 * @param USARTx USART Instance
2589 * @retval None
2590 */
LL_USART_DisableDEMode(USART_TypeDef * USARTx)2591 __STATIC_INLINE void LL_USART_DisableDEMode(USART_TypeDef *USARTx)
2592 {
2593 CLEAR_BIT(USARTx->CR3, USART_CR3_DEM);
2594 }
2595
2596 /**
2597 * @brief Indicate if Driver Enable (DE) Mode is enabled
2598 * @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
2599 * Driver Enable feature is supported by the USARTx instance.
2600 * @rmtoll CR3 DEM LL_USART_IsEnabledDEMode
2601 * @param USARTx USART Instance
2602 * @retval State of bit (1 or 0).
2603 */
LL_USART_IsEnabledDEMode(const USART_TypeDef * USARTx)2604 __STATIC_INLINE uint32_t LL_USART_IsEnabledDEMode(const USART_TypeDef *USARTx)
2605 {
2606 return ((READ_BIT(USARTx->CR3, USART_CR3_DEM) == (USART_CR3_DEM)) ? 1UL : 0UL);
2607 }
2608
2609 /**
2610 * @brief Select Driver Enable Polarity
2611 * @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
2612 * Driver Enable feature is supported by the USARTx instance.
2613 * @rmtoll CR3 DEP LL_USART_SetDESignalPolarity
2614 * @param USARTx USART Instance
2615 * @param Polarity This parameter can be one of the following values:
2616 * @arg @ref LL_USART_DE_POLARITY_HIGH
2617 * @arg @ref LL_USART_DE_POLARITY_LOW
2618 * @retval None
2619 */
LL_USART_SetDESignalPolarity(USART_TypeDef * USARTx,uint32_t Polarity)2620 __STATIC_INLINE void LL_USART_SetDESignalPolarity(USART_TypeDef *USARTx, uint32_t Polarity)
2621 {
2622 MODIFY_REG(USARTx->CR3, USART_CR3_DEP, Polarity);
2623 }
2624
2625 /**
2626 * @brief Return Driver Enable Polarity
2627 * @note Macro IS_UART_DRIVER_ENABLE_INSTANCE(USARTx) can be used to check whether or not
2628 * Driver Enable feature is supported by the USARTx instance.
2629 * @rmtoll CR3 DEP LL_USART_GetDESignalPolarity
2630 * @param USARTx USART Instance
2631 * @retval Returned value can be one of the following values:
2632 * @arg @ref LL_USART_DE_POLARITY_HIGH
2633 * @arg @ref LL_USART_DE_POLARITY_LOW
2634 */
LL_USART_GetDESignalPolarity(const USART_TypeDef * USARTx)2635 __STATIC_INLINE uint32_t LL_USART_GetDESignalPolarity(const USART_TypeDef *USARTx)
2636 {
2637 return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_DEP));
2638 }
2639
2640 /**
2641 * @}
2642 */
2643
2644 /** @defgroup USART_LL_EF_AdvancedConfiguration Advanced Configurations services
2645 * @{
2646 */
2647
2648 /**
2649 * @brief Perform basic configuration of USART for enabling use in Asynchronous Mode (UART)
2650 * @note In UART mode, the following bits must be kept cleared:
2651 * - LINEN bit in the USART_CR2 register,
2652 * - CLKEN bit in the USART_CR2 register,
2653 * - SCEN bit in the USART_CR3 register,
2654 * - IREN bit in the USART_CR3 register,
2655 * - HDSEL bit in the USART_CR3 register.
2656 * @note Call of this function is equivalent to following function call sequence :
2657 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
2658 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
2659 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
2660 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
2661 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
2662 * @note Other remaining configurations items related to Asynchronous Mode
2663 * (as Baud Rate, Word length, Parity, ...) should be set using
2664 * dedicated functions
2665 * @rmtoll CR2 LINEN LL_USART_ConfigAsyncMode\n
2666 * CR2 CLKEN LL_USART_ConfigAsyncMode\n
2667 * CR3 SCEN LL_USART_ConfigAsyncMode\n
2668 * CR3 IREN LL_USART_ConfigAsyncMode\n
2669 * CR3 HDSEL LL_USART_ConfigAsyncMode
2670 * @param USARTx USART Instance
2671 * @retval None
2672 */
LL_USART_ConfigAsyncMode(USART_TypeDef * USARTx)2673 __STATIC_INLINE void LL_USART_ConfigAsyncMode(USART_TypeDef *USARTx)
2674 {
2675 /* In Asynchronous mode, the following bits must be kept cleared:
2676 - LINEN, CLKEN bits in the USART_CR2 register,
2677 - SCEN, IREN and HDSEL bits in the USART_CR3 register.
2678 */
2679 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
2680 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
2681 }
2682
2683 /**
2684 * @brief Perform basic configuration of USART for enabling use in Synchronous Mode
2685 * @note In Synchronous mode, the following bits must be kept cleared:
2686 * - LINEN bit in the USART_CR2 register,
2687 * - SCEN bit in the USART_CR3 register,
2688 * - IREN bit in the USART_CR3 register,
2689 * - HDSEL bit in the USART_CR3 register.
2690 * This function also sets the USART in Synchronous mode.
2691 * @note Macro IS_USART_INSTANCE(USARTx) can be used to check whether or not
2692 * Synchronous mode is supported by the USARTx instance.
2693 * @note Call of this function is equivalent to following function call sequence :
2694 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
2695 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
2696 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
2697 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
2698 * - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
2699 * @note Other remaining configurations items related to Synchronous Mode
2700 * (as Baud Rate, Word length, Parity, Clock Polarity, ...) should be set using
2701 * dedicated functions
2702 * @rmtoll CR2 LINEN LL_USART_ConfigSyncMode\n
2703 * CR2 CLKEN LL_USART_ConfigSyncMode\n
2704 * CR3 SCEN LL_USART_ConfigSyncMode\n
2705 * CR3 IREN LL_USART_ConfigSyncMode\n
2706 * CR3 HDSEL LL_USART_ConfigSyncMode
2707 * @param USARTx USART Instance
2708 * @retval None
2709 */
LL_USART_ConfigSyncMode(USART_TypeDef * USARTx)2710 __STATIC_INLINE void LL_USART_ConfigSyncMode(USART_TypeDef *USARTx)
2711 {
2712 /* In Synchronous mode, the following bits must be kept cleared:
2713 - LINEN bit in the USART_CR2 register,
2714 - SCEN, IREN and HDSEL bits in the USART_CR3 register.
2715 */
2716 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
2717 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
2718 /* set the UART/USART in Synchronous mode */
2719 SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
2720 }
2721
2722 /**
2723 * @brief Perform basic configuration of USART for enabling use in LIN Mode
2724 * @note In LIN mode, the following bits must be kept cleared:
2725 * - STOP and CLKEN bits in the USART_CR2 register,
2726 * - SCEN bit in the USART_CR3 register,
2727 * - IREN bit in the USART_CR3 register,
2728 * - HDSEL bit in the USART_CR3 register.
2729 * This function also set the UART/USART in LIN mode.
2730 * @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2731 * LIN feature is supported by the USARTx instance.
2732 * @note Call of this function is equivalent to following function call sequence :
2733 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
2734 * - Clear STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
2735 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
2736 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
2737 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
2738 * - Set LINEN in CR2 using @ref LL_USART_EnableLIN() function
2739 * @note Other remaining configurations items related to LIN Mode
2740 * (as Baud Rate, Word length, LIN Break Detection Length, ...) should be set using
2741 * dedicated functions
2742 * @rmtoll CR2 CLKEN LL_USART_ConfigLINMode\n
2743 * CR2 STOP LL_USART_ConfigLINMode\n
2744 * CR2 LINEN LL_USART_ConfigLINMode\n
2745 * CR3 IREN LL_USART_ConfigLINMode\n
2746 * CR3 SCEN LL_USART_ConfigLINMode\n
2747 * CR3 HDSEL LL_USART_ConfigLINMode
2748 * @param USARTx USART Instance
2749 * @retval None
2750 */
LL_USART_ConfigLINMode(USART_TypeDef * USARTx)2751 __STATIC_INLINE void LL_USART_ConfigLINMode(USART_TypeDef *USARTx)
2752 {
2753 /* In LIN mode, the following bits must be kept cleared:
2754 - STOP and CLKEN bits in the USART_CR2 register,
2755 - IREN, SCEN and HDSEL bits in the USART_CR3 register.
2756 */
2757 CLEAR_BIT(USARTx->CR2, (USART_CR2_CLKEN | USART_CR2_STOP));
2758 CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_SCEN | USART_CR3_HDSEL));
2759 /* Set the UART/USART in LIN mode */
2760 SET_BIT(USARTx->CR2, USART_CR2_LINEN);
2761 }
2762
2763 /**
2764 * @brief Perform basic configuration of USART for enabling use in Half Duplex Mode
2765 * @note In Half Duplex mode, the following bits must be kept cleared:
2766 * - LINEN bit in the USART_CR2 register,
2767 * - CLKEN bit in the USART_CR2 register,
2768 * - SCEN bit in the USART_CR3 register,
2769 * - IREN bit in the USART_CR3 register,
2770 * This function also sets the UART/USART in Half Duplex mode.
2771 * @note Macro IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
2772 * Half-Duplex mode is supported by the USARTx instance.
2773 * @note Call of this function is equivalent to following function call sequence :
2774 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
2775 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
2776 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
2777 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
2778 * - Set HDSEL in CR3 using @ref LL_USART_EnableHalfDuplex() function
2779 * @note Other remaining configurations items related to Half Duplex Mode
2780 * (as Baud Rate, Word length, Parity, ...) should be set using
2781 * dedicated functions
2782 * @rmtoll CR2 LINEN LL_USART_ConfigHalfDuplexMode\n
2783 * CR2 CLKEN LL_USART_ConfigHalfDuplexMode\n
2784 * CR3 HDSEL LL_USART_ConfigHalfDuplexMode\n
2785 * CR3 SCEN LL_USART_ConfigHalfDuplexMode\n
2786 * CR3 IREN LL_USART_ConfigHalfDuplexMode
2787 * @param USARTx USART Instance
2788 * @retval None
2789 */
LL_USART_ConfigHalfDuplexMode(USART_TypeDef * USARTx)2790 __STATIC_INLINE void LL_USART_ConfigHalfDuplexMode(USART_TypeDef *USARTx)
2791 {
2792 /* In Half Duplex mode, the following bits must be kept cleared:
2793 - LINEN and CLKEN bits in the USART_CR2 register,
2794 - SCEN and IREN bits in the USART_CR3 register.
2795 */
2796 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
2797 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN));
2798 /* set the UART/USART in Half Duplex mode */
2799 SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
2800 }
2801
2802 /**
2803 * @brief Perform basic configuration of USART for enabling use in Smartcard Mode
2804 * @note In Smartcard mode, the following bits must be kept cleared:
2805 * - LINEN bit in the USART_CR2 register,
2806 * - IREN bit in the USART_CR3 register,
2807 * - HDSEL bit in the USART_CR3 register.
2808 * This function also configures Stop bits to 1.5 bits and
2809 * sets the USART in Smartcard mode (SCEN bit).
2810 * Clock Output is also enabled (CLKEN).
