1 /**
2   ******************************************************************************
3   * @file    stm32l5xx_ll_tim.h
4   * @author  MCD Application Team
5   * @brief   Header file of TIM LL module.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2019 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 
19 /* Define to prevent recursive inclusion -------------------------------------*/
20 #ifndef __STM32L5xx_LL_TIM_H
21 #define __STM32L5xx_LL_TIM_H
22 
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26 
27 /* Includes ------------------------------------------------------------------*/
28 #include "stm32l5xx.h"
29 
30 /** @addtogroup STM32L5xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM15) || defined (TIM16) || defined (TIM7)
35 
36 /** @defgroup TIM_LL TIM
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /** @defgroup TIM_LL_Private_Variables TIM Private Variables
43   * @{
44   */
45 static const uint8_t OFFSET_TAB_CCMRx[] =
46 {
47   0x00U,   /* 0: TIMx_CH1  */
48   0x00U,   /* 1: TIMx_CH1N */
49   0x00U,   /* 2: TIMx_CH2  */
50   0x00U,   /* 3: TIMx_CH2N */
51   0x04U,   /* 4: TIMx_CH3  */
52   0x04U,   /* 5: TIMx_CH3N */
53   0x04U,   /* 6: TIMx_CH4  */
54   0x3CU,   /* 7: TIMx_CH5  */
55   0x3CU    /* 8: TIMx_CH6  */
56 };
57 
58 static const uint8_t SHIFT_TAB_OCxx[] =
59 {
60   0U,            /* 0: OC1M, OC1FE, OC1PE */
61   0U,            /* 1: - NA */
62   8U,            /* 2: OC2M, OC2FE, OC2PE */
63   0U,            /* 3: - NA */
64   0U,            /* 4: OC3M, OC3FE, OC3PE */
65   0U,            /* 5: - NA */
66   8U,            /* 6: OC4M, OC4FE, OC4PE */
67   0U,            /* 7: OC5M, OC5FE, OC5PE */
68   8U             /* 8: OC6M, OC6FE, OC6PE */
69 };
70 
71 static const uint8_t SHIFT_TAB_ICxx[] =
72 {
73   0U,            /* 0: CC1S, IC1PSC, IC1F */
74   0U,            /* 1: - NA */
75   8U,            /* 2: CC2S, IC2PSC, IC2F */
76   0U,            /* 3: - NA */
77   0U,            /* 4: CC3S, IC3PSC, IC3F */
78   0U,            /* 5: - NA */
79   8U,            /* 6: CC4S, IC4PSC, IC4F */
80   0U,            /* 7: - NA */
81   0U             /* 8: - NA */
82 };
83 
84 static const uint8_t SHIFT_TAB_CCxP[] =
85 {
86   0U,            /* 0: CC1P */
87   2U,            /* 1: CC1NP */
88   4U,            /* 2: CC2P */
89   6U,            /* 3: CC2NP */
90   8U,            /* 4: CC3P */
91   10U,           /* 5: CC3NP */
92   12U,           /* 6: CC4P */
93   16U,           /* 7: CC5P */
94   20U            /* 8: CC6P */
95 };
96 
97 static const uint8_t SHIFT_TAB_OISx[] =
98 {
99   0U,            /* 0: OIS1 */
100   1U,            /* 1: OIS1N */
101   2U,            /* 2: OIS2 */
102   3U,            /* 3: OIS2N */
103   4U,            /* 4: OIS3 */
104   5U,            /* 5: OIS3N */
105   6U,            /* 6: OIS4 */
106   8U,            /* 7: OIS5 */
107   10U            /* 8: OIS6 */
108 };
109 /**
110   * @}
111   */
112 
113 /* Private constants ---------------------------------------------------------*/
114 /** @defgroup TIM_LL_Private_Constants TIM Private Constants
115   * @{
116   */
117 
118 /* Defines used for the bit position in the register and perform offsets */
119 #define TIM_POSITION_BRK_SOURCE            (POSITION_VAL(Source) & 0x1FUL)
120 
121 /* Generic bit definitions for TIMx_OR2 register */
122 #define TIMx_OR2_BKINP     TIM1_OR2_BKINP     /*!< BRK BKIN input polarity */
123 #define TIMx_OR2_ETRSEL    TIM1_OR2_ETRSEL    /*!< TIMx ETR source selection */
124 
125 /* Remap mask definitions */
126 #define TIMx_OR1_RMP_SHIFT 16U
127 #define TIMx_OR1_RMP_MASK  0x0000FFFFU
128 #define TIM1_OR1_RMP_MASK  ((TIM1_OR1_ETR_ADC1_RMP | TIM1_OR1_TI1_RMP) << TIMx_OR1_RMP_SHIFT)
129 #define TIM2_OR1_RMP_MASK  ((TIM2_OR1_TI4_RMP | TIM2_OR1_ETR1_RMP | TIM2_OR1_ITR1_RMP) << TIMx_OR1_RMP_SHIFT)
130 #define TIM3_OR1_RMP_MASK  (TIM3_OR1_TI1_RMP << TIMx_OR1_RMP_SHIFT)
131 #define TIM8_OR1_RMP_MASK  (TIM8_OR1_TI1_RMP << TIMx_OR1_RMP_SHIFT)
132 #define TIM15_OR1_RMP_MASK (TIM15_OR1_TI1_RMP << TIMx_OR1_RMP_SHIFT)
133 #define TIM16_OR1_RMP_MASK (TIM16_OR1_TI1_RMP << TIMx_OR1_RMP_SHIFT)
134 #define TIM17_OR1_RMP_MASK (TIM17_OR1_TI1_RMP << TIMx_OR1_RMP_SHIFT)
135 
136 /* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
137 #define DT_DELAY_1 ((uint8_t)0x7F)
138 #define DT_DELAY_2 ((uint8_t)0x3F)
139 #define DT_DELAY_3 ((uint8_t)0x1F)
140 #define DT_DELAY_4 ((uint8_t)0x1F)
141 
142 /* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
143 #define DT_RANGE_1 ((uint8_t)0x00)
144 #define DT_RANGE_2 ((uint8_t)0x80)
145 #define DT_RANGE_3 ((uint8_t)0xC0)
146 #define DT_RANGE_4 ((uint8_t)0xE0)
147 
148 /** Legacy definitions for compatibility purpose
149 @cond 0
150   */
151 #define TIMx_OR2_BKDFBK0E   TIMx_OR2_BKDF1BK0E
152 #define TIMx_OR3_BK2DFBK1E  TIMx_OR3_BK2DF1BK1E
153 /**
154 @endcond
155   */
156 
157 #define OCREF_CLEAR_SELECT_Pos (16U)
158 #define OCREF_CLEAR_SELECT_Msk (0x1U << OCREF_CLEAR_SELECT_Pos)                /*!< 0x00010000 */
159 /**
160   * @}
161   */
162 
163 /* Private macros ------------------------------------------------------------*/
164 /** @defgroup TIM_LL_Private_Macros TIM Private Macros
165   * @{
166   */
167 /** @brief  Convert channel id into channel index.
168   * @param  __CHANNEL__ This parameter can be one of the following values:
169   *         @arg @ref LL_TIM_CHANNEL_CH1
170   *         @arg @ref LL_TIM_CHANNEL_CH1N
171   *         @arg @ref LL_TIM_CHANNEL_CH2
172   *         @arg @ref LL_TIM_CHANNEL_CH2N
173   *         @arg @ref LL_TIM_CHANNEL_CH3
174   *         @arg @ref LL_TIM_CHANNEL_CH3N
175   *         @arg @ref LL_TIM_CHANNEL_CH4
176   *         @arg @ref LL_TIM_CHANNEL_CH5
177   *         @arg @ref LL_TIM_CHANNEL_CH6
178   * @retval none
179   */
180 #define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
181   (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
182    ((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
183    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
184    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
185    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
186    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U :\
187    ((__CHANNEL__) == LL_TIM_CHANNEL_CH4) ? 6U :\
188    ((__CHANNEL__) == LL_TIM_CHANNEL_CH5) ? 7U : 8U)
189 
190 /** @brief  Calculate the deadtime sampling period(in ps).
191   * @param  __TIMCLK__ timer input clock frequency (in Hz).
192   * @param  __CKD__ This parameter can be one of the following values:
193   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
194   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
195   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
196   * @retval none
197   */
198 #define TIM_CALC_DTS(__TIMCLK__, __CKD__)                                                        \
199   (((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__))         : \
200    ((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
201    ((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
202 /**
203   * @}
204   */
205 
206 
207 /* Exported types ------------------------------------------------------------*/
208 #if defined(USE_FULL_LL_DRIVER)
209 /** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
210   * @{
211   */
212 
213 /**
214   * @brief  TIM Time Base configuration structure definition.
215   */
216 typedef struct
217 {
218   uint16_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
219                                    This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
220 
221                                    This feature can be modified afterwards using unitary function
222                                    @ref LL_TIM_SetPrescaler().*/
223 
224   uint32_t CounterMode;       /*!< Specifies the counter mode.
225                                    This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
226 
227                                    This feature can be modified afterwards using unitary function
228                                    @ref LL_TIM_SetCounterMode().*/
229 
230   uint32_t Autoreload;        /*!< Specifies the auto reload value to be loaded into the active
231                                    Auto-Reload Register at the next update event.
232                                    This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
233                                    Some timer instances may support 32 bits counters. In that case this parameter must
234                                    be a number between 0x0000 and 0xFFFFFFFF.
235 
236                                    This feature can be modified afterwards using unitary function
237                                    @ref LL_TIM_SetAutoReload().*/
238 
239   uint32_t ClockDivision;     /*!< Specifies the clock division.
240                                    This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
241 
242                                    This feature can be modified afterwards using unitary function
243                                    @ref LL_TIM_SetClockDivision().*/
244 
245   uint32_t RepetitionCounter;  /*!< Specifies the repetition counter value. Each time the RCR downcounter
246                                    reaches zero, an update event is generated and counting restarts
247                                    from the RCR value (N).
248                                    This means in PWM mode that (N+1) corresponds to:
249                                       - the number of PWM periods in edge-aligned mode
250                                       - the number of half PWM period in center-aligned mode
251                                    GP timers: this parameter must be a number between Min_Data = 0x00 and
252                                    Max_Data = 0xFF.
253                                    Advanced timers: this parameter must be a number between Min_Data = 0x0000 and
254                                    Max_Data = 0xFFFF.
255 
256                                    This feature can be modified afterwards using unitary function
257                                    @ref LL_TIM_SetRepetitionCounter().*/
258 } LL_TIM_InitTypeDef;
259 
260 /**
261   * @brief  TIM Output Compare configuration structure definition.
262   */
263 typedef struct
264 {
265   uint32_t OCMode;        /*!< Specifies the output mode.
266                                This parameter can be a value of @ref TIM_LL_EC_OCMODE.
267 
268                                This feature can be modified afterwards using unitary function
269                                @ref LL_TIM_OC_SetMode().*/
270 
271   uint32_t OCState;       /*!< Specifies the TIM Output Compare state.
272                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
273 
274                                This feature can be modified afterwards using unitary functions
275                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
276 
277   uint32_t OCNState;      /*!< Specifies the TIM complementary Output Compare state.
278                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
279 
280                                This feature can be modified afterwards using unitary functions
281                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
282 
283   uint32_t CompareValue;  /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
284                                This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
285 
286                                This feature can be modified afterwards using unitary function
287                                LL_TIM_OC_SetCompareCHx (x=1..6).*/
288 
289   uint32_t OCPolarity;    /*!< Specifies the output polarity.
290                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
291 
292                                This feature can be modified afterwards using unitary function
293                                @ref LL_TIM_OC_SetPolarity().*/
294 
295   uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
296                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
297 
298                                This feature can be modified afterwards using unitary function
299                                @ref LL_TIM_OC_SetPolarity().*/
300 
301 
302   uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
303                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
304 
305                                This feature can be modified afterwards using unitary function
306                                @ref LL_TIM_OC_SetIdleState().*/
307 
308   uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
309                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
310 
311                                This feature can be modified afterwards using unitary function
312                                @ref LL_TIM_OC_SetIdleState().*/
313 } LL_TIM_OC_InitTypeDef;
314 
315 /**
316   * @brief  TIM Input Capture configuration structure definition.
317   */
318 
319 typedef struct
320 {
321 
322   uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
323                                This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
324 
325                                This feature can be modified afterwards using unitary function
326                                @ref LL_TIM_IC_SetPolarity().*/
327 
328   uint32_t ICActiveInput; /*!< Specifies the input.
329                                This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
330 
331                                This feature can be modified afterwards using unitary function
332                                @ref LL_TIM_IC_SetActiveInput().*/
333 
334   uint32_t ICPrescaler;   /*!< Specifies the Input Capture Prescaler.
335                                This parameter can be a value of @ref TIM_LL_EC_ICPSC.
336 
337                                This feature can be modified afterwards using unitary function
338                                @ref LL_TIM_IC_SetPrescaler().*/
339 
340   uint32_t ICFilter;      /*!< Specifies the input capture filter.
341                                This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
342 
343                                This feature can be modified afterwards using unitary function
344                                @ref LL_TIM_IC_SetFilter().*/
345 } LL_TIM_IC_InitTypeDef;
346 
347 
348 /**
349   * @brief  TIM Encoder interface configuration structure definition.
350   */
351 typedef struct
352 {
353   uint32_t EncoderMode;     /*!< Specifies the encoder resolution (x2 or x4).
354                                  This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
355 
356                                  This feature can be modified afterwards using unitary function
357                                  @ref LL_TIM_SetEncoderMode().*/
358 
359   uint32_t IC1Polarity;     /*!< Specifies the active edge of TI1 input.
360                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
361 
362                                  This feature can be modified afterwards using unitary function
363                                  @ref LL_TIM_IC_SetPolarity().*/
364 
365   uint32_t IC1ActiveInput;  /*!< Specifies the TI1 input source
366                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
367 
368                                  This feature can be modified afterwards using unitary function
369                                  @ref LL_TIM_IC_SetActiveInput().*/
370 
371   uint32_t IC1Prescaler;    /*!< Specifies the TI1 input prescaler value.
372                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
373 
374                                  This feature can be modified afterwards using unitary function
375                                  @ref LL_TIM_IC_SetPrescaler().*/
376 
377   uint32_t IC1Filter;       /*!< Specifies the TI1 input filter.
378                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
379 
380                                  This feature can be modified afterwards using unitary function
381                                  @ref LL_TIM_IC_SetFilter().*/
382 
383   uint32_t IC2Polarity;      /*!< Specifies the active edge of TI2 input.
384                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
385 
386                                  This feature can be modified afterwards using unitary function
387                                  @ref LL_TIM_IC_SetPolarity().*/
388 
389   uint32_t IC2ActiveInput;  /*!< Specifies the TI2 input source
390                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
391 
392                                  This feature can be modified afterwards using unitary function
393                                  @ref LL_TIM_IC_SetActiveInput().*/
394 
395   uint32_t IC2Prescaler;    /*!< Specifies the TI2 input prescaler value.
396                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
397 
398                                  This feature can be modified afterwards using unitary function
399                                  @ref LL_TIM_IC_SetPrescaler().*/
400 
401   uint32_t IC2Filter;       /*!< Specifies the TI2 input filter.
402                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
403 
404                                  This feature can be modified afterwards using unitary function
405                                  @ref LL_TIM_IC_SetFilter().*/
406 
407 } LL_TIM_ENCODER_InitTypeDef;
408 
409 /**
410   * @brief  TIM Hall sensor interface configuration structure definition.
411   */
412 typedef struct
413 {
414 
415   uint32_t IC1Polarity;        /*!< Specifies the active edge of TI1 input.
416                                     This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
417 
418                                     This feature can be modified afterwards using unitary function
419                                     @ref LL_TIM_IC_SetPolarity().*/
420 
421   uint32_t IC1Prescaler;       /*!< Specifies the TI1 input prescaler value.
422                                     Prescaler must be set to get a maximum counter period longer than the
423                                     time interval between 2 consecutive changes on the Hall inputs.
424                                     This parameter can be a value of @ref TIM_LL_EC_ICPSC.
425 
426                                     This feature can be modified afterwards using unitary function
427                                     @ref LL_TIM_IC_SetPrescaler().*/
428 
429   uint32_t IC1Filter;          /*!< Specifies the TI1 input filter.
430                                     This parameter can be a value of
431                                     @ref TIM_LL_EC_IC_FILTER.
432 
433                                     This feature can be modified afterwards using unitary function
434                                     @ref LL_TIM_IC_SetFilter().*/
435 
436   uint32_t CommutationDelay;   /*!< Specifies the compare value to be loaded into the Capture Compare Register.
437                                     A positive pulse (TRGO event) is generated with a programmable delay every time
438                                     a change occurs on the Hall inputs.
439                                     This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
440 
441                                     This feature can be modified afterwards using unitary function
442                                     @ref LL_TIM_OC_SetCompareCH2().*/
443 } LL_TIM_HALLSENSOR_InitTypeDef;
444 
445 /**
446   * @brief  BDTR (Break and Dead Time) structure definition
447   */
448 typedef struct
449 {
450   uint32_t OSSRState;            /*!< Specifies the Off-State selection used in Run mode.
451                                       This parameter can be a value of @ref TIM_LL_EC_OSSR
452 
453                                       This feature can be modified afterwards using unitary function
454                                       @ref LL_TIM_SetOffStates()
455 
456                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
457                                        programmed. */
458 
459   uint32_t OSSIState;            /*!< Specifies the Off-State used in Idle state.
460                                       This parameter can be a value of @ref TIM_LL_EC_OSSI
461 
462                                       This feature can be modified afterwards using unitary function
463                                       @ref LL_TIM_SetOffStates()
464 
465                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
466                                       programmed. */
467 
468   uint32_t LockLevel;            /*!< Specifies the LOCK level parameters.
469                                       This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
470 
471                                       @note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR
472                                       register has been written, their content is frozen until the next reset.*/
473 
474   uint8_t DeadTime;              /*!< Specifies the delay time between the switching-off and the
475                                       switching-on of the outputs.
476                                       This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
477 
478                                       This feature can be modified afterwards using unitary function
479                                       @ref LL_TIM_OC_SetDeadTime()
480 
481                                       @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been
482                                        programmed. */
483 
484   uint16_t BreakState;           /*!< Specifies whether the TIM Break input is enabled or not.
485                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
486 
487                                       This feature can be modified afterwards using unitary functions
488                                       @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
489 
490                                       @note This bit-field can not be modified as long as LOCK level 1 has been
491                                       programmed. */
492 
493   uint32_t BreakPolarity;        /*!< Specifies the TIM Break Input pin polarity.
494                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
495 
496                                       This feature can be modified afterwards using unitary function
497                                       @ref LL_TIM_ConfigBRK()
498 
499                                       @note This bit-field can not be modified as long as LOCK level 1 has been
500                                       programmed. */
501 
502   uint32_t BreakFilter;          /*!< Specifies the TIM Break Filter.
503                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_FILTER
504 
505                                       This feature can be modified afterwards using unitary function
506                                       @ref LL_TIM_ConfigBRK()
507 
508                                       @note This bit-field can not be modified as long as LOCK level 1 has been
509                                       programmed. */
510 
511   uint32_t BreakAFMode;           /*!< Specifies the alternate function mode of the break input.
512                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_AFMODE
513 
514                                       This feature can be modified afterwards using unitary functions
515                                       @ref LL_TIM_ConfigBRK()
516 
517                                       @note Bidirectional break input is only supported by advanced timers instances.
518 
519                                       @note This bit-field can not be modified as long as LOCK level 1 has been
520                                       programmed. */
521 
522   uint32_t Break2State;          /*!< Specifies whether the TIM Break2 input is enabled or not.
523                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_ENABLE
524 
525                                       This feature can be modified afterwards using unitary functions
526                                       @ref LL_TIM_EnableBRK2() or @ref LL_TIM_DisableBRK2()
527 
528                                       @note This bit-field can not be modified as long as LOCK level 1 has been
529                                       programmed. */
530 
531   uint32_t Break2Polarity;        /*!< Specifies the TIM Break2 Input pin polarity.
532                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_POLARITY
533 
534                                       This feature can be modified afterwards using unitary function
535                                       @ref LL_TIM_ConfigBRK2()
536 
537                                       @note This bit-field can not be modified as long as LOCK level 1 has been
538                                       programmed. */
539 
540   uint32_t Break2Filter;          /*!< Specifies the TIM Break2 Filter.
541                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_FILTER
542 
543                                       This feature can be modified afterwards using unitary function
544                                       @ref LL_TIM_ConfigBRK2()
545 
546                                       @note This bit-field can not be modified as long as LOCK level 1 has been
547                                       programmed. */
548 
549   uint32_t Break2AFMode;          /*!< Specifies the alternate function mode of the break2 input.
550                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_AFMODE
551 
552                                       This feature can be modified afterwards using unitary functions
553                                       @ref LL_TIM_ConfigBRK2()
554 
555                                       @note Bidirectional break input is only supported by advanced timers instances.
556 
557                                       @note This bit-field can not be modified as long as LOCK level 1 has been
558                                       programmed. */
559 
560   uint32_t AutomaticOutput;      /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
561                                       This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
562 
563                                       This feature can be modified afterwards using unitary functions
564                                       @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
565 
566                                       @note This bit-field can not be modified as long as LOCK level 1 has been
567                                       programmed. */
568 } LL_TIM_BDTR_InitTypeDef;
569 
570 /**
571   * @}
572   */
573 #endif /* USE_FULL_LL_DRIVER */
574 
575 /* Exported constants --------------------------------------------------------*/
576 /** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
577   * @{
578   */
579 
580 /** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
581   * @brief    Flags defines which can be used with LL_TIM_ReadReg function.
582   * @{
583   */
584 #define LL_TIM_SR_UIF                          TIM_SR_UIF           /*!< Update interrupt flag */
585 #define LL_TIM_SR_CC1IF                        TIM_SR_CC1IF         /*!< Capture/compare 1 interrupt flag */
586 #define LL_TIM_SR_CC2IF                        TIM_SR_CC2IF         /*!< Capture/compare 2 interrupt flag */
587 #define LL_TIM_SR_CC3IF                        TIM_SR_CC3IF         /*!< Capture/compare 3 interrupt flag */
588 #define LL_TIM_SR_CC4IF                        TIM_SR_CC4IF         /*!< Capture/compare 4 interrupt flag */
589 #define LL_TIM_SR_CC5IF                        TIM_SR_CC5IF         /*!< Capture/compare 5 interrupt flag */
590 #define LL_TIM_SR_CC6IF                        TIM_SR_CC6IF         /*!< Capture/compare 6 interrupt flag */
591 #define LL_TIM_SR_COMIF                        TIM_SR_COMIF         /*!< COM interrupt flag */
592 #define LL_TIM_SR_TIF                          TIM_SR_TIF           /*!< Trigger interrupt flag */
593 #define LL_TIM_SR_BIF                          TIM_SR_BIF           /*!< Break interrupt flag */
594 #define LL_TIM_SR_B2IF                         TIM_SR_B2IF          /*!< Second break interrupt flag */
595 #define LL_TIM_SR_CC1OF                        TIM_SR_CC1OF         /*!< Capture/Compare 1 overcapture flag */
596 #define LL_TIM_SR_CC2OF                        TIM_SR_CC2OF         /*!< Capture/Compare 2 overcapture flag */
597 #define LL_TIM_SR_CC3OF                        TIM_SR_CC3OF         /*!< Capture/Compare 3 overcapture flag */
598 #define LL_TIM_SR_CC4OF                        TIM_SR_CC4OF         /*!< Capture/Compare 4 overcapture flag */
599 #define LL_TIM_SR_SBIF                         TIM_SR_SBIF          /*!< System Break interrupt flag  */
600 /**
601   * @}
602   */
603 
604 #if defined(USE_FULL_LL_DRIVER)
605 /** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
606   * @{
607   */
608 #define LL_TIM_BREAK_DISABLE            0x00000000U             /*!< Break function disabled */
609 #define LL_TIM_BREAK_ENABLE             TIM_BDTR_BKE            /*!< Break function enabled */
610 /**
611   * @}
612   */
613 
614 /** @defgroup TIM_LL_EC_BREAK2_ENABLE Break2 Enable
615   * @{
616   */
617 #define LL_TIM_BREAK2_DISABLE            0x00000000U              /*!< Break2 function disabled */
618 #define LL_TIM_BREAK2_ENABLE             TIM_BDTR_BK2E            /*!< Break2 function enabled */
619 /**
620   * @}
621   */
622 
623 /** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
624   * @{
625   */
626 #define LL_TIM_AUTOMATICOUTPUT_DISABLE         0x00000000U             /*!< MOE can be set only by software */
627 #define LL_TIM_AUTOMATICOUTPUT_ENABLE          TIM_BDTR_AOE            /*!< MOE can be set by software or automatically at the next update event */
628 /**
629   * @}
630   */
631 #endif /* USE_FULL_LL_DRIVER */
632 
633 /** @defgroup TIM_LL_EC_IT IT Defines
634   * @brief    IT defines which can be used with LL_TIM_ReadReg and  LL_TIM_WriteReg functions.
