1 /**
2   ******************************************************************************
3   * @file    stm32l4xx_hal_hash.c
4   * @author  MCD Application Team
5   * @brief   HASH HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the HASH peripheral:
8   *           + Initialization and de-initialization methods
9   *           + HASH or HMAC processing in polling mode
10   *           + HASH or HMAC processing in interrupt mode
11   *           + HASH or HMAC processing in DMA mode
12   *           + Peripheral State methods
13   *           + HASH or HMAC processing suspension/resumption
14   *
15   ******************************************************************************
16   * @attention
17   *
18   * Copyright (c) 2017 STMicroelectronics.
19   * All rights reserved.
20   *
21   * This software is licensed under terms that can be found in the LICENSE file
22   * in the root directory of this software component.
23   * If no LICENSE file comes with this software, it is provided AS-IS.
24   *
25   ******************************************************************************
26   @verbatim
27  ===============================================================================
28                      ##### How to use this driver #####
29  ===============================================================================
30     [..]
31     The HASH HAL driver can be used as follows:
32 
33     (#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit():
34         (##) Enable the HASH interface clock using __HASH_CLK_ENABLE()
35         (##) When resorting to interrupt-based APIs (e.g. HAL_HASH_xxx_Start_IT())
36             (+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority()
37             (+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ()
38             (+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() API
39         (##) When resorting to DMA-based APIs  (e.g. HAL_HASH_xxx_Start_DMA())
40             (+++) Enable the DMAx interface clock using
41                    __DMAx_CLK_ENABLE()
42             (+++) Configure and enable one DMA channel to manage data transfer from
43                 memory to peripheral (input channel). Managing data transfer from
44                 peripheral to memory can be performed only using CPU.
45             (+++) Associate the initialized DMA handle to the HASH DMA handle
46                 using  __HAL_LINKDMA()
47             (+++) Configure the priority and enable the NVIC for the transfer complete
48                 interrupt on the DMA channel: use
49                  HAL_NVIC_SetPriority() and
50                  HAL_NVIC_EnableIRQ()
51 
52     (#)Initialize the HASH HAL using HAL_HASH_Init(). This function:
53         (##) resorts to HAL_HASH_MspInit() for low-level initialization,
54         (##) configures the data type: 1-bit, 8-bit, 16-bit or 32-bit.
55 
56     (#)Three processing schemes are available:
57         (##) Polling mode: processing APIs are blocking functions
58              i.e. they process the data and wait till the digest computation is finished,
59              e.g. HAL_HASH_xxx_Start() for HASH or HAL_HMAC_xxx_Start() for HMAC
60         (##) Interrupt mode: processing APIs are not blocking functions
61                 i.e. they process the data under interrupt,
62                 e.g. HAL_HASH_xxx_Start_IT() for HASH or HAL_HMAC_xxx_Start_IT() for HMAC
63         (##) DMA mode: processing APIs are not blocking functions and the CPU is
64              not used for data transfer i.e. the data transfer is ensured by DMA,
65                 e.g. HAL_HASH_xxx_Start_DMA() for HASH or HAL_HMAC_xxx_Start_DMA()
66                 for HMAC. Note that in DMA mode, a call to HAL_HASH_xxx_Finish()
67                 is then required to retrieve the digest.
68 
69     (#)When the processing function is called after HAL_HASH_Init(), the HASH peripheral is
70        initialized and processes the buffer fed in input. When the input data have all been
71        fed to the Peripheral, the digest computation can start.
72 
73     (#)Multi-buffer processing is possible in polling, interrupt and DMA modes.
74         (##) In polling mode, only multi-buffer HASH processing is possible.
75              API HAL_HASH_xxx_Accumulate() must be called for each input buffer, except for the last one.
76              User must resort to HAL_HASH_xxx_Accumulate_End() to enter the last one and retrieve as
77              well the computed digest.
78 
79         (##) In interrupt mode, API HAL_HASH_xxx_Accumulate_IT() must be called for each input buffer,
80              except for the last one.
81              User must resort to HAL_HASH_xxx_Accumulate_End_IT() to enter the last one and retrieve as
82              well the computed digest.
83 
84         (##) In DMA mode, multi-buffer HASH and HMAC processing are possible.
85               (+++) HASH processing: once initialization is done, MDMAT bit must be set
86                through __HAL_HASH_SET_MDMAT() macro.
87              From that point, each buffer can be fed to the Peripheral through HAL_HASH_xxx_Start_DMA() API.
88              Before entering the last buffer, reset the MDMAT bit with __HAL_HASH_RESET