2811 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
2812 * Smartcard feature is supported by the USARTx instance.
2813 * @note Call of this function is equivalent to following function call sequence :
2814 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
2815 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
2816 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
2817 * - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
2818 * - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
2819 * - Set SCEN in CR3 using @ref LL_USART_EnableSmartcard() function
2820 * @note Other remaining configurations items related to Smartcard Mode
2821 * (as Baud Rate, Word length, Parity, ...) should be set using
2822 * dedicated functions
2823 * @rmtoll CR2 LINEN LL_USART_ConfigSmartcardMode\n
2824 * CR2 STOP LL_USART_ConfigSmartcardMode\n
2825 * CR2 CLKEN LL_USART_ConfigSmartcardMode\n
2826 * CR3 HDSEL LL_USART_ConfigSmartcardMode\n
2827 * CR3 SCEN LL_USART_ConfigSmartcardMode
2828 * @param USARTx USART Instance
2829 * @retval None
2830 */
LL_USART_ConfigSmartcardMode(USART_TypeDef * USARTx)2831 __STATIC_INLINE void LL_USART_ConfigSmartcardMode(USART_TypeDef *USARTx)
2832 {
2833 /* In Smartcard mode, the following bits must be kept cleared:
2834 - LINEN bit in the USART_CR2 register,
2835 - IREN and HDSEL bits in the USART_CR3 register.
2836 */
2837 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
2838 CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_HDSEL));
2839 /* Configure Stop bits to 1.5 bits */
2840 /* Synchronous mode is activated by default */
2841 SET_BIT(USARTx->CR2, (USART_CR2_STOP_0 | USART_CR2_STOP_1 | USART_CR2_CLKEN));
2842 /* set the UART/USART in Smartcard mode */
2843 SET_BIT(USARTx->CR3, USART_CR3_SCEN);
2844 }
2845
2846 /**
2847 * @brief Perform basic configuration of USART for enabling use in Irda Mode
2848 * @note In IRDA mode, the following bits must be kept cleared:
2849 * - LINEN bit in the USART_CR2 register,
2850 * - STOP and CLKEN bits in the USART_CR2 register,
2851 * - SCEN bit in the USART_CR3 register,
2852 * - HDSEL bit in the USART_CR3 register.
2853 * This function also sets the UART/USART in IRDA mode (IREN bit).
2854 * @note Macro IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
2855 * IrDA feature is supported by the USARTx instance.
2856 * @note Call of this function is equivalent to following function call sequence :
2857 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
2858 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
2859 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
2860 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
2861 * - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
2862 * - Set IREN in CR3 using @ref LL_USART_EnableIrda() function
2863 * @note Other remaining configurations items related to Irda Mode
2864 * (as Baud Rate, Word length, Power mode, ...) should be set using
2865 * dedicated functions
2866 * @rmtoll CR2 LINEN LL_USART_ConfigIrdaMode\n
2867 * CR2 CLKEN LL_USART_ConfigIrdaMode\n
2868 * CR2 STOP LL_USART_ConfigIrdaMode\n
2869 * CR3 SCEN LL_USART_ConfigIrdaMode\n
2870 * CR3 HDSEL LL_USART_ConfigIrdaMode\n
2871 * CR3 IREN LL_USART_ConfigIrdaMode
2872 * @param USARTx USART Instance
2873 * @retval None
2874 */
LL_USART_ConfigIrdaMode(USART_TypeDef * USARTx)2875 __STATIC_INLINE void LL_USART_ConfigIrdaMode(USART_TypeDef *USARTx)
2876 {
2877 /* In IRDA mode, the following bits must be kept cleared:
2878 - LINEN, STOP and CLKEN bits in the USART_CR2 register,
2879 - SCEN and HDSEL bits in the USART_CR3 register.
2880 */
2881 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
2882 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
2883 /* set the UART/USART in IRDA mode */
2884 SET_BIT(USARTx->CR3, USART_CR3_IREN);
2885 }
2886
2887 /**
2888 * @brief Perform basic configuration of USART for enabling use in Multi processor Mode
2889 * (several USARTs connected in a network, one of the USARTs can be the master,
2890 * its TX output connected to the RX inputs of the other slaves USARTs).
2891 * @note In MultiProcessor mode, the following bits must be kept cleared:
2892 * - LINEN bit in the USART_CR2 register,
2893 * - CLKEN bit in the USART_CR2 register,
2894 * - SCEN bit in the USART_CR3 register,
2895 * - IREN bit in the USART_CR3 register,
2896 * - HDSEL bit in the USART_CR3 register.
2897 * @note Call of this function is equivalent to following function call sequence :
2898 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
2899 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
2900 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
2901 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
2902 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
2903 * @note Other remaining configurations items related to Multi processor Mode
2904 * (as Baud Rate, Wake Up Method, Node address, ...) should be set using
2905 * dedicated functions
2906 * @rmtoll CR2 LINEN LL_USART_ConfigMultiProcessMode\n
2907 * CR2 CLKEN LL_USART_ConfigMultiProcessMode\n
2908 * CR3 SCEN LL_USART_ConfigMultiProcessMode\n
2909 * CR3 HDSEL LL_USART_ConfigMultiProcessMode\n
2910 * CR3 IREN LL_USART_ConfigMultiProcessMode
2911 * @param USARTx USART Instance
2912 * @retval None
2913 */
LL_USART_ConfigMultiProcessMode(USART_TypeDef * USARTx)2914 __STATIC_INLINE void LL_USART_ConfigMultiProcessMode(USART_TypeDef *USARTx)
2915 {
2916 /* In Multi Processor mode, the following bits must be kept cleared:
2917 - LINEN and CLKEN bits in the USART_CR2 register,
2918 - IREN, SCEN and HDSEL bits in the USART_CR3 register.
2919 */
2920 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
2921 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
2922 }
2923
2924 /**
2925 * @}
2926 */
2927
2928 /** @defgroup USART_LL_EF_FLAG_Management FLAG_Management
2929 * @{
2930 */
2931
2932 /**
2933 * @brief Check if the USART Parity Error Flag is set or not
2934 * @rmtoll ISR PE LL_USART_IsActiveFlag_PE
2935 * @param USARTx USART Instance
2936 * @retval State of bit (1 or 0).
2937 */
LL_USART_IsActiveFlag_PE(const USART_TypeDef * USARTx)2938 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_PE(const USART_TypeDef *USARTx)
2939 {
2940 return ((READ_BIT(USARTx->ISR, USART_ISR_PE) == (USART_ISR_PE)) ? 1UL : 0UL);
2941 }
2942
2943 /**
2944 * @brief Check if the USART Framing Error Flag is set or not
2945 * @rmtoll ISR FE LL_USART_IsActiveFlag_FE
2946 * @param USARTx USART Instance
2947 * @retval State of bit (1 or 0).
2948 */
LL_USART_IsActiveFlag_FE(const USART_TypeDef * USARTx)2949 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_FE(const USART_TypeDef *USARTx)
2950 {
2951 return ((READ_BIT(USARTx->ISR, USART_ISR_FE) == (USART_ISR_FE)) ? 1UL : 0UL);
2952 }
2953
2954 /**
2955 * @brief Check if the USART Noise error detected Flag is set or not
2956 * @rmtoll ISR NE LL_USART_IsActiveFlag_NE
2957 * @param USARTx USART Instance
2958 * @retval State of bit (1 or 0).
2959 */
LL_USART_IsActiveFlag_NE(const USART_TypeDef * USARTx)2960 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_NE(const USART_TypeDef *USARTx)
2961 {
2962 return ((READ_BIT(USARTx->ISR, USART_ISR_NE) == (USART_ISR_NE)) ? 1UL : 0UL);
2963 }
2964
2965 /**
2966 * @brief Check if the USART OverRun Error Flag is set or not
2967 * @rmtoll ISR ORE LL_USART_IsActiveFlag_ORE
2968 * @param USARTx USART Instance
2969 * @retval State of bit (1 or 0).
2970 */
LL_USART_IsActiveFlag_ORE(const USART_TypeDef * USARTx)2971 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ORE(const USART_TypeDef *USARTx)
2972 {
2973 return ((READ_BIT(USARTx->ISR, USART_ISR_ORE) == (USART_ISR_ORE)) ? 1UL : 0UL);
2974 }
2975
2976 /**
2977 * @brief Check if the USART IDLE line detected Flag is set or not
2978 * @rmtoll ISR IDLE LL_USART_IsActiveFlag_IDLE
2979 * @param USARTx USART Instance
2980 * @retval State of bit (1 or 0).
2981 */
LL_USART_IsActiveFlag_IDLE(const USART_TypeDef * USARTx)2982 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_IDLE(const USART_TypeDef *USARTx)
2983 {
2984 return ((READ_BIT(USARTx->ISR, USART_ISR_IDLE) == (USART_ISR_IDLE)) ? 1UL : 0UL);
2985 }
2986
2987 #define LL_USART_IsActiveFlag_RXNE LL_USART_IsActiveFlag_RXNE_RXFNE /* Redefinition for legacy purpose */
2988
2989 /**
2990 * @brief Check if the USART Read Data Register or USART RX FIFO Not Empty Flag is set or not
2991 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
2992 * FIFO mode feature is supported by the USARTx instance.
2993 * @rmtoll ISR RXNE_RXFNE LL_USART_IsActiveFlag_RXNE_RXFNE
2994 * @param USARTx USART Instance
2995 * @retval State of bit (1 or 0).
2996 */
LL_USART_IsActiveFlag_RXNE_RXFNE(const USART_TypeDef * USARTx)2997 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXNE_RXFNE(const USART_TypeDef *USARTx)
2998 {
2999 return ((READ_BIT(USARTx->ISR, USART_ISR_RXNE_RXFNE) == (USART_ISR_RXNE_RXFNE)) ? 1UL : 0UL);
3000 }
3001
3002 /**
3003 * @brief Check if the USART Transmission Complete Flag is set or not
3004 * @rmtoll ISR TC LL_USART_IsActiveFlag_TC
3005 * @param USARTx USART Instance
3006 * @retval State of bit (1 or 0).
3007 */
LL_USART_IsActiveFlag_TC(const USART_TypeDef * USARTx)3008 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TC(const USART_TypeDef *USARTx)
3009 {
3010 return ((READ_BIT(USARTx->ISR, USART_ISR_TC) == (USART_ISR_TC)) ? 1UL : 0UL);
3011 }
3012
3013 #define LL_USART_IsActiveFlag_TXE LL_USART_IsActiveFlag_TXE_TXFNF /* Redefinition for legacy purpose */
3014
3015 /**
3016 * @brief Check if the USART Transmit Data Register Empty or USART TX FIFO Not Full Flag is set or not
3017 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3018 * FIFO mode feature is supported by the USARTx instance.
3019 * @rmtoll ISR TXE_TXFNF LL_USART_IsActiveFlag_TXE_TXFNF
3020 * @param USARTx USART Instance
3021 * @retval State of bit (1 or 0).