635   * @{
636   */
637 #define LL_TIM_DIER_UIE                        TIM_DIER_UIE         /*!< Update interrupt enable */
638 #define LL_TIM_DIER_CC1IE                      TIM_DIER_CC1IE       /*!< Capture/compare 1 interrupt enable */
639 #define LL_TIM_DIER_CC2IE                      TIM_DIER_CC2IE       /*!< Capture/compare 2 interrupt enable */
640 #define LL_TIM_DIER_CC3IE                      TIM_DIER_CC3IE       /*!< Capture/compare 3 interrupt enable */
641 #define LL_TIM_DIER_CC4IE                      TIM_DIER_CC4IE       /*!< Capture/compare 4 interrupt enable */
642 #define LL_TIM_DIER_COMIE                      TIM_DIER_COMIE       /*!< COM interrupt enable */
643 #define LL_TIM_DIER_TIE                        TIM_DIER_TIE         /*!< Trigger interrupt enable */
644 #define LL_TIM_DIER_BIE                        TIM_DIER_BIE         /*!< Break interrupt enable */
645 /**
646   * @}
647   */
648 
649 /** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
650   * @{
651   */
652 #define LL_TIM_UPDATESOURCE_REGULAR            0x00000000U          /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
653 #define LL_TIM_UPDATESOURCE_COUNTER            TIM_CR1_URS          /*!< Only counter overflow/underflow generates an update request */
654 /**
655   * @}
656   */
657 
658 /** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
659   * @{
660   */
661 #define LL_TIM_ONEPULSEMODE_SINGLE             TIM_CR1_OPM          /*!< Counter stops counting at the next update event */
662 #define LL_TIM_ONEPULSEMODE_REPETITIVE         0x00000000U          /*!< Counter is not stopped at update event */
663 /**
664   * @}
665   */
666 
667 /** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
668   * @{
669   */
670 #define LL_TIM_COUNTERMODE_UP                  0x00000000U          /*!<Counter used as upcounter */
671 #define LL_TIM_COUNTERMODE_DOWN                TIM_CR1_DIR          /*!< Counter used as downcounter */
672 #define LL_TIM_COUNTERMODE_CENTER_DOWN         TIM_CR1_CMS_0        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting down. */
673 #define LL_TIM_COUNTERMODE_CENTER_UP           TIM_CR1_CMS_1        /*!<The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up */
674 #define LL_TIM_COUNTERMODE_CENTER_UP_DOWN      TIM_CR1_CMS          /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up or down. */
675 /**
676   * @}
677   */
678 
679 /** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
680   * @{
681   */
682 #define LL_TIM_CLOCKDIVISION_DIV1              0x00000000U          /*!< tDTS=tCK_INT */
683 #define LL_TIM_CLOCKDIVISION_DIV2              TIM_CR1_CKD_0        /*!< tDTS=2*tCK_INT */
684 #define LL_TIM_CLOCKDIVISION_DIV4              TIM_CR1_CKD_1        /*!< tDTS=4*tCK_INT */
685 /**
686   * @}
687   */
688 
689 /** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
690   * @{
691   */
692 #define LL_TIM_COUNTERDIRECTION_UP             0x00000000U          /*!< Timer counter counts up */
693 #define LL_TIM_COUNTERDIRECTION_DOWN           TIM_CR1_DIR          /*!< Timer counter counts down */
694 /**
695   * @}
696   */
697 
698 /** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare  Update Source
699   * @{
700   */
701 #define LL_TIM_CCUPDATESOURCE_COMG_ONLY        0x00000000U          /*!< Capture/compare control bits are updated by setting the COMG bit only */
702 #define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI    TIM_CR2_CCUS         /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
703 /**
704   * @}
705   */
706 
707 /** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
708   * @{
709   */
710 #define LL_TIM_CCDMAREQUEST_CC                 0x00000000U          /*!< CCx DMA request sent when CCx event occurs */
711 #define LL_TIM_CCDMAREQUEST_UPDATE             TIM_CR2_CCDS         /*!< CCx DMA requests sent when update event occurs */
712 /**
713   * @}
714   */
715 
716 /** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
717   * @{
718   */
719 #define LL_TIM_LOCKLEVEL_OFF                   0x00000000U          /*!< LOCK OFF - No bit is write protected */
720 #define LL_TIM_LOCKLEVEL_1                     TIM_BDTR_LOCK_0      /*!< LOCK Level 1 */
721 #define LL_TIM_LOCKLEVEL_2                     TIM_BDTR_LOCK_1      /*!< LOCK Level 2 */
722 #define LL_TIM_LOCKLEVEL_3                     TIM_BDTR_LOCK        /*!< LOCK Level 3 */
723 /**
724   * @}
725   */
726 
727 /** @defgroup TIM_LL_EC_CHANNEL Channel
728   * @{
729   */
730 #define LL_TIM_CHANNEL_CH1                     TIM_CCER_CC1E     /*!< Timer input/output channel 1 */
731 #define LL_TIM_CHANNEL_CH1N                    TIM_CCER_CC1NE    /*!< Timer complementary output channel 1 */
732 #define LL_TIM_CHANNEL_CH2                     TIM_CCER_CC2E     /*!< Timer input/output channel 2 */
733 #define LL_TIM_CHANNEL_CH2N                    TIM_CCER_CC2NE    /*!< Timer complementary output channel 2 */
734 #define LL_TIM_CHANNEL_CH3                     TIM_CCER_CC3E     /*!< Timer input/output channel 3 */
735 #define LL_TIM_CHANNEL_CH3N                    TIM_CCER_CC3NE    /*!< Timer complementary output channel 3 */
736 #define LL_TIM_CHANNEL_CH4                     TIM_CCER_CC4E     /*!< Timer input/output channel 4 */
737 #define LL_TIM_CHANNEL_CH5                     TIM_CCER_CC5E     /*!< Timer output channel 5 */
738 #define LL_TIM_CHANNEL_CH6                     TIM_CCER_CC6E     /*!< Timer output channel 6 */
739 /**
740   * @}
741   */
742 
743 #if defined(USE_FULL_LL_DRIVER)
744 /** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
745   * @{
746   */
747 #define LL_TIM_OCSTATE_DISABLE                 0x00000000U             /*!< OCx is not active */
748 #define LL_TIM_OCSTATE_ENABLE                  TIM_CCER_CC1E           /*!< OCx signal is output on the corresponding output pin */
749 /**
750   * @}
751   */
752 #endif /* USE_FULL_LL_DRIVER */
753 
754 /** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
755   * @{
756   */
757 #define LL_TIM_OCMODE_FROZEN                   0x00000000U                                              /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
758 #define LL_TIM_OCMODE_ACTIVE                   TIM_CCMR1_OC1M_0                                         /*!<OCyREF is forced high on compare match*/
759 #define LL_TIM_OCMODE_INACTIVE                 TIM_CCMR1_OC1M_1                                         /*!<OCyREF is forced low on compare match*/
760 #define LL_TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF toggles on compare match*/
761 #define LL_TIM_OCMODE_FORCED_INACTIVE          TIM_CCMR1_OC1M_2                                         /*!<OCyREF is forced low*/
762 #define LL_TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF is forced high*/
763 #define LL_TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1)                    /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive.  In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
764 #define LL_TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active.  In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
765 #define LL_TIM_OCMODE_RETRIG_OPM1              TIM_CCMR1_OC1M_3                                         /*!<Retrigerrable OPM mode 1*/
766 #define LL_TIM_OCMODE_RETRIG_OPM2              (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0)                    /*!<Retrigerrable OPM mode 2*/
767 #define LL_TIM_OCMODE_COMBINED_PWM1            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_2)                    /*!<Combined PWM mode 1*/
768 #define LL_TIM_OCMODE_COMBINED_PWM2            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 2*/
769 #define LL_TIM_OCMODE_ASSYMETRIC_PWM1          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!<Asymmetric PWM mode 1*/
770 #define LL_TIM_OCMODE_ASSYMETRIC_PWM2          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M)                      /*!<Asymmetric PWM mode 2*/
771 /**
772   * @}
773   */
774 
775 /** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
776   * @{
777   */
778 #define LL_TIM_OCPOLARITY_HIGH                 0x00000000U                 /*!< OCxactive high*/
779 #define LL_TIM_OCPOLARITY_LOW                  TIM_CCER_CC1P               /*!< OCxactive low*/
780 /**
781   * @}
782   */
783 
784 /** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
785   * @{
786   */
787 #define LL_TIM_OCIDLESTATE_LOW                 0x00000000U             /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
788 #define LL_TIM_OCIDLESTATE_HIGH                TIM_CR2_OIS1            /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
789 /**
790   * @}
791   */
792 
793 /** @defgroup TIM_LL_EC_GROUPCH5 GROUPCH5
794   * @{
795   */
796 #define LL_TIM_GROUPCH5_NONE                   0x00000000U           /*!< No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC */
797 #define LL_TIM_GROUPCH5_OC1REFC                TIM_CCR5_GC5C1        /*!< OC1REFC is the logical AND of OC1REFC and OC5REF */
798 #define LL_TIM_GROUPCH5_OC2REFC                TIM_CCR5_GC5C2        /*!< OC2REFC is the logical AND of OC2REFC and OC5REF */
799 #define LL_TIM_GROUPCH5_OC3REFC                TIM_CCR5_GC5C3        /*!< OC3REFC is the logical AND of OC3REFC and OC5REF */
800 /**
801   * @}
802   */
803 
804 /** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
805   * @{
806   */
807 #define LL_TIM_ACTIVEINPUT_DIRECTTI            (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
808 #define LL_TIM_ACTIVEINPUT_INDIRECTTI          (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
809 #define LL_TIM_ACTIVEINPUT_TRC                 (TIM_CCMR1_CC1S << 16U)   /*!< ICx is mapped on TRC */
810 /**
811   * @}
812   */
813 
814 /** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
815   * @{
816   */
817 #define LL_TIM_ICPSC_DIV1                      0x00000000U                    /*!< No prescaler, capture is done each time an edge is detected on the capture input */
818 #define LL_TIM_ICPSC_DIV2                      (TIM_CCMR1_IC1PSC_0 << 16U)    /*!< Capture is done once every 2 events */
819 #define LL_TIM_ICPSC_DIV4                      (TIM_CCMR1_IC1PSC_1 << 16U)    /*!< Capture is done once every 4 events */
820 #define LL_TIM_ICPSC_DIV8                      (TIM_CCMR1_IC1PSC << 16U)      /*!< Capture is done once every 8 events */
821 /**
822   * @}
823   */
824 
825 /** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
826   * @{
827   */
828 #define LL_TIM_IC_FILTER_FDIV1                 0x00000000U                                                        /*!< No filter, sampling is done at fDTS */
829 #define LL_TIM_IC_FILTER_FDIV1_N2              (TIM_CCMR1_IC1F_0 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=2 */
830 #define LL_TIM_IC_FILTER_FDIV1_N4              (TIM_CCMR1_IC1F_1 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=4 */
831 #define LL_TIM_IC_FILTER_FDIV1_N8              ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fCK_INT, N=8 */
832 #define LL_TIM_IC_FILTER_FDIV2_N6              (TIM_CCMR1_IC1F_2 << 16U)                                          /*!< fSAMPLING=fDTS/2, N=6 */
833 #define LL_TIM_IC_FILTER_FDIV2_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/2, N=8 */
834 #define LL_TIM_IC_FILTER_FDIV4_N6              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/4, N=6 */
835 #define LL_TIM_IC_FILTER_FDIV4_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/4, N=8 */
836 #define LL_TIM_IC_FILTER_FDIV8_N6              (TIM_CCMR1_IC1F_3 << 16U)                                          /*!< fSAMPLING=fDTS/8, N=6 */
837 #define LL_TIM_IC_FILTER_FDIV8_N8              ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/8, N=8 */
838 #define LL_TIM_IC_FILTER_FDIV16_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/16, N=5 */
839 #define LL_TIM_IC_FILTER_FDIV16_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/16, N=6 */
840 #define LL_TIM_IC_FILTER_FDIV16_N8             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U)                     /*!< fSAMPLING=fDTS/16, N=8 */
841 #define LL_TIM_IC_FILTER_FDIV32_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/32, N=5 */
842 #define LL_TIM_IC_FILTER_FDIV32_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)  /*!< fSAMPLING=fDTS/32, N=6 */
843 #define LL_TIM_IC_FILTER_FDIV32_N8             (TIM_CCMR1_IC1F << 16U)                                            /*!< fSAMPLING=fDTS/32, N=8 */
844 /**
845   * @}
846   */
847 
848 /** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
849   * @{
850   */
851 #define LL_TIM_IC_POLARITY_RISING              0x00000000U                      /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
852 #define LL_TIM_IC_POLARITY_FALLING             TIM_CCER_CC1P                    /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
853 #define LL_TIM_IC_POLARITY_BOTHEDGE            (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
854 /**
855   * @}
856   */
857 
858 /** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
859   * @{
860   */
861 #define LL_TIM_CLOCKSOURCE_INTERNAL            0x00000000U                                          /*!< The timer is clocked by the internal clock provided from the RCC */
862 #define LL_TIM_CLOCKSOURCE_EXT_MODE1           (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)   /*!< Counter counts at each rising or falling edge on a selected input*/
863 #define LL_TIM_CLOCKSOURCE_EXT_MODE2           TIM_SMCR_ECE                                         /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
864 /**
865   * @}
866   */
867 
868 /** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
869   * @{
870   */
871 #define LL_TIM_ENCODERMODE_X2_TI1                     TIM_SMCR_SMS_0                                                     /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
872 #define LL_TIM_ENCODERMODE_X2_TI2                     TIM_SMCR_SMS_1                                                     /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
873 #define LL_TIM_ENCODERMODE_X4_TI12                   (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)                                   /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
874 /**
875   * @}
876   */
877 
878 /** @defgroup TIM_LL_EC_TRGO Trigger Output
879   * @{
880   */
881 #define LL_TIM_TRGO_RESET                      0x00000000U                                     /*!< UG bit from the TIMx_EGR register is used as trigger output */
882 #define LL_TIM_TRGO_ENABLE                     TIM_CR2_MMS_0                                   /*!< Counter Enable signal (CNT_EN) is used as trigger output */
883 #define LL_TIM_TRGO_UPDATE                     TIM_CR2_MMS_1                                   /*!< Update event is used as trigger output */
884 #define LL_TIM_TRGO_CC1IF                      (TIM_CR2_MMS_1 | TIM_CR2_MMS_0)                 /*!< CC1 capture or a compare match is used as trigger output */
885 #define LL_TIM_TRGO_OC1REF                     TIM_CR2_MMS_2                                   /*!< OC1REF signal is used as trigger output */
886 #define LL_TIM_TRGO_OC2REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_0)                 /*!< OC2REF signal is used as trigger output */
887 #define LL_TIM_TRGO_OC3REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1)                 /*!< OC3REF signal is used as trigger output */
888 #define LL_TIM_TRGO_OC4REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
889 /**
890   * @}
891   */
892 
893 /** @defgroup TIM_LL_EC_TRGO2 Trigger Output 2
894   * @{
895   */
896 #define LL_TIM_TRGO2_RESET                     0x00000000U                                                         /*!< UG bit from the TIMx_EGR register is used as trigger output 2 */
897 #define LL_TIM_TRGO2_ENABLE                    TIM_CR2_MMS2_0                                                      /*!< Counter Enable signal (CNT_EN) is used as trigger output 2 */
898 #define LL_TIM_TRGO2_UPDATE                    TIM_CR2_MMS2_1                                                      /*!< Update event is used as trigger output 2 */
899 #define LL_TIM_TRGO2_CC1F                      (TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                                   /*!< CC1 capture or a compare match is used as trigger output 2 */
900 #define LL_TIM_TRGO2_OC1                       TIM_CR2_MMS2_2                                                      /*!< OC1REF signal is used as trigger output 2 */
901 #define LL_TIM_TRGO2_OC2                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                                   /*!< OC2REF signal is used as trigger output 2 */
902 #define LL_TIM_TRGO2_OC3                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1)                                   /*!< OC3REF signal is used as trigger output 2 */
903 #define LL_TIM_TRGO2_OC4                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC4REF signal is used as trigger output 2 */
904 #define LL_TIM_TRGO2_OC5                       TIM_CR2_MMS2_3                                                      /*!< OC5REF signal is used as trigger output 2 */
905 #define LL_TIM_TRGO2_OC6                       (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_0)                                   /*!< OC6REF signal is used as trigger output 2 */
906 #define LL_TIM_TRGO2_OC4_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1)                                   /*!< OC4REF rising or falling edges are used as trigger output 2 */
907 #define LL_TIM_TRGO2_OC6_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC6REF rising or falling edges are used as trigger output 2 */
908 #define LL_TIM_TRGO2_OC4_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2)                                   /*!< OC4REF or OC6REF rising edges are used as trigger output 2 */
909 #define LL_TIM_TRGO2_OC4_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                  /*!< OC4REF rising or OC6REF falling edges are used as trigger output 2 */
910 #define LL_TIM_TRGO2_OC5_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 |TIM_CR2_MMS2_1)                   /*!< OC5REF or OC6REF rising edges are used as trigger output 2 */
911 #define LL_TIM_TRGO2_OC5_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC5REF rising or OC6REF falling edges are used as trigger output 2 */
912 /**
913   * @}
914   */
915 
916 /** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
917   * @{
918   */
919 #define LL_TIM_SLAVEMODE_DISABLED              0x00000000U                         /*!< Slave mode disabled */
920 #define LL_TIM_SLAVEMODE_RESET                 TIM_SMCR_SMS_2                      /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
921 #define LL_TIM_SLAVEMODE_GATED                 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)   /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
922 #define LL_TIM_SLAVEMODE_TRIGGER               (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)   /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
923 #define LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER TIM_SMCR_SMS_3                      /*!< Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI)  reinitializes the counter, generates an update of the registers and starts the counter */
924 /**
925   * @}
926   */
927 
928 /** @defgroup TIM_LL_EC_TS Trigger Selection
929   * @{
930   */
931 #define LL_TIM_TS_ITR0                         0x00000000U                                                     /*!< Internal Trigger 0 (ITR0) is used as trigger input */
932 #define LL_TIM_TS_ITR1                         TIM_SMCR_TS_0                                                   /*!< Internal Trigger 1 (ITR1) is used as trigger input */
933 #define LL_TIM_TS_ITR2                         TIM_SMCR_TS_1                                                   /*!< Internal Trigger 2 (ITR2) is used as trigger input */
934 #define LL_TIM_TS_ITR3                         (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)                                 /*!< Internal Trigger 3 (ITR3) is used as trigger input */
935 #define LL_TIM_TS_TI1F_ED                      TIM_SMCR_TS_2                                                   /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
936 #define LL_TIM_TS_TI1FP1                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_0)                                 /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
937 #define LL_TIM_TS_TI2FP2                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_1)                                 /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
938 #define LL_TIM_TS_ETRF                         (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Filtered external Trigger (ETRF) is used as trigger input */
939 /**
940   * @}
941   */
942 
943 /** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
944   * @{
945   */
946 #define LL_TIM_ETR_POLARITY_NONINVERTED        0x00000000U             /*!< ETR is non-inverted, active at high level or rising edge */
947 #define LL_TIM_ETR_POLARITY_INVERTED           TIM_SMCR_ETP            /*!< ETR is inverted, active at low level or falling edge */
948 /**
949   * @}
950   */
951 
952 /** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
953   * @{
954   */
955 #define LL_TIM_ETR_PRESCALER_DIV1              0x00000000U             /*!< ETR prescaler OFF */
956 #define LL_TIM_ETR_PRESCALER_DIV2              TIM_SMCR_ETPS_0         /*!< ETR frequency is divided by 2 */
957 #define LL_TIM_ETR_PRESCALER_DIV4              TIM_SMCR_ETPS_1         /*!< ETR frequency is divided by 4 */
958 #define LL_TIM_ETR_PRESCALER_DIV8              TIM_SMCR_ETPS           /*!< ETR frequency is divided by 8 */
959 /**
960   * @}
961   */
962 
963 /** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
964   * @{
965   */
966 #define LL_TIM_ETR_FILTER_FDIV1                0x00000000U                                          /*!< No filter, sampling is done at fDTS */
967 #define LL_TIM_ETR_FILTER_FDIV1_N2             TIM_SMCR_ETF_0                                       /*!< fSAMPLING=fCK_INT, N=2 */
968 #define LL_TIM_ETR_FILTER_FDIV1_N4             TIM_SMCR_ETF_1                                       /*!< fSAMPLING=fCK_INT, N=4 */
969 #define LL_TIM_ETR_FILTER_FDIV1_N8             (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fCK_INT, N=8 */
970 #define LL_TIM_ETR_FILTER_FDIV2_N6             TIM_SMCR_ETF_2                                       /*!< fSAMPLING=fDTS/2, N=6 */
971 #define LL_TIM_ETR_FILTER_FDIV2_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/2, N=8 */
972 #define LL_TIM_ETR_FILTER_FDIV4_N6             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/4, N=6 */
973 #define LL_TIM_ETR_FILTER_FDIV4_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/4, N=8 */
974 #define LL_TIM_ETR_FILTER_FDIV8_N6             TIM_SMCR_ETF_3                                       /*!< fSAMPLING=fDTS/8, N=8 */
975 #define LL_TIM_ETR_FILTER_FDIV8_N8             (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/16, N=5 */
976 #define LL_TIM_ETR_FILTER_FDIV16_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/16, N=6 */
977 #define LL_TIM_ETR_FILTER_FDIV16_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/16, N=8 */
978 #define LL_TIM_ETR_FILTER_FDIV16_N8            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2)                    /*!< fSAMPLING=fDTS/16, N=5 */
979 #define LL_TIM_ETR_FILTER_FDIV32_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/32, N=5 */
980 #define LL_TIM_ETR_FILTER_FDIV32_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)   /*!< fSAMPLING=fDTS/32, N=6 */
981 #define LL_TIM_ETR_FILTER_FDIV32_N8            TIM_SMCR_ETF                                         /*!< fSAMPLING=fDTS/32, N=8 */
982 /**
983   * @}
984   */
985 
986 /** @defgroup TIM_LL_EC_ETRSOURCE External Trigger Source
987   * @{
988   */
989 #define LL_TIM_ETRSOURCE_GPIO                  0x00000000U                                                 /*!< ETR input is connected to GPIO */
990 #define LL_TIM_ETRSOURCE_COMP1                 TIM1_OR2_ETRSEL_0                                 /*!< ETR input is connected to COMP1_OUT */
991 #define LL_TIM_ETRSOURCE_COMP2                 TIM1_OR2_ETRSEL_1                                 /*!< ETR input is connected to COMP2_OUT */
992 #define LL_TIM_ETRSOURCE_ADC1_AWD1             (TIM1_OR2_ETRSEL_1 | TIM1_OR2_ETRSEL_0) /*!< ETR input is connected to ADC1 analog watchdog 1 */
993 #define LL_TIM_ETRSOURCE_ADC1_AWD2             TIM1_OR2_ETRSEL_2                                 /*!< ETR input is connected to ADC1 analog watchdog 2 */
994 #define LL_TIM_ETRSOURCE_ADC1_AWD3             (TIM1_OR2_ETRSEL_2 | TIM1_OR2_ETRSEL_0) /*!< ETR input is connected to ADC1 analog watchdog 3 */
995 /**
996   * @}
997   */
998 
999 /** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
1000   * @{
1001   */
1002 #define LL_TIM_BREAK_POLARITY_LOW              0x00000000U               /*!< Break input BRK is active low */
1003 #define LL_TIM_BREAK_POLARITY_HIGH             TIM_BDTR_BKP              /*!< Break input BRK is active high */
1004 /**
1005   * @}
1006   */
1007 
1008 /** @defgroup TIM_LL_EC_BREAK_FILTER break filter
1009   * @{
1010   */
1011 #define LL_TIM_BREAK_FILTER_FDIV1              0x00000000U   /*!< No filter, BRK acts asynchronously */
1012 #define LL_TIM_BREAK_FILTER_FDIV1_N2           0x00010000U   /*!< fSAMPLING=fCK_INT, N=2 */
1013 #define LL_TIM_BREAK_FILTER_FDIV1_N4           0x00020000U   /*!< fSAMPLING=fCK_INT, N=4 */
1014 #define LL_TIM_BREAK_FILTER_FDIV1_N8           0x00030000U   /*!< fSAMPLING=fCK_INT, N=8 */
1015 #define LL_TIM_BREAK_FILTER_FDIV2_N6           0x00040000U   /*!< fSAMPLING=fDTS/2, N=6 */
1016 #define LL_TIM_BREAK_FILTER_FDIV2_N8           0x00050000U   /*!< fSAMPLING=fDTS/2, N=8 */
1017 #define LL_TIM_BREAK_FILTER_FDIV4_N6           0x00060000U   /*!< fSAMPLING=fDTS/4, N=6 */
1018 #define LL_TIM_BREAK_FILTER_FDIV4_N8           0x00070000U   /*!< fSAMPLING=fDTS/4, N=8 */
1019 #define LL_TIM_BREAK_FILTER_FDIV8_N6           0x00080000U   /*!< fSAMPLING=fDTS/8, N=6 */
1020 #define LL_TIM_BREAK_FILTER_FDIV8_N8           0x00090000U   /*!< fSAMPLING=fDTS/8, N=8 */
1021 #define LL_TIM_BREAK_FILTER_FDIV16_N5          0x000A0000U   /*!< fSAMPLING=fDTS/16, N=5 */
1022 #define LL_TIM_BREAK_FILTER_FDIV16_N6          0x000B0000U   /*!< fSAMPLING=fDTS/16, N=6 */
1023 #define LL_TIM_BREAK_FILTER_FDIV16_N8          0x000C0000U   /*!< fSAMPLING=fDTS/16, N=8 */
1024 #define LL_TIM_BREAK_FILTER_FDIV32_N5          0x000D0000U   /*!< fSAMPLING=fDTS/32, N=5 */
1025 #define LL_TIM_BREAK_FILTER_FDIV32_N6          0x000E0000U   /*!< fSAMPLING=fDTS/32, N=6 */
1026 #define LL_TIM_BREAK_FILTER_FDIV32_N8          0x000F0000U   /*!< fSAMPLING=fDTS/32, N=8 */
1027 /**
1028   * @}
1029   */
1030 
1031 /** @defgroup TIM_LL_EC_BREAK2_POLARITY BREAK2 POLARITY
1032   * @{
1033   */
1034 #define LL_TIM_BREAK2_POLARITY_LOW             0x00000000U             /*!< Break input BRK2 is active low */
1035 #define LL_TIM_BREAK2_POLARITY_HIGH            TIM_BDTR_BK2P           /*!< Break input BRK2 is active high */
1036 /**
1037   * @}
1038   */
1039 
1040 /** @defgroup TIM_LL_EC_BREAK2_FILTER BREAK2 FILTER
1041   * @{
1042   */
1043 #define LL_TIM_BREAK2_FILTER_FDIV1             0x00000000U   /*!< No filter, BRK acts asynchronously */
1044 #define LL_TIM_BREAK2_FILTER_FDIV1_N2          0x00100000U   /*!< fSAMPLING=fCK_INT, N=2 */
1045 #define LL_TIM_BREAK2_FILTER_FDIV1_N4          0x00200000U   /*!< fSAMPLING=fCK_INT, N=4 */
1046 #define LL_TIM_BREAK2_FILTER_FDIV1_N8          0x00300000U   /*!< fSAMPLING=fCK_INT, N=8 */
1047 #define LL_TIM_BREAK2_FILTER_FDIV2_N6          0x00400000U   /*!< fSAMPLING=fDTS/2, N=6 */
1048 #define LL_TIM_BREAK2_FILTER_FDIV2_N8          0x00500000U   /*!< fSAMPLING=fDTS/2, N=8 */
1049 #define LL_TIM_BREAK2_FILTER_FDIV4_N6          0x00600000U   /*!< fSAMPLING=fDTS/4, N=6 */
1050 #define LL_TIM_BREAK2_FILTER_FDIV4_N8          0x00700000U   /*!< fSAMPLING=fDTS/4, N=8 */
1051 #define LL_TIM_BREAK2_FILTER_FDIV8_N6          0x00800000U   /*!< fSAMPLING=fDTS/8, N=6 */
1052 #define LL_TIM_BREAK2_FILTER_FDIV8_N8          0x00900000U   /*!< fSAMPLING=fDTS/8, N=8 */
1053 #define LL_TIM_BREAK2_FILTER_FDIV16_N5         0x00A00000U   /*!< fSAMPLING=fDTS/16, N=5 */
1054 #define LL_TIM_BREAK2_FILTER_FDIV16_N6         0x00B00000U   /*!< fSAMPLING=fDTS/16, N=6 */
1055 #define LL_TIM_BREAK2_FILTER_FDIV16_N8         0x00C00000U   /*!< fSAMPLING=fDTS/16, N=8 */
1056 #define LL_TIM_BREAK2_FILTER_FDIV32_N5         0x00D00000U   /*!< fSAMPLING=fDTS/32, N=5 */
1057 #define LL_TIM_BREAK2_FILTER_FDIV32_N6         0x00E00000U   /*!< fSAMPLING=fDTS/32, N=6 */
1058 #define LL_TIM_BREAK2_FILTER_FDIV32_N8         0x00F00000U   /*!< fSAMPLING=fDTS/32, N=8 */
1059 /**
1060   * @}
1061   */
1062 
1063 /** @defgroup TIM_LL_EC_OSSI OSSI
1064   * @{
1065   */
1066 #define LL_TIM_OSSI_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1067 #define LL_TIM_OSSI_ENABLE                     TIM_BDTR_OSSI           /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
1068 /**
1069   * @}
1070   */
1071 
1072 /** @defgroup TIM_LL_EC_OSSR OSSR
1073   * @{
1074   */
1075 #define LL_TIM_OSSR_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1076 #define LL_TIM_OSSR_ENABLE                     TIM_BDTR_OSSR           /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
1077 /**
1078   * @}
1079   */
1080 
1081 /** @defgroup TIM_LL_EC_BREAK_INPUT BREAK INPUT
1082   * @{
1083   */
1084 #define LL_TIM_BREAK_INPUT_BKIN                0x00000000U  /*!< TIMx_BKIN input */
1085 #define LL_TIM_BREAK_INPUT_BKIN2               0x00000004U  /*!< TIMx_BKIN2 input */
1086 /**
1087   * @}
1088   */
1089 
1090 /** @defgroup TIM_LL_EC_BKIN_SOURCE BKIN SOURCE
1091   * @{
1092   */
1093 #define LL_TIM_BKIN_SOURCE_BKIN                TIM1_OR2_BKINE      /*!< BKIN input from AF controller */
1094 #define LL_TIM_BKIN_SOURCE_BKCOMP1             TIM1_OR2_BKCMP1E    /*!< internal signal: COMP1 output */
1095 #define LL_TIM_BKIN_SOURCE_BKCOMP2             TIM1_OR2_BKCMP2E    /*!< internal signal: COMP2 output */
1096 #define LL_TIM_BKIN_SOURCE_DF1BK               TIM1_OR2_BKDF1BK0E  /*!< internal signal: DFSDM1 break output */
1097 /**
1098   * @}
1099   */
1100 
1101 /** @defgroup TIM_LL_EC_BKIN_POLARITY BKIN POLARITY
1102   * @{
1103   */
1104 #define LL_TIM_BKIN_POLARITY_LOW               TIM1_OR2_BKINP           /*!< BRK BKIN input is active low */
1105 #define LL_TIM_BKIN_POLARITY_HIGH              0x00000000U              /*!< BRK BKIN input is active high */
1106 /**
1107   * @}
1108   */
1109 
1110 /** @defgroup TIM_LL_EC_BREAK_AFMODE BREAK AF MODE
1111   * @{
1112   */
1113 #define LL_TIM_BREAK_AFMODE_INPUT              0x00000000U              /*!< Break input BRK in input mode */
1114 #define LL_TIM_BREAK_AFMODE_BIDIRECTIONAL      TIM_BDTR_BKBID           /*!< Break input BRK in bidirectional mode */
1115 /**
1116   * @}
1117   */
1118 
1119 /** @defgroup TIM_LL_EC_BREAK2_AFMODE BREAK2 AF MODE
1120   * @{
1121   */
1122 #define LL_TIM_BREAK2_AFMODE_INPUT             0x00000000U             /*!< Break2 input BRK2 in input mode */
1123 #define LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL     TIM_BDTR_BK2BID         /*!< Break2 input BRK2 in bidirectional mode */
1124 /**
1125   * @}
1126   */
1127 
1128 /** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
1129   * @{
1130   */
1131 #define LL_TIM_DMABURST_BASEADDR_CR1           0x00000000U                                                      /*!< TIMx_CR1 register is the DMA base address for DMA burst */
1132 #define LL_TIM_DMABURST_BASEADDR_CR2           TIM_DCR_DBA_0                                                    /*!< TIMx_CR2 register is the DMA base address for DMA burst */
1133 #define LL_TIM_DMABURST_BASEADDR_SMCR          TIM_DCR_DBA_1                                                    /*!< TIMx_SMCR register is the DMA base address for DMA burst */
1134 #define LL_TIM_DMABURST_BASEADDR_DIER          (TIM_DCR_DBA_1 |  TIM_DCR_DBA_0)                                 /*!< TIMx_DIER register is the DMA base address for DMA burst */
1135 #define LL_TIM_DMABURST_BASEADDR_SR            TIM_DCR_DBA_2                                                    /*!< TIMx_SR register is the DMA base address for DMA burst */
1136 #define LL_TIM_DMABURST_BASEADDR_EGR           (TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                                  /*!< TIMx_EGR register is the DMA base address for DMA burst */
1137 #define LL_TIM_DMABURST_BASEADDR_CCMR1         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
1138 #define LL_TIM_DMABURST_BASEADDR_CCMR2         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
1139 #define LL_TIM_DMABURST_BASEADDR_CCER          TIM_DCR_DBA_3                                                    /*!< TIMx_CCER register is the DMA base address for DMA burst */
1140 #define LL_TIM_DMABURST_BASEADDR_CNT           (TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                                  /*!< TIMx_CNT register is the DMA base address for DMA burst */
1141 #define LL_TIM_DMABURST_BASEADDR_PSC           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                                  /*!< TIMx_PSC register is the DMA base address for DMA burst */
1142 #define LL_TIM_DMABURST_BASEADDR_ARR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_ARR register is the DMA base address for DMA burst */
1143 #define LL_TIM_DMABURST_BASEADDR_RCR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_2)                                  /*!< TIMx_RCR register is the DMA base address for DMA burst */
1144 #define LL_TIM_DMABURST_BASEADDR_CCR1          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
1145 #define LL_TIM_DMABURST_BASEADDR_CCR2          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
1146 #define LL_TIM_DMABURST_BASEADDR_CCR3          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
1147 #define LL_TIM_DMABURST_BASEADDR_CCR4          TIM_DCR_DBA_4                                                    /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
1148 #define LL_TIM_DMABURST_BASEADDR_BDTR          (TIM_DCR_DBA_4 | TIM_DCR_DBA_0)                                  /*!< TIMx_BDTR register is the DMA base address for DMA burst */
1149 #define LL_TIM_DMABURST_BASEADDR_OR1           (TIM_DCR_DBA_4 | TIM_DCR_DBA_2)                                  /*!< TIMx_OR1 register is the DMA base address for DMA burst */
1150 #define LL_TIM_DMABURST_BASEADDR_CCMR3         (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR3 register is the DMA base address for DMA burst */
1151 #define LL_TIM_DMABURST_BASEADDR_CCR5          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR5 register is the DMA base address for DMA burst */
1152 #define LL_TIM_DMABURST_BASEADDR_CCR6          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR6 register is the DMA base address for DMA burst */
1153 #define LL_TIM_DMABURST_BASEADDR_OR2           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3)                                  /*!< TIMx_OR2 register is the DMA base address for DMA burst */
1154 #define LL_TIM_DMABURST_BASEADDR_OR3           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                  /*!< TIMx_OR3 register is the DMA base address for DMA burst */
1155 /**
1156   * @}
1157   */
1158 
1159 /** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
1160   * @{
1161   */
1162 #define LL_TIM_DMABURST_LENGTH_1TRANSFER       0x00000000U                                                     /*!< Transfer is done to 1 register starting from the DMA burst base address */
1163 #define LL_TIM_DMABURST_LENGTH_2TRANSFERS      TIM_DCR_DBL_0                                                   /*!< Transfer is done to 2 registers starting from the DMA burst base address */
1164 #define LL_TIM_DMABURST_LENGTH_3TRANSFERS      TIM_DCR_DBL_1                                                   /*!< Transfer is done to 3 registers starting from the DMA burst base address */
1165 #define LL_TIM_DMABURST_LENGTH_4TRANSFERS      (TIM_DCR_DBL_1 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 4 registers starting from the DMA burst base address */
1166 #define LL_TIM_DMABURST_LENGTH_5TRANSFERS      TIM_DCR_DBL_2                                                   /*!< Transfer is done to 5 registers starting from the DMA burst base address */
1167 #define LL_TIM_DMABURST_LENGTH_6TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 6 registers starting from the DMA burst base address */
1168 #define LL_TIM_DMABURST_LENGTH_7TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 7 registers starting from the DMA burst base address */
1169 #define LL_TIM_DMABURST_LENGTH_8TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 1 registers starting from the DMA burst base address */
1170 #define LL_TIM_DMABURST_LENGTH_9TRANSFERS      TIM_DCR_DBL_3                                                   /*!< Transfer is done to 9 registers starting from the DMA burst base address */
1171 #define LL_TIM_DMABURST_LENGTH_10TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 10 registers starting from the DMA burst base address */
1172 #define LL_TIM_DMABURST_LENGTH_11TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 11 registers starting from the DMA burst base address */
1173 #define LL_TIM_DMABURST_LENGTH_12TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 12 registers starting from the DMA burst base address */
1174 #define LL_TIM_DMABURST_LENGTH_13TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 13 registers starting from the DMA burst base address */
1175 #define LL_TIM_DMABURST_LENGTH_14TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 14 registers starting from the DMA burst base address */
1176 #define LL_TIM_DMABURST_LENGTH_15TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 15 registers starting from the DMA burst base address */
1177 #define LL_TIM_DMABURST_LENGTH_16TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
1178 #define LL_TIM_DMABURST_LENGTH_17TRANSFERS     TIM_DCR_DBL_4                                                   /*!< Transfer is done to 17 registers starting from the DMA burst base address */
1179 #define LL_TIM_DMABURST_LENGTH_18TRANSFERS     (TIM_DCR_DBL_4 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 18 registers starting from the DMA burst base address */
1180 /**
1181   * @}
1182   */
1183 
1184 /** @defgroup TIM_LL_EC_TIM1_ETR_ADC1_RMP  TIM1 External Trigger ADC1 Remap
1185   * @{
1186   */
1187 #define LL_TIM_TIM1_ETR_ADC1_RMP_NC   TIM1_OR1_RMP_MASK                                                /*!< TIM1_ETR is not connected to ADC1 analog watchdog x */
1188 #define LL_TIM_TIM1_ETR_ADC1_RMP_AWD1 (TIM1_OR1_ETR_ADC1_RMP_0 | TIM1_OR1_RMP_MASK)                    /*!< TIM1_ETR is connected to ADC1 analog watchdog 1 */
1189 #define LL_TIM_TIM1_ETR_ADC1_RMP_AWD2 (TIM1_OR1_ETR_ADC1_RMP_1 | TIM1_OR1_RMP_MASK)                    /*!< TIM1_ETR is connected to ADC1 analog watchdog 2 */
1190 #define LL_TIM_TIM1_ETR_ADC1_RMP_AWD3 (TIM1_OR1_ETR_ADC1_RMP | TIM1_OR1_RMP_MASK)                      /*!< TIM1_ETR is connected to ADC1 analog watchdog 3 */
1191 /**
1192   * @}
1193   */
1194 
1195 /** @defgroup TIM_LL_EC_TIM1_TI1_RMP  TIM1 External Input Ch1 Remap
1196   * @{
1197   */
1198 #define LL_TIM_TIM1_TI1_RMP_GPIO  TIM1_OR1_RMP_MASK                                                    /*!< TIM1 input capture 1 is connected to GPIO */
1199 #define LL_TIM_TIM1_TI1_RMP_COMP1 (TIM1_OR1_TI1_RMP | TIM1_OR1_RMP_MASK)                               /*!< TIM1 input capture 1 is connected to COMP1 output */
1200 /**
1201   * @}
1202   */
1203 
1204 /** @defgroup TIM_LL_EC_TIM2_ITR1_RMP  TIM2 Internal Trigger1 Remap
1205   * @{
1206   */
1207 #define LL_TIM_TIM2_ITR1_RMP_TIM8_TRGO  TIM2_OR1_RMP_MASK                                              /*!< TIM2_ITR1 is connected to TIM8_TRGO */
1208 #define LL_TIM_TIM2_ITR1_RMP_USB_SOF (TIM2_OR1_ITR1_RMP | TIM2_OR1_RMP_MASK)                           /*!< TIM2_ITR1 is connected to OTG_FS SOF */
1209 #define LL_TIM_TIM2_ETR_RMP_GPIO TIM2_OR1_RMP_MASK                                                     /*!< TIM2_ETR is connected to GPIO */
1210 #define LL_TIM_TIM2_ETR_RMP_LSE  (TIM2_OR1_ETR1_RMP | TIM2_OR1_RMP_MASK)                               /*!< TIM2_ETR is connected to LSE  */
1211 /**
1212   * @}
1213   */
1214 
1215 /** @defgroup TIM_LL_EC_TIM2_TI4_RMP  TIM2 External Input Ch4 Remap
1216   * @{
1217   */
1218 #define LL_TIM_TIM2_TI4_RMP_GPIO        TIM2_OR1_RMP_MASK                                              /*!< TIM2 input capture 4 is connected to GPIO */
1219 #define LL_TIM_TIM2_TI4_RMP_COMP1       (TIM2_OR1_TI4_RMP_0 | TIM2_OR1_RMP_MASK)                       /*!< TIM2 input capture 4 is connected to COMP1_OUT */
1220 #define LL_TIM_TIM2_TI4_RMP_COMP2       (TIM2_OR1_TI4_RMP_1 | TIM2_OR1_RMP_MASK)                       /*!< TIM2 input capture 4 is connected to COMP2_OUT */
1221 #define LL_TIM_TIM2_TI4_RMP_COMP1_COMP2 (TIM2_OR1_TI4_RMP | TIM2_OR1_RMP_MASK)                         /*!< TIM2 input capture 4 is connected to logical OR between COMP1_OUT and COMP2_OUT */
1222 /**
1223   * @}
1224   */
1225 
1226 /** @defgroup TIM_LL_EC_TIM3_TI1_RMP  TIM3 External Input Ch1 Remap
1227   * @{
1228   */
1229 #define LL_TIM_TIM3_TI1_RMP_GPIO         TIM3_OR1_RMP_MASK                                             /*!< TIM3 input capture 1 is connected to GPIO */
1230 #define LL_TIM_TIM3_TI1_RMP_COMP1        (TIM3_OR1_TI1_RMP_0 | TIM3_OR1_RMP_MASK)                      /*!< TIM3 input capture 1 is connected to COMP1_OUT */
1231 #define LL_TIM_TIM3_TI1_RMP_COMP2        (TIM3_OR1_TI1_RMP_1 | TIM3_OR1_RMP_MASK)                      /*!< TIM3 input capture 1 is connected to COMP2_OUT */
1232 #define LL_TIM_TIM3_TI1_RMP_COMP1_COMP2  (TIM3_OR1_TI1_RMP | TIM3_OR1_RMP_MASK)                        /*!< TIM3 input capture 1 is connected to logical OR between COMP1_OUT and COMP2_OUT */
1233 /**
1234   * @}
1235   */
1236 
1237 /** @defgroup TIM_LL_EC_TIM8_TI1_RMP  TIM8 External Input Ch1 Remap
1238   * @{
1239   */
1240 #define LL_TIM_TIM8_TI1_RMP_GPIO  TIM8_OR1_RMP_MASK                                                    /*!< TIM8 input capture 1 is connected to GPIO */
1241 #define LL_TIM_TIM8_TI1_RMP_COMP2 (TIM8_OR1_TI1_RMP | TIM8_OR1_RMP_MASK)                               /*!< TIM8 input capture 1 is connected to COMP2 output */
1242 /**
1243   * @}
1244   */
1245 
1246 /** @defgroup TIM_LL_EC_TIM15_TI1_RMP  TIM15 External Input Ch1 Remap
1247   * @{
1248   */
1249 #define LL_TIM_TIM15_TI1_RMP_GPIO TIM15_OR1_RMP_MASK                                                   /*!< TIM15 input capture 1 is connected to GPIO */
1250 #define LL_TIM_TIM15_TI1_RMP_LSE  (TIM15_OR1_TI1_RMP | TIM15_OR1_RMP_MASK)                             /*!< TIM15 input capture 1 is connected to LSE */
1251 /**
1252   * @}
1253   */
1254 
1255 /** @defgroup TIM_LL_EC_TIM15_ENCODERMODE  TIM15 ENCODERMODE
1256   * @{
1257   */
1258 #define LL_TIM_TIM15_ENCODERMODE_NOREDIRECTION TIM15_OR1_RMP_MASK                                      /*!< No redirection*/
1259 #define LL_TIM_TIM15_ENCODERMODE_TIM2          (TIM15_OR1_ENCODER_MODE_0 | TIM15_OR1_RMP_MASK)         /*!< TIM2 IC1 and TIM2 IC2 are connected to TIM15 IC1 and TIM15 IC2 respectively */
1260 #define LL_TIM_TIM15_ENCODERMODE_TIM3          (TIM15_OR1_ENCODER_MODE_1 | TIM15_OR1_RMP_MASK)         /*!< TIM3 IC1 and TIM3 IC2 are connected to TIM15 IC1 and TIM15 IC2 respectivel y*/
1261 #define LL_TIM_TIM15_ENCODERMODE_TIM4          (TIM15_OR1_ENCODER_MODE | TIM15_OR1_RMP_MASK)           /*!< TIM4 IC1 and TIM4 IC2 are connected to TIM15 IC1 and TIM15 IC2 respectively */
1262 /**
1263   * @}
1264   */
1265 
1266 /** @defgroup TIM_LL_EC_TIM16_TI1_RMP  TIM16 External Input Ch1 Remap
1267   * @{
1268   */
1269 #define LL_TIM_TIM16_TI1_RMP_GPIO TIM16_OR1_RMP_MASK                                                   /*!< TIM16 input capture 1 is connected to GPIO */
1270 #define LL_TIM_TIM16_TI1_RMP_LSI  (TIM16_OR1_TI1_RMP_0 | TIM16_OR1_RMP_MASK)                           /*!< TIM16 input capture 1 is connected to LSI */
1271 #define LL_TIM_TIM16_TI1_RMP_LSE  (TIM16_OR1_TI1_RMP_1 | TIM16_OR1_RMP_MASK)                           /*!< TIM16 input capture 1 is connected to LSE */
1272 #define LL_TIM_TIM16_TI1_RMP_RTC  (TIM16_OR1_TI1_RMP_1 | TIM16_OR1_TI1_RMP_0 | TIM16_OR1_RMP_MASK)     /*!< TIM16 input capture 1 is connected to RTC wakeup interrupt */
1273 /**
1274   * @}
1275   */
1276 
1277 /** @defgroup TIM_LL_EC_TIM17_TI1_RMP  TIM17 Timer Input Ch1 Remap
1278   * @{
1279   */
1280 #define LL_TIM_TIM17_TI1_RMP_GPIO   TIM17_OR1_RMP_MASK                                                 /*!< TIM17 input capture 1 is connected to GPIO */
1281 #define LL_TIM_TIM17_TI1_RMP_MSI    (TIM17_OR1_TI1_RMP_0 | TIM17_OR1_RMP_MASK)                         /*!< TIM17 input capture 1 is connected to MSI */
1282 #define LL_TIM_TIM17_TI1_RMP_HSE_32 (TIM17_OR1_TI1_RMP_1 | TIM17_OR1_RMP_MASK)                         /*!< TIM17 input capture 1 is connected to HSE/32 */
1283 #define LL_TIM_TIM17_TI1_RMP_MCO    (TIM17_OR1_TI1_RMP | TIM17_OR1_RMP_MASK)                           /*!< TIM17 input capture 1 is connected to MCO */
1284 /**
1285   * @}
1286   */
1287 
1288 /** Legacy definitions for compatibility purpose
1289 @cond 0
1290   */
1291 #define LL_TIM_BKIN_SOURCE_DFBK  LL_TIM_BKIN_SOURCE_DF1BK
1292 /**
1293 @endcond
1294   */
1295 /**
1296   * @}
1297   */
1298 
1299 /* Exported macro ------------------------------------------------------------*/
1300 /** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
1301   * @{
1302   */
1303 
1304 /** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
1305   * @{
1306   */
1307 /**
1308   * @brief  Write a value in TIM register.
1309   * @param  __INSTANCE__ TIM Instance
1310   * @param  __REG__ Register to be written
1311   * @param  __VALUE__ Value to be written in the register
1312   * @retval None
1313   */
1314 #define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
1315 
1316 /**
1317   * @brief  Read a value in TIM register.
1318   * @param  __INSTANCE__ TIM Instance
1319   * @param  __REG__ Register to be read
1320   * @retval Register value
1321   */
1322 #define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
1323 /**
1324   * @}
1325   */
1326 
1327 /**
1328   * @brief  HELPER macro retrieving the UIFCPY flag from the counter value.
1329   * @note ex: @ref __LL_TIM_GETFLAG_UIFCPY (@ref LL_TIM_GetCounter ());
1330   * @note  Relevant only if UIF flag remapping has been enabled  (UIF status bit is copied
1331   *        to TIMx_CNT register bit 31)
1332   * @param  __CNT__ Counter value
1333   * @retval UIF status bit
1334   */
1335 #define __LL_TIM_GETFLAG_UIFCPY(__CNT__)  \
1336   (READ_BIT((__CNT__), TIM_CNT_UIFCPY) >> TIM_CNT_UIFCPY_Pos)
1337 
1338 /**
1339   * @brief  HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
1340   * @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
1341   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1342   * @param  __CKD__ This parameter can be one of the following values:
1343   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1344   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1345   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1346   * @param  __DT__ deadtime duration (in ns)
1347   * @retval DTG[0:7]
1348   */
1349 #define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__)  \
1350   ( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))    ?  \
1351     (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__)))  & DT_DELAY_1) :      \
1352     (((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1353     (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),   \
1354                                                  (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
1355     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1356     (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1357                                                  (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
1358     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ?  \
1359     (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1360                                                  (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
1361     0U)
1362 
1363 /**
1364   * @brief  HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
1365   * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
1366   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1367   * @param  __CNTCLK__ counter clock frequency (in Hz)
1368   * @retval Prescaler value  (between Min_Data=0 and Max_Data=65535)
1369   */
1370 #define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__)   \
1371   (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((((__TIMCLK__) + (__CNTCLK__)/2U)/(__CNTCLK__)) - 1U) : 0U)
1372 
1373 /**
1374   * @brief  HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
1375   * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
1376   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1377   * @param  __PSC__ prescaler
1378   * @param  __FREQ__ output signal frequency (in Hz)
1379   * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1380   */
1381 #define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
1382   ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
1383 
1384 /**
1385   * @brief  HELPER macro calculating the compare value required to achieve the required timer output compare
1386   *         active/inactive delay.
1387   * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
1388   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1389   * @param  __PSC__ prescaler
1390   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1391   * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
1392   */
1393 #define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__)  \
1394   ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
1395               / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
1396 
1397 /**
1398   * @brief  HELPER macro calculating the auto-reload value to achieve the required pulse duration
1399   *         (when the timer operates in one pulse mode).
1400   * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
1401   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1402   * @param  __PSC__ prescaler
1403   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1404   * @param  __PULSE__ pulse duration (in us)
1405   * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1406   */
1407 #define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
1408   ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
1409               + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
1410 
1411 /**
1412   * @brief  HELPER macro retrieving the ratio of the input capture prescaler
1413   * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
1414   * @param  __ICPSC__ This parameter can be one of the following values:
1415   *         @arg @ref LL_TIM_ICPSC_DIV1
1416   *         @arg @ref LL_TIM_ICPSC_DIV2
1417   *         @arg @ref LL_TIM_ICPSC_DIV4
1418   *         @arg @ref LL_TIM_ICPSC_DIV8
1419   * @retval Input capture prescaler ratio (1, 2, 4 or 8)
1420   */
1421 #define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__)  \
1422   ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
1423 
1424 
1425 /**
1426   * @}
1427   */
1428 
1429 
1430 /**
1431   * @}
1432   */
1433 
1434 /* Exported functions --------------------------------------------------------*/
1435 /** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
1436   * @{
1437   */
1438 
1439 /** @defgroup TIM_LL_EF_Time_Base Time Base configuration
1440   * @{
1441   */
1442 /**
1443   * @brief  Enable timer counter.
1444   * @rmtoll CR1          CEN           LL_TIM_EnableCounter
1445   * @param  TIMx Timer instance
1446   * @retval None
1447   */
LL_TIM_EnableCounter(TIM_TypeDef * TIMx)1448 __STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
1449 {
1450   SET_BIT(TIMx->CR1, TIM_CR1_CEN);
1451 }
1452 
1453 /**
1454   * @brief  Disable timer counter.
1455   * @rmtoll CR1          CEN           LL_TIM_DisableCounter
1456   * @param  TIMx Timer instance
1457   * @retval None
1458   */
LL_TIM_DisableCounter(TIM_TypeDef * TIMx)1459 __STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
1460 {
1461   CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
1462 }
1463 
1464 /**
1465   * @brief  Indicates whether the timer counter is enabled.
1466   * @rmtoll CR1          CEN           LL_TIM_IsEnabledCounter
1467   * @param  TIMx Timer instance
1468   * @retval State of bit (1 or 0).
1469   */
LL_TIM_IsEnabledCounter(const TIM_TypeDef * TIMx)1470 __STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(const TIM_TypeDef *TIMx)
1471 {
1472   return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
1473 }
1474 
1475 /**
1476   * @brief  Enable update event generation.
1477   * @rmtoll CR1          UDIS          LL_TIM_EnableUpdateEvent
1478   * @param  TIMx Timer instance
1479   * @retval None
1480   */
LL_TIM_EnableUpdateEvent(TIM_TypeDef * TIMx)1481 __STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
1482 {
1483   CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
1484 }
1485 
1486 /**
1487   * @brief  Disable update event generation.
1488   * @rmtoll CR1          UDIS          LL_TIM_DisableUpdateEvent
1489   * @param  TIMx Timer instance
1490   * @retval None
1491   */
LL_TIM_DisableUpdateEvent(TIM_TypeDef * TIMx)1492 __STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
1493 {
1494   SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
1495 }
1496 
1497 /**
1498   * @brief  Indicates whether update event generation is enabled.
1499   * @rmtoll CR1          UDIS          LL_TIM_IsEnabledUpdateEvent
1500   * @param  TIMx Timer instance
1501   * @retval Inverted state of bit (0 or 1).
1502   */
LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef * TIMx)1503 __STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef *TIMx)
1504 {
1505   return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
1506 }
1507 
1508 /**
1509   * @brief  Set update event source
1510   * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
1511   *       generate an update interrupt or DMA request if enabled:
1512   *        - Counter overflow/underflow
1513   *        - Setting the UG bit
1514   *        - Update generation through the slave mode controller
1515   * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
1516   *       overflow/underflow generates an update interrupt or DMA request if enabled.
1517   * @rmtoll CR1          URS           LL_TIM_SetUpdateSource
1518   * @param  TIMx Timer instance
1519   * @param  UpdateSource This parameter can be one of the following values:
1520   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1521   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1522   * @retval None
1523   */
LL_TIM_SetUpdateSource(TIM_TypeDef * TIMx,uint32_t UpdateSource)1524 __STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
1525 {
1526   MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
1527 }
1528 
1529 /**
1530   * @brief  Get actual event update source
1531   * @rmtoll CR1          URS           LL_TIM_GetUpdateSource
1532   * @param  TIMx Timer instance
1533   * @retval Returned value can be one of the following values:
1534   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1535   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1536   */
LL_TIM_GetUpdateSource(const TIM_TypeDef * TIMx)1537 __STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(const TIM_TypeDef *TIMx)
1538 {
1539   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
1540 }
1541 
1542 /**
1543   * @brief  Set one pulse mode (one shot v.s. repetitive).
1544   * @rmtoll CR1          OPM           LL_TIM_SetOnePulseMode
1545   * @param  TIMx Timer instance
1546   * @param  OnePulseMode This parameter can be one of the following values:
1547   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1548   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1549   * @retval None
1550   */
LL_TIM_SetOnePulseMode(TIM_TypeDef * TIMx,uint32_t OnePulseMode)1551 __STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
1552 {
1553   MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
1554 }
1555 
1556 /**
1557   * @brief  Get actual one pulse mode.
1558   * @rmtoll CR1          OPM           LL_TIM_GetOnePulseMode
1559   * @param  TIMx Timer instance
1560   * @retval Returned value can be one of the following values:
1561   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1562   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1563   */
LL_TIM_GetOnePulseMode(const TIM_TypeDef * TIMx)1564 __STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(const TIM_TypeDef *TIMx)
1565 {
1566   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
1567 }
1568 
1569 /**
1570   * @brief  Set the timer counter counting mode.
1571   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1572   *       check whether or not the counter mode selection feature is supported
1573   *       by a timer instance.
1574   * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1575   *       requires a timer reset to avoid unexpected direction
1576   *       due to DIR bit readonly in center aligned mode.
1577   * @rmtoll CR1          DIR           LL_TIM_SetCounterMode\n
1578   *         CR1          CMS           LL_TIM_SetCounterMode
1579   * @param  TIMx Timer instance
1580   * @param  CounterMode This parameter can be one of the following values:
1581   *         @arg @ref LL_TIM_COUNTERMODE_UP
1582   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1583   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1584   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1585   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1586   * @retval None
1587   */
LL_TIM_SetCounterMode(TIM_TypeDef * TIMx,uint32_t CounterMode)1588 __STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
1589 {
1590   MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
1591 }
1592 
1593 /**
1594   * @brief  Get actual counter mode.
1595   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1596   *       check whether or not the counter mode selection feature is supported
1597   *       by a timer instance.
1598   * @rmtoll CR1          DIR           LL_TIM_GetCounterMode\n
1599   *         CR1          CMS           LL_TIM_GetCounterMode
1600   * @param  TIMx Timer instance
1601   * @retval Returned value can be one of the following values:
1602   *         @arg @ref LL_TIM_COUNTERMODE_UP
1603   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1604   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1605   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1606   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1607   */
LL_TIM_GetCounterMode(const TIM_TypeDef * TIMx)1608 __STATIC_INLINE uint32_t LL_TIM_GetCounterMode(const TIM_TypeDef *TIMx)
1609 {
1610   uint32_t counter_mode;
1611 
1612   counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CMS));
1613 
1614   if (counter_mode == 0U)
1615   {
1616     counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1617   }
1618 
1619   return counter_mode;
1620 }
1621 
1622 /**
1623   * @brief  Enable auto-reload (ARR) preload.