3022 */
LL_USART_IsActiveFlag_TXE_TXFNF(const USART_TypeDef * USARTx)3023 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXE_TXFNF(const USART_TypeDef *USARTx)
3024 {
3025 return ((READ_BIT(USARTx->ISR, USART_ISR_TXE_TXFNF) == (USART_ISR_TXE_TXFNF)) ? 1UL : 0UL);
3026 }
3027
3028 /**
3029 * @brief Check if the USART LIN Break Detection Flag is set or not
3030 * @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
3031 * LIN feature is supported by the USARTx instance.
3032 * @rmtoll ISR LBDF LL_USART_IsActiveFlag_LBD
3033 * @param USARTx USART Instance
3034 * @retval State of bit (1 or 0).
3035 */
LL_USART_IsActiveFlag_LBD(const USART_TypeDef * USARTx)3036 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_LBD(const USART_TypeDef *USARTx)
3037 {
3038 return ((READ_BIT(USARTx->ISR, USART_ISR_LBDF) == (USART_ISR_LBDF)) ? 1UL : 0UL);
3039 }
3040
3041 /**
3042 * @brief Check if the USART CTS interrupt Flag is set or not
3043 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
3044 * Hardware Flow control feature is supported by the USARTx instance.
3045 * @rmtoll ISR CTSIF LL_USART_IsActiveFlag_nCTS
3046 * @param USARTx USART Instance
3047 * @retval State of bit (1 or 0).
3048 */
LL_USART_IsActiveFlag_nCTS(const USART_TypeDef * USARTx)3049 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_nCTS(const USART_TypeDef *USARTx)
3050 {
3051 return ((READ_BIT(USARTx->ISR, USART_ISR_CTSIF) == (USART_ISR_CTSIF)) ? 1UL : 0UL);
3052 }
3053
3054 /**
3055 * @brief Check if the USART CTS Flag is set or not
3056 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
3057 * Hardware Flow control feature is supported by the USARTx instance.
3058 * @rmtoll ISR CTS LL_USART_IsActiveFlag_CTS
3059 * @param USARTx USART Instance
3060 * @retval State of bit (1 or 0).
3061 */
LL_USART_IsActiveFlag_CTS(const USART_TypeDef * USARTx)3062 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_CTS(const USART_TypeDef *USARTx)
3063 {
3064 return ((READ_BIT(USARTx->ISR, USART_ISR_CTS) == (USART_ISR_CTS)) ? 1UL : 0UL);
3065 }
3066
3067 /**
3068 * @brief Check if the USART Receiver Time Out Flag is set or not
3069 * @rmtoll ISR RTOF LL_USART_IsActiveFlag_RTO
3070 * @param USARTx USART Instance
3071 * @retval State of bit (1 or 0).
3072 */
LL_USART_IsActiveFlag_RTO(const USART_TypeDef * USARTx)3073 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RTO(const USART_TypeDef *USARTx)
3074 {
3075 return ((READ_BIT(USARTx->ISR, USART_ISR_RTOF) == (USART_ISR_RTOF)) ? 1UL : 0UL);
3076 }
3077
3078 /**
3079 * @brief Check if the USART End Of Block Flag is set or not
3080 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
3081 * Smartcard feature is supported by the USARTx instance.
3082 * @rmtoll ISR EOBF LL_USART_IsActiveFlag_EOB
3083 * @param USARTx USART Instance
3084 * @retval State of bit (1 or 0).
3085 */
LL_USART_IsActiveFlag_EOB(const USART_TypeDef * USARTx)3086 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_EOB(const USART_TypeDef *USARTx)
3087 {
3088 return ((READ_BIT(USARTx->ISR, USART_ISR_EOBF) == (USART_ISR_EOBF)) ? 1UL : 0UL);
3089 }
3090
3091 /**
3092 * @brief Check if the SPI Slave Underrun error flag is set or not
3093 * @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
3094 * SPI Slave mode feature is supported by the USARTx instance.
3095 * @rmtoll ISR UDR LL_USART_IsActiveFlag_UDR
3096 * @param USARTx USART Instance
3097 * @retval State of bit (1 or 0).
3098 */
LL_USART_IsActiveFlag_UDR(const USART_TypeDef * USARTx)3099 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_UDR(const USART_TypeDef *USARTx)
3100 {
3101 return ((READ_BIT(USARTx->ISR, USART_ISR_UDR) == (USART_ISR_UDR)) ? 1UL : 0UL);
3102 }
3103
3104 /**
3105 * @brief Check if the USART Auto-Baud Rate Error Flag is set or not
3106 * @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
3107 * Auto Baud Rate detection feature is supported by the USARTx instance.
3108 * @rmtoll ISR ABRE LL_USART_IsActiveFlag_ABRE
3109 * @param USARTx USART Instance
3110 * @retval State of bit (1 or 0).
3111 */
LL_USART_IsActiveFlag_ABRE(const USART_TypeDef * USARTx)3112 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ABRE(const USART_TypeDef *USARTx)
3113 {
3114 return ((READ_BIT(USARTx->ISR, USART_ISR_ABRE) == (USART_ISR_ABRE)) ? 1UL : 0UL);
3115 }
3116
3117 /**
3118 * @brief Check if the USART Auto-Baud Rate Flag is set or not
3119 * @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
3120 * Auto Baud Rate detection feature is supported by the USARTx instance.
3121 * @rmtoll ISR ABRF LL_USART_IsActiveFlag_ABR
3122 * @param USARTx USART Instance
3123 * @retval State of bit (1 or 0).
3124 */
LL_USART_IsActiveFlag_ABR(const USART_TypeDef * USARTx)3125 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ABR(const USART_TypeDef *USARTx)
3126 {
3127 return ((READ_BIT(USARTx->ISR, USART_ISR_ABRF) == (USART_ISR_ABRF)) ? 1UL : 0UL);
3128 }
3129
3130 /**
3131 * @brief Check if the USART Busy Flag is set or not
3132 * @rmtoll ISR BUSY LL_USART_IsActiveFlag_BUSY
3133 * @param USARTx USART Instance
3134 * @retval State of bit (1 or 0).
3135 */
LL_USART_IsActiveFlag_BUSY(const USART_TypeDef * USARTx)3136 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_BUSY(const USART_TypeDef *USARTx)
3137 {
3138 return ((READ_BIT(USARTx->ISR, USART_ISR_BUSY) == (USART_ISR_BUSY)) ? 1UL : 0UL);
3139 }
3140
3141 /**
3142 * @brief Check if the USART Character Match Flag is set or not
3143 * @rmtoll ISR CMF LL_USART_IsActiveFlag_CM
3144 * @param USARTx USART Instance
3145 * @retval State of bit (1 or 0).
3146 */
LL_USART_IsActiveFlag_CM(const USART_TypeDef * USARTx)3147 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_CM(const USART_TypeDef *USARTx)
3148 {
3149 return ((READ_BIT(USARTx->ISR, USART_ISR_CMF) == (USART_ISR_CMF)) ? 1UL : 0UL);
3150 }
3151
3152 /**
3153 * @brief Check if the USART Send Break Flag is set or not
3154 * @rmtoll ISR SBKF LL_USART_IsActiveFlag_SBK
3155 * @param USARTx USART Instance
3156 * @retval State of bit (1 or 0).
3157 */
LL_USART_IsActiveFlag_SBK(const USART_TypeDef * USARTx)3158 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_SBK(const USART_TypeDef *USARTx)
3159 {
3160 return ((READ_BIT(USARTx->ISR, USART_ISR_SBKF) == (USART_ISR_SBKF)) ? 1UL : 0UL);
3161 }
3162
3163 /**
3164 * @brief Check if the USART Receive Wake Up from mute mode Flag is set or not
3165 * @rmtoll ISR RWU LL_USART_IsActiveFlag_RWU
3166 * @param USARTx USART Instance
3167 * @retval State of bit (1 or 0).
3168 */
LL_USART_IsActiveFlag_RWU(const USART_TypeDef * USARTx)3169 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RWU(const USART_TypeDef *USARTx)
3170 {
3171 return ((READ_BIT(USARTx->ISR, USART_ISR_RWU) == (USART_ISR_RWU)) ? 1UL : 0UL);
3172 }
3173
3174 /**
3175 * @brief Check if the USART Wake Up from stop mode Flag is set or not
3176 * @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
3177 * Wake-up from Stop mode feature is supported by the USARTx instance.
3178 * @rmtoll ISR WUF LL_USART_IsActiveFlag_WKUP
3179 * @param USARTx USART Instance
3180 * @retval State of bit (1 or 0).
3181 */
LL_USART_IsActiveFlag_WKUP(const USART_TypeDef * USARTx)3182 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_WKUP(const USART_TypeDef *USARTx)
3183 {
3184 return ((READ_BIT(USARTx->ISR, USART_ISR_WUF) == (USART_ISR_WUF)) ? 1UL : 0UL);
3185 }
3186
3187 /**
3188 * @brief Check if the USART Transmit Enable Acknowledge Flag is set or not
3189 * @rmtoll ISR TEACK LL_USART_IsActiveFlag_TEACK
3190 * @param USARTx USART Instance
3191 * @retval State of bit (1 or 0).
3192 */
LL_USART_IsActiveFlag_TEACK(const USART_TypeDef * USARTx)3193 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TEACK(const USART_TypeDef *USARTx)
3194 {
3195 return ((READ_BIT(USARTx->ISR, USART_ISR_TEACK) == (USART_ISR_TEACK)) ? 1UL : 0UL);
3196 }
3197
3198 /**
3199 * @brief Check if the USART Receive Enable Acknowledge Flag is set or not
3200 * @rmtoll ISR REACK LL_USART_IsActiveFlag_REACK
3201 * @param USARTx USART Instance
3202 * @retval State of bit (1 or 0).
3203 */
LL_USART_IsActiveFlag_REACK(const USART_TypeDef * USARTx)3204 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_REACK(const USART_TypeDef *USARTx)
3205 {
3206 return ((READ_BIT(USARTx->ISR, USART_ISR_REACK) == (USART_ISR_REACK)) ? 1UL : 0UL);
3207 }
3208
3209 /**
3210 * @brief Check if the USART TX FIFO Empty Flag is set or not
3211 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3212 * FIFO mode feature is supported by the USARTx instance.
3213 * @rmtoll ISR TXFE LL_USART_IsActiveFlag_TXFE
3214 * @param USARTx USART Instance
3215 * @retval State of bit (1 or 0).
3216 */
LL_USART_IsActiveFlag_TXFE(const USART_TypeDef * USARTx)3217 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXFE(const USART_TypeDef *USARTx)
3218 {
3219 return ((READ_BIT(USARTx->ISR, USART_ISR_TXFE) == (USART_ISR_TXFE)) ? 1UL : 0UL);
3220 }
3221
3222 /**
3223 * @brief Check if the USART RX FIFO Full Flag is set or not
3224 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3225 * FIFO mode feature is supported by the USARTx instance.
3226 * @rmtoll ISR RXFF LL_USART_IsActiveFlag_RXFF
3227 * @param USARTx USART Instance
3228 * @retval State of bit (1 or 0).
3229 */
LL_USART_IsActiveFlag_RXFF(const USART_TypeDef * USARTx)3230 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXFF(const USART_TypeDef *USARTx)
3231 {
3232 return ((READ_BIT(USARTx->ISR, USART_ISR_RXFF) == (USART_ISR_RXFF)) ? 1UL : 0UL);
3233 }
3234
3235 /**
3236 * @brief Check if the Smartcard Transmission Complete Before Guard Time Flag is set or not
3237 * @rmtoll ISR TCBGT LL_USART_IsActiveFlag_TCBGT
3238 * @param USARTx USART Instance
3239 * @retval State of bit (1 or 0).
3240 */
LL_USART_IsActiveFlag_TCBGT(const USART_TypeDef * USARTx)3241 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TCBGT(const USART_TypeDef *USARTx)
3242 {
3243 return ((READ_BIT(USARTx->ISR, USART_ISR_TCBGT) == (USART_ISR_TCBGT)) ? 1UL : 0UL);
3244 }
3245
3246 /**
3247 * @brief Check if the USART TX FIFO Threshold Flag is set or not
3248 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3249 * FIFO mode feature is supported by the USARTx instance.
3250 * @rmtoll ISR TXFT LL_USART_IsActiveFlag_TXFT
3251 * @param USARTx USART Instance
3252 * @retval State of bit (1 or 0).
3253 */
LL_USART_IsActiveFlag_TXFT(const USART_TypeDef * USARTx)3254 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXFT(const USART_TypeDef *USARTx)
3255 {
3256 return ((READ_BIT(USARTx->ISR, USART_ISR_TXFT) == (USART_ISR_TXFT)) ? 1UL : 0UL);
3257 }
3258
3259 /**
3260 * @brief Check if the USART RX FIFO Threshold Flag is set or not
3261 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3262 * FIFO mode feature is supported by the USARTx instance.
3263 * @rmtoll ISR RXFT LL_USART_IsActiveFlag_RXFT
3264 * @param USARTx USART Instance
3265 * @retval State of bit (1 or 0).
3266 */
LL_USART_IsActiveFlag_RXFT(const USART_TypeDef * USARTx)3267 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXFT(const USART_TypeDef *USARTx)
3268 {
3269 return ((READ_BIT(USARTx->ISR, USART_ISR_RXFT) == (USART_ISR_RXFT)) ? 1UL : 0UL);
3270 }
3271
3272 /**
3273 * @brief Clear Parity Error Flag
3274 * @rmtoll ICR PECF LL_USART_ClearFlag_PE
3275 * @param USARTx USART Instance
3276 * @retval None
3277 */
LL_USART_ClearFlag_PE(USART_TypeDef * USARTx)3278 __STATIC_INLINE void LL_USART_ClearFlag_PE(USART_TypeDef *USARTx)
3279 {
3280 WRITE_REG(USARTx->ICR, USART_ICR_PECF);
3281 }
3282
3283 /**
3284 * @brief Clear Framing Error Flag
3285 * @rmtoll ICR FECF LL_USART_ClearFlag_FE
3286 * @param USARTx USART Instance
3287 * @retval None
3288 */
LL_USART_ClearFlag_FE(USART_TypeDef * USARTx)3289 __STATIC_INLINE void LL_USART_ClearFlag_FE(USART_TypeDef *USARTx)
3290 {
3291 WRITE_REG(USARTx->ICR, USART_ICR_FECF);
3292 }
3293
3294 /**
3295 * @brief Clear Noise Error detected Flag
3296 * @rmtoll ICR NECF LL_USART_ClearFlag_NE
3297 * @param USARTx USART Instance
3298 * @retval None
3299 */
LL_USART_ClearFlag_NE(USART_TypeDef * USARTx)3300 __STATIC_INLINE void LL_USART_ClearFlag_NE(USART_TypeDef *USARTx)
3301 {
3302 WRITE_REG(USARTx->ICR, USART_ICR_NECF);
3303 }
3304
3305 /**
3306 * @brief Clear OverRun Error Flag
3307 * @rmtoll ICR ORECF LL_USART_ClearFlag_ORE
3308 * @param USARTx USART Instance
3309 * @retval None
3310 */
LL_USART_ClearFlag_ORE(USART_TypeDef * USARTx)3311 __STATIC_INLINE void LL_USART_ClearFlag_ORE(USART_TypeDef *USARTx)
3312 {
3313 WRITE_REG(USARTx->ICR, USART_ICR_ORECF);
3314 }
3315
3316 /**
3317 * @brief Clear IDLE line detected Flag
3318 * @rmtoll ICR IDLECF LL_USART_ClearFlag_IDLE
3319 * @param USARTx USART Instance
3320 * @retval None
3321 */
LL_USART_ClearFlag_IDLE(USART_TypeDef * USARTx)3322 __STATIC_INLINE void LL_USART_ClearFlag_IDLE(USART_TypeDef *USARTx)
3323 {
3324 WRITE_REG(USARTx->ICR, USART_ICR_IDLECF);
3325 }
3326
3327 /**
3328 * @brief Clear TX FIFO Empty Flag
3329 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3330 * FIFO mode feature is supported by the USARTx instance.
3331 * @rmtoll ICR TXFECF LL_USART_ClearFlag_TXFE
3332 * @param USARTx USART Instance
3333 * @retval None
3334 */
LL_USART_ClearFlag_TXFE(USART_TypeDef * USARTx)3335 __STATIC_INLINE void LL_USART_ClearFlag_TXFE(USART_TypeDef *USARTx)
3336 {
3337 WRITE_REG(USARTx->ICR, USART_ICR_TXFECF);
3338 }
3339
3340 /**
3341 * @brief Clear Transmission Complete Flag
3342 * @rmtoll ICR TCCF LL_USART_ClearFlag_TC
3343 * @param USARTx USART Instance
3344 * @retval None
3345 */
LL_USART_ClearFlag_TC(USART_TypeDef * USARTx)3346 __STATIC_INLINE void LL_USART_ClearFlag_TC(USART_TypeDef *USARTx)
3347 {
3348 WRITE_REG(USARTx->ICR, USART_ICR_TCCF);
3349 }
3350
3351 /**
3352 * @brief Clear Smartcard Transmission Complete Before Guard Time Flag
3353 * @rmtoll ICR TCBGTCF LL_USART_ClearFlag_TCBGT
3354 * @param USARTx USART Instance
3355 * @retval None
3356 */
LL_USART_ClearFlag_TCBGT(USART_TypeDef * USARTx)3357 __STATIC_INLINE void LL_USART_ClearFlag_TCBGT(USART_TypeDef *USARTx)
3358 {
3359 WRITE_REG(USARTx->ICR, USART_ICR_TCBGTCF);
3360 }
3361
3362 /**
3363 * @brief Clear LIN Break Detection Flag
3364 * @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
3365 * LIN feature is supported by the USARTx instance.
3366 * @rmtoll ICR LBDCF LL_USART_ClearFlag_LBD
3367 * @param USARTx USART Instance
3368 * @retval None
3369 */
LL_USART_ClearFlag_LBD(USART_TypeDef * USARTx)3370 __STATIC_INLINE void LL_USART_ClearFlag_LBD(USART_TypeDef *USARTx)
3371 {
3372 WRITE_REG(USARTx->ICR, USART_ICR_LBDCF);
3373 }
3374
3375 /**
3376 * @brief Clear CTS Interrupt Flag
3377 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
3378 * Hardware Flow control feature is supported by the USARTx instance.
3379 * @rmtoll ICR CTSCF LL_USART_ClearFlag_nCTS
3380 * @param USARTx USART Instance
3381 * @retval None
3382 */
LL_USART_ClearFlag_nCTS(USART_TypeDef * USARTx)3383 __STATIC_INLINE void LL_USART_ClearFlag_nCTS(USART_TypeDef *USARTx)
3384 {
3385 WRITE_REG(USARTx->ICR, USART_ICR_CTSCF);
3386 }
3387
3388 /**
3389 * @brief Clear Receiver Time Out Flag
3390 * @rmtoll ICR RTOCF LL_USART_ClearFlag_RTO
3391 * @param USARTx USART Instance
3392 * @retval None
3393 */
LL_USART_ClearFlag_RTO(USART_TypeDef * USARTx)3394 __STATIC_INLINE void LL_USART_ClearFlag_RTO(USART_TypeDef *USARTx)
3395 {
3396 WRITE_REG(USARTx->ICR, USART_ICR_RTOCF);
3397 }
3398
3399 /**
3400 * @brief Clear End Of Block Flag
3401 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
3402 * Smartcard feature is supported by the USARTx instance.
3403 * @rmtoll ICR EOBCF LL_USART_ClearFlag_EOB
3404 * @param USARTx USART Instance
3405 * @retval None
3406 */
LL_USART_ClearFlag_EOB(USART_TypeDef * USARTx)3407 __STATIC_INLINE void LL_USART_ClearFlag_EOB(USART_TypeDef *USARTx)
3408 {
3409 WRITE_REG(USARTx->ICR, USART_ICR_EOBCF);
3410 }
3411
3412 /**
3413 * @brief Clear SPI Slave Underrun Flag
3414 * @note Macro IS_UART_SPI_SLAVE_INSTANCE(USARTx) can be used to check whether or not
3415 * SPI Slave mode feature is supported by the USARTx instance.
3416 * @rmtoll ICR UDRCF LL_USART_ClearFlag_UDR
3417 * @param USARTx USART Instance
3418 * @retval None
3419 */
LL_USART_ClearFlag_UDR(USART_TypeDef * USARTx)3420 __STATIC_INLINE void LL_USART_ClearFlag_UDR(USART_TypeDef *USARTx)
3421 {
3422 WRITE_REG(USARTx->ICR, USART_ICR_UDRCF);
3423 }
3424
3425 /**
3426 * @brief Clear Character Match Flag
3427 * @rmtoll ICR CMCF LL_USART_ClearFlag_CM
3428 * @param USARTx USART Instance
3429 * @retval None
3430 */
LL_USART_ClearFlag_CM(USART_TypeDef * USARTx)3431 __STATIC_INLINE void LL_USART_ClearFlag_CM(USART_TypeDef *USARTx)
3432 {
3433 WRITE_REG(USARTx->ICR, USART_ICR_CMCF);
3434 }
3435
3436 /**
3437 * @brief Clear Wake Up from stop mode Flag
3438 * @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
3439 * Wake-up from Stop mode feature is supported by the USARTx instance.
3440 * @rmtoll ICR WUCF LL_USART_ClearFlag_WKUP
3441 * @param USARTx USART Instance
3442 * @retval None
3443 */
LL_USART_ClearFlag_WKUP(USART_TypeDef * USARTx)3444 __STATIC_INLINE void LL_USART_ClearFlag_WKUP(USART_TypeDef *USARTx)
3445 {
3446 WRITE_REG(USARTx->ICR, USART_ICR_WUCF);
3447 }
3448
3449 /**
3450 * @}
3451 */
3452
3453 /** @defgroup USART_LL_EF_IT_Management IT_Management
3454 * @{
3455 */
3456
3457 /**
3458 * @brief Enable IDLE Interrupt
3459 * @rmtoll CR1 IDLEIE LL_USART_EnableIT_IDLE
3460 * @param USARTx USART Instance
3461 * @retval None
3462 */
LL_USART_EnableIT_IDLE(USART_TypeDef * USARTx)3463 __STATIC_INLINE void LL_USART_EnableIT_IDLE(USART_TypeDef *USARTx)
3464 {
3465 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_IDLEIE);
3466 }
3467
3468 #define LL_USART_EnableIT_RXNE LL_USART_EnableIT_RXNE_RXFNE /* Redefinition for legacy purpose */
3469
3470 /**
3471 * @brief Enable RX Not Empty and RX FIFO Not Empty Interrupt
3472 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3473 * FIFO mode feature is supported by the USARTx instance.