1624   * @rmtoll CR1          ARPE          LL_TIM_EnableARRPreload
1625   * @param  TIMx Timer instance
1626   * @retval None
1627   */
LL_TIM_EnableARRPreload(TIM_TypeDef * TIMx)1628 __STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
1629 {
1630   SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
1631 }
1632 
1633 /**
1634   * @brief  Disable auto-reload (ARR) preload.
1635   * @rmtoll CR1          ARPE          LL_TIM_DisableARRPreload
1636   * @param  TIMx Timer instance
1637   * @retval None
1638   */
LL_TIM_DisableARRPreload(TIM_TypeDef * TIMx)1639 __STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
1640 {
1641   CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
1642 }
1643 
1644 /**
1645   * @brief  Indicates whether auto-reload (ARR) preload is enabled.
1646   * @rmtoll CR1          ARPE          LL_TIM_IsEnabledARRPreload
1647   * @param  TIMx Timer instance
1648   * @retval State of bit (1 or 0).
1649   */
LL_TIM_IsEnabledARRPreload(const TIM_TypeDef * TIMx)1650 __STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(const TIM_TypeDef *TIMx)
1651 {
1652   return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
1653 }
1654 
1655 /**
1656   * @brief  Set the division ratio between the timer clock  and the sampling clock used by the dead-time generators
1657   *         (when supported) and the digital filters.
1658   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1659   *       whether or not the clock division feature is supported by the timer
1660   *       instance.
1661   * @rmtoll CR1          CKD           LL_TIM_SetClockDivision
1662   * @param  TIMx Timer instance
1663   * @param  ClockDivision This parameter can be one of the following values:
1664   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1665   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1666   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1667   * @retval None
1668   */
LL_TIM_SetClockDivision(TIM_TypeDef * TIMx,uint32_t ClockDivision)1669 __STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
1670 {
1671   MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
1672 }
1673 
1674 /**
1675   * @brief  Get the actual division ratio between the timer clock  and the sampling clock used by the dead-time
1676   *         generators (when supported) and the digital filters.
1677   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1678   *       whether or not the clock division feature is supported by the timer
1679   *       instance.
1680   * @rmtoll CR1          CKD           LL_TIM_GetClockDivision
1681   * @param  TIMx Timer instance
1682   * @retval Returned value can be one of the following values:
1683   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1684   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1685   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1686   */
LL_TIM_GetClockDivision(const TIM_TypeDef * TIMx)1687 __STATIC_INLINE uint32_t LL_TIM_GetClockDivision(const TIM_TypeDef *TIMx)
1688 {
1689   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
1690 }
1691 
1692 /**
1693   * @brief  Set the counter value.
1694   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1695   *       whether or not a timer instance supports a 32 bits counter.
1696   * @rmtoll CNT          CNT           LL_TIM_SetCounter
1697   * @param  TIMx Timer instance
1698   * @param  Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1699   * @retval None
1700   */
LL_TIM_SetCounter(TIM_TypeDef * TIMx,uint32_t Counter)1701 __STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
1702 {
1703   WRITE_REG(TIMx->CNT, Counter);
1704 }
1705 
1706 /**
1707   * @brief  Get the counter value.
1708   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1709   *       whether or not a timer instance supports a 32 bits counter.
1710   * @rmtoll CNT          CNT           LL_TIM_GetCounter
1711   * @param  TIMx Timer instance
1712   * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1713   */
LL_TIM_GetCounter(const TIM_TypeDef * TIMx)1714 __STATIC_INLINE uint32_t LL_TIM_GetCounter(const TIM_TypeDef *TIMx)
1715 {
1716   return (uint32_t)(READ_REG(TIMx->CNT));
1717 }
1718 
1719 /**
1720   * @brief  Get the current direction of the counter
1721   * @rmtoll CR1          DIR           LL_TIM_GetDirection
1722   * @param  TIMx Timer instance
1723   * @retval Returned value can be one of the following values:
1724   *         @arg @ref LL_TIM_COUNTERDIRECTION_UP
1725   *         @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
1726   */
LL_TIM_GetDirection(const TIM_TypeDef * TIMx)1727 __STATIC_INLINE uint32_t LL_TIM_GetDirection(const TIM_TypeDef *TIMx)
1728 {
1729   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1730 }
1731 
1732 /**
1733   * @brief  Set the prescaler value.
1734   * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
1735   * @note The prescaler can be changed on the fly as this control register is buffered. The new
1736   *       prescaler ratio is taken into account at the next update event.
1737   * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
1738   * @rmtoll PSC          PSC           LL_TIM_SetPrescaler
1739   * @param  TIMx Timer instance
1740   * @param  Prescaler between Min_Data=0 and Max_Data=65535
1741   * @retval None
1742   */
LL_TIM_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Prescaler)1743 __STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
1744 {
1745   WRITE_REG(TIMx->PSC, Prescaler);
1746 }
1747 
1748 /**
1749   * @brief  Get the prescaler value.
1750   * @rmtoll PSC          PSC           LL_TIM_GetPrescaler
1751   * @param  TIMx Timer instance
1752   * @retval  Prescaler value between Min_Data=0 and Max_Data=65535
1753   */
LL_TIM_GetPrescaler(const TIM_TypeDef * TIMx)1754 __STATIC_INLINE uint32_t LL_TIM_GetPrescaler(const TIM_TypeDef *TIMx)
1755 {
1756   return (uint32_t)(READ_REG(TIMx->PSC));
1757 }
1758 
1759 /**
1760   * @brief  Set the auto-reload value.
1761   * @note The counter is blocked while the auto-reload value is null.
1762   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1763   *       whether or not a timer instance supports a 32 bits counter.
1764   * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
1765   * @rmtoll ARR          ARR           LL_TIM_SetAutoReload
1766   * @param  TIMx Timer instance
1767   * @param  AutoReload between Min_Data=0 and Max_Data=65535
1768   * @retval None
1769   */
LL_TIM_SetAutoReload(TIM_TypeDef * TIMx,uint32_t AutoReload)1770 __STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
1771 {
1772   WRITE_REG(TIMx->ARR, AutoReload);
1773 }
1774 
1775 /**
1776   * @brief  Get the auto-reload value.
1777   * @rmtoll ARR          ARR           LL_TIM_GetAutoReload
1778   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1779   *       whether or not a timer instance supports a 32 bits counter.
1780   * @param  TIMx Timer instance
1781   * @retval Auto-reload value
1782   */
LL_TIM_GetAutoReload(const TIM_TypeDef * TIMx)1783 __STATIC_INLINE uint32_t LL_TIM_GetAutoReload(const TIM_TypeDef *TIMx)
1784 {
1785   return (uint32_t)(READ_REG(TIMx->ARR));
1786 }
1787 
1788 /**
1789   * @brief  Set the repetition counter value.
1790   * @note For advanced timer instances RepetitionCounter can be up to 65535.
1791   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1792   *       whether or not a timer instance supports a repetition counter.
1793   * @rmtoll RCR          REP           LL_TIM_SetRepetitionCounter
1794   * @param  TIMx Timer instance
1795   * @param  RepetitionCounter between Min_Data=0 and Max_Data=255 or 65535 for advanced timer.
1796   * @retval None
1797   */
LL_TIM_SetRepetitionCounter(TIM_TypeDef * TIMx,uint32_t RepetitionCounter)1798 __STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
1799 {
1800   WRITE_REG(TIMx->RCR, RepetitionCounter);
1801 }
1802 
1803 /**
1804   * @brief  Get the repetition counter value.
1805   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1806   *       whether or not a timer instance supports a repetition counter.
1807   * @rmtoll RCR          REP           LL_TIM_GetRepetitionCounter
1808   * @param  TIMx Timer instance
1809   * @retval Repetition counter value
1810   */
LL_TIM_GetRepetitionCounter(const TIM_TypeDef * TIMx)1811 __STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(const TIM_TypeDef *TIMx)
1812 {
1813   return (uint32_t)(READ_REG(TIMx->RCR));
1814 }
1815 
1816 /**
1817   * @brief  Force a continuous copy of the update interrupt flag (UIF) into the timer counter register (bit 31).
1818   * @note This allows both the counter value and a potential roll-over condition signalled by the UIFCPY flag to be read
1819   *       in an atomic way.
1820   * @rmtoll CR1          UIFREMAP      LL_TIM_EnableUIFRemap
1821   * @param  TIMx Timer instance
1822   * @retval None
1823   */
LL_TIM_EnableUIFRemap(TIM_TypeDef * TIMx)1824 __STATIC_INLINE void LL_TIM_EnableUIFRemap(TIM_TypeDef *TIMx)
1825 {
1826   SET_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1827 }
1828 
1829 /**
1830   * @brief  Disable update interrupt flag (UIF) remapping.
1831   * @rmtoll CR1          UIFREMAP      LL_TIM_DisableUIFRemap
1832   * @param  TIMx Timer instance
1833   * @retval None
1834   */
LL_TIM_DisableUIFRemap(TIM_TypeDef * TIMx)1835 __STATIC_INLINE void LL_TIM_DisableUIFRemap(TIM_TypeDef *TIMx)
1836 {
1837   CLEAR_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1838 }
1839 
1840 /**
1841   * @brief  Indicate whether update interrupt flag (UIF) copy is set.
1842   * @param  Counter Counter value
1843   * @retval State of bit (1 or 0).
1844   */
LL_TIM_IsActiveUIFCPY(const uint32_t Counter)1845 __STATIC_INLINE uint32_t LL_TIM_IsActiveUIFCPY(const uint32_t Counter)
1846 {
1847   return (((Counter & TIM_CNT_UIFCPY) == (TIM_CNT_UIFCPY)) ? 1UL : 0UL);
1848 }
1849 
1850 /**
1851   * @}
1852   */
1853 
1854 /** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
1855   * @{
1856   */
1857 /**
1858   * @brief  Enable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1859   * @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
1860   *       they are updated only when a commutation event (COM) occurs.
1861   * @note Only on channels that have a complementary output.
1862   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1863   *       whether or not a timer instance is able to generate a commutation event.
1864   * @rmtoll CR2          CCPC          LL_TIM_CC_EnablePreload
1865   * @param  TIMx Timer instance
1866   * @retval None
1867   */
LL_TIM_CC_EnablePreload(TIM_TypeDef * TIMx)1868 __STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
1869 {
1870   SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
1871 }
1872 
1873 /**
1874   * @brief  Disable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1875   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1876   *       whether or not a timer instance is able to generate a commutation event.
1877   * @rmtoll CR2          CCPC          LL_TIM_CC_DisablePreload
1878   * @param  TIMx Timer instance
1879   * @retval None
1880   */
LL_TIM_CC_DisablePreload(TIM_TypeDef * TIMx)1881 __STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
1882 {
1883   CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
1884 }
1885 
1886 /**
1887   * @brief  Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
1888   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1889   *       whether or not a timer instance is able to generate a commutation event.
1890   * @rmtoll CR2          CCUS          LL_TIM_CC_SetUpdate
1891   * @param  TIMx Timer instance
1892   * @param  CCUpdateSource This parameter can be one of the following values:
1893   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
1894   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
1895   * @retval None
1896   */
LL_TIM_CC_SetUpdate(TIM_TypeDef * TIMx,uint32_t CCUpdateSource)1897 __STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
1898 {
1899   MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
1900 }
1901 
1902 /**
1903   * @brief  Set the trigger of the capture/compare DMA request.
1904   * @rmtoll CR2          CCDS          LL_TIM_CC_SetDMAReqTrigger
1905   * @param  TIMx Timer instance
1906   * @param  DMAReqTrigger This parameter can be one of the following values:
1907   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1908   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1909   * @retval None
1910   */
LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef * TIMx,uint32_t DMAReqTrigger)1911 __STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
1912 {
1913   MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
1914 }
1915 
1916 /**
1917   * @brief  Get actual trigger of the capture/compare DMA request.
1918   * @rmtoll CR2          CCDS          LL_TIM_CC_GetDMAReqTrigger
1919   * @param  TIMx Timer instance
1920   * @retval Returned value can be one of the following values:
1921   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1922   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1923   */
LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef * TIMx)1924 __STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef *TIMx)
1925 {
1926   return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
1927 }
1928 
1929 /**
1930   * @brief  Set the lock level to freeze the
1931   *         configuration of several capture/compare parameters.
1932   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
1933   *       the lock mechanism is supported by a timer instance.
1934   * @rmtoll BDTR         LOCK          LL_TIM_CC_SetLockLevel
1935   * @param  TIMx Timer instance
1936   * @param  LockLevel This parameter can be one of the following values:
1937   *         @arg @ref LL_TIM_LOCKLEVEL_OFF
1938   *         @arg @ref LL_TIM_LOCKLEVEL_1
1939   *         @arg @ref LL_TIM_LOCKLEVEL_2
1940   *         @arg @ref LL_TIM_LOCKLEVEL_3
1941   * @retval None
1942   */
LL_TIM_CC_SetLockLevel(TIM_TypeDef * TIMx,uint32_t LockLevel)1943 __STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
1944 {
1945   MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
1946 }
1947 
1948 /**
1949   * @brief  Enable capture/compare channels.
1950   * @rmtoll CCER         CC1E          LL_TIM_CC_EnableChannel\n
1951   *         CCER         CC1NE         LL_TIM_CC_EnableChannel\n
1952   *         CCER         CC2E          LL_TIM_CC_EnableChannel\n
1953   *         CCER         CC2NE         LL_TIM_CC_EnableChannel\n
1954   *         CCER         CC3E          LL_TIM_CC_EnableChannel\n
1955   *         CCER         CC3NE         LL_TIM_CC_EnableChannel\n
1956   *         CCER         CC4E          LL_TIM_CC_EnableChannel\n
1957   *         CCER         CC5E          LL_TIM_CC_EnableChannel\n
1958   *         CCER         CC6E          LL_TIM_CC_EnableChannel
1959   * @param  TIMx Timer instance
1960   * @param  Channels This parameter can be a combination of the following values:
1961   *         @arg @ref LL_TIM_CHANNEL_CH1
1962   *         @arg @ref LL_TIM_CHANNEL_CH1N
1963   *         @arg @ref LL_TIM_CHANNEL_CH2
1964   *         @arg @ref LL_TIM_CHANNEL_CH2N
1965   *         @arg @ref LL_TIM_CHANNEL_CH3
1966   *         @arg @ref LL_TIM_CHANNEL_CH3N
1967   *         @arg @ref LL_TIM_CHANNEL_CH4
1968   *         @arg @ref LL_TIM_CHANNEL_CH5
1969   *         @arg @ref LL_TIM_CHANNEL_CH6
1970   * @retval None
1971   */
LL_TIM_CC_EnableChannel(TIM_TypeDef * TIMx,uint32_t Channels)1972 __STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1973 {
1974   SET_BIT(TIMx->CCER, Channels);
1975 }
1976 
1977 /**
1978   * @brief  Disable capture/compare channels.
1979   * @rmtoll CCER         CC1E          LL_TIM_CC_DisableChannel\n
1980   *         CCER         CC1NE         LL_TIM_CC_DisableChannel\n
1981   *         CCER         CC2E          LL_TIM_CC_DisableChannel\n
1982   *         CCER         CC2NE         LL_TIM_CC_DisableChannel\n
1983   *         CCER         CC3E          LL_TIM_CC_DisableChannel\n
1984   *         CCER         CC3NE         LL_TIM_CC_DisableChannel\n
1985   *         CCER         CC4E          LL_TIM_CC_DisableChannel\n
1986   *         CCER         CC5E          LL_TIM_CC_DisableChannel\n
1987   *         CCER         CC6E          LL_TIM_CC_DisableChannel
1988   * @param  TIMx Timer instance
1989   * @param  Channels This parameter can be a combination of the following values:
1990   *         @arg @ref LL_TIM_CHANNEL_CH1
1991   *         @arg @ref LL_TIM_CHANNEL_CH1N
1992   *         @arg @ref LL_TIM_CHANNEL_CH2
1993   *         @arg @ref LL_TIM_CHANNEL_CH2N
1994   *         @arg @ref LL_TIM_CHANNEL_CH3
1995   *         @arg @ref LL_TIM_CHANNEL_CH3N
1996   *         @arg @ref LL_TIM_CHANNEL_CH4
1997   *         @arg @ref LL_TIM_CHANNEL_CH5
1998   *         @arg @ref LL_TIM_CHANNEL_CH6
1999   * @retval None
2000   */
LL_TIM_CC_DisableChannel(TIM_TypeDef * TIMx,uint32_t Channels)2001 __STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
2002 {
2003   CLEAR_BIT(TIMx->CCER, Channels);
2004 }
2005 
2006 /**
2007   * @brief  Indicate whether channel(s) is(are) enabled.
2008   * @rmtoll CCER         CC1E          LL_TIM_CC_IsEnabledChannel\n
2009   *         CCER         CC1NE         LL_TIM_CC_IsEnabledChannel\n
2010   *         CCER         CC2E          LL_TIM_CC_IsEnabledChannel\n
2011   *         CCER         CC2NE         LL_TIM_CC_IsEnabledChannel\n
2012   *         CCER         CC3E          LL_TIM_CC_IsEnabledChannel\n
2013   *         CCER         CC3NE         LL_TIM_CC_IsEnabledChannel\n
2014   *         CCER         CC4E          LL_TIM_CC_IsEnabledChannel\n
2015   *         CCER         CC5E          LL_TIM_CC_IsEnabledChannel\n
2016   *         CCER         CC6E          LL_TIM_CC_IsEnabledChannel
2017   * @param  TIMx Timer instance
2018   * @param  Channels This parameter can be a combination of the following values:
2019   *         @arg @ref LL_TIM_CHANNEL_CH1
2020   *         @arg @ref LL_TIM_CHANNEL_CH1N
2021   *         @arg @ref LL_TIM_CHANNEL_CH2
2022   *         @arg @ref LL_TIM_CHANNEL_CH2N
2023   *         @arg @ref LL_TIM_CHANNEL_CH3
2024   *         @arg @ref LL_TIM_CHANNEL_CH3N
2025   *         @arg @ref LL_TIM_CHANNEL_CH4
2026   *         @arg @ref LL_TIM_CHANNEL_CH5
2027   *         @arg @ref LL_TIM_CHANNEL_CH6
2028   * @retval State of bit (1 or 0).
2029   */
LL_TIM_CC_IsEnabledChannel(TIM_TypeDef * TIMx,uint32_t Channels)2030 __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(TIM_TypeDef *TIMx, uint32_t Channels)
2031 {
2032   return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
2033 }
2034 
2035 /**
2036   * @}
2037   */
2038 
2039 /** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
2040   * @{
2041   */
2042 /**
2043   * @brief  Configure an output channel.
2044   * @rmtoll CCMR1        CC1S          LL_TIM_OC_ConfigOutput\n
2045   *         CCMR1        CC2S          LL_TIM_OC_ConfigOutput\n
2046   *         CCMR2        CC3S          LL_TIM_OC_ConfigOutput\n
2047   *         CCMR2        CC4S          LL_TIM_OC_ConfigOutput\n
2048   *         CCMR3        CC5S          LL_TIM_OC_ConfigOutput\n
2049   *         CCMR3        CC6S          LL_TIM_OC_ConfigOutput\n
2050   *         CCER         CC1P          LL_TIM_OC_ConfigOutput\n
2051   *         CCER         CC2P          LL_TIM_OC_ConfigOutput\n
2052   *         CCER         CC3P          LL_TIM_OC_ConfigOutput\n
2053   *         CCER         CC4P          LL_TIM_OC_ConfigOutput\n
2054   *         CCER         CC5P          LL_TIM_OC_ConfigOutput\n
2055   *         CCER         CC6P          LL_TIM_OC_ConfigOutput\n
2056   *         CR2          OIS1          LL_TIM_OC_ConfigOutput\n
2057   *         CR2          OIS2          LL_TIM_OC_ConfigOutput\n
2058   *         CR2          OIS3          LL_TIM_OC_ConfigOutput\n
2059   *         CR2          OIS4          LL_TIM_OC_ConfigOutput\n
2060   *         CR2          OIS5          LL_TIM_OC_ConfigOutput\n
2061   *         CR2          OIS6          LL_TIM_OC_ConfigOutput
2062   * @param  TIMx Timer instance
2063   * @param  Channel This parameter can be one of the following values:
2064   *         @arg @ref LL_TIM_CHANNEL_CH1
2065   *         @arg @ref LL_TIM_CHANNEL_CH2
2066   *         @arg @ref LL_TIM_CHANNEL_CH3
2067   *         @arg @ref LL_TIM_CHANNEL_CH4
2068   *         @arg @ref LL_TIM_CHANNEL_CH5
2069   *         @arg @ref LL_TIM_CHANNEL_CH6
2070   * @param  Configuration This parameter must be a combination of all the following values:
2071   *         @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
2072   *         @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
2073   * @retval None
2074   */
LL_TIM_OC_ConfigOutput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2075 __STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2076 {
2077   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2078   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2079   CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
2080   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
2081              (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
2082   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
2083              (Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
2084 }
2085 
2086 /**
2087   * @brief  Define the behavior of the output reference signal OCxREF from which
2088   *         OCx and OCxN (when relevant) are derived.
2089   * @rmtoll CCMR1        OC1M          LL_TIM_OC_SetMode\n
2090   *         CCMR1        OC2M          LL_TIM_OC_SetMode\n
2091   *         CCMR2        OC3M          LL_TIM_OC_SetMode\n
2092   *         CCMR2        OC4M          LL_TIM_OC_SetMode\n
2093   *         CCMR3        OC5M          LL_TIM_OC_SetMode\n
2094   *         CCMR3        OC6M          LL_TIM_OC_SetMode
2095   * @param  TIMx Timer instance
2096   * @param  Channel This parameter can be one of the following values:
2097   *         @arg @ref LL_TIM_CHANNEL_CH1
2098   *         @arg @ref LL_TIM_CHANNEL_CH2
2099   *         @arg @ref LL_TIM_CHANNEL_CH3
2100   *         @arg @ref LL_TIM_CHANNEL_CH4
2101   *         @arg @ref LL_TIM_CHANNEL_CH5
2102   *         @arg @ref LL_TIM_CHANNEL_CH6
2103   * @param  Mode This parameter can be one of the following values:
2104   *         @arg @ref LL_TIM_OCMODE_FROZEN
2105   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2106   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2107   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2108   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2109   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2110   *         @arg @ref LL_TIM_OCMODE_PWM1
2111   *         @arg @ref LL_TIM_OCMODE_PWM2
2112   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2113   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2114   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2115   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2116   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
2117   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
2118   * @retval None
2119   */
LL_TIM_OC_SetMode(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Mode)2120 __STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
2121 {
2122   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2123   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2124   MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]);
2125 }
2126 
2127 /**
2128   * @brief  Get the output compare mode of an output channel.
2129   * @rmtoll CCMR1        OC1M          LL_TIM_OC_GetMode\n
2130   *         CCMR1        OC2M          LL_TIM_OC_GetMode\n
2131   *         CCMR2        OC3M          LL_TIM_OC_GetMode\n
2132   *         CCMR2        OC4M          LL_TIM_OC_GetMode\n
2133   *         CCMR3        OC5M          LL_TIM_OC_GetMode\n
2134   *         CCMR3        OC6M          LL_TIM_OC_GetMode
2135   * @param  TIMx Timer instance
2136   * @param  Channel This parameter can be one of the following values:
2137   *         @arg @ref LL_TIM_CHANNEL_CH1
2138   *         @arg @ref LL_TIM_CHANNEL_CH2
2139   *         @arg @ref LL_TIM_CHANNEL_CH3
2140   *         @arg @ref LL_TIM_CHANNEL_CH4
2141   *         @arg @ref LL_TIM_CHANNEL_CH5
2142   *         @arg @ref LL_TIM_CHANNEL_CH6
2143   * @retval Returned value can be one of the following values:
2144   *         @arg @ref LL_TIM_OCMODE_FROZEN
2145   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2146   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2147   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2148   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2149   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2150   *         @arg @ref LL_TIM_OCMODE_PWM1
2151   *         @arg @ref LL_TIM_OCMODE_PWM2
2152   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2153   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2154   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2155   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2156   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
2157   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
2158   */
LL_TIM_OC_GetMode(const TIM_TypeDef * TIMx,uint32_t Channel)2159 __STATIC_INLINE uint32_t LL_TIM_OC_GetMode(const TIM_TypeDef *TIMx, uint32_t Channel)
2160 {
2161   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2162   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2163   return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
2164 }
2165 
2166 /**
2167   * @brief  Set the polarity of an output channel.
2168   * @rmtoll CCER         CC1P          LL_TIM_OC_SetPolarity\n
2169   *         CCER         CC1NP         LL_TIM_OC_SetPolarity\n
2170   *         CCER         CC2P          LL_TIM_OC_SetPolarity\n
2171   *         CCER         CC2NP         LL_TIM_OC_SetPolarity\n
2172   *         CCER         CC3P          LL_TIM_OC_SetPolarity\n
2173   *         CCER         CC3NP         LL_TIM_OC_SetPolarity\n
2174   *         CCER         CC4P          LL_TIM_OC_SetPolarity\n
2175   *         CCER         CC5P          LL_TIM_OC_SetPolarity\n
2176   *         CCER         CC6P          LL_TIM_OC_SetPolarity
2177   * @param  TIMx Timer instance
2178   * @param  Channel This parameter can be one of the following values:
2179   *         @arg @ref LL_TIM_CHANNEL_CH1
2180   *         @arg @ref LL_TIM_CHANNEL_CH1N
2181   *         @arg @ref LL_TIM_CHANNEL_CH2
2182   *         @arg @ref LL_TIM_CHANNEL_CH2N
2183   *         @arg @ref LL_TIM_CHANNEL_CH3
2184   *         @arg @ref LL_TIM_CHANNEL_CH3N
2185   *         @arg @ref LL_TIM_CHANNEL_CH4
2186   *         @arg @ref LL_TIM_CHANNEL_CH5
2187   *         @arg @ref LL_TIM_CHANNEL_CH6
2188   * @param  Polarity This parameter can be one of the following values:
2189   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2190   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2191   * @retval None
2192   */
LL_TIM_OC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Polarity)2193 __STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
2194 {
2195   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2196   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),  Polarity << SHIFT_TAB_CCxP[iChannel]);
2197 }
2198 
2199 /**
2200   * @brief  Get the polarity of an output channel.
2201   * @rmtoll CCER         CC1P          LL_TIM_OC_GetPolarity\n
2202   *         CCER         CC1NP         LL_TIM_OC_GetPolarity\n
2203   *         CCER         CC2P          LL_TIM_OC_GetPolarity\n
2204   *         CCER         CC2NP         LL_TIM_OC_GetPolarity\n
2205   *         CCER         CC3P          LL_TIM_OC_GetPolarity\n
2206   *         CCER         CC3NP         LL_TIM_OC_GetPolarity\n
2207   *         CCER         CC4P          LL_TIM_OC_GetPolarity\n
2208   *         CCER         CC5P          LL_TIM_OC_GetPolarity\n
2209   *         CCER         CC6P          LL_TIM_OC_GetPolarity
2210   * @param  TIMx Timer instance
2211   * @param  Channel This parameter can be one of the following values:
2212   *         @arg @ref LL_TIM_CHANNEL_CH1
2213   *         @arg @ref LL_TIM_CHANNEL_CH1N
2214   *         @arg @ref LL_TIM_CHANNEL_CH2
2215   *         @arg @ref LL_TIM_CHANNEL_CH2N
2216   *         @arg @ref LL_TIM_CHANNEL_CH3
2217   *         @arg @ref LL_TIM_CHANNEL_CH3N
2218   *         @arg @ref LL_TIM_CHANNEL_CH4
2219   *         @arg @ref LL_TIM_CHANNEL_CH5
2220   *         @arg @ref LL_TIM_CHANNEL_CH6
2221   * @retval Returned value can be one of the following values:
2222   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2223   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2224   */
LL_TIM_OC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)2225 __STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
2226 {
2227   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2228   return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
2229 }
2230 
2231 /**
2232   * @brief  Set the IDLE state of an output channel
2233   * @note This function is significant only for the timer instances
2234   *       supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx)
2235   *       can be used to check whether or not a timer instance provides
2236   *       a break input.
2237   * @rmtoll CR2         OIS1          LL_TIM_OC_SetIdleState\n
2238   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2239   *         CR2         OIS2          LL_TIM_OC_SetIdleState\n
2240   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2241   *         CR2         OIS3          LL_TIM_OC_SetIdleState\n
2242   *         CR2         OIS3N         LL_TIM_OC_SetIdleState\n
2243   *         CR2         OIS4          LL_TIM_OC_SetIdleState\n
2244   *         CR2         OIS5          LL_TIM_OC_SetIdleState\n
2245   *         CR2         OIS6          LL_TIM_OC_SetIdleState
2246   * @param  TIMx Timer instance
2247   * @param  Channel This parameter can be one of the following values:
2248   *         @arg @ref LL_TIM_CHANNEL_CH1
2249   *         @arg @ref LL_TIM_CHANNEL_CH1N
2250   *         @arg @ref LL_TIM_CHANNEL_CH2
2251   *         @arg @ref LL_TIM_CHANNEL_CH2N
2252   *         @arg @ref LL_TIM_CHANNEL_CH3
2253   *         @arg @ref LL_TIM_CHANNEL_CH3N
2254   *         @arg @ref LL_TIM_CHANNEL_CH4
2255   *         @arg @ref LL_TIM_CHANNEL_CH5
2256   *         @arg @ref LL_TIM_CHANNEL_CH6
2257   * @param  IdleState This parameter can be one of the following values:
2258   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2259   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2260   * @retval None
2261   */
LL_TIM_OC_SetIdleState(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t IdleState)2262 __STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
2263 {
2264   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2265   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),  IdleState << SHIFT_TAB_OISx[iChannel]);
2266 }
2267 
2268 /**
2269   * @brief  Get the IDLE state of an output channel
2270   * @rmtoll CR2         OIS1          LL_TIM_OC_GetIdleState\n
2271   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2272   *         CR2         OIS2          LL_TIM_OC_GetIdleState\n
2273   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2274   *         CR2         OIS3          LL_TIM_OC_GetIdleState\n
2275   *         CR2         OIS3N         LL_TIM_OC_GetIdleState\n
2276   *         CR2         OIS4          LL_TIM_OC_GetIdleState\n
2277   *         CR2         OIS5          LL_TIM_OC_GetIdleState\n
2278   *         CR2         OIS6          LL_TIM_OC_GetIdleState
2279   * @param  TIMx Timer instance
2280   * @param  Channel This parameter can be one of the following values:
2281   *         @arg @ref LL_TIM_CHANNEL_CH1
2282   *         @arg @ref LL_TIM_CHANNEL_CH1N
2283   *         @arg @ref LL_TIM_CHANNEL_CH2
2284   *         @arg @ref LL_TIM_CHANNEL_CH2N
2285   *         @arg @ref LL_TIM_CHANNEL_CH3
2286   *         @arg @ref LL_TIM_CHANNEL_CH3N
2287   *         @arg @ref LL_TIM_CHANNEL_CH4
2288   *         @arg @ref LL_TIM_CHANNEL_CH5
2289   *         @arg @ref LL_TIM_CHANNEL_CH6
2290   * @retval Returned value can be one of the following values:
2291   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2292   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2293   */
LL_TIM_OC_GetIdleState(const TIM_TypeDef * TIMx,uint32_t Channel)2294 __STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(const TIM_TypeDef *TIMx, uint32_t Channel)
2295 {
2296   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2297   return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
2298 }
2299 
2300 /**
2301   * @brief  Enable fast mode for the output channel.
2302   * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
2303   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_EnableFast\n
2304   *         CCMR1        OC2FE          LL_TIM_OC_EnableFast\n
2305   *         CCMR2        OC3FE          LL_TIM_OC_EnableFast\n
2306   *         CCMR2        OC4FE          LL_TIM_OC_EnableFast\n
2307   *         CCMR3        OC5FE          LL_TIM_OC_EnableFast\n
2308   *         CCMR3        OC6FE          LL_TIM_OC_EnableFast
2309   * @param  TIMx Timer instance
2310   * @param  Channel This parameter can be one of the following values:
2311   *         @arg @ref LL_TIM_CHANNEL_CH1
2312   *         @arg @ref LL_TIM_CHANNEL_CH2
2313   *         @arg @ref LL_TIM_CHANNEL_CH3
2314   *         @arg @ref LL_TIM_CHANNEL_CH4
2315   *         @arg @ref LL_TIM_CHANNEL_CH5
2316   *         @arg @ref LL_TIM_CHANNEL_CH6
2317   * @retval None
2318   */
LL_TIM_OC_EnableFast(TIM_TypeDef * TIMx,uint32_t Channel)2319 __STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2320 {
2321   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2322   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2323   SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2324 
2325 }
2326 
2327 /**
2328   * @brief  Disable fast mode for the output channel.
2329   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_DisableFast\n
2330   *         CCMR1        OC2FE          LL_TIM_OC_DisableFast\n
2331   *         CCMR2        OC3FE          LL_TIM_OC_DisableFast\n
2332   *         CCMR2        OC4FE          LL_TIM_OC_DisableFast\n
2333   *         CCMR3        OC5FE          LL_TIM_OC_DisableFast\n
2334   *         CCMR3        OC6FE          LL_TIM_OC_DisableFast
2335   * @param  TIMx Timer instance
2336   * @param  Channel This parameter can be one of the following values:
2337   *         @arg @ref LL_TIM_CHANNEL_CH1
2338   *         @arg @ref LL_TIM_CHANNEL_CH2
2339   *         @arg @ref LL_TIM_CHANNEL_CH3
2340   *         @arg @ref LL_TIM_CHANNEL_CH4
2341   *         @arg @ref LL_TIM_CHANNEL_CH5
2342   *         @arg @ref LL_TIM_CHANNEL_CH6
2343   * @retval None
2344   */
LL_TIM_OC_DisableFast(TIM_TypeDef * TIMx,uint32_t Channel)2345 __STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2346 {
2347   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2348   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2349   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2350 
2351 }
2352 
2353 /**
2354   * @brief  Indicates whether fast mode is enabled for the output channel.
2355   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_IsEnabledFast\n
2356   *         CCMR1        OC2FE          LL_TIM_OC_IsEnabledFast\n
2357   *         CCMR2        OC3FE          LL_TIM_OC_IsEnabledFast\n
2358   *         CCMR2        OC4FE          LL_TIM_OC_IsEnabledFast\n
2359   *         CCMR3        OC5FE          LL_TIM_OC_IsEnabledFast\n
2360   *         CCMR3        OC6FE          LL_TIM_OC_IsEnabledFast
2361   * @param  TIMx Timer instance
2362   * @param  Channel This parameter can be one of the following values:
2363   *         @arg @ref LL_TIM_CHANNEL_CH1
2364   *         @arg @ref LL_TIM_CHANNEL_CH2
2365   *         @arg @ref LL_TIM_CHANNEL_CH3
2366   *         @arg @ref LL_TIM_CHANNEL_CH4
2367   *         @arg @ref LL_TIM_CHANNEL_CH5
2368   *         @arg @ref LL_TIM_CHANNEL_CH6
2369   * @retval State of bit (1 or 0).
2370   */
LL_TIM_OC_IsEnabledFast(TIM_TypeDef * TIMx,uint32_t Channel)2371 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(TIM_TypeDef *TIMx, uint32_t Channel)
2372 {
2373   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2374   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2375   uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
2376   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2377 }
2378 
2379 /**
2380   * @brief  Enable compare register (TIMx_CCRx) preload for the output channel.
2381   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_EnablePreload\n
2382   *         CCMR1        OC2PE          LL_TIM_OC_EnablePreload\n
2383   *         CCMR2        OC3PE          LL_TIM_OC_EnablePreload\n
2384   *         CCMR2        OC4PE          LL_TIM_OC_EnablePreload\n
2385   *         CCMR3        OC5PE          LL_TIM_OC_EnablePreload\n
2386   *         CCMR3        OC6PE          LL_TIM_OC_EnablePreload
2387   * @param  TIMx Timer instance
2388   * @param  Channel This parameter can be one of the following values:
2389   *         @arg @ref LL_TIM_CHANNEL_CH1
2390   *         @arg @ref LL_TIM_CHANNEL_CH2
2391   *         @arg @ref LL_TIM_CHANNEL_CH3
2392   *         @arg @ref LL_TIM_CHANNEL_CH4
2393   *         @arg @ref LL_TIM_CHANNEL_CH5
2394   *         @arg @ref LL_TIM_CHANNEL_CH6
2395   * @retval None
2396   */
LL_TIM_OC_EnablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2397 __STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2398 {
2399   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2400   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2401   SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2402 }
2403 
2404 /**
2405   * @brief  Disable compare register (TIMx_CCRx) preload for the output channel.
2406   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_DisablePreload\n
2407   *         CCMR1        OC2PE          LL_TIM_OC_DisablePreload\n
2408   *         CCMR2        OC3PE          LL_TIM_OC_DisablePreload\n
2409   *         CCMR2        OC4PE          LL_TIM_OC_DisablePreload\n
2410   *         CCMR3        OC5PE          LL_TIM_OC_DisablePreload\n
2411   *         CCMR3        OC6PE          LL_TIM_OC_DisablePreload
2412   * @param  TIMx Timer instance
2413   * @param  Channel This parameter can be one of the following values:
2414   *         @arg @ref LL_TIM_CHANNEL_CH1
2415   *         @arg @ref LL_TIM_CHANNEL_CH2
2416   *         @arg @ref LL_TIM_CHANNEL_CH3
2417   *         @arg @ref LL_TIM_CHANNEL_CH4
2418   *         @arg @ref LL_TIM_CHANNEL_CH5
2419   *         @arg @ref LL_TIM_CHANNEL_CH6
2420   * @retval None
2421   */
LL_TIM_OC_DisablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2422 __STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2423 {
2424   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2425   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2426   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2427 }
2428 
2429 /**
2430   * @brief  Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
2431   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_IsEnabledPreload\n
2432   *         CCMR1        OC2PE          LL_TIM_OC_IsEnabledPreload\n
2433   *         CCMR2        OC3PE          LL_TIM_OC_IsEnabledPreload\n
2434   *         CCMR2        OC4PE          LL_TIM_OC_IsEnabledPreload\n
2435   *         CCMR3        OC5PE          LL_TIM_OC_IsEnabledPreload\n
2436   *         CCMR3        OC6PE          LL_TIM_OC_IsEnabledPreload
2437   * @param  TIMx Timer instance
2438   * @param  Channel This parameter can be one of the following values:
2439   *         @arg @ref LL_TIM_CHANNEL_CH1
2440   *         @arg @ref LL_TIM_CHANNEL_CH2
2441   *         @arg @ref LL_TIM_CHANNEL_CH3
2442   *         @arg @ref LL_TIM_CHANNEL_CH4
2443   *         @arg @ref LL_TIM_CHANNEL_CH5
2444   *         @arg @ref LL_TIM_CHANNEL_CH6
2445   * @retval State of bit (1 or 0).
2446   */
LL_TIM_OC_IsEnabledPreload(TIM_TypeDef * TIMx,uint32_t Channel)2447 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(TIM_TypeDef *TIMx, uint32_t Channel)
2448 {
2449   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2450   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2451   uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
2452   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2453 }
2454 
2455 /**
2456   * @brief  Enable clearing the output channel on an external event.
2457   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2458   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2459   *       or not a timer instance can clear the OCxREF signal on an external event.
2460   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_EnableClear\n
2461   *         CCMR1        OC2CE          LL_TIM_OC_EnableClear\n
2462   *         CCMR2        OC3CE          LL_TIM_OC_EnableClear\n
2463   *         CCMR2        OC4CE          LL_TIM_OC_EnableClear\n
2464   *         CCMR3        OC5CE          LL_TIM_OC_EnableClear\n
2465   *         CCMR3        OC6CE          LL_TIM_OC_EnableClear
2466   * @param  TIMx Timer instance
2467   * @param  Channel This parameter can be one of the following values:
2468   *         @arg @ref LL_TIM_CHANNEL_CH1
2469   *         @arg @ref LL_TIM_CHANNEL_CH2
2470   *         @arg @ref LL_TIM_CHANNEL_CH3
2471   *         @arg @ref LL_TIM_CHANNEL_CH4
2472   *         @arg @ref LL_TIM_CHANNEL_CH5
2473   *         @arg @ref LL_TIM_CHANNEL_CH6
2474   * @retval None
2475   */
LL_TIM_OC_EnableClear(TIM_TypeDef * TIMx,uint32_t Channel)2476 __STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2477 {
2478   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2479   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2480   SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2481 }
2482 
2483 /**
2484   * @brief  Disable clearing the output channel on an external event.
2485   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2486   *       or not a timer instance can clear the OCxREF signal on an external event.
2487   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_DisableClear\n
2488   *         CCMR1        OC2CE          LL_TIM_OC_DisableClear\n
2489   *         CCMR2        OC3CE          LL_TIM_OC_DisableClear\n
2490   *         CCMR2        OC4CE          LL_TIM_OC_DisableClear\n
2491   *         CCMR3        OC5CE          LL_TIM_OC_DisableClear\n
2492   *         CCMR3        OC6CE          LL_TIM_OC_DisableClear
2493   * @param  TIMx Timer instance
2494   * @param  Channel This parameter can be one of the following values:
2495   *         @arg @ref LL_TIM_CHANNEL_CH1
2496   *         @arg @ref LL_TIM_CHANNEL_CH2
2497   *         @arg @ref LL_TIM_CHANNEL_CH3
2498   *         @arg @ref LL_TIM_CHANNEL_CH4
2499   *         @arg @ref LL_TIM_CHANNEL_CH5
2500   *         @arg @ref LL_TIM_CHANNEL_CH6
2501   * @retval None
2502   */
LL_TIM_OC_DisableClear(TIM_TypeDef * TIMx,uint32_t Channel)2503 __STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2504 {
2505   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2506   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2507   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2508 }
2509 
2510 /**
2511   * @brief  Indicates clearing the output channel on an external event is enabled for the output channel.
2512   * @note This function enables clearing the output channel on an external event.
2513   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2514   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2515   *       or not a timer instance can clear the OCxREF signal on an external event.
2516   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_IsEnabledClear\n
2517   *         CCMR1        OC2CE          LL_TIM_OC_IsEnabledClear\n
2518   *         CCMR2        OC3CE          LL_TIM_OC_IsEnabledClear\n
2519   *         CCMR2        OC4CE          LL_TIM_OC_IsEnabledClear\n
2520   *         CCMR3        OC5CE          LL_TIM_OC_IsEnabledClear\n
2521   *         CCMR3        OC6CE          LL_TIM_OC_IsEnabledClear
2522   * @param  TIMx Timer instance
2523   * @param  Channel This parameter can be one of the following values:
2524   *         @arg @ref LL_TIM_CHANNEL_CH1
2525   *         @arg @ref LL_TIM_CHANNEL_CH2
2526   *         @arg @ref LL_TIM_CHANNEL_CH3
2527   *         @arg @ref LL_TIM_CHANNEL_CH4
2528   *         @arg @ref LL_TIM_CHANNEL_CH5
2529   *         @arg @ref LL_TIM_CHANNEL_CH6
2530   * @retval State of bit (1 or 0).
2531   */
LL_TIM_OC_IsEnabledClear(TIM_TypeDef * TIMx,uint32_t Channel)2532 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(TIM_TypeDef *TIMx, uint32_t Channel)
2533 {
2534   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2535   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2536   uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
2537   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2538 }
2539 
2540 /**
2541   * @brief  Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of
2542   *         the Ocx and OCxN signals).
2543   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2544   *       dead-time insertion feature is supported by a timer instance.
2545   * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
2546   * @rmtoll BDTR         DTG           LL_TIM_OC_SetDeadTime
2547   * @param  TIMx Timer instance
2548   * @param  DeadTime between Min_Data=0 and Max_Data=255
2549   * @retval None
2550   */
LL_TIM_OC_SetDeadTime(TIM_TypeDef * TIMx,uint32_t DeadTime)2551 __STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
2552 {
2553   MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
2554 }
2555 
2556 /**
2557   * @brief  Set compare value for output channel 1 (TIMx_CCR1).
2558   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2559   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2560   *       whether or not a timer instance supports a 32 bits counter.
2561   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2562   *       output channel 1 is supported by a timer instance.
2563   * @rmtoll CCR1         CCR1          LL_TIM_OC_SetCompareCH1
2564   * @param  TIMx Timer instance
2565   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2566   * @retval None
2567   */
LL_TIM_OC_SetCompareCH1(TIM_TypeDef * TIMx,uint32_t CompareValue)2568 __STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
2569 {
2570   WRITE_REG(TIMx->CCR1, CompareValue);
2571 }
2572 
2573 /**
2574   * @brief  Set compare value for output channel 2 (TIMx_CCR2).
2575   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2576   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2577   *       whether or not a timer instance supports a 32 bits counter.
2578   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2579   *       output channel 2 is supported by a timer instance.
2580   * @rmtoll CCR2         CCR2          LL_TIM_OC_SetCompareCH2
2581   * @param  TIMx Timer instance
2582   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2583   * @retval None
2584   */
LL_TIM_OC_SetCompareCH2(TIM_TypeDef * TIMx,uint32_t CompareValue)2585 __STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
2586 {
2587   WRITE_REG(TIMx->CCR2, CompareValue);
2588 }
2589 
2590 /**
2591   * @brief  Set compare value for output channel 3 (TIMx_CCR3).
2592   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2593   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2594   *       whether or not a timer instance supports a 32 bits counter.
2595   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2596   *       output channel is supported by a timer instance.
2597   * @rmtoll CCR3         CCR3          LL_TIM_OC_SetCompareCH3
2598   * @param  TIMx Timer instance
2599   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2600   * @retval None
2601   */
LL_TIM_OC_SetCompareCH3(TIM_TypeDef * TIMx,uint32_t CompareValue)2602 __STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
2603 {
2604   WRITE_REG(TIMx->CCR3, CompareValue);
2605 }
2606 
2607 /**
2608   * @brief  Set compare value for output channel 4 (TIMx_CCR4).
2609   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2610   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2611   *       whether or not a timer instance supports a 32 bits counter.
2612   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2613   *       output channel 4 is supported by a timer instance.
2614   * @rmtoll CCR4         CCR4          LL_TIM_OC_SetCompareCH4
2615   * @param  TIMx Timer instance
2616   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2617   * @retval None
2618   */
LL_TIM_OC_SetCompareCH4(TIM_TypeDef * TIMx,uint32_t CompareValue)2619 __STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
2620 {
2621   WRITE_REG(TIMx->CCR4, CompareValue);
2622 }
2623 
2624 /**
2625   * @brief  Set compare value for output channel 5 (TIMx_CCR5).
2626   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2627   *       output channel 5 is supported by a timer instance.
2628   * @rmtoll CCR5         CCR5          LL_TIM_OC_SetCompareCH5
2629   * @param  TIMx Timer instance
2630   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2631   * @retval None
2632   */
LL_TIM_OC_SetCompareCH5(TIM_TypeDef * TIMx,uint32_t CompareValue)2633 __STATIC_INLINE void LL_TIM_OC_SetCompareCH5(TIM_TypeDef *TIMx, uint32_t CompareValue)
2634 {
2635   MODIFY_REG(TIMx->CCR5, TIM_CCR5_CCR5, CompareValue);
2636 }
2637 
2638 /**
2639   * @brief  Set compare value for output channel 6 (TIMx_CCR6).
2640   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2641   *       output channel 6 is supported by a timer instance.
2642   * @rmtoll CCR6         CCR6          LL_TIM_OC_SetCompareCH6
2643   * @param  TIMx Timer instance
2644   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2645   * @retval None
2646   */
LL_TIM_OC_SetCompareCH6(TIM_TypeDef * TIMx,uint32_t CompareValue)2647 __STATIC_INLINE void LL_TIM_OC_SetCompareCH6(TIM_TypeDef *TIMx, uint32_t CompareValue)
2648 {
2649   WRITE_REG(TIMx->CCR6, CompareValue);
2650 }
2651 
2652 /**
2653   * @brief  Get compare value (TIMx_CCR1) set for  output channel 1.
2654   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2655   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2656   *       whether or not a timer instance supports a 32 bits counter.
2657   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2658   *       output channel 1 is supported by a timer instance.
2659   * @rmtoll CCR1         CCR1          LL_TIM_OC_GetCompareCH1
2660   * @param  TIMx Timer instance
2661   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2662   */
LL_TIM_OC_GetCompareCH1(const TIM_TypeDef * TIMx)2663 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(const TIM_TypeDef *TIMx)
2664 {
2665   return (uint32_t)(READ_REG(TIMx->CCR1));
2666 }
2667 
2668 /**
2669   * @brief  Get compare value (TIMx_CCR2) set for  output channel 2.
2670   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2671   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2672   *       whether or not a timer instance supports a 32 bits counter.
2673   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2674   *       output channel 2 is supported by a timer instance.
2675   * @rmtoll CCR2         CCR2          LL_TIM_OC_GetCompareCH2
2676   * @param  TIMx Timer instance
2677   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2678   */
LL_TIM_OC_GetCompareCH2(const TIM_TypeDef * TIMx)2679 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(const TIM_TypeDef *TIMx)
2680 {
2681   return (uint32_t)(READ_REG(TIMx->CCR2));
2682 }
2683 
2684 /**
2685   * @brief  Get compare value (TIMx_CCR3) set for  output channel 3.
2686   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2687   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2688   *       whether or not a timer instance supports a 32 bits counter.
2689   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2690   *       output channel 3 is supported by a timer instance.
2691   * @rmtoll CCR3         CCR3          LL_TIM_OC_GetCompareCH3
2692   * @param  TIMx Timer instance
2693   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2694   */
LL_TIM_OC_GetCompareCH3(const TIM_TypeDef * TIMx)2695 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(const TIM_TypeDef *TIMx)
2696 {
2697   return (uint32_t)(READ_REG(TIMx->CCR3));
2698 }
2699 
2700 /**
2701   * @brief  Get compare value (TIMx_CCR4) set for  output channel 4.
2702   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2703   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2704   *       whether or not a timer instance supports a 32 bits counter.
2705   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2706   *       output channel 4 is supported by a timer instance.
2707   * @rmtoll CCR4         CCR4          LL_TIM_OC_GetCompareCH4
2708   * @param  TIMx Timer instance
2709   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2710   */
LL_TIM_OC_GetCompareCH4(const TIM_TypeDef * TIMx)2711 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(const TIM_TypeDef *TIMx)
2712 {
2713   return (uint32_t)(READ_REG(TIMx->CCR4));
2714 }
2715 
2716 /**
2717   * @brief  Get compare value (TIMx_CCR5) set for  output channel 5.
2718   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2719   *       output channel 5 is supported by a timer instance.
2720   * @rmtoll CCR5         CCR5          LL_TIM_OC_GetCompareCH5
2721   * @param  TIMx Timer instance
2722   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2723   */
LL_TIM_OC_GetCompareCH5(const TIM_TypeDef * TIMx)2724 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH5(const TIM_TypeDef *TIMx)
2725 {
2726   return (uint32_t)(READ_BIT(TIMx->CCR5, TIM_CCR5_CCR5));
2727 }
2728 
2729 /**
2730   * @brief  Get compare value (TIMx_CCR6) set for  output channel 6.
2731   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2732   *       output channel 6 is supported by a timer instance.
2733   * @rmtoll CCR6         CCR6          LL_TIM_OC_GetCompareCH6
2734   * @param  TIMx Timer instance
2735   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2736   */
LL_TIM_OC_GetCompareCH6(const TIM_TypeDef * TIMx)2737 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH6(const TIM_TypeDef *TIMx)
2738 {
2739   return (uint32_t)(READ_REG(TIMx->CCR6));
2740 }
2741 
2742 /**
2743   * @brief  Select on which reference signal the OC5REF is combined to.
2744   * @note Macro IS_TIM_COMBINED3PHASEPWM_INSTANCE(TIMx) can be used to check
2745   *       whether or not a timer instance supports the combined 3-phase PWM mode.
2746   * @rmtoll CCR5         GC5C3          LL_TIM_SetCH5CombinedChannels\n
2747   *         CCR5         GC5C2          LL_TIM_SetCH5CombinedChannels\n
2748   *         CCR5         GC5C1          LL_TIM_SetCH5CombinedChannels
2749   * @param  TIMx Timer instance
2750   * @param  GroupCH5 This parameter can be a combination of the following values:
2751   *         @arg @ref LL_TIM_GROUPCH5_NONE
2752   *         @arg @ref LL_TIM_GROUPCH5_OC1REFC
2753   *         @arg @ref LL_TIM_GROUPCH5_OC2REFC
2754   *         @arg @ref LL_TIM_GROUPCH5_OC3REFC
2755   * @retval None
2756   */
LL_TIM_SetCH5CombinedChannels(TIM_TypeDef * TIMx,uint32_t GroupCH5)2757 __STATIC_INLINE void LL_TIM_SetCH5CombinedChannels(TIM_TypeDef *TIMx, uint32_t GroupCH5)
2758 {
2759   MODIFY_REG(TIMx->CCR5, (TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1), GroupCH5);
2760 }
2761 
2762 /**
2763   * @}
2764   */
2765 
2766 /** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
2767   * @{
2768   */
2769 /**
2770   * @brief  Configure input channel.
2771   * @rmtoll CCMR1        CC1S          LL_TIM_IC_Config\n
2772   *         CCMR1        IC1PSC        LL_TIM_IC_Config\n
2773   *         CCMR1        IC1F          LL_TIM_IC_Config\n
2774   *         CCMR1        CC2S          LL_TIM_IC_Config\n
2775   *         CCMR1        IC2PSC        LL_TIM_IC_Config\n
2776   *         CCMR1        IC2F          LL_TIM_IC_Config\n
2777   *         CCMR2        CC3S          LL_TIM_IC_Config\n
2778   *         CCMR2        IC3PSC        LL_TIM_IC_Config\n
2779   *         CCMR2        IC3F          LL_TIM_IC_Config\n
2780   *         CCMR2        CC4S          LL_TIM_IC_Config\n
2781   *         CCMR2        IC4PSC        LL_TIM_IC_Config\n
2782   *         CCMR2        IC4F          LL_TIM_IC_Config\n
2783   *         CCER         CC1P          LL_TIM_IC_Config\n
2784   *         CCER         CC1NP         LL_TIM_IC_Config\n
2785   *         CCER         CC2P          LL_TIM_IC_Config\n
2786   *         CCER         CC2NP         LL_TIM_IC_Config\n
2787   *         CCER         CC3P          LL_TIM_IC_Config\n
2788   *         CCER         CC3NP         LL_TIM_IC_Config\n
2789   *         CCER         CC4P          LL_TIM_IC_Config\n
2790   *         CCER         CC4NP         LL_TIM_IC_Config
2791   * @param  TIMx Timer instance
2792   * @param  Channel This parameter can be one of the following values:
2793   *         @arg @ref LL_TIM_CHANNEL_CH1
2794   *         @arg @ref LL_TIM_CHANNEL_CH2
2795   *         @arg @ref LL_TIM_CHANNEL_CH3
2796   *         @arg @ref LL_TIM_CHANNEL_CH4
2797   * @param  Configuration This parameter must be a combination of all the following values:
2798   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
2799   *         @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
2800   *         @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
2801   *         @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
2802   * @retval None
2803   */
LL_TIM_IC_Config(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2804 __STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2805 {
2806   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2807   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2808   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
2809              ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S))                \
2810              << SHIFT_TAB_ICxx[iChannel]);
2811   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2812              (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
2813 }
2814 
2815 /**
2816   * @brief  Set the active input.
2817   * @rmtoll CCMR1        CC1S          LL_TIM_IC_SetActiveInput\n
2818   *         CCMR1        CC2S          LL_TIM_IC_SetActiveInput\n
2819   *         CCMR2        CC3S          LL_TIM_IC_SetActiveInput\n
2820   *         CCMR2        CC4S          LL_TIM_IC_SetActiveInput
2821   * @param  TIMx Timer instance
2822   * @param  Channel This parameter can be one of the following values:
2823   *         @arg @ref LL_TIM_CHANNEL_CH1
2824   *         @arg @ref LL_TIM_CHANNEL_CH2
2825   *         @arg @ref LL_TIM_CHANNEL_CH3
2826   *         @arg @ref LL_TIM_CHANNEL_CH4
2827   * @param  ICActiveInput This parameter can be one of the following values:
2828   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2829   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2830   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2831   * @retval None
2832   */
LL_TIM_IC_SetActiveInput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICActiveInput)2833 __STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
2834 {
2835   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2836   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2837   MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2838 }
2839 
2840 /**
2841   * @brief  Get the current active input.