3474 * @rmtoll CR1 RXNEIE_RXFNEIE LL_USART_EnableIT_RXNE_RXFNE
3475 * @param USARTx USART Instance
3476 * @retval None
3477 */
LL_USART_EnableIT_RXNE_RXFNE(USART_TypeDef * USARTx)3478 __STATIC_INLINE void LL_USART_EnableIT_RXNE_RXFNE(USART_TypeDef *USARTx)
3479 {
3480 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_RXNEIE_RXFNEIE);
3481 }
3482
3483 /**
3484 * @brief Enable Transmission Complete Interrupt
3485 * @rmtoll CR1 TCIE LL_USART_EnableIT_TC
3486 * @param USARTx USART Instance
3487 * @retval None
3488 */
LL_USART_EnableIT_TC(USART_TypeDef * USARTx)3489 __STATIC_INLINE void LL_USART_EnableIT_TC(USART_TypeDef *USARTx)
3490 {
3491 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_TCIE);
3492 }
3493
3494 #define LL_USART_EnableIT_TXE LL_USART_EnableIT_TXE_TXFNF /* Redefinition for legacy purpose */
3495
3496 /**
3497 * @brief Enable TX Empty and TX FIFO Not Full Interrupt
3498 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3499 * FIFO mode feature is supported by the USARTx instance.
3500 * @rmtoll CR1 TXEIE_TXFNFIE LL_USART_EnableIT_TXE_TXFNF
3501 * @param USARTx USART Instance
3502 * @retval None
3503 */
LL_USART_EnableIT_TXE_TXFNF(USART_TypeDef * USARTx)3504 __STATIC_INLINE void LL_USART_EnableIT_TXE_TXFNF(USART_TypeDef *USARTx)
3505 {
3506 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_TXEIE_TXFNFIE);
3507 }
3508
3509 /**
3510 * @brief Enable Parity Error Interrupt
3511 * @rmtoll CR1 PEIE LL_USART_EnableIT_PE
3512 * @param USARTx USART Instance
3513 * @retval None
3514 */
LL_USART_EnableIT_PE(USART_TypeDef * USARTx)3515 __STATIC_INLINE void LL_USART_EnableIT_PE(USART_TypeDef *USARTx)
3516 {
3517 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_PEIE);
3518 }
3519
3520 /**
3521 * @brief Enable Character Match Interrupt
3522 * @rmtoll CR1 CMIE LL_USART_EnableIT_CM
3523 * @param USARTx USART Instance
3524 * @retval None
3525 */
LL_USART_EnableIT_CM(USART_TypeDef * USARTx)3526 __STATIC_INLINE void LL_USART_EnableIT_CM(USART_TypeDef *USARTx)
3527 {
3528 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_CMIE);
3529 }
3530
3531 /**
3532 * @brief Enable Receiver Timeout Interrupt
3533 * @rmtoll CR1 RTOIE LL_USART_EnableIT_RTO
3534 * @param USARTx USART Instance
3535 * @retval None
3536 */
LL_USART_EnableIT_RTO(USART_TypeDef * USARTx)3537 __STATIC_INLINE void LL_USART_EnableIT_RTO(USART_TypeDef *USARTx)
3538 {
3539 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_RTOIE);
3540 }
3541
3542 /**
3543 * @brief Enable End Of Block Interrupt
3544 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
3545 * Smartcard feature is supported by the USARTx instance.
3546 * @rmtoll CR1 EOBIE LL_USART_EnableIT_EOB
3547 * @param USARTx USART Instance
3548 * @retval None
3549 */
LL_USART_EnableIT_EOB(USART_TypeDef * USARTx)3550 __STATIC_INLINE void LL_USART_EnableIT_EOB(USART_TypeDef *USARTx)
3551 {
3552 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_EOBIE);
3553 }
3554
3555 /**
3556 * @brief Enable TX FIFO Empty Interrupt
3557 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3558 * FIFO mode feature is supported by the USARTx instance.
3559 * @rmtoll CR1 TXFEIE LL_USART_EnableIT_TXFE
3560 * @param USARTx USART Instance
3561 * @retval None
3562 */
LL_USART_EnableIT_TXFE(USART_TypeDef * USARTx)3563 __STATIC_INLINE void LL_USART_EnableIT_TXFE(USART_TypeDef *USARTx)
3564 {
3565 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_TXFEIE);
3566 }
3567
3568 /**
3569 * @brief Enable RX FIFO Full Interrupt
3570 * @rmtoll CR1 RXFFIE LL_USART_EnableIT_RXFF
3571 * @param USARTx USART Instance
3572 * @retval None
3573 */
LL_USART_EnableIT_RXFF(USART_TypeDef * USARTx)3574 __STATIC_INLINE void LL_USART_EnableIT_RXFF(USART_TypeDef *USARTx)
3575 {
3576 ATOMIC_SET_BIT(USARTx->CR1, USART_CR1_RXFFIE);
3577 }
3578
3579 /**
3580 * @brief Enable LIN Break Detection Interrupt
3581 * @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
3582 * LIN feature is supported by the USARTx instance.
3583 * @rmtoll CR2 LBDIE LL_USART_EnableIT_LBD
3584 * @param USARTx USART Instance
3585 * @retval None
3586 */
LL_USART_EnableIT_LBD(USART_TypeDef * USARTx)3587 __STATIC_INLINE void LL_USART_EnableIT_LBD(USART_TypeDef *USARTx)
3588 {
3589 SET_BIT(USARTx->CR2, USART_CR2_LBDIE);
3590 }
3591
3592 /**
3593 * @brief Enable Error Interrupt
3594 * @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
3595 * error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_ISR register).
3596 * 0: Interrupt is inhibited
3597 * 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_ISR register.
3598 * @rmtoll CR3 EIE LL_USART_EnableIT_ERROR
3599 * @param USARTx USART Instance
3600 * @retval None
3601 */
LL_USART_EnableIT_ERROR(USART_TypeDef * USARTx)3602 __STATIC_INLINE void LL_USART_EnableIT_ERROR(USART_TypeDef *USARTx)
3603 {
3604 ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_EIE);
3605 }
3606
3607 /**
3608 * @brief Enable CTS Interrupt
3609 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
3610 * Hardware Flow control feature is supported by the USARTx instance.
3611 * @rmtoll CR3 CTSIE LL_USART_EnableIT_CTS
3612 * @param USARTx USART Instance
3613 * @retval None
3614 */
LL_USART_EnableIT_CTS(USART_TypeDef * USARTx)3615 __STATIC_INLINE void LL_USART_EnableIT_CTS(USART_TypeDef *USARTx)
3616 {
3617 ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_CTSIE);
3618 }
3619
3620 /**
3621 * @brief Enable Wake Up from Stop Mode Interrupt
3622 * @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
3623 * Wake-up from Stop mode feature is supported by the USARTx instance.
3624 * @rmtoll CR3 WUFIE LL_USART_EnableIT_WKUP
3625 * @param USARTx USART Instance
3626 * @retval None
3627 */
LL_USART_EnableIT_WKUP(USART_TypeDef * USARTx)3628 __STATIC_INLINE void LL_USART_EnableIT_WKUP(USART_TypeDef *USARTx)
3629 {
3630 ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_WUFIE);
3631 }
3632
3633 /**
3634 * @brief Enable TX FIFO Threshold Interrupt
3635 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3636 * FIFO mode feature is supported by the USARTx instance.
3637 * @rmtoll CR3 TXFTIE LL_USART_EnableIT_TXFT
3638 * @param USARTx USART Instance
3639 * @retval None
3640 */
LL_USART_EnableIT_TXFT(USART_TypeDef * USARTx)3641 __STATIC_INLINE void LL_USART_EnableIT_TXFT(USART_TypeDef *USARTx)
3642 {
3643 ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_TXFTIE);
3644 }
3645
3646 /**
3647 * @brief Enable Smartcard Transmission Complete Before Guard Time Interrupt
3648 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
3649 * Smartcard feature is supported by the USARTx instance.
3650 * @rmtoll CR3 TCBGTIE LL_USART_EnableIT_TCBGT
3651 * @param USARTx USART Instance
3652 * @retval None
3653 */
LL_USART_EnableIT_TCBGT(USART_TypeDef * USARTx)3654 __STATIC_INLINE void LL_USART_EnableIT_TCBGT(USART_TypeDef *USARTx)
3655 {
3656 ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_TCBGTIE);
3657 }
3658
3659 /**
3660 * @brief Enable RX FIFO Threshold Interrupt
3661 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3662 * FIFO mode feature is supported by the USARTx instance.
3663 * @rmtoll CR3 RXFTIE LL_USART_EnableIT_RXFT
3664 * @param USARTx USART Instance
3665 * @retval None
3666 */
LL_USART_EnableIT_RXFT(USART_TypeDef * USARTx)3667 __STATIC_INLINE void LL_USART_EnableIT_RXFT(USART_TypeDef *USARTx)
3668 {
3669 ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_RXFTIE);
3670 }
3671
3672 /**
3673 * @brief Disable IDLE Interrupt
3674 * @rmtoll CR1 IDLEIE LL_USART_DisableIT_IDLE
3675 * @param USARTx USART Instance
3676 * @retval None
3677 */
LL_USART_DisableIT_IDLE(USART_TypeDef * USARTx)3678 __STATIC_INLINE void LL_USART_DisableIT_IDLE(USART_TypeDef *USARTx)
3679 {
3680 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_IDLEIE);
3681 }
3682
3683 #define LL_USART_DisableIT_RXNE LL_USART_DisableIT_RXNE_RXFNE /* Redefinition for legacy purpose */
3684
3685 /**
3686 * @brief Disable RX Not Empty and RX FIFO Not Empty Interrupt
3687 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3688 * FIFO mode feature is supported by the USARTx instance.
3689 * @rmtoll CR1 RXNEIE_RXFNEIE LL_USART_DisableIT_RXNE_RXFNE
3690 * @param USARTx USART Instance
3691 * @retval None
3692 */
LL_USART_DisableIT_RXNE_RXFNE(USART_TypeDef * USARTx)3693 __STATIC_INLINE void LL_USART_DisableIT_RXNE_RXFNE(USART_TypeDef *USARTx)
3694 {
3695 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_RXNEIE_RXFNEIE);
3696 }
3697
3698 /**
3699 * @brief Disable Transmission Complete Interrupt
3700 * @rmtoll CR1 TCIE LL_USART_DisableIT_TC
3701 * @param USARTx USART Instance
3702 * @retval None
3703 */
LL_USART_DisableIT_TC(USART_TypeDef * USARTx)3704 __STATIC_INLINE void LL_USART_DisableIT_TC(USART_TypeDef *USARTx)
3705 {
3706 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_TCIE);
3707 }
3708
3709 #define LL_USART_DisableIT_TXE LL_USART_DisableIT_TXE_TXFNF /* Redefinition for legacy purpose */
3710
3711 /**
3712 * @brief Disable TX Empty and TX FIFO Not Full Interrupt
3713 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3714 * FIFO mode feature is supported by the USARTx instance.
3715 * @rmtoll CR1 TXEIE_TXFNFIE LL_USART_DisableIT_TXE_TXFNF
3716 * @param USARTx USART Instance
3717 * @retval None
3718 */
LL_USART_DisableIT_TXE_TXFNF(USART_TypeDef * USARTx)3719 __STATIC_INLINE void LL_USART_DisableIT_TXE_TXFNF(USART_TypeDef *USARTx)
3720 {
3721 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_TXEIE_TXFNFIE);
3722 }
3723
3724 /**
3725 * @brief Disable Parity Error Interrupt
3726 * @rmtoll CR1 PEIE LL_USART_DisableIT_PE
3727 * @param USARTx USART Instance
3728 * @retval None
3729 */
LL_USART_DisableIT_PE(USART_TypeDef * USARTx)3730 __STATIC_INLINE void LL_USART_DisableIT_PE(USART_TypeDef *USARTx)
3731 {
3732 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_PEIE);
3733 }
3734
3735 /**
3736 * @brief Disable Character Match Interrupt
3737 * @rmtoll CR1 CMIE LL_USART_DisableIT_CM
3738 * @param USARTx USART Instance
3739 * @retval None
3740 */
LL_USART_DisableIT_CM(USART_TypeDef * USARTx)3741 __STATIC_INLINE void LL_USART_DisableIT_CM(USART_TypeDef *USARTx)
3742 {
3743 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_CMIE);
3744 }
3745
3746 /**
3747 * @brief Disable Receiver Timeout Interrupt
3748 * @rmtoll CR1 RTOIE LL_USART_DisableIT_RTO
3749 * @param USARTx USART Instance
3750 * @retval None
3751 */
LL_USART_DisableIT_RTO(USART_TypeDef * USARTx)3752 __STATIC_INLINE void LL_USART_DisableIT_RTO(USART_TypeDef *USARTx)
3753 {
3754 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_RTOIE);
3755 }
3756
3757 /**
3758 * @brief Disable End Of Block Interrupt
3759 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
3760 * Smartcard feature is supported by the USARTx instance.
3761 * @rmtoll CR1 EOBIE LL_USART_DisableIT_EOB
3762 * @param USARTx USART Instance
3763 * @retval None
3764 */
LL_USART_DisableIT_EOB(USART_TypeDef * USARTx)3765 __STATIC_INLINE void LL_USART_DisableIT_EOB(USART_TypeDef *USARTx)
3766 {
3767 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_EOBIE);
3768 }
3769
3770 /**
3771 * @brief Disable TX FIFO Empty Interrupt
3772 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3773 * FIFO mode feature is supported by the USARTx instance.
3774 * @rmtoll CR1 TXFEIE LL_USART_DisableIT_TXFE
3775 * @param USARTx USART Instance
3776 * @retval None
3777 */
LL_USART_DisableIT_TXFE(USART_TypeDef * USARTx)3778 __STATIC_INLINE void LL_USART_DisableIT_TXFE(USART_TypeDef *USARTx)
3779 {
3780 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_TXFEIE);
3781 }
3782
3783 /**
3784 * @brief Disable RX FIFO Full Interrupt
3785 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3786 * FIFO mode feature is supported by the USARTx instance.
3787 * @rmtoll CR1 RXFFIE LL_USART_DisableIT_RXFF
3788 * @param USARTx USART Instance
3789 * @retval None
3790 */
LL_USART_DisableIT_RXFF(USART_TypeDef * USARTx)3791 __STATIC_INLINE void LL_USART_DisableIT_RXFF(USART_TypeDef *USARTx)
3792 {
3793 ATOMIC_CLEAR_BIT(USARTx->CR1, USART_CR1_RXFFIE);
3794 }
3795
3796 /**
3797 * @brief Disable LIN Break Detection Interrupt
3798 * @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
3799 * LIN feature is supported by the USARTx instance.
3800 * @rmtoll CR2 LBDIE LL_USART_DisableIT_LBD
3801 * @param USARTx USART Instance
3802 * @retval None
3803 */
LL_USART_DisableIT_LBD(USART_TypeDef * USARTx)3804 __STATIC_INLINE void LL_USART_DisableIT_LBD(USART_TypeDef *USARTx)
3805 {
3806 CLEAR_BIT(USARTx->CR2, USART_CR2_LBDIE);
3807 }
3808
3809 /**
3810 * @brief Disable Error Interrupt
3811 * @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
3812 * error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_ISR register).
3813 * 0: Interrupt is inhibited
3814 * 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_ISR register.
3815 * @rmtoll CR3 EIE LL_USART_DisableIT_ERROR
3816 * @param USARTx USART Instance
3817 * @retval None
3818 */
LL_USART_DisableIT_ERROR(USART_TypeDef * USARTx)3819 __STATIC_INLINE void LL_USART_DisableIT_ERROR(USART_TypeDef *USARTx)
3820 {
3821 ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_EIE);
3822 }
3823
3824 /**
3825 * @brief Disable CTS Interrupt
3826 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
3827 * Hardware Flow control feature is supported by the USARTx instance.
3828 * @rmtoll CR3 CTSIE LL_USART_DisableIT_CTS
3829 * @param USARTx USART Instance
3830 * @retval None
3831 */
LL_USART_DisableIT_CTS(USART_TypeDef * USARTx)3832 __STATIC_INLINE void LL_USART_DisableIT_CTS(USART_TypeDef *USARTx)
3833 {
3834 ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_CTSIE);
3835 }
3836
3837 /**
3838 * @brief Disable Wake Up from Stop Mode Interrupt
3839 * @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
3840 * Wake-up from Stop mode feature is supported by the USARTx instance.
3841 * @rmtoll CR3 WUFIE LL_USART_DisableIT_WKUP
3842 * @param USARTx USART Instance
3843 * @retval None
3844 */
LL_USART_DisableIT_WKUP(USART_TypeDef * USARTx)3845 __STATIC_INLINE void LL_USART_DisableIT_WKUP(USART_TypeDef *USARTx)
3846 {
3847 ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_WUFIE);
3848 }
3849
3850 /**
3851 * @brief Disable TX FIFO Threshold Interrupt
3852 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3853 * FIFO mode feature is supported by the USARTx instance.
3854 * @rmtoll CR3 TXFTIE LL_USART_DisableIT_TXFT
3855 * @param USARTx USART Instance
3856 * @retval None
3857 */
LL_USART_DisableIT_TXFT(USART_TypeDef * USARTx)3858 __STATIC_INLINE void LL_USART_DisableIT_TXFT(USART_TypeDef *USARTx)
3859 {
3860 ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_TXFTIE);
3861 }
3862
3863 /**
3864 * @brief Disable Smartcard Transmission Complete Before Guard Time Interrupt
3865 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
3866 * Smartcard feature is supported by the USARTx instance.
3867 * @rmtoll CR3 TCBGTIE LL_USART_DisableIT_TCBGT
3868 * @param USARTx USART Instance
3869 * @retval None
3870 */
LL_USART_DisableIT_TCBGT(USART_TypeDef * USARTx)3871 __STATIC_INLINE void LL_USART_DisableIT_TCBGT(USART_TypeDef *USARTx)
3872 {
3873 ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_TCBGTIE);
3874 }
3875
3876 /**
3877 * @brief Disable RX FIFO Threshold Interrupt
3878 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3879 * FIFO mode feature is supported by the USARTx instance.
3880 * @rmtoll CR3 RXFTIE LL_USART_DisableIT_RXFT
3881 * @param USARTx USART Instance
3882 * @retval None
3883 */
LL_USART_DisableIT_RXFT(USART_TypeDef * USARTx)3884 __STATIC_INLINE void LL_USART_DisableIT_RXFT(USART_TypeDef *USARTx)
3885 {
3886 ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_RXFTIE);
3887 }
3888
3889 /**
3890 * @brief Check if the USART IDLE Interrupt source is enabled or disabled.
3891 * @rmtoll CR1 IDLEIE LL_USART_IsEnabledIT_IDLE
3892 * @param USARTx USART Instance
3893 * @retval State of bit (1 or 0).
3894 */
LL_USART_IsEnabledIT_IDLE(const USART_TypeDef * USARTx)3895 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_IDLE(const USART_TypeDef *USARTx)
3896 {
3897 return ((READ_BIT(USARTx->CR1, USART_CR1_IDLEIE) == (USART_CR1_IDLEIE)) ? 1UL : 0UL);
3898 }
3899
3900 #define LL_USART_IsEnabledIT_RXNE LL_USART_IsEnabledIT_RXNE_RXFNE /* Redefinition for legacy purpose */
3901
3902 /**
3903 * @brief Check if the USART RX Not Empty and USART RX FIFO Not Empty Interrupt is enabled or disabled.
3904 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3905 * FIFO mode feature is supported by the USARTx instance.
3906 * @rmtoll CR1 RXNEIE_RXFNEIE LL_USART_IsEnabledIT_RXNE_RXFNE
3907 * @param USARTx USART Instance
3908 * @retval State of bit (1 or 0).
3909 */
LL_USART_IsEnabledIT_RXNE_RXFNE(const USART_TypeDef * USARTx)3910 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXNE_RXFNE(const USART_TypeDef *USARTx)
3911 {
3912 return ((READ_BIT(USARTx->CR1, USART_CR1_RXNEIE_RXFNEIE) == (USART_CR1_RXNEIE_RXFNEIE)) ? 1UL : 0UL);
3913 }
3914
3915 /**
3916 * @brief Check if the USART Transmission Complete Interrupt is enabled or disabled.
3917 * @rmtoll CR1 TCIE LL_USART_IsEnabledIT_TC
3918 * @param USARTx USART Instance
3919 * @retval State of bit (1 or 0).
3920 */
LL_USART_IsEnabledIT_TC(const USART_TypeDef * USARTx)3921 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TC(const USART_TypeDef *USARTx)
3922 {
3923 return ((READ_BIT(USARTx->CR1, USART_CR1_TCIE) == (USART_CR1_TCIE)) ? 1UL : 0UL);
3924 }
3925
3926 #define LL_USART_IsEnabledIT_TXE LL_USART_IsEnabledIT_TXE_TXFNF /* Redefinition for legacy purpose */
3927
3928 /**
3929 * @brief Check if the USART TX Empty and USART TX FIFO Not Full Interrupt is enabled or disabled
3930 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3931 * FIFO mode feature is supported by the USARTx instance.
3932 * @rmtoll CR1 TXEIE_TXFNFIE LL_USART_IsEnabledIT_TXE_TXFNF
3933 * @param USARTx USART Instance
3934 * @retval State of bit (1 or 0).
3935 */
LL_USART_IsEnabledIT_TXE_TXFNF(const USART_TypeDef * USARTx)3936 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXE_TXFNF(const USART_TypeDef *USARTx)
3937 {
3938 return ((READ_BIT(USARTx->CR1, USART_CR1_TXEIE_TXFNFIE) == (USART_CR1_TXEIE_TXFNFIE)) ? 1UL : 0UL);
3939 }
3940
3941 /**
3942 * @brief Check if the USART Parity Error Interrupt is enabled or disabled.
3943 * @rmtoll CR1 PEIE LL_USART_IsEnabledIT_PE
3944 * @param USARTx USART Instance
3945 * @retval State of bit (1 or 0).