2842   * @rmtoll CCMR1        CC1S          LL_TIM_IC_GetActiveInput\n
2843   *         CCMR1        CC2S          LL_TIM_IC_GetActiveInput\n
2844   *         CCMR2        CC3S          LL_TIM_IC_GetActiveInput\n
2845   *         CCMR2        CC4S          LL_TIM_IC_GetActiveInput
2846   * @param  TIMx Timer instance
2847   * @param  Channel This parameter can be one of the following values:
2848   *         @arg @ref LL_TIM_CHANNEL_CH1
2849   *         @arg @ref LL_TIM_CHANNEL_CH2
2850   *         @arg @ref LL_TIM_CHANNEL_CH3
2851   *         @arg @ref LL_TIM_CHANNEL_CH4
2852   * @retval Returned value can be one of the following values:
2853   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2854   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2855   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2856   */
LL_TIM_IC_GetActiveInput(const TIM_TypeDef * TIMx,uint32_t Channel)2857 __STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(const TIM_TypeDef *TIMx, uint32_t Channel)
2858 {
2859   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2860   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2861   return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2862 }
2863 
2864 /**
2865   * @brief  Set the prescaler of input channel.
2866   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_SetPrescaler\n
2867   *         CCMR1        IC2PSC        LL_TIM_IC_SetPrescaler\n
2868   *         CCMR2        IC3PSC        LL_TIM_IC_SetPrescaler\n
2869   *         CCMR2        IC4PSC        LL_TIM_IC_SetPrescaler
2870   * @param  TIMx Timer instance
2871   * @param  Channel This parameter can be one of the following values:
2872   *         @arg @ref LL_TIM_CHANNEL_CH1
2873   *         @arg @ref LL_TIM_CHANNEL_CH2
2874   *         @arg @ref LL_TIM_CHANNEL_CH3
2875   *         @arg @ref LL_TIM_CHANNEL_CH4
2876   * @param  ICPrescaler This parameter can be one of the following values:
2877   *         @arg @ref LL_TIM_ICPSC_DIV1
2878   *         @arg @ref LL_TIM_ICPSC_DIV2
2879   *         @arg @ref LL_TIM_ICPSC_DIV4
2880   *         @arg @ref LL_TIM_ICPSC_DIV8
2881   * @retval None
2882   */
LL_TIM_IC_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPrescaler)2883 __STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
2884 {
2885   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2886   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2887   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2888 }
2889 
2890 /**
2891   * @brief  Get the current prescaler value acting on an  input channel.
2892   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_GetPrescaler\n
2893   *         CCMR1        IC2PSC        LL_TIM_IC_GetPrescaler\n
2894   *         CCMR2        IC3PSC        LL_TIM_IC_GetPrescaler\n
2895   *         CCMR2        IC4PSC        LL_TIM_IC_GetPrescaler
2896   * @param  TIMx Timer instance
2897   * @param  Channel This parameter can be one of the following values:
2898   *         @arg @ref LL_TIM_CHANNEL_CH1
2899   *         @arg @ref LL_TIM_CHANNEL_CH2
2900   *         @arg @ref LL_TIM_CHANNEL_CH3
2901   *         @arg @ref LL_TIM_CHANNEL_CH4
2902   * @retval Returned value can be one of the following values:
2903   *         @arg @ref LL_TIM_ICPSC_DIV1
2904   *         @arg @ref LL_TIM_ICPSC_DIV2
2905   *         @arg @ref LL_TIM_ICPSC_DIV4
2906   *         @arg @ref LL_TIM_ICPSC_DIV8
2907   */
LL_TIM_IC_GetPrescaler(const TIM_TypeDef * TIMx,uint32_t Channel)2908 __STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(const TIM_TypeDef *TIMx, uint32_t Channel)
2909 {
2910   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2911   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2912   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2913 }
2914 
2915 /**
2916   * @brief  Set the input filter duration.
2917   * @rmtoll CCMR1        IC1F          LL_TIM_IC_SetFilter\n
2918   *         CCMR1        IC2F          LL_TIM_IC_SetFilter\n
2919   *         CCMR2        IC3F          LL_TIM_IC_SetFilter\n
2920   *         CCMR2        IC4F          LL_TIM_IC_SetFilter
2921   * @param  TIMx Timer instance
2922   * @param  Channel This parameter can be one of the following values:
2923   *         @arg @ref LL_TIM_CHANNEL_CH1
2924   *         @arg @ref LL_TIM_CHANNEL_CH2
2925   *         @arg @ref LL_TIM_CHANNEL_CH3
2926   *         @arg @ref LL_TIM_CHANNEL_CH4
2927   * @param  ICFilter This parameter can be one of the following values:
2928   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2929   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2930   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2931   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2932   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2933   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2934   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2935   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2936   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2937   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2938   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2939   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2940   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2941   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2942   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2943   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2944   * @retval None
2945   */
LL_TIM_IC_SetFilter(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICFilter)2946 __STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
2947 {
2948   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2949   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2950   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2951 }
2952 
2953 /**
2954   * @brief  Get the input filter duration.
2955   * @rmtoll CCMR1        IC1F          LL_TIM_IC_GetFilter\n
2956   *         CCMR1        IC2F          LL_TIM_IC_GetFilter\n
2957   *         CCMR2        IC3F          LL_TIM_IC_GetFilter\n
2958   *         CCMR2        IC4F          LL_TIM_IC_GetFilter
2959   * @param  TIMx Timer instance
2960   * @param  Channel This parameter can be one of the following values:
2961   *         @arg @ref LL_TIM_CHANNEL_CH1
2962   *         @arg @ref LL_TIM_CHANNEL_CH2
2963   *         @arg @ref LL_TIM_CHANNEL_CH3
2964   *         @arg @ref LL_TIM_CHANNEL_CH4
2965   * @retval Returned value can be one of the following values:
2966   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2967   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2968   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2969   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2970   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2971   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2972   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2973   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2974   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2975   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2976   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2977   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2978   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2979   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2980   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2981   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2982   */
LL_TIM_IC_GetFilter(const TIM_TypeDef * TIMx,uint32_t Channel)2983 __STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(const TIM_TypeDef *TIMx, uint32_t Channel)
2984 {
2985   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2986   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2987   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2988 }
2989 
2990 /**
2991   * @brief  Set the input channel polarity.
2992   * @rmtoll CCER         CC1P          LL_TIM_IC_SetPolarity\n
2993   *         CCER         CC1NP         LL_TIM_IC_SetPolarity\n
2994   *         CCER         CC2P          LL_TIM_IC_SetPolarity\n
2995   *         CCER         CC2NP         LL_TIM_IC_SetPolarity\n
2996   *         CCER         CC3P          LL_TIM_IC_SetPolarity\n
2997   *         CCER         CC3NP         LL_TIM_IC_SetPolarity\n
2998   *         CCER         CC4P          LL_TIM_IC_SetPolarity\n
2999   *         CCER         CC4NP         LL_TIM_IC_SetPolarity
3000   * @param  TIMx Timer instance
3001   * @param  Channel This parameter can be one of the following values:
3002   *         @arg @ref LL_TIM_CHANNEL_CH1
3003   *         @arg @ref LL_TIM_CHANNEL_CH2
3004   *         @arg @ref LL_TIM_CHANNEL_CH3
3005   *         @arg @ref LL_TIM_CHANNEL_CH4
3006   * @param  ICPolarity This parameter can be one of the following values:
3007   *         @arg @ref LL_TIM_IC_POLARITY_RISING
3008   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
3009   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
3010   * @retval None
3011   */
LL_TIM_IC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPolarity)3012 __STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
3013 {
3014   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3015   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
3016              ICPolarity << SHIFT_TAB_CCxP[iChannel]);
3017 }
3018 
3019 /**
3020   * @brief  Get the current input channel polarity.
3021   * @rmtoll CCER         CC1P          LL_TIM_IC_GetPolarity\n
3022   *         CCER         CC1NP         LL_TIM_IC_GetPolarity\n
3023   *         CCER         CC2P          LL_TIM_IC_GetPolarity\n
3024   *         CCER         CC2NP         LL_TIM_IC_GetPolarity\n
3025   *         CCER         CC3P          LL_TIM_IC_GetPolarity\n
3026   *         CCER         CC3NP         LL_TIM_IC_GetPolarity\n
3027   *         CCER         CC4P          LL_TIM_IC_GetPolarity\n
3028   *         CCER         CC4NP         LL_TIM_IC_GetPolarity
3029   * @param  TIMx Timer instance
3030   * @param  Channel This parameter can be one of the following values:
3031   *         @arg @ref LL_TIM_CHANNEL_CH1
3032   *         @arg @ref LL_TIM_CHANNEL_CH2
3033   *         @arg @ref LL_TIM_CHANNEL_CH3
3034   *         @arg @ref LL_TIM_CHANNEL_CH4
3035   * @retval Returned value can be one of the following values:
3036   *         @arg @ref LL_TIM_IC_POLARITY_RISING
3037   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
3038   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
3039   */
LL_TIM_IC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)3040 __STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
3041 {
3042   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3043   return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
3044           SHIFT_TAB_CCxP[iChannel]);
3045 }
3046 
3047 /**
3048   * @brief  Connect the TIMx_CH1, CH2 and CH3 pins  to the TI1 input (XOR combination).
3049   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3050   *       a timer instance provides an XOR input.
3051   * @rmtoll CR2          TI1S          LL_TIM_IC_EnableXORCombination
3052   * @param  TIMx Timer instance
3053   * @retval None
3054   */
LL_TIM_IC_EnableXORCombination(TIM_TypeDef * TIMx)3055 __STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
3056 {
3057   SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
3058 }
3059 
3060 /**
3061   * @brief  Disconnect the TIMx_CH1, CH2 and CH3 pins  from the TI1 input.
3062   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3063   *       a timer instance provides an XOR input.
3064   * @rmtoll CR2          TI1S          LL_TIM_IC_DisableXORCombination
3065   * @param  TIMx Timer instance
3066   * @retval None
3067   */
LL_TIM_IC_DisableXORCombination(TIM_TypeDef * TIMx)3068 __STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
3069 {
3070   CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
3071 }
3072 
3073 /**
3074   * @brief  Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
3075   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3076   * a timer instance provides an XOR input.
3077   * @rmtoll CR2          TI1S          LL_TIM_IC_IsEnabledXORCombination
3078   * @param  TIMx Timer instance
3079   * @retval State of bit (1 or 0).
3080   */
LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef * TIMx)3081 __STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef *TIMx)
3082 {
3083   return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
3084 }
3085 
3086 /**
3087   * @brief  Get captured value for input channel 1.
3088   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3089   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3090   *       whether or not a timer instance supports a 32 bits counter.
3091   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
3092   *       input channel 1 is supported by a timer instance.
3093   * @rmtoll CCR1         CCR1          LL_TIM_IC_GetCaptureCH1
3094   * @param  TIMx Timer instance
3095   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3096   */
LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef * TIMx)3097 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef *TIMx)
3098 {
3099   return (uint32_t)(READ_REG(TIMx->CCR1));
3100 }
3101 
3102 /**
3103   * @brief  Get captured value for input channel 2.
3104   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3105   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3106   *       whether or not a timer instance supports a 32 bits counter.
3107   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
3108   *       input channel 2 is supported by a timer instance.
3109   * @rmtoll CCR2         CCR2          LL_TIM_IC_GetCaptureCH2
3110   * @param  TIMx Timer instance
3111   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3112   */
LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef * TIMx)3113 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef *TIMx)
3114 {
3115   return (uint32_t)(READ_REG(TIMx->CCR2));
3116 }
3117 
3118 /**
3119   * @brief  Get captured value for input channel 3.
3120   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3121   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3122   *       whether or not a timer instance supports a 32 bits counter.
3123   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
3124   *       input channel 3 is supported by a timer instance.
3125   * @rmtoll CCR3         CCR3          LL_TIM_IC_GetCaptureCH3
3126   * @param  TIMx Timer instance
3127   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3128   */
LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef * TIMx)3129 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef *TIMx)
3130 {
3131   return (uint32_t)(READ_REG(TIMx->CCR3));
3132 }
3133 
3134 /**
3135   * @brief  Get captured value for input channel 4.
3136   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3137   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3138   *       whether or not a timer instance supports a 32 bits counter.
3139   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
3140   *       input channel 4 is supported by a timer instance.
3141   * @rmtoll CCR4         CCR4          LL_TIM_IC_GetCaptureCH4
3142   * @param  TIMx Timer instance
3143   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3144   */
LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef * TIMx)3145 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef *TIMx)
3146 {
3147   return (uint32_t)(READ_REG(TIMx->CCR4));
3148 }
3149 
3150 /**
3151   * @}
3152   */
3153 
3154 /** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
3155   * @{
3156   */
3157 /**
3158   * @brief  Enable external clock mode 2.
3159   * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
3160   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3161   *       whether or not a timer instance supports external clock mode2.
3162   * @rmtoll SMCR         ECE           LL_TIM_EnableExternalClock
3163   * @param  TIMx Timer instance
3164   * @retval None
3165   */
LL_TIM_EnableExternalClock(TIM_TypeDef * TIMx)3166 __STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
3167 {
3168   SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3169 }
3170 
3171 /**
3172   * @brief  Disable external clock mode 2.
3173   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3174   *       whether or not a timer instance supports external clock mode2.
3175   * @rmtoll SMCR         ECE           LL_TIM_DisableExternalClock
3176   * @param  TIMx Timer instance
3177   * @retval None
3178   */
LL_TIM_DisableExternalClock(TIM_TypeDef * TIMx)3179 __STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
3180 {
3181   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3182 }
3183 
3184 /**
3185   * @brief  Indicate whether external clock mode 2 is enabled.
3186   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3187   *       whether or not a timer instance supports external clock mode2.
3188   * @rmtoll SMCR         ECE           LL_TIM_IsEnabledExternalClock
3189   * @param  TIMx Timer instance
3190   * @retval State of bit (1 or 0).
3191   */
LL_TIM_IsEnabledExternalClock(const TIM_TypeDef * TIMx)3192 __STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(const TIM_TypeDef *TIMx)
3193 {
3194   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
3195 }
3196 
3197 /**
3198   * @brief  Set the clock source of the counter clock.
3199   * @note when selected clock source is external clock mode 1, the timer input
3200   *       the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
3201   *       function. This timer input must be configured by calling
3202   *       the @ref LL_TIM_IC_Config() function.
3203   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
3204   *       whether or not a timer instance supports external clock mode1.
3205   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3206   *       whether or not a timer instance supports external clock mode2.
3207   * @rmtoll SMCR         SMS           LL_TIM_SetClockSource\n
3208   *         SMCR         ECE           LL_TIM_SetClockSource
3209   * @param  TIMx Timer instance
3210   * @param  ClockSource This parameter can be one of the following values:
3211   *         @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
3212   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
3213   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
3214   * @retval None
3215   */
LL_TIM_SetClockSource(TIM_TypeDef * TIMx,uint32_t ClockSource)3216 __STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
3217 {
3218   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
3219 }
3220 
3221 /**
3222   * @brief  Set the encoder interface mode.
3223   * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
3224   *       whether or not a timer instance supports the encoder mode.
3225   * @rmtoll SMCR         SMS           LL_TIM_SetEncoderMode
3226   * @param  TIMx Timer instance
3227   * @param  EncoderMode This parameter can be one of the following values:
3228   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI1
3229   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI2
3230   *         @arg @ref LL_TIM_ENCODERMODE_X4_TI12
3231   * @retval None
3232   */
LL_TIM_SetEncoderMode(TIM_TypeDef * TIMx,uint32_t EncoderMode)3233 __STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
3234 {
3235   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
3236 }
3237 
3238 /**
3239   * @}
3240   */
3241 
3242 /** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
3243   * @{
3244   */
3245 /**
3246   * @brief  Set the trigger output (TRGO) used for timer synchronization .
3247   * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
3248   *       whether or not a timer instance can operate as a master timer.
3249   * @rmtoll CR2          MMS           LL_TIM_SetTriggerOutput
3250   * @param  TIMx Timer instance
3251   * @param  TimerSynchronization This parameter can be one of the following values:
3252   *         @arg @ref LL_TIM_TRGO_RESET
3253   *         @arg @ref LL_TIM_TRGO_ENABLE
3254   *         @arg @ref LL_TIM_TRGO_UPDATE
3255   *         @arg @ref LL_TIM_TRGO_CC1IF
3256   *         @arg @ref LL_TIM_TRGO_OC1REF
3257   *         @arg @ref LL_TIM_TRGO_OC2REF
3258   *         @arg @ref LL_TIM_TRGO_OC3REF
3259   *         @arg @ref LL_TIM_TRGO_OC4REF
3260   * @retval None
3261   */
LL_TIM_SetTriggerOutput(TIM_TypeDef * TIMx,uint32_t TimerSynchronization)3262 __STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
3263 {
3264   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
3265 }
3266 
3267 /**
3268   * @brief  Set the trigger output 2 (TRGO2) used for ADC synchronization .
3269   * @note Macro IS_TIM_TRGO2_INSTANCE(TIMx) can be used to check
3270   *       whether or not a timer instance can be used for ADC synchronization.
3271   * @rmtoll CR2          MMS2          LL_TIM_SetTriggerOutput2
3272   * @param  TIMx Timer Instance
3273   * @param  ADCSynchronization This parameter can be one of the following values:
3274   *         @arg @ref LL_TIM_TRGO2_RESET
3275   *         @arg @ref LL_TIM_TRGO2_ENABLE
3276   *         @arg @ref LL_TIM_TRGO2_UPDATE
3277   *         @arg @ref LL_TIM_TRGO2_CC1F
3278   *         @arg @ref LL_TIM_TRGO2_OC1
3279   *         @arg @ref LL_TIM_TRGO2_OC2
3280   *         @arg @ref LL_TIM_TRGO2_OC3
3281   *         @arg @ref LL_TIM_TRGO2_OC4
3282   *         @arg @ref LL_TIM_TRGO2_OC5
3283   *         @arg @ref LL_TIM_TRGO2_OC6
3284   *         @arg @ref LL_TIM_TRGO2_OC4_RISINGFALLING
3285   *         @arg @ref LL_TIM_TRGO2_OC6_RISINGFALLING
3286   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_RISING
3287   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_FALLING
3288   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_RISING
3289   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_FALLING
3290   * @retval None
3291   */
LL_TIM_SetTriggerOutput2(TIM_TypeDef * TIMx,uint32_t ADCSynchronization)3292 __STATIC_INLINE void LL_TIM_SetTriggerOutput2(TIM_TypeDef *TIMx, uint32_t ADCSynchronization)
3293 {
3294   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS2, ADCSynchronization);
3295 }
3296 
3297 /**
3298   * @brief  Set the synchronization mode of a slave timer.
3299   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3300   *       a timer instance can operate as a slave timer.
3301   * @rmtoll SMCR         SMS           LL_TIM_SetSlaveMode
3302   * @param  TIMx Timer instance
3303   * @param  SlaveMode This parameter can be one of the following values:
3304   *         @arg @ref LL_TIM_SLAVEMODE_DISABLED
3305   *         @arg @ref LL_TIM_SLAVEMODE_RESET
3306   *         @arg @ref LL_TIM_SLAVEMODE_GATED
3307   *         @arg @ref LL_TIM_SLAVEMODE_TRIGGER
3308   *         @arg @ref LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER
3309   * @retval None
3310   */
LL_TIM_SetSlaveMode(TIM_TypeDef * TIMx,uint32_t SlaveMode)3311 __STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
3312 {
3313   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
3314 }
3315 
3316 /**
3317   * @brief  Set the selects the trigger input to be used to synchronize the counter.
3318   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3319   *       a timer instance can operate as a slave timer.
3320   * @rmtoll SMCR         TS            LL_TIM_SetTriggerInput
3321   * @param  TIMx Timer instance
3322   * @param  TriggerInput This parameter can be one of the following values:
3323   *         @arg @ref LL_TIM_TS_ITR0
3324   *         @arg @ref LL_TIM_TS_ITR1
3325   *         @arg @ref LL_TIM_TS_ITR2
3326   *         @arg @ref LL_TIM_TS_ITR3
3327   *         @arg @ref LL_TIM_TS_TI1F_ED
3328   *         @arg @ref LL_TIM_TS_TI1FP1
3329   *         @arg @ref LL_TIM_TS_TI2FP2
3330   *         @arg @ref LL_TIM_TS_ETRF
3331   * @retval None
3332   */
LL_TIM_SetTriggerInput(TIM_TypeDef * TIMx,uint32_t TriggerInput)3333 __STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
3334 {
3335   MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
3336 }
3337 
3338 /**
3339   * @brief  Enable the Master/Slave mode.
3340   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3341   *       a timer instance can operate as a slave timer.
3342   * @rmtoll SMCR         MSM           LL_TIM_EnableMasterSlaveMode
3343   * @param  TIMx Timer instance
3344   * @retval None
3345   */
LL_TIM_EnableMasterSlaveMode(TIM_TypeDef * TIMx)3346 __STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
3347 {
3348   SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3349 }
3350 
3351 /**
3352   * @brief  Disable the Master/Slave mode.
3353   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3354   *       a timer instance can operate as a slave timer.
3355   * @rmtoll SMCR         MSM           LL_TIM_DisableMasterSlaveMode
3356   * @param  TIMx Timer instance
3357   * @retval None
3358   */
LL_TIM_DisableMasterSlaveMode(TIM_TypeDef * TIMx)3359 __STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
3360 {
3361   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3362 }
3363 
3364 /**
3365   * @brief Indicates whether the Master/Slave mode is enabled.
3366   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3367   * a timer instance can operate as a slave timer.
3368   * @rmtoll SMCR         MSM           LL_TIM_IsEnabledMasterSlaveMode
3369   * @param  TIMx Timer instance
3370   * @retval State of bit (1 or 0).
3371   */
LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef * TIMx)3372 __STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef *TIMx)
3373 {
3374   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
3375 }
3376 
3377 /**
3378   * @brief  Configure the external trigger (ETR) input.
3379   * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
3380   *       a timer instance provides an external trigger input.
3381   * @rmtoll SMCR         ETP           LL_TIM_ConfigETR\n
3382   *         SMCR         ETPS          LL_TIM_ConfigETR\n
3383   *         SMCR         ETF           LL_TIM_ConfigETR
3384   * @param  TIMx Timer instance
3385   * @param  ETRPolarity This parameter can be one of the following values:
3386   *         @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
3387   *         @arg @ref LL_TIM_ETR_POLARITY_INVERTED
3388   * @param  ETRPrescaler This parameter can be one of the following values:
3389   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV1
3390   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV2
3391   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV4
3392   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV8
3393   * @param  ETRFilter This parameter can be one of the following values:
3394   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1
3395   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
3396   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
3397   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
3398   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
3399   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
3400   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
3401   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
3402   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
3403   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
3404   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
3405   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
3406   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
3407   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
3408   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
3409   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
3410   * @retval None
3411   */
LL_TIM_ConfigETR(TIM_TypeDef * TIMx,uint32_t ETRPolarity,uint32_t ETRPrescaler,uint32_t ETRFilter)3412 __STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
3413                                       uint32_t ETRFilter)
3414 {
3415   MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
3416 }
3417 
3418 /**
3419   * @brief  Select the external trigger (ETR) input source.
3420   * @note Macro IS_TIM_ETRSEL_INSTANCE(TIMx) can be used to check whether or
3421   *       not a timer instance supports ETR source selection.
3422   * @rmtoll OR2          ETRSEL        LL_TIM_SetETRSource
3423   * @param  TIMx Timer instance
3424   * @param  ETRSource This parameter can be one of the following values:
3425   *         @arg @ref LL_TIM_ETRSOURCE_GPIO
3426   *         @arg @ref LL_TIM_ETRSOURCE_COMP1
3427   *         @arg @ref LL_TIM_ETRSOURCE_COMP2
3428   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD1
3429   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD2
3430   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD3
3431   * @retval None
3432   */
LL_TIM_SetETRSource(TIM_TypeDef * TIMx,uint32_t ETRSource)3433 __STATIC_INLINE void LL_TIM_SetETRSource(TIM_TypeDef *TIMx, uint32_t ETRSource)
3434 {
3435   MODIFY_REG(TIMx->OR2, TIMx_OR2_ETRSEL, ETRSource);
3436 }
3437 
3438 /**
3439   * @}
3440   */
3441 
3442 /** @defgroup TIM_LL_EF_Break_Function Break function configuration
3443   * @{
3444   */
3445 /**
3446   * @brief  Enable the break function.
3447   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3448   *       a timer instance provides a break input.
3449   * @rmtoll BDTR         BKE           LL_TIM_EnableBRK
3450   * @param  TIMx Timer instance
3451   * @retval None
3452   */
LL_TIM_EnableBRK(TIM_TypeDef * TIMx)3453 __STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
3454 {
3455   SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3456 }
3457 
3458 /**
3459   * @brief  Disable the break function.
3460   * @rmtoll BDTR         BKE           LL_TIM_DisableBRK
3461   * @param  TIMx Timer instance
3462   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3463   *       a timer instance provides a break input.
3464   * @retval None
3465   */
LL_TIM_DisableBRK(TIM_TypeDef * TIMx)3466 __STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
3467 {
3468   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3469 }
3470 
3471 /**
3472   * @brief  Configure the break input.
3473   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3474   *       a timer instance provides a break input.
3475   * @note Bidirectional mode is only supported by advanced timer instances.
3476   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
3477   *       a timer instance is an advanced-control timer.
3478   * @note In bidirectional mode (BKBID bit set), the Break input is configured both
3479   *        in input mode and in open drain output mode. Any active Break event will
3480   *        assert a low logic level on the Break input to indicate an internal break
3481   *        event to external devices.
3482   * @note When bidirectional mode isn't supported, BreakAFMode must be set to
3483   *       LL_TIM_BREAK_AFMODE_INPUT.
3484   * @rmtoll BDTR         BKP           LL_TIM_ConfigBRK\n
3485   *         BDTR         BKF           LL_TIM_ConfigBRK\n
3486   *         BDTR         BKBID         LL_TIM_ConfigBRK
3487   * @param  TIMx Timer instance
3488   * @param  BreakPolarity This parameter can be one of the following values:
3489   *         @arg @ref LL_TIM_BREAK_POLARITY_LOW
3490   *         @arg @ref LL_TIM_BREAK_POLARITY_HIGH
3491   * @param  BreakFilter This parameter can be one of the following values:
3492   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1
3493   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N2
3494   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N4
3495   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N8
3496   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N6
3497   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N8
3498   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N6
3499   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N8
3500   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N6
3501   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N8
3502   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N5
3503   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N6
3504   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N8
3505   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N5
3506   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N6
3507   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N8
3508   * @param  BreakAFMode This parameter can be one of the following values:
3509   *         @arg @ref LL_TIM_BREAK_AFMODE_INPUT
3510   *         @arg @ref LL_TIM_BREAK_AFMODE_BIDIRECTIONAL
3511   * @retval None
3512   */
LL_TIM_ConfigBRK(TIM_TypeDef * TIMx,uint32_t BreakPolarity,uint32_t BreakFilter,uint32_t BreakAFMode)3513 __STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity, uint32_t BreakFilter,
3514                                       uint32_t BreakAFMode)
3515 {
3516   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP | TIM_BDTR_BKF | TIM_BDTR_BKBID, BreakPolarity | BreakFilter | BreakAFMode);
3517 }
3518 
3519 /**
3520   * @brief  Disarm the break input (when it operates in bidirectional mode).
3521   * @note  The break input can be disarmed only when it is configured in
3522   *        bidirectional mode and when when MOE is reset.
3523   * @note  Purpose is to be able to have the input voltage back to high-state,
3524   *        whatever the time constant on the output .
3525   * @rmtoll BDTR         BKDSRM        LL_TIM_DisarmBRK
3526   * @param  TIMx Timer instance
3527   * @retval None
3528   */
LL_TIM_DisarmBRK(TIM_TypeDef * TIMx)3529 __STATIC_INLINE void LL_TIM_DisarmBRK(TIM_TypeDef *TIMx)
3530 {
3531   SET_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
3532 }
3533 
3534 /**
3535   * @brief  Re-arm the break input (when it operates in bidirectional mode).
3536   * @note  The Break input is automatically armed as soon as MOE bit is set.
3537   * @rmtoll BDTR         BKDSRM        LL_TIM_ReArmBRK
3538   * @param  TIMx Timer instance
3539   * @retval None
3540   */
LL_TIM_ReArmBRK(TIM_TypeDef * TIMx)3541 __STATIC_INLINE void LL_TIM_ReArmBRK(TIM_TypeDef *TIMx)
3542 {
3543   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
3544 }
3545 
3546 /**
3547   * @brief  Enable the break 2 function.
3548   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3549   *       a timer instance provides a second break input.
3550   * @rmtoll BDTR         BK2E          LL_TIM_EnableBRK2
3551   * @param  TIMx Timer instance
3552   * @retval None
3553   */
LL_TIM_EnableBRK2(TIM_TypeDef * TIMx)3554 __STATIC_INLINE void LL_TIM_EnableBRK2(TIM_TypeDef *TIMx)
3555 {
3556   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3557 }
3558 
3559 /**
3560   * @brief  Disable the break  2 function.
3561   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3562   *       a timer instance provides a second break input.
3563   * @rmtoll BDTR         BK2E          LL_TIM_DisableBRK2
3564   * @param  TIMx Timer instance
3565   * @retval None
3566   */
LL_TIM_DisableBRK2(TIM_TypeDef * TIMx)3567 __STATIC_INLINE void LL_TIM_DisableBRK2(TIM_TypeDef *TIMx)
3568 {
3569   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3570 }
3571 
3572 /**
3573   * @brief  Configure the break 2 input.
3574   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3575   *       a timer instance provides a second break input.
3576   * @note Bidirectional mode is only supported by advanced timer instances.
3577   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
3578   *       a timer instance is an advanced-control timer.
3579   * @note In bidirectional mode (BK2BID bit set), the Break 2 input is configured both
3580   *        in input mode and in open drain output mode. Any active Break event will
3581   *        assert a low logic level on the Break 2 input to indicate an internal break
3582   *        event to external devices.
3583   * @note When bidirectional mode isn't supported, Break2AFMode must be set to
3584   *       LL_TIM_BREAK2_AFMODE_INPUT.
3585   * @rmtoll BDTR         BK2P          LL_TIM_ConfigBRK2\n
3586   *         BDTR         BK2F          LL_TIM_ConfigBRK2\n
3587   *         BDTR         BK2BID        LL_TIM_ConfigBRK2
3588   * @param  TIMx Timer instance
3589   * @param  Break2Polarity This parameter can be one of the following values:
3590   *         @arg @ref LL_TIM_BREAK2_POLARITY_LOW
3591   *         @arg @ref LL_TIM_BREAK2_POLARITY_HIGH
3592   * @param  Break2Filter This parameter can be one of the following values:
3593   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1
3594   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N2
3595   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N4
3596   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N8
3597   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N6
3598   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N8
3599   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N6
3600   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N8
3601   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N6
3602   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N8
3603   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N5
3604   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N6
3605   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N8
3606   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N5
3607   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N6
3608   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N8
3609   * @param  Break2AFMode This parameter can be one of the following values:
3610   *         @arg @ref LL_TIM_BREAK2_AFMODE_INPUT
3611   *         @arg @ref LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL
3612   * @retval None
3613   */
LL_TIM_ConfigBRK2(TIM_TypeDef * TIMx,uint32_t Break2Polarity,uint32_t Break2Filter,uint32_t Break2AFMode)3614 __STATIC_INLINE void LL_TIM_ConfigBRK2(TIM_TypeDef *TIMx, uint32_t Break2Polarity, uint32_t Break2Filter,
3615                                        uint32_t Break2AFMode)
3616 {
3617   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BK2P | TIM_BDTR_BK2F | TIM_BDTR_BK2BID, Break2Polarity | Break2Filter | Break2AFMode);
3618 }
3619 
3620 /**
3621   * @brief  Disarm the break 2 input (when it operates in bidirectional mode).
3622   * @note  The break 2 input can be disarmed only when it is configured in
3623   *        bidirectional mode and when when MOE is reset.
3624   * @note  Purpose is to be able to have the input voltage back to high-state,
3625   *        whatever the time constant on the output.
3626   * @rmtoll BDTR         BK2DSRM       LL_TIM_DisarmBRK2
3627   * @param  TIMx Timer instance
3628   * @retval None
3629   */
LL_TIM_DisarmBRK2(TIM_TypeDef * TIMx)3630 __STATIC_INLINE void LL_TIM_DisarmBRK2(TIM_TypeDef *TIMx)
3631 {
3632   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
3633 }
3634 
3635 /**
3636   * @brief  Re-arm the break 2 input (when it operates in bidirectional mode).
3637   * @note  The Break 2 input is automatically armed as soon as MOE bit is set.
3638   * @rmtoll BDTR         BK2DSRM       LL_TIM_ReArmBRK2
3639   * @param  TIMx Timer instance
3640   * @retval None
3641   */
LL_TIM_ReArmBRK2(TIM_TypeDef * TIMx)3642 __STATIC_INLINE void LL_TIM_ReArmBRK2(TIM_TypeDef *TIMx)
3643 {
3644   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
3645 }
3646 
3647 /**
3648   * @brief  Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
3649   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3650   *       a timer instance provides a break input.
3651   * @rmtoll BDTR         OSSI          LL_TIM_SetOffStates\n
3652   *         BDTR         OSSR          LL_TIM_SetOffStates
3653   * @param  TIMx Timer instance
3654   * @param  OffStateIdle This parameter can be one of the following values:
3655   *         @arg @ref LL_TIM_OSSI_DISABLE
3656   *         @arg @ref LL_TIM_OSSI_ENABLE
3657   * @param  OffStateRun This parameter can be one of the following values:
3658   *         @arg @ref LL_TIM_OSSR_DISABLE
3659   *         @arg @ref LL_TIM_OSSR_ENABLE
3660   * @retval None
3661   */
LL_TIM_SetOffStates(TIM_TypeDef * TIMx,uint32_t OffStateIdle,uint32_t OffStateRun)3662 __STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
3663 {
3664   MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
3665 }
3666 
3667 /**
3668   * @brief  Enable automatic output (MOE can be set by software or automatically when a break input is active).
3669   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3670   *       a timer instance provides a break input.
3671   * @rmtoll BDTR         AOE           LL_TIM_EnableAutomaticOutput
3672   * @param  TIMx Timer instance
3673   * @retval None
3674   */
LL_TIM_EnableAutomaticOutput(TIM_TypeDef * TIMx)3675 __STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
3676 {
3677   SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3678 }
3679 
3680 /**
3681   * @brief  Disable automatic output (MOE can be set only by software).
3682   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3683   *       a timer instance provides a break input.
3684   * @rmtoll BDTR         AOE           LL_TIM_DisableAutomaticOutput
3685   * @param  TIMx Timer instance
3686   * @retval None
3687   */
LL_TIM_DisableAutomaticOutput(TIM_TypeDef * TIMx)3688 __STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
3689 {
3690   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3691 }
3692 
3693 /**
3694   * @brief  Indicate whether automatic output is enabled.
3695   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3696   *       a timer instance provides a break input.
3697   * @rmtoll BDTR         AOE           LL_TIM_IsEnabledAutomaticOutput
3698   * @param  TIMx Timer instance
3699   * @retval State of bit (1 or 0).
3700   */
LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef * TIMx)3701 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef *TIMx)
3702 {
3703   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
3704 }
3705 
3706 /**
3707   * @brief  Enable the outputs (set the MOE bit in TIMx_BDTR register).
3708   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3709   *       software and is reset in case of break or break2 event
3710   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3711   *       a timer instance provides a break input.
3712   * @rmtoll BDTR         MOE           LL_TIM_EnableAllOutputs
3713   * @param  TIMx Timer instance
3714   * @retval None
3715   */
LL_TIM_EnableAllOutputs(TIM_TypeDef * TIMx)3716 __STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
3717 {
3718   SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3719 }
3720 
3721 /**
3722   * @brief  Disable the outputs (reset the MOE bit in TIMx_BDTR register).
3723   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3724   *       software and is reset in case of break or break2 event.
3725   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3726   *       a timer instance provides a break input.
3727   * @rmtoll BDTR         MOE           LL_TIM_DisableAllOutputs
3728   * @param  TIMx Timer instance
3729   * @retval None
3730   */
LL_TIM_DisableAllOutputs(TIM_TypeDef * TIMx)3731 __STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
3732 {
3733   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3734 }
3735 
3736 /**
3737   * @brief  Indicates whether outputs are enabled.
3738   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3739   *       a timer instance provides a break input.
3740   * @rmtoll BDTR         MOE           LL_TIM_IsEnabledAllOutputs
3741   * @param  TIMx Timer instance
3742   * @retval State of bit (1 or 0).
3743   */
LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef * TIMx)3744 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef *TIMx)
3745 {
3746   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
3747 }
3748 
3749 /**
3750   * @brief  Enable the signals connected to the designated timer break input.
3751   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3752   *       or not a timer instance allows for break input selection.
3753   * @rmtoll OR2          BKINE         LL_TIM_EnableBreakInputSource\n
3754   *         OR2          BKCMP1E       LL_TIM_EnableBreakInputSource\n
3755   *         OR2          BKCMP2E       LL_TIM_EnableBreakInputSource\n
3756   *         OR2          BKDF1BK0E     LL_TIM_EnableBreakInputSource\n
3757   *         OR3          BK2INE        LL_TIM_EnableBreakInputSource\n
3758   *         OR3          BK2CMP1E      LL_TIM_EnableBreakInputSource\n
3759   *         OR3          BK2CMP2E      LL_TIM_EnableBreakInputSource\n
3760   *         OR3          BK2DF1BK1E    LL_TIM_EnableBreakInputSource
3761   * @param  TIMx Timer instance
3762   * @param  BreakInput This parameter can be one of the following values:
3763   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3764   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3765   * @param  Source This parameter can be one of the following values:
3766   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3767   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
3768   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
3769   *         @arg @ref LL_TIM_BKIN_SOURCE_DF1BK
3770   * @retval None
3771   */
LL_TIM_EnableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3772 __STATIC_INLINE void LL_TIM_EnableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3773 {
3774   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->OR2) + BreakInput));
3775   SET_BIT(*pReg, Source);
3776 }
3777 
3778 /**
3779   * @brief  Disable the signals connected to the designated timer break input.
3780   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3781   *       or not a timer instance allows for break input selection.
3782   * @rmtoll OR2          BKINE         LL_TIM_DisableBreakInputSource\n
3783   *         OR2          BKCMP1E       LL_TIM_DisableBreakInputSource\n
3784   *         OR2          BKCMP2E       LL_TIM_DisableBreakInputSource\n
3785   *         OR2          BKDF1BK0E     LL_TIM_DisableBreakInputSource\n
3786   *         OR3          BK2INE        LL_TIM_DisableBreakInputSource\n
3787   *         OR3          BK2CMP1E      LL_TIM_DisableBreakInputSource\n
3788   *         OR3          BK2CMP2E      LL_TIM_DisableBreakInputSource\n
3789   *         OR3          BK2DF1BK1E    LL_TIM_DisableBreakInputSource
3790   * @param  TIMx Timer instance
3791   * @param  BreakInput This parameter can be one of the following values:
3792   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3793   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3794   * @param  Source This parameter can be one of the following values:
3795   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3796   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
3797   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
3798   *         @arg @ref LL_TIM_BKIN_SOURCE_DF1BK
3799   * @retval None
3800   */
LL_TIM_DisableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3801 __STATIC_INLINE void LL_TIM_DisableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3802 {
3803   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->OR2) + BreakInput));
3804   CLEAR_BIT(*pReg, Source);
3805 }
3806 
3807 /**
3808   * @brief  Set the polarity of the break signal for the timer break input.
3809   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3810   *       or not a timer instance allows for break input selection.
3811   * @rmtoll OR2          BKINP         LL_TIM_SetBreakInputSourcePolarity\n
3812   *         OR2          BKCMP1P       LL_TIM_SetBreakInputSourcePolarity\n
3813   *         OR2          BKCMP2P       LL_TIM_SetBreakInputSourcePolarity\n
3814   *         OR3          BK2INP        LL_TIM_SetBreakInputSourcePolarity\n
3815   *         OR3          BK2CMP1P      LL_TIM_SetBreakInputSourcePolarity\n
3816   *         OR3          BK2CMP2P      LL_TIM_SetBreakInputSourcePolarity
3817   * @param  TIMx Timer instance
3818   * @param  BreakInput This parameter can be one of the following values:
3819   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3820   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3821   * @param  Source This parameter can be one of the following values:
3822   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3823   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
3824   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
3825   * @param  Polarity This parameter can be one of the following values:
3826   *         @arg @ref LL_TIM_BKIN_POLARITY_LOW
3827   *         @arg @ref LL_TIM_BKIN_POLARITY_HIGH
3828   * @retval None
3829   */
LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source,uint32_t Polarity)3830 __STATIC_INLINE void LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source,
3831                                                         uint32_t Polarity)
3832 {
3833   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->OR2) + BreakInput));
3834   MODIFY_REG(*pReg, (TIMx_OR2_BKINP << TIM_POSITION_BRK_SOURCE), (Polarity << TIM_POSITION_BRK_SOURCE));
3835 }
3836 /**
3837   * @}
3838   */
3839 
3840 /** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
3841   * @{
3842   */
3843 /**
3844   * @brief  Configures the timer DMA burst feature.
3845   * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
3846   *       not a timer instance supports the DMA burst mode.
3847   * @rmtoll DCR          DBL           LL_TIM_ConfigDMABurst\n
3848   *         DCR          DBA           LL_TIM_ConfigDMABurst
3849   * @param  TIMx Timer instance
3850   * @param  DMABurstBaseAddress This parameter can be one of the following values:
3851   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
3852   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
3853   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
3854   *         @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
3855   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SR
3856   *         @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
3857   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
3858   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
3859   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
3860   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
3861   *         @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
3862   *         @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
3863   *         @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
3864   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
3865   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
3866   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
3867   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
3868   *         @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
3869   *         @arg @ref LL_TIM_DMABURST_BASEADDR_OR1
3870   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR3
3871   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR5
3872   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR6
3873   *         @arg @ref LL_TIM_DMABURST_BASEADDR_OR2
3874   *         @arg @ref LL_TIM_DMABURST_BASEADDR_OR3
3875   * @param  DMABurstLength This parameter can be one of the following values:
3876   *         @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
3877   *         @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
3878   *         @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
3879   *         @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
3880   *         @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
3881   *         @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
3882   *         @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
3883   *         @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
3884   *         @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
3885   *         @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
3886   *         @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
3887   *         @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
3888   *         @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
3889   *         @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
3890   *         @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
3891   *         @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
3892   *         @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
3893   *         @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
3894   * @retval None
3895   */
LL_TIM_ConfigDMABurst(TIM_TypeDef * TIMx,uint32_t DMABurstBaseAddress,uint32_t DMABurstLength)3896 __STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
3897 {
3898   MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
3899 }
3900 
3901 /**
3902   * @}
3903   */
3904 
3905 /** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
3906   * @{
3907   */
3908 /**
3909   * @brief  Remap TIM inputs (input channel, internal/external triggers).
3910   * @note Macro IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
3911   *       a some timer inputs can be remapped.
3912   * @rmtoll TIM1_OR1    ETR_ADC1_RMP      LL_TIM_SetRemap\n
3913   *         TIM1_OR1    TI1_RMP           LL_TIM_SetRemap\n
3914   *         TIM2_OR1    ITR1_RMP          LL_TIM_SetRemap\n
3915   *         TIM2_OR1    ETR1_RMP          LL_TIM_SetRemap\n
3916   *         TIM2_OR1    TI4_RMP           LL_TIM_SetRemap\n
3917   *         TIM3_OR1    TI1_RMP           LL_TIM_SetRemap\n
3918   *         TIM8_OR1    TI1_RMP           LL_TIM_SetRemap\n
3919   *         TIM15_OR1   TI1_RMP           LL_TIM_SetRemap\n
3920   *         TIM15_OR1   ENCODER_MODE      LL_TIM_SetRemap\n
3921   *         TIM16_OR1   TI1_RMP           LL_TIM_SetRemap\n
3922   *         TIM17_OR1   TI1_RMP           LL_TIM_SetRemap
3923   * @param  TIMx Timer instance
3924   * @param  Remap Remap param depends on the TIMx. Description available only
3925   *         in CHM version of the User Manual (not in .pdf).
3926   *         Otherwise see Reference Manual description of OR1 registers.
3927   *
3928   *         Below description summarizes "Timer Instance" and "Remap" param combinations:
3929   *
3930   *         TIM1: any combination of TI1_RMP, ETR_ADC1_RMP where
3931   *
3932   *            . . TI1_RMP can be one of the following values
3933   *            @arg @ref LL_TIM_TIM1_TI1_RMP_GPIO
3934   *            @arg @ref LL_TIM_TIM1_TI1_RMP_COMP1
3935   *
3936   *            . . ETR_ADC1_RMP can be one of the following values
3937   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_NC
3938   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_AWD1
3939   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_AWD2
3940   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_AWD3
3941   *
3942   *         TIM2: any combination of ITR1_RMP, ETR1_RMP, TI4_RMP where
3943   *
3944   *            . . ITR1_RMP can be one of the following values
3945   *            @arg @ref LL_TIM_TIM2_ITR1_RMP_TIM8_TRGO
3946   *            @arg @ref LL_TIM_TIM2_ITR1_RMP_USB_SOF
3947   *
3948   *            . . ETR1_RMP can be one of the following values
3949   *            @arg @ref LL_TIM_TIM2_ETR_RMP_GPIO
3950   *            @arg @ref LL_TIM_TIM2_ETR_RMP_LSE
3951   *
3952   *            TI4_RMP can be one of the following values
3953   *            @arg @ref LL_TIM_TIM2_TI4_RMP_GPIO
3954   *            @arg @ref LL_TIM_TIM2_TI4_RMP_COMP1
3955   *            @arg @ref LL_TIM_TIM2_TI4_RMP_COMP2
3956   *            @arg @ref LL_TIM_TIM2_TI4_RMP_COMP1_COMP2
3957   *
3958   *         TIM3: one of the following values
3959   *
3960   *            @arg @ref LL_TIM_TIM3_TI1_RMP_GPIO
3961   *            @arg @ref LL_TIM_TIM3_TI1_RMP_COMP1
3962   *            @arg @ref LL_TIM_TIM3_TI1_RMP_COMP2
3963   *            @arg @ref LL_TIM_TIM3_TI1_RMP_COMP1_COMP2
3964   *
3965   *         TIM8: one of the following values
3966   *
3967   *            @arg @ref LL_TIM_TIM8_TI1_RMP_GPIO
3968   *            @arg @ref LL_TIM_TIM8_TI1_RMP_COMP2
3969   *
3970   *         TIM15: any combination of TI1_RMP, ENCODER_MODE where
3971   *
3972   *            . . TI1_RMP can be one of the following values
3973   *            @arg @ref LL_TIM_TIM15_TI1_RMP_GPIO
3974   *            @arg @ref LL_TIM_TIM15_TI1_RMP_LSE
3975   *
3976   *            . . ENCODER_MODE can be one of the following values
3977   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_NOREDIRECTION
3978   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_TIM2
3979   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_TIM3
3980   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_TIM4
3981   *
3982   *         TIM16: one of the following values
3983   *
3984   *            @arg @ref LL_TIM_TIM16_TI1_RMP_GPIO
3985   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSI
3986   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSE
3987   *            @arg @ref LL_TIM_TIM16_TI1_RMP_RTC
3988   *
3989   *         TIM17: one of the following values
3990   *
3991   *            @arg @ref LL_TIM_TIM17_TI1_RMP_GPIO
3992   *            @arg @ref LL_TIM_TIM17_TI1_RMP_MSI
3993   *            @arg @ref LL_TIM_TIM17_TI1_RMP_HSE_32
3994   *            @arg @ref LL_TIM_TIM17_TI1_RMP_MCO
3995   * @retval None
3996   */
LL_TIM_SetRemap(TIM_TypeDef * TIMx,uint32_t Remap)3997 __STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
3998 {
3999   MODIFY_REG(TIMx->OR1, (Remap >> TIMx_OR1_RMP_SHIFT), (Remap & TIMx_OR1_RMP_MASK));
4000 }
4001 
4002 /**
4003   * @}
4004   */
4005 
4006 /** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
4007   * @{
4008   */
4009 /**
4010   * @brief  Clear the update interrupt flag (UIF).
4011   * @rmtoll SR           UIF           LL_TIM_ClearFlag_UPDATE
4012   * @param  TIMx Timer instance
4013   * @retval None
4014   */
LL_TIM_ClearFlag_UPDATE(TIM_TypeDef * TIMx)4015 __STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
4016 {
4017   WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
4018 }
4019 
4020 /**
4021   * @brief  Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
4022   * @rmtoll SR           UIF           LL_TIM_IsActiveFlag_UPDATE
4023   * @param  TIMx Timer instance
4024   * @retval State of bit (1 or 0).
4025   */
LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef * TIMx)4026 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef *TIMx)
4027 {
4028   return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
4029 }
4030 
4031 /**
4032   * @brief  Clear the Capture/Compare 1 interrupt flag (CC1F).
4033   * @rmtoll SR           CC1IF         LL_TIM_ClearFlag_CC1
4034   * @param  TIMx Timer instance
4035   * @retval None
4036   */
LL_TIM_ClearFlag_CC1(TIM_TypeDef * TIMx)4037 __STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
4038 {
4039   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
4040 }
4041 
4042 /**
4043   * @brief  Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
4044   * @rmtoll SR           CC1IF         LL_TIM_IsActiveFlag_CC1
4045   * @param  TIMx Timer instance
4046   * @retval State of bit (1 or 0).
4047   */
LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef * TIMx)4048 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef *TIMx)
4049 {
4050   return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
4051 }
4052 
4053 /**
4054   * @brief  Clear the Capture/Compare 2 interrupt flag (CC2F).
4055   * @rmtoll SR           CC2IF         LL_TIM_ClearFlag_CC2
4056   * @param  TIMx Timer instance
4057   * @retval None
4058   */
LL_TIM_ClearFlag_CC2(TIM_TypeDef * TIMx)4059 __STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
4060 {
4061   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
4062 }
4063 
4064 /**
4065   * @brief  Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
4066   * @rmtoll SR           CC2IF         LL_TIM_IsActiveFlag_CC2
4067   * @param  TIMx Timer instance
4068   * @retval State of bit (1 or 0).
4069   */
LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef * TIMx)4070 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef *TIMx)
4071 {
4072   return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
4073 }
4074 
4075 /**
4076   * @brief  Clear the Capture/Compare 3 interrupt flag (CC3F).
4077   * @rmtoll SR           CC3IF         LL_TIM_ClearFlag_CC3
4078   * @param  TIMx Timer instance
4079   * @retval None
4080   */
LL_TIM_ClearFlag_CC3(TIM_TypeDef * TIMx)4081 __STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
4082 {
4083   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
4084 }
4085 
4086 /**
4087   * @brief  Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
4088   * @rmtoll SR           CC3IF         LL_TIM_IsActiveFlag_CC3
4089   * @param  TIMx Timer instance
4090   * @retval State of bit (1 or 0).
4091   */
LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef * TIMx)4092 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef *TIMx)
4093 {
4094   return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
4095 }
4096 
4097 /**
4098   * @brief  Clear the Capture/Compare 4 interrupt flag (CC4F).
4099   * @rmtoll SR           CC4IF         LL_TIM_ClearFlag_CC4
4100   * @param  TIMx Timer instance
4101   * @retval None
4102   */
LL_TIM_ClearFlag_CC4(TIM_TypeDef * TIMx)4103 __STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
4104 {
4105   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
4106 }
4107 
4108 /**
4109   * @brief  Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
4110   * @rmtoll SR           CC4IF         LL_TIM_IsActiveFlag_CC4
4111   * @param  TIMx Timer instance
4112   * @retval State of bit (1 or 0).
4113   */
LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef * TIMx)4114 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef *TIMx)
4115 {
4116   return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
4117 }
4118 
4119 /**
4120   * @brief  Clear the Capture/Compare 5 interrupt flag (CC5F).
4121   * @rmtoll SR           CC5IF         LL_TIM_ClearFlag_CC5
4122   * @param  TIMx Timer instance
4123   * @retval None
4124   */
LL_TIM_ClearFlag_CC5(TIM_TypeDef * TIMx)4125 __STATIC_INLINE void LL_TIM_ClearFlag_CC5(TIM_TypeDef *TIMx)
4126 {
4127   WRITE_REG(TIMx->SR, ~(TIM_SR_CC5IF));
4128 }
4129 
4130 /**
4131   * @brief  Indicate whether Capture/Compare 5 interrupt flag (CC5F) is set (Capture/Compare 5 interrupt is pending).
4132   * @rmtoll SR           CC5IF         LL_TIM_IsActiveFlag_CC5
4133   * @param  TIMx Timer instance
4134   * @retval State of bit (1 or 0).
4135   */
LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef * TIMx)4136 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef *TIMx)
4137 {
4138   return ((READ_BIT(TIMx->SR, TIM_SR_CC5IF) == (TIM_SR_CC5IF)) ? 1UL : 0UL);
4139 }
4140 
4141 /**
4142   * @brief  Clear the Capture/Compare 6 interrupt flag (CC6F).
4143   * @rmtoll SR           CC6IF         LL_TIM_ClearFlag_CC6
4144   * @param  TIMx Timer instance
4145   * @retval None
4146   */
LL_TIM_ClearFlag_CC6(TIM_TypeDef * TIMx)4147 __STATIC_INLINE void LL_TIM_ClearFlag_CC6(TIM_TypeDef *TIMx)
4148 {
4149   WRITE_REG(TIMx->SR, ~(TIM_SR_CC6IF));
4150 }
4151 
4152 /**
4153   * @brief  Indicate whether Capture/Compare 6 interrupt flag (CC6F) is set (Capture/Compare 6 interrupt is pending).
4154   * @rmtoll SR           CC6IF         LL_TIM_IsActiveFlag_CC6
4155   * @param  TIMx Timer instance
4156   * @retval State of bit (1 or 0).
4157   */
LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef * TIMx)4158 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef *TIMx)
4159 {
4160   return ((READ_BIT(TIMx->SR, TIM_SR_CC6IF) == (TIM_SR_CC6IF)) ? 1UL : 0UL);
4161 }
4162 
4163 /**
4164   * @brief  Clear the commutation interrupt flag (COMIF).
4165   * @rmtoll SR           COMIF         LL_TIM_ClearFlag_COM
4166   * @param  TIMx Timer instance
4167   * @retval None
4168   */
LL_TIM_ClearFlag_COM(TIM_TypeDef * TIMx)4169 __STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
4170 {
4171   WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
4172 }
4173 
4174 /**
4175   * @brief  Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
4176   * @rmtoll SR           COMIF         LL_TIM_IsActiveFlag_COM
4177   * @param  TIMx Timer instance
4178   * @retval State of bit (1 or 0).
4179   */
LL_TIM_IsActiveFlag_COM(const TIM_TypeDef * TIMx)4180 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(const TIM_TypeDef *TIMx)
4181 {
4182   return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
4183 }
4184 
4185 /**
4186   * @brief  Clear the trigger interrupt flag (TIF).
4187   * @rmtoll SR           TIF           LL_TIM_ClearFlag_TRIG
4188   * @param  TIMx Timer instance
4189   * @retval None
4190   */
LL_TIM_ClearFlag_TRIG(TIM_TypeDef * TIMx)4191 __STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
4192 {
4193   WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
4194 }
4195 
4196 /**
4197   * @brief  Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
4198   * @rmtoll SR           TIF           LL_TIM_IsActiveFlag_TRIG
4199   * @param  TIMx Timer instance
4200   * @retval State of bit (1 or 0).