3946 */
LL_USART_IsEnabledIT_PE(const USART_TypeDef * USARTx)3947 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_PE(const USART_TypeDef *USARTx)
3948 {
3949 return ((READ_BIT(USARTx->CR1, USART_CR1_PEIE) == (USART_CR1_PEIE)) ? 1UL : 0UL);
3950 }
3951
3952 /**
3953 * @brief Check if the USART Character Match Interrupt is enabled or disabled.
3954 * @rmtoll CR1 CMIE LL_USART_IsEnabledIT_CM
3955 * @param USARTx USART Instance
3956 * @retval State of bit (1 or 0).
3957 */
LL_USART_IsEnabledIT_CM(const USART_TypeDef * USARTx)3958 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_CM(const USART_TypeDef *USARTx)
3959 {
3960 return ((READ_BIT(USARTx->CR1, USART_CR1_CMIE) == (USART_CR1_CMIE)) ? 1UL : 0UL);
3961 }
3962
3963 /**
3964 * @brief Check if the USART Receiver Timeout Interrupt is enabled or disabled.
3965 * @rmtoll CR1 RTOIE LL_USART_IsEnabledIT_RTO
3966 * @param USARTx USART Instance
3967 * @retval State of bit (1 or 0).
3968 */
LL_USART_IsEnabledIT_RTO(const USART_TypeDef * USARTx)3969 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RTO(const USART_TypeDef *USARTx)
3970 {
3971 return ((READ_BIT(USARTx->CR1, USART_CR1_RTOIE) == (USART_CR1_RTOIE)) ? 1UL : 0UL);
3972 }
3973
3974 /**
3975 * @brief Check if the USART End Of Block Interrupt is enabled or disabled.
3976 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
3977 * Smartcard feature is supported by the USARTx instance.
3978 * @rmtoll CR1 EOBIE LL_USART_IsEnabledIT_EOB
3979 * @param USARTx USART Instance
3980 * @retval State of bit (1 or 0).
3981 */
LL_USART_IsEnabledIT_EOB(const USART_TypeDef * USARTx)3982 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_EOB(const USART_TypeDef *USARTx)
3983 {
3984 return ((READ_BIT(USARTx->CR1, USART_CR1_EOBIE) == (USART_CR1_EOBIE)) ? 1UL : 0UL);
3985 }
3986
3987 /**
3988 * @brief Check if the USART TX FIFO Empty Interrupt is enabled or disabled
3989 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
3990 * FIFO mode feature is supported by the USARTx instance.
3991 * @rmtoll CR1 TXFEIE LL_USART_IsEnabledIT_TXFE
3992 * @param USARTx USART Instance
3993 * @retval State of bit (1 or 0).
3994 */
LL_USART_IsEnabledIT_TXFE(const USART_TypeDef * USARTx)3995 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXFE(const USART_TypeDef *USARTx)
3996 {
3997 return ((READ_BIT(USARTx->CR1, USART_CR1_TXFEIE) == (USART_CR1_TXFEIE)) ? 1UL : 0UL);
3998 }
3999
4000 /**
4001 * @brief Check if the USART RX FIFO Full Interrupt is enabled or disabled
4002 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
4003 * FIFO mode feature is supported by the USARTx instance.
4004 * @rmtoll CR1 RXFFIE LL_USART_IsEnabledIT_RXFF
4005 * @param USARTx USART Instance
4006 * @retval State of bit (1 or 0).
4007 */
LL_USART_IsEnabledIT_RXFF(const USART_TypeDef * USARTx)4008 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXFF(const USART_TypeDef *USARTx)
4009 {
4010 return ((READ_BIT(USARTx->CR1, USART_CR1_RXFFIE) == (USART_CR1_RXFFIE)) ? 1UL : 0UL);
4011 }
4012
4013 /**
4014 * @brief Check if the USART LIN Break Detection Interrupt is enabled or disabled.
4015 * @note Macro IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
4016 * LIN feature is supported by the USARTx instance.
4017 * @rmtoll CR2 LBDIE LL_USART_IsEnabledIT_LBD
4018 * @param USARTx USART Instance
4019 * @retval State of bit (1 or 0).
4020 */
LL_USART_IsEnabledIT_LBD(const USART_TypeDef * USARTx)4021 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_LBD(const USART_TypeDef *USARTx)
4022 {
4023 return ((READ_BIT(USARTx->CR2, USART_CR2_LBDIE) == (USART_CR2_LBDIE)) ? 1UL : 0UL);
4024 }
4025
4026 /**
4027 * @brief Check if the USART Error Interrupt is enabled or disabled.
4028 * @rmtoll CR3 EIE LL_USART_IsEnabledIT_ERROR
4029 * @param USARTx USART Instance
4030 * @retval State of bit (1 or 0).
4031 */
LL_USART_IsEnabledIT_ERROR(const USART_TypeDef * USARTx)4032 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_ERROR(const USART_TypeDef *USARTx)
4033 {
4034 return ((READ_BIT(USARTx->CR3, USART_CR3_EIE) == (USART_CR3_EIE)) ? 1UL : 0UL);
4035 }
4036
4037 /**
4038 * @brief Check if the USART CTS Interrupt is enabled or disabled.
4039 * @note Macro IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
4040 * Hardware Flow control feature is supported by the USARTx instance.
4041 * @rmtoll CR3 CTSIE LL_USART_IsEnabledIT_CTS
4042 * @param USARTx USART Instance
4043 * @retval State of bit (1 or 0).
4044 */
LL_USART_IsEnabledIT_CTS(const USART_TypeDef * USARTx)4045 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_CTS(const USART_TypeDef *USARTx)
4046 {
4047 return ((READ_BIT(USARTx->CR3, USART_CR3_CTSIE) == (USART_CR3_CTSIE)) ? 1UL : 0UL);
4048 }
4049
4050 /**
4051 * @brief Check if the USART Wake Up from Stop Mode Interrupt is enabled or disabled.
4052 * @note Macro IS_UART_WAKEUP_FROMSTOP_INSTANCE(USARTx) can be used to check whether or not
4053 * Wake-up from Stop mode feature is supported by the USARTx instance.
4054 * @rmtoll CR3 WUFIE LL_USART_IsEnabledIT_WKUP
4055 * @param USARTx USART Instance
4056 * @retval State of bit (1 or 0).
4057 */
LL_USART_IsEnabledIT_WKUP(const USART_TypeDef * USARTx)4058 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_WKUP(const USART_TypeDef *USARTx)
4059 {
4060 return ((READ_BIT(USARTx->CR3, USART_CR3_WUFIE) == (USART_CR3_WUFIE)) ? 1UL : 0UL);
4061 }
4062
4063 /**
4064 * @brief Check if USART TX FIFO Threshold Interrupt is enabled or disabled
4065 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
4066 * FIFO mode feature is supported by the USARTx instance.
4067 * @rmtoll CR3 TXFTIE LL_USART_IsEnabledIT_TXFT
4068 * @param USARTx USART Instance
4069 * @retval State of bit (1 or 0).
4070 */
LL_USART_IsEnabledIT_TXFT(const USART_TypeDef * USARTx)4071 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXFT(const USART_TypeDef *USARTx)
4072 {
4073 return ((READ_BIT(USARTx->CR3, USART_CR3_TXFTIE) == (USART_CR3_TXFTIE)) ? 1UL : 0UL);
4074 }
4075
4076 /**
4077 * @brief Check if the Smartcard Transmission Complete Before Guard Time Interrupt is enabled or disabled.
4078 * @note Macro IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
4079 * Smartcard feature is supported by the USARTx instance.
4080 * @rmtoll CR3 TCBGTIE LL_USART_IsEnabledIT_TCBGT
4081 * @param USARTx USART Instance
4082 * @retval State of bit (1 or 0).
4083 */
LL_USART_IsEnabledIT_TCBGT(const USART_TypeDef * USARTx)4084 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TCBGT(const USART_TypeDef *USARTx)
4085 {
4086 return ((READ_BIT(USARTx->CR3, USART_CR3_TCBGTIE) == (USART_CR3_TCBGTIE)) ? 1UL : 0UL);
4087 }
4088
4089 /**
4090 * @brief Check if USART RX FIFO Threshold Interrupt is enabled or disabled
4091 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
4092 * FIFO mode feature is supported by the USARTx instance.
4093 * @rmtoll CR3 RXFTIE LL_USART_IsEnabledIT_RXFT
4094 * @param USARTx USART Instance
4095 * @retval State of bit (1 or 0).
4096 */
LL_USART_IsEnabledIT_RXFT(const USART_TypeDef * USARTx)4097 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXFT(const USART_TypeDef *USARTx)
4098 {
4099 return ((READ_BIT(USARTx->CR3, USART_CR3_RXFTIE) == (USART_CR3_RXFTIE)) ? 1UL : 0UL);
4100 }
4101
4102 /**
4103 * @}
4104 */
4105
4106 /** @defgroup USART_LL_EF_DMA_Management DMA_Management
4107 * @{
4108 */
4109
4110 /**
4111 * @brief Enable DMA Mode for reception
4112 * @rmtoll CR3 DMAR LL_USART_EnableDMAReq_RX
4113 * @param USARTx USART Instance
4114 * @retval None
4115 */
LL_USART_EnableDMAReq_RX(USART_TypeDef * USARTx)4116 __STATIC_INLINE void LL_USART_EnableDMAReq_RX(USART_TypeDef *USARTx)
4117 {
4118 ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_DMAR);
4119 }
4120
4121 /**
4122 * @brief Disable DMA Mode for reception
4123 * @rmtoll CR3 DMAR LL_USART_DisableDMAReq_RX
4124 * @param USARTx USART Instance
4125 * @retval None
4126 */
LL_USART_DisableDMAReq_RX(USART_TypeDef * USARTx)4127 __STATIC_INLINE void LL_USART_DisableDMAReq_RX(USART_TypeDef *USARTx)
4128 {
4129 ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_DMAR);
4130 }
4131
4132 /**
4133 * @brief Check if DMA Mode is enabled for reception
4134 * @rmtoll CR3 DMAR LL_USART_IsEnabledDMAReq_RX
4135 * @param USARTx USART Instance
4136 * @retval State of bit (1 or 0).
4137 */
LL_USART_IsEnabledDMAReq_RX(const USART_TypeDef * USARTx)4138 __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_RX(const USART_TypeDef *USARTx)
4139 {
4140 return ((READ_BIT(USARTx->CR3, USART_CR3_DMAR) == (USART_CR3_DMAR)) ? 1UL : 0UL);
4141 }
4142
4143 /**
4144 * @brief Enable DMA Mode for transmission
4145 * @rmtoll CR3 DMAT LL_USART_EnableDMAReq_TX
4146 * @param USARTx USART Instance
4147 * @retval None
4148 */
LL_USART_EnableDMAReq_TX(USART_TypeDef * USARTx)4149 __STATIC_INLINE void LL_USART_EnableDMAReq_TX(USART_TypeDef *USARTx)
4150 {
4151 ATOMIC_SET_BIT(USARTx->CR3, USART_CR3_DMAT);
4152 }
4153
4154 /**
4155 * @brief Disable DMA Mode for transmission
4156 * @rmtoll CR3 DMAT LL_USART_DisableDMAReq_TX
4157 * @param USARTx USART Instance
4158 * @retval None
4159 */
LL_USART_DisableDMAReq_TX(USART_TypeDef * USARTx)4160 __STATIC_INLINE void LL_USART_DisableDMAReq_TX(USART_TypeDef *USARTx)
4161 {
4162 ATOMIC_CLEAR_BIT(USARTx->CR3, USART_CR3_DMAT);
4163 }
4164
4165 /**
4166 * @brief Check if DMA Mode is enabled for transmission
4167 * @rmtoll CR3 DMAT LL_USART_IsEnabledDMAReq_TX
4168 * @param USARTx USART Instance
4169 * @retval State of bit (1 or 0).