4201   */
LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef * TIMx)4202 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef *TIMx)
4203 {
4204   return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
4205 }
4206 
4207 /**
4208   * @brief  Clear the break interrupt flag (BIF).
4209   * @rmtoll SR           BIF           LL_TIM_ClearFlag_BRK
4210   * @param  TIMx Timer instance
4211   * @retval None
4212   */
LL_TIM_ClearFlag_BRK(TIM_TypeDef * TIMx)4213 __STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
4214 {
4215   WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
4216 }
4217 
4218 /**
4219   * @brief  Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
4220   * @rmtoll SR           BIF           LL_TIM_IsActiveFlag_BRK
4221   * @param  TIMx Timer instance
4222   * @retval State of bit (1 or 0).
4223   */
LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef * TIMx)4224 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef *TIMx)
4225 {
4226   return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
4227 }
4228 
4229 /**
4230   * @brief  Clear the break 2 interrupt flag (B2IF).
4231   * @rmtoll SR           B2IF          LL_TIM_ClearFlag_BRK2
4232   * @param  TIMx Timer instance
4233   * @retval None
4234   */
LL_TIM_ClearFlag_BRK2(TIM_TypeDef * TIMx)4235 __STATIC_INLINE void LL_TIM_ClearFlag_BRK2(TIM_TypeDef *TIMx)
4236 {
4237   WRITE_REG(TIMx->SR, ~(TIM_SR_B2IF));
4238 }
4239 
4240 /**
4241   * @brief  Indicate whether break 2 interrupt flag (B2IF) is set (break 2 interrupt is pending).
4242   * @rmtoll SR           B2IF          LL_TIM_IsActiveFlag_BRK2
4243   * @param  TIMx Timer instance
4244   * @retval State of bit (1 or 0).
4245   */
LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef * TIMx)4246 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef *TIMx)
4247 {
4248   return ((READ_BIT(TIMx->SR, TIM_SR_B2IF) == (TIM_SR_B2IF)) ? 1UL : 0UL);
4249 }
4250 
4251 /**
4252   * @brief  Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
4253   * @rmtoll SR           CC1OF         LL_TIM_ClearFlag_CC1OVR
4254   * @param  TIMx Timer instance
4255   * @retval None
4256   */
LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef * TIMx)4257 __STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
4258 {
4259   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
4260 }
4261 
4262 /**
4263   * @brief  Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set
4264   *         (Capture/Compare 1 interrupt is pending).
4265   * @rmtoll SR           CC1OF         LL_TIM_IsActiveFlag_CC1OVR
4266   * @param  TIMx Timer instance
4267   * @retval State of bit (1 or 0).
4268   */
LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef * TIMx)4269 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef *TIMx)
4270 {
4271   return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
4272 }
4273 
4274 /**
4275   * @brief  Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
4276   * @rmtoll SR           CC2OF         LL_TIM_ClearFlag_CC2OVR
4277   * @param  TIMx Timer instance
4278   * @retval None
4279   */
LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef * TIMx)4280 __STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
4281 {
4282   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
4283 }
4284 
4285 /**
4286   * @brief  Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set
4287   *         (Capture/Compare 2 over-capture interrupt is pending).
4288   * @rmtoll SR           CC2OF         LL_TIM_IsActiveFlag_CC2OVR
4289   * @param  TIMx Timer instance
4290   * @retval State of bit (1 or 0).
4291   */
LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef * TIMx)4292 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef *TIMx)
4293 {
4294   return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
4295 }
4296 
4297 /**
4298   * @brief  Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
4299   * @rmtoll SR           CC3OF         LL_TIM_ClearFlag_CC3OVR
4300   * @param  TIMx Timer instance
4301   * @retval None
4302   */
LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef * TIMx)4303 __STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
4304 {
4305   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
4306 }
4307 
4308 /**
4309   * @brief  Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set
4310   *         (Capture/Compare 3 over-capture interrupt is pending).
4311   * @rmtoll SR           CC3OF         LL_TIM_IsActiveFlag_CC3OVR
4312   * @param  TIMx Timer instance
4313   * @retval State of bit (1 or 0).
4314   */
LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef * TIMx)4315 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef *TIMx)
4316 {
4317   return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
4318 }
4319 
4320 /**
4321   * @brief  Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
4322   * @rmtoll SR           CC4OF         LL_TIM_ClearFlag_CC4OVR
4323   * @param  TIMx Timer instance
4324   * @retval None
4325   */
LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef * TIMx)4326 __STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
4327 {
4328   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
4329 }
4330 
4331 /**
4332   * @brief  Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set
4333   *         (Capture/Compare 4 over-capture interrupt is pending).
4334   * @rmtoll SR           CC4OF         LL_TIM_IsActiveFlag_CC4OVR
4335   * @param  TIMx Timer instance
4336   * @retval State of bit (1 or 0).
4337   */
LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef * TIMx)4338 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef *TIMx)
4339 {
4340   return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
4341 }
4342 
4343 /**
4344   * @brief  Clear the system break interrupt flag (SBIF).
4345   * @rmtoll SR           SBIF          LL_TIM_ClearFlag_SYSBRK
4346   * @param  TIMx Timer instance
4347   * @retval None
4348   */
LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef * TIMx)4349 __STATIC_INLINE void LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef *TIMx)
4350 {
4351   WRITE_REG(TIMx->SR, ~(TIM_SR_SBIF));
4352 }
4353 
4354 /**
4355   * @brief  Indicate whether system break interrupt flag (SBIF) is set (system break interrupt is pending).
4356   * @rmtoll SR           SBIF          LL_TIM_IsActiveFlag_SYSBRK
4357   * @param  TIMx Timer instance
4358   * @retval State of bit (1 or 0).
4359   */
LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef * TIMx)4360 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef *TIMx)
4361 {
4362   return ((READ_BIT(TIMx->SR, TIM_SR_SBIF) == (TIM_SR_SBIF)) ? 1UL : 0UL);
4363 }
4364 
4365 /**
4366   * @}
4367   */
4368 
4369 /** @defgroup TIM_LL_EF_IT_Management IT-Management
4370   * @{
4371   */
4372 /**
4373   * @brief  Enable update interrupt (UIE).
4374   * @rmtoll DIER         UIE           LL_TIM_EnableIT_UPDATE
4375   * @param  TIMx Timer instance
4376   * @retval None
4377   */
LL_TIM_EnableIT_UPDATE(TIM_TypeDef * TIMx)4378 __STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
4379 {
4380   SET_BIT(TIMx->DIER, TIM_DIER_UIE);
4381 }
4382 
4383 /**
4384   * @brief  Disable update interrupt (UIE).
4385   * @rmtoll DIER         UIE           LL_TIM_DisableIT_UPDATE
4386   * @param  TIMx Timer instance
4387   * @retval None
4388   */
LL_TIM_DisableIT_UPDATE(TIM_TypeDef * TIMx)4389 __STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
4390 {
4391   CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
4392 }
4393 
4394 /**
4395   * @brief  Indicates whether the update interrupt (UIE) is enabled.
4396   * @rmtoll DIER         UIE           LL_TIM_IsEnabledIT_UPDATE
4397   * @param  TIMx Timer instance
4398   * @retval State of bit (1 or 0).
4399   */
LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef * TIMx)4400 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef *TIMx)
4401 {
4402   return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
4403 }
4404 
4405 /**
4406   * @brief  Enable capture/compare 1 interrupt (CC1IE).
4407   * @rmtoll DIER         CC1IE         LL_TIM_EnableIT_CC1
4408   * @param  TIMx Timer instance
4409   * @retval None
4410   */
LL_TIM_EnableIT_CC1(TIM_TypeDef * TIMx)4411 __STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
4412 {
4413   SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4414 }
4415 
4416 /**
4417   * @brief  Disable capture/compare 1  interrupt (CC1IE).
4418   * @rmtoll DIER         CC1IE         LL_TIM_DisableIT_CC1
4419   * @param  TIMx Timer instance
4420   * @retval None
4421   */
LL_TIM_DisableIT_CC1(TIM_TypeDef * TIMx)4422 __STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
4423 {
4424   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4425 }
4426 
4427 /**
4428   * @brief  Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
4429   * @rmtoll DIER         CC1IE         LL_TIM_IsEnabledIT_CC1
4430   * @param  TIMx Timer instance
4431   * @retval State of bit (1 or 0).
4432   */
LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef * TIMx)4433 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef *TIMx)
4434 {
4435   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
4436 }
4437 
4438 /**
4439   * @brief  Enable capture/compare 2 interrupt (CC2IE).
4440   * @rmtoll DIER         CC2IE         LL_TIM_EnableIT_CC2
4441   * @param  TIMx Timer instance
4442   * @retval None
4443   */
LL_TIM_EnableIT_CC2(TIM_TypeDef * TIMx)4444 __STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
4445 {
4446   SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4447 }
4448 
4449 /**
4450   * @brief  Disable capture/compare 2  interrupt (CC2IE).
4451   * @rmtoll DIER         CC2IE         LL_TIM_DisableIT_CC2
4452   * @param  TIMx Timer instance
4453   * @retval None
4454   */
LL_TIM_DisableIT_CC2(TIM_TypeDef * TIMx)4455 __STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
4456 {
4457   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4458 }
4459 
4460 /**
4461   * @brief  Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
4462   * @rmtoll DIER         CC2IE         LL_TIM_IsEnabledIT_CC2
4463   * @param  TIMx Timer instance
4464   * @retval State of bit (1 or 0).
4465   */
LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef * TIMx)4466 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef *TIMx)
4467 {
4468   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
4469 }
4470 
4471 /**
4472   * @brief  Enable capture/compare 3 interrupt (CC3IE).
4473   * @rmtoll DIER         CC3IE         LL_TIM_EnableIT_CC3
4474   * @param  TIMx Timer instance
4475   * @retval None
4476   */
LL_TIM_EnableIT_CC3(TIM_TypeDef * TIMx)4477 __STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
4478 {
4479   SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4480 }
4481 
4482 /**
4483   * @brief  Disable capture/compare 3  interrupt (CC3IE).
4484   * @rmtoll DIER         CC3IE         LL_TIM_DisableIT_CC3
4485   * @param  TIMx Timer instance
4486   * @retval None
4487   */
LL_TIM_DisableIT_CC3(TIM_TypeDef * TIMx)4488 __STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
4489 {
4490   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4491 }
4492 
4493 /**
4494   * @brief  Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
4495   * @rmtoll DIER         CC3IE         LL_TIM_IsEnabledIT_CC3
4496   * @param  TIMx Timer instance
4497   * @retval State of bit (1 or 0).
4498   */
LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef * TIMx)4499 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef *TIMx)
4500 {
4501   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
4502 }
4503 
4504 /**
4505   * @brief  Enable capture/compare 4 interrupt (CC4IE).
4506   * @rmtoll DIER         CC4IE         LL_TIM_EnableIT_CC4
4507   * @param  TIMx Timer instance
4508   * @retval None
4509   */
LL_TIM_EnableIT_CC4(TIM_TypeDef * TIMx)4510 __STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
4511 {
4512   SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4513 }
4514 
4515 /**
4516   * @brief  Disable capture/compare 4  interrupt (CC4IE).
4517   * @rmtoll DIER         CC4IE         LL_TIM_DisableIT_CC4
4518   * @param  TIMx Timer instance
4519   * @retval None
4520   */
LL_TIM_DisableIT_CC4(TIM_TypeDef * TIMx)4521 __STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
4522 {
4523   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4524 }
4525 
4526 /**
4527   * @brief  Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
4528   * @rmtoll DIER         CC4IE         LL_TIM_IsEnabledIT_CC4
4529   * @param  TIMx Timer instance
4530   * @retval State of bit (1 or 0).
4531   */
LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef * TIMx)4532 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef *TIMx)
4533 {
4534   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
4535 }
4536 
4537 /**
4538   * @brief  Enable commutation interrupt (COMIE).
4539   * @rmtoll DIER         COMIE         LL_TIM_EnableIT_COM
4540   * @param  TIMx Timer instance
4541   * @retval None
4542   */
LL_TIM_EnableIT_COM(TIM_TypeDef * TIMx)4543 __STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
4544 {
4545   SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
4546 }
4547 
4548 /**
4549   * @brief  Disable commutation interrupt (COMIE).
4550   * @rmtoll DIER         COMIE         LL_TIM_DisableIT_COM
4551   * @param  TIMx Timer instance
4552   * @retval None
4553   */
LL_TIM_DisableIT_COM(TIM_TypeDef * TIMx)4554 __STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
4555 {
4556   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
4557 }
4558 
4559 /**
4560   * @brief  Indicates whether the commutation interrupt (COMIE) is enabled.
4561   * @rmtoll DIER         COMIE         LL_TIM_IsEnabledIT_COM
4562   * @param  TIMx Timer instance
4563   * @retval State of bit (1 or 0).
4564   */
LL_TIM_IsEnabledIT_COM(const TIM_TypeDef * TIMx)4565 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(const TIM_TypeDef *TIMx)
4566 {
4567   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
4568 }
4569 
4570 /**
4571   * @brief  Enable trigger interrupt (TIE).
4572   * @rmtoll DIER         TIE           LL_TIM_EnableIT_TRIG
4573   * @param  TIMx Timer instance
4574   * @retval None
4575   */
LL_TIM_EnableIT_TRIG(TIM_TypeDef * TIMx)4576 __STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
4577 {
4578   SET_BIT(TIMx->DIER, TIM_DIER_TIE);
4579 }
4580 
4581 /**
4582   * @brief  Disable trigger interrupt (TIE).
4583   * @rmtoll DIER         TIE           LL_TIM_DisableIT_TRIG
4584   * @param  TIMx Timer instance
4585   * @retval None
4586   */
LL_TIM_DisableIT_TRIG(TIM_TypeDef * TIMx)4587 __STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
4588 {
4589   CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
4590 }
4591 
4592 /**
4593   * @brief  Indicates whether the trigger interrupt (TIE) is enabled.
4594   * @rmtoll DIER         TIE           LL_TIM_IsEnabledIT_TRIG
4595   * @param  TIMx Timer instance
4596   * @retval State of bit (1 or 0).
4597   */
LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef * TIMx)4598 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef *TIMx)
4599 {
4600   return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
4601 }
4602 
4603 /**
4604   * @brief  Enable break interrupt (BIE).
4605   * @rmtoll DIER         BIE           LL_TIM_EnableIT_BRK
4606   * @param  TIMx Timer instance
4607   * @retval None
4608   */
LL_TIM_EnableIT_BRK(TIM_TypeDef * TIMx)4609 __STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
4610 {
4611   SET_BIT(TIMx->DIER, TIM_DIER_BIE);
4612 }
4613 
4614 /**
4615   * @brief  Disable break interrupt (BIE).
4616   * @rmtoll DIER         BIE           LL_TIM_DisableIT_BRK
4617   * @param  TIMx Timer instance
4618   * @retval None
4619   */
LL_TIM_DisableIT_BRK(TIM_TypeDef * TIMx)4620 __STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
4621 {
4622   CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
4623 }
4624 
4625 /**
4626   * @brief  Indicates whether the break interrupt (BIE) is enabled.
4627   * @rmtoll DIER         BIE           LL_TIM_IsEnabledIT_BRK
4628   * @param  TIMx Timer instance
4629   * @retval State of bit (1 or 0).
4630   */
LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef * TIMx)4631 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef *TIMx)
4632 {
4633   return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
4634 }
4635 
4636 /**
4637   * @}
4638   */
4639 
4640 /** @defgroup TIM_LL_EF_DMA_Management DMA Management
4641   * @{
4642   */
4643 /**
4644   * @brief  Enable update DMA request (UDE).
4645   * @rmtoll DIER         UDE           LL_TIM_EnableDMAReq_UPDATE
4646   * @param  TIMx Timer instance
4647   * @retval None
4648   */
LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef * TIMx)4649 __STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4650 {
4651   SET_BIT(TIMx->DIER, TIM_DIER_UDE);
4652 }
4653 
4654 /**
4655   * @brief  Disable update DMA request (UDE).
4656   * @rmtoll DIER         UDE           LL_TIM_DisableDMAReq_UPDATE
4657   * @param  TIMx Timer instance
4658   * @retval None
4659   */
LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef * TIMx)4660 __STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4661 {
4662   CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
4663 }
4664 
4665 /**
4666   * @brief  Indicates whether the update DMA request  (UDE) is enabled.
4667   * @rmtoll DIER         UDE           LL_TIM_IsEnabledDMAReq_UPDATE
4668   * @param  TIMx Timer instance
4669   * @retval State of bit (1 or 0).
4670   */
LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef * TIMx)4671 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef *TIMx)
4672 {
4673   return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
4674 }
4675 
4676 /**
4677   * @brief  Enable capture/compare 1 DMA request (CC1DE).
4678   * @rmtoll DIER         CC1DE         LL_TIM_EnableDMAReq_CC1
4679   * @param  TIMx Timer instance
4680   * @retval None
4681   */
LL_TIM_EnableDMAReq_CC1(TIM_TypeDef * TIMx)4682 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
4683 {
4684   SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4685 }
4686 
4687 /**
4688   * @brief  Disable capture/compare 1  DMA request (CC1DE).
4689   * @rmtoll DIER         CC1DE         LL_TIM_DisableDMAReq_CC1
4690   * @param  TIMx Timer instance
4691   * @retval None
4692   */
LL_TIM_DisableDMAReq_CC1(TIM_TypeDef * TIMx)4693 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
4694 {
4695   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4696 }
4697 
4698 /**
4699   * @brief  Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
4700   * @rmtoll DIER         CC1DE         LL_TIM_IsEnabledDMAReq_CC1
4701   * @param  TIMx Timer instance
4702   * @retval State of bit (1 or 0).
4703   */
LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef * TIMx)4704 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef *TIMx)
4705 {
4706   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
4707 }
4708 
4709 /**
4710   * @brief  Enable capture/compare 2 DMA request (CC2DE).
4711   * @rmtoll DIER         CC2DE         LL_TIM_EnableDMAReq_CC2
4712   * @param  TIMx Timer instance
4713   * @retval None
4714   */
LL_TIM_EnableDMAReq_CC2(TIM_TypeDef * TIMx)4715 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
4716 {
4717   SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4718 }
4719 
4720 /**
4721   * @brief  Disable capture/compare 2  DMA request (CC2DE).
4722   * @rmtoll DIER         CC2DE         LL_TIM_DisableDMAReq_CC2
4723   * @param  TIMx Timer instance
4724   * @retval None
4725   */
LL_TIM_DisableDMAReq_CC2(TIM_TypeDef * TIMx)4726 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
4727 {
4728   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4729 }
4730 
4731 /**
4732   * @brief  Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
4733   * @rmtoll DIER         CC2DE         LL_TIM_IsEnabledDMAReq_CC2
4734   * @param  TIMx Timer instance
4735   * @retval State of bit (1 or 0).
4736   */
LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef * TIMx)4737 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef *TIMx)
4738 {
4739   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
4740 }
4741 
4742 /**
4743   * @brief  Enable capture/compare 3 DMA request (CC3DE).
4744   * @rmtoll DIER         CC3DE         LL_TIM_EnableDMAReq_CC3
4745   * @param  TIMx Timer instance
4746   * @retval None
4747   */
LL_TIM_EnableDMAReq_CC3(TIM_TypeDef * TIMx)4748 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
4749 {
4750   SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
4751 }
4752 
4753 /**
4754   * @brief  Disable capture/compare 3  DMA request (CC3DE).
4755   * @rmtoll DIER         CC3DE         LL_TIM_DisableDMAReq_CC3
4756   * @param  TIMx Timer instance
4757   * @retval None
4758   */
LL_TIM_DisableDMAReq_CC3(TIM_TypeDef * TIMx)4759 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
4760 {
4761   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
4762 }
4763 
4764 /**
4765   * @brief  Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
4766   * @rmtoll DIER         CC3DE         LL_TIM_IsEnabledDMAReq_CC3
4767   * @param  TIMx Timer instance
4768   * @retval State of bit (1 or 0).
4769   */
LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef * TIMx)4770 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef *TIMx)
4771 {
4772   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
4773 }
4774 
4775 /**
4776   * @brief  Enable capture/compare 4 DMA request (CC4DE).
4777   * @rmtoll DIER         CC4DE         LL_TIM_EnableDMAReq_CC4
4778   * @param  TIMx Timer instance
4779   * @retval None
4780   */
LL_TIM_EnableDMAReq_CC4(TIM_TypeDef * TIMx)4781 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
4782 {
4783   SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
4784 }
4785 
4786 /**
4787   * @brief  Disable capture/compare 4  DMA request (CC4DE).
4788   * @rmtoll DIER         CC4DE         LL_TIM_DisableDMAReq_CC4
4789   * @param  TIMx Timer instance
4790   * @retval None
4791   */
LL_TIM_DisableDMAReq_CC4(TIM_TypeDef * TIMx)4792 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
4793 {
4794   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
4795 }
4796 
4797 /**
4798   * @brief  Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
4799   * @rmtoll DIER         CC4DE         LL_TIM_IsEnabledDMAReq_CC4
4800   * @param  TIMx Timer instance
4801   * @retval State of bit (1 or 0).
4802   */
LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef * TIMx)4803 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef *TIMx)
4804 {
4805   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
4806 }
4807 
4808 /**
4809   * @brief  Enable commutation DMA request (COMDE).
4810   * @rmtoll DIER         COMDE         LL_TIM_EnableDMAReq_COM
4811   * @param  TIMx Timer instance
4812   * @retval None
4813   */
LL_TIM_EnableDMAReq_COM(TIM_TypeDef * TIMx)4814 __STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
4815 {
4816   SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
4817 }
4818 
4819 /**
4820   * @brief  Disable commutation DMA request (COMDE).
4821   * @rmtoll DIER         COMDE         LL_TIM_DisableDMAReq_COM
4822   * @param  TIMx Timer instance
4823   * @retval None
4824   */
LL_TIM_DisableDMAReq_COM(TIM_TypeDef * TIMx)4825 __STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
4826 {
4827   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
4828 }
4829 
4830 /**
4831   * @brief  Indicates whether the commutation DMA request (COMDE) is enabled.
4832   * @rmtoll DIER         COMDE         LL_TIM_IsEnabledDMAReq_COM
4833   * @param  TIMx Timer instance
4834   * @retval State of bit (1 or 0).
4835   */
LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef * TIMx)4836 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef *TIMx)
4837 {
4838   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
4839 }
4840 
4841 /**
4842   * @brief  Enable trigger interrupt (TDE).
4843   * @rmtoll DIER         TDE           LL_TIM_EnableDMAReq_TRIG
4844   * @param  TIMx Timer instance
4845   * @retval None
4846   */
LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef * TIMx)4847 __STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
4848 {
4849   SET_BIT(TIMx->DIER, TIM_DIER_TDE);
4850 }
4851 
4852 /**
4853   * @brief  Disable trigger interrupt (TDE).
4854   * @rmtoll DIER         TDE           LL_TIM_DisableDMAReq_TRIG
4855   * @param  TIMx Timer instance
4856   * @retval None
4857   */
LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef * TIMx)4858 __STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
4859 {
4860   CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
4861 }
4862 
4863 /**
4864   * @brief  Indicates whether the trigger interrupt (TDE) is enabled.
4865   * @rmtoll DIER         TDE           LL_TIM_IsEnabledDMAReq_TRIG
4866   * @param  TIMx Timer instance
4867   * @retval State of bit (1 or 0).
4868   */
LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef * TIMx)4869 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef *TIMx)
4870 {
4871   return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
4872 }
4873 
4874 /**
4875   * @}
4876   */
4877 
4878 /** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
4879   * @{
4880   */
4881 /**
4882   * @brief  Generate an update event.
4883   * @rmtoll EGR          UG            LL_TIM_GenerateEvent_UPDATE
4884   * @param  TIMx Timer instance
4885   * @retval None
4886   */
LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef * TIMx)4887 __STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
4888 {
4889   SET_BIT(TIMx->EGR, TIM_EGR_UG);
4890 }
4891 
4892 /**
4893   * @brief  Generate Capture/Compare 1 event.
4894   * @rmtoll EGR          CC1G          LL_TIM_GenerateEvent_CC1
4895   * @param  TIMx Timer instance
4896   * @retval None
4897   */
LL_TIM_GenerateEvent_CC1(TIM_TypeDef * TIMx)4898 __STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
4899 {
4900   SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
4901 }
4902 
4903 /**
4904   * @brief  Generate Capture/Compare 2 event.
4905   * @rmtoll EGR          CC2G          LL_TIM_GenerateEvent_CC2
4906   * @param  TIMx Timer instance
4907   * @retval None
4908   */
LL_TIM_GenerateEvent_CC2(TIM_TypeDef * TIMx)4909 __STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
4910 {
4911   SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
4912 }
4913 
4914 /**
4915   * @brief  Generate Capture/Compare 3 event.
4916   * @rmtoll EGR          CC3G          LL_TIM_GenerateEvent_CC3
4917   * @param  TIMx Timer instance
4918   * @retval None
4919   */
LL_TIM_GenerateEvent_CC3(TIM_TypeDef * TIMx)4920 __STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
4921 {
4922   SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
4923 }
4924 
4925 /**
4926   * @brief  Generate Capture/Compare 4 event.
4927   * @rmtoll EGR          CC4G          LL_TIM_GenerateEvent_CC4
4928   * @param  TIMx Timer instance
4929   * @retval None
4930   */
LL_TIM_GenerateEvent_CC4(TIM_TypeDef * TIMx)4931 __STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
4932 {
4933   SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
4934 }
4935 
4936 /**
4937   * @brief  Generate commutation event.
4938   * @rmtoll EGR          COMG          LL_TIM_GenerateEvent_COM
4939   * @param  TIMx Timer instance
4940   * @retval None
4941   */
LL_TIM_GenerateEvent_COM(TIM_TypeDef * TIMx)4942 __STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
4943 {
4944   SET_BIT(TIMx->EGR, TIM_EGR_COMG);
4945 }
4946 
4947 /**
4948   * @brief  Generate trigger event.
4949   * @rmtoll EGR          TG            LL_TIM_GenerateEvent_TRIG
4950   * @param  TIMx Timer instance
4951   * @retval None
4952   */
LL_TIM_GenerateEvent_TRIG(TIM_TypeDef * TIMx)4953 __STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
4954 {
4955   SET_BIT(TIMx->EGR, TIM_EGR_TG);
4956 }
4957 
4958 /**
4959   * @brief  Generate break event.
4960   * @rmtoll EGR          BG            LL_TIM_GenerateEvent_BRK
4961   * @param  TIMx Timer instance
4962   * @retval None
4963   */
LL_TIM_GenerateEvent_BRK(TIM_TypeDef * TIMx)4964 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
4965 {
4966   SET_BIT(TIMx->EGR, TIM_EGR_BG);
4967 }
4968 
4969 /**
4970   * @brief  Generate break 2 event.
4971   * @rmtoll EGR          B2G           LL_TIM_GenerateEvent_BRK2
4972   * @param  TIMx Timer instance
4973   * @retval None
4974   */
LL_TIM_GenerateEvent_BRK2(TIM_TypeDef * TIMx)4975 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK2(TIM_TypeDef *TIMx)
4976 {
4977   SET_BIT(TIMx->EGR, TIM_EGR_B2G);
4978 }
4979 
4980 /**
4981   * @}
4982   */
4983 
4984 #if defined(USE_FULL_LL_DRIVER)
4985 /** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
4986   * @{
4987   */
4988 
4989 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx);
4990 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
4991 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct);
4992 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
4993 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
4994 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
4995 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
4996 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
4997 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
4998 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
4999 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
5000 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
5001 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
5002 /**
5003   * @}
5004   */
5005 #endif /* USE_FULL_LL_DRIVER */
5006 
5007 /**
5008   * @}
5009   */
5010 
5011 /**
5012   * @}
5013   */
5014 
5015 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM15 || TIM16 || TIM17 */
5016 
5017 /**
5018   * @}
5019   */
5020 
5021 #ifdef __cplusplus
5022 }
5023 #endif
5024 
5025 #endif /* __STM32L5xx_LL_TIM_H */
5026