4170 */
LL_USART_IsEnabledDMAReq_TX(const USART_TypeDef * USARTx)4171 __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_TX(const USART_TypeDef *USARTx)
4172 {
4173 return ((READ_BIT(USARTx->CR3, USART_CR3_DMAT) == (USART_CR3_DMAT)) ? 1UL : 0UL);
4174 }
4175
4176 /**
4177 * @brief Enable DMA Disabling on Reception Error
4178 * @rmtoll CR3 DDRE LL_USART_EnableDMADeactOnRxErr
4179 * @param USARTx USART Instance
4180 * @retval None
4181 */
LL_USART_EnableDMADeactOnRxErr(USART_TypeDef * USARTx)4182 __STATIC_INLINE void LL_USART_EnableDMADeactOnRxErr(USART_TypeDef *USARTx)
4183 {
4184 SET_BIT(USARTx->CR3, USART_CR3_DDRE);
4185 }
4186
4187 /**
4188 * @brief Disable DMA Disabling on Reception Error
4189 * @rmtoll CR3 DDRE LL_USART_DisableDMADeactOnRxErr
4190 * @param USARTx USART Instance
4191 * @retval None
4192 */
LL_USART_DisableDMADeactOnRxErr(USART_TypeDef * USARTx)4193 __STATIC_INLINE void LL_USART_DisableDMADeactOnRxErr(USART_TypeDef *USARTx)
4194 {
4195 CLEAR_BIT(USARTx->CR3, USART_CR3_DDRE);
4196 }
4197
4198 /**
4199 * @brief Indicate if DMA Disabling on Reception Error is disabled
4200 * @rmtoll CR3 DDRE LL_USART_IsEnabledDMADeactOnRxErr
4201 * @param USARTx USART Instance
4202 * @retval State of bit (1 or 0).
4203 */
LL_USART_IsEnabledDMADeactOnRxErr(const USART_TypeDef * USARTx)4204 __STATIC_INLINE uint32_t LL_USART_IsEnabledDMADeactOnRxErr(const USART_TypeDef *USARTx)
4205 {
4206 return ((READ_BIT(USARTx->CR3, USART_CR3_DDRE) == (USART_CR3_DDRE)) ? 1UL : 0UL);
4207 }
4208
4209 /**
4210 * @brief Get the data register address used for DMA transfer
4211 * @rmtoll RDR RDR LL_USART_DMA_GetRegAddr\n
4212 * @rmtoll TDR TDR LL_USART_DMA_GetRegAddr
4213 * @param USARTx USART Instance
4214 * @param Direction This parameter can be one of the following values:
4215 * @arg @ref LL_USART_DMA_REG_DATA_TRANSMIT
4216 * @arg @ref LL_USART_DMA_REG_DATA_RECEIVE
4217 * @retval Address of data register
4218 */
LL_USART_DMA_GetRegAddr(const USART_TypeDef * USARTx,uint32_t Direction)4219 __STATIC_INLINE uint32_t LL_USART_DMA_GetRegAddr(const USART_TypeDef *USARTx, uint32_t Direction)
4220 {
4221 uint32_t data_reg_addr;
4222
4223 if (Direction == LL_USART_DMA_REG_DATA_TRANSMIT)
4224 {
4225 /* return address of TDR register */
4226 data_reg_addr = (uint32_t) &(USARTx->TDR);
4227 }
4228 else
4229 {
4230 /* return address of RDR register */
4231 data_reg_addr = (uint32_t) &(USARTx->RDR);
4232 }
4233
4234 return data_reg_addr;
4235 }
4236
4237 /**
4238 * @}
4239 */
4240
4241 /** @defgroup USART_LL_EF_Data_Management Data_Management
4242 * @{
4243 */
4244
4245 /**
4246 * @brief Read Receiver Data register (Receive Data value, 8 bits)
4247 * @rmtoll RDR RDR LL_USART_ReceiveData8
4248 * @param USARTx USART Instance
4249 * @retval Value between Min_Data=0x00 and Max_Data=0xFF
4250 */
LL_USART_ReceiveData8(const USART_TypeDef * USARTx)4251 __STATIC_INLINE uint8_t LL_USART_ReceiveData8(const USART_TypeDef *USARTx)
4252 {
4253 return (uint8_t)(READ_BIT(USARTx->RDR, USART_RDR_RDR) & 0xFFU);
4254 }
4255
4256 /**
4257 * @brief Read Receiver Data register (Receive Data value, 9 bits)
4258 * @rmtoll RDR RDR LL_USART_ReceiveData9
4259 * @param USARTx USART Instance
4260 * @retval Value between Min_Data=0x00 and Max_Data=0x1FF
4261 */
LL_USART_ReceiveData9(const USART_TypeDef * USARTx)4262 __STATIC_INLINE uint16_t LL_USART_ReceiveData9(const USART_TypeDef *USARTx)
4263 {
4264 return (uint16_t)(READ_BIT(USARTx->RDR, USART_RDR_RDR));
4265 }
4266
4267 /**
4268 * @brief Write in Transmitter Data Register (Transmit Data value, 8 bits)
4269 * @rmtoll TDR TDR LL_USART_TransmitData8
4270 * @param USARTx USART Instance
4271 * @param Value between Min_Data=0x00 and Max_Data=0xFF
4272 * @retval None
4273 */
LL_USART_TransmitData8(USART_TypeDef * USARTx,uint8_t Value)4274 __STATIC_INLINE void LL_USART_TransmitData8(USART_TypeDef *USARTx, uint8_t Value)
4275 {
4276 USARTx->TDR = Value;
4277 }
4278
4279 /**
4280 * @brief Write in Transmitter Data Register (Transmit Data value, 9 bits)
4281 * @rmtoll TDR TDR LL_USART_TransmitData9
4282 * @param USARTx USART Instance
4283 * @param Value between Min_Data=0x00 and Max_Data=0x1FF
4284 * @retval None
4285 */
LL_USART_TransmitData9(USART_TypeDef * USARTx,uint16_t Value)4286 __STATIC_INLINE void LL_USART_TransmitData9(USART_TypeDef *USARTx, uint16_t Value)
4287 {
4288 USARTx->TDR = (uint16_t)(Value & 0x1FFUL);
4289 }
4290
4291 /**
4292 * @}
4293 */
4294
4295 /** @defgroup USART_LL_EF_Execution Execution
4296 * @{
4297 */
4298
4299 /**
4300 * @brief Request an Automatic Baud Rate measurement on next received data frame
4301 * @note Macro IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx) can be used to check whether or not
4302 * Auto Baud Rate detection feature is supported by the USARTx instance.
4303 * @rmtoll RQR ABRRQ LL_USART_RequestAutoBaudRate
4304 * @param USARTx USART Instance
4305 * @retval None
4306 */
LL_USART_RequestAutoBaudRate(USART_TypeDef * USARTx)4307 __STATIC_INLINE void LL_USART_RequestAutoBaudRate(USART_TypeDef *USARTx)
4308 {
4309 SET_BIT(USARTx->RQR, (uint16_t)USART_RQR_ABRRQ);
4310 }
4311
4312 /**
4313 * @brief Request Break sending
4314 * @rmtoll RQR SBKRQ LL_USART_RequestBreakSending
4315 * @param USARTx USART Instance
4316 * @retval None
4317 */
LL_USART_RequestBreakSending(USART_TypeDef * USARTx)4318 __STATIC_INLINE void LL_USART_RequestBreakSending(USART_TypeDef *USARTx)
4319 {
4320 SET_BIT(USARTx->RQR, (uint16_t)USART_RQR_SBKRQ);
4321 }
4322
4323 /**
4324 * @brief Put USART in mute mode and set the RWU flag
4325 * @rmtoll RQR MMRQ LL_USART_RequestEnterMuteMode
4326 * @param USARTx USART Instance
4327 * @retval None
4328 */
LL_USART_RequestEnterMuteMode(USART_TypeDef * USARTx)4329 __STATIC_INLINE void LL_USART_RequestEnterMuteMode(USART_TypeDef *USARTx)
4330 {
4331 SET_BIT(USARTx->RQR, (uint16_t)USART_RQR_MMRQ);
4332 }
4333
4334 /**
4335 * @brief Request a Receive Data and FIFO flush
4336 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
4337 * FIFO mode feature is supported by the USARTx instance.
4338 * @note Allows to discard the received data without reading them, and avoid an overrun
4339 * condition.
4340 * @rmtoll RQR RXFRQ LL_USART_RequestRxDataFlush
4341 * @param USARTx USART Instance
4342 * @retval None
4343 */
LL_USART_RequestRxDataFlush(USART_TypeDef * USARTx)4344 __STATIC_INLINE void LL_USART_RequestRxDataFlush(USART_TypeDef *USARTx)
4345 {
4346 SET_BIT(USARTx->RQR, (uint16_t)USART_RQR_RXFRQ);
4347 }
4348
4349 /**
4350 * @brief Request a Transmit data and FIFO flush
4351 * @note Macro IS_UART_FIFO_INSTANCE(USARTx) can be used to check whether or not
4352 * FIFO mode feature is supported by the USARTx instance.
4353 * @rmtoll RQR TXFRQ LL_USART_RequestTxDataFlush
4354 * @param USARTx USART Instance
4355 * @retval None
4356 */
LL_USART_RequestTxDataFlush(USART_TypeDef * USARTx)4357 __STATIC_INLINE void LL_USART_RequestTxDataFlush(USART_TypeDef *USARTx)
4358 {
4359 SET_BIT(USARTx->RQR, (uint16_t)USART_RQR_TXFRQ);
4360 }
4361
4362 /**
4363 * @}
4364 */
4365
4366 #if defined(USE_FULL_LL_DRIVER)
4367 /** @defgroup USART_LL_EF_Init Initialization and de-initialization functions
4368 * @{
4369 */
4370 ErrorStatus LL_USART_DeInit(const USART_TypeDef *USARTx);
4371 ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, const LL_USART_InitTypeDef *USART_InitStruct);
4372 void LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct);
4373 ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, const LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
4374 void LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
4375 /**
4376 * @}
4377 */
4378 #endif /* USE_FULL_LL_DRIVER */
4379
4380 /**
4381 * @}
4382 */
4383
4384 /**
4385 * @}
4386 */
4387
4388 #endif /* USART1 || USART2 || USART3 || UART4 || UART5 */
4389
4390 /**
4391 * @}
4392 */
4393
4394 #ifdef __cplusplus
4395 }
4396 #endif
4397
4398 #endif /* STM32L5xx_LL_USART_H */
4399
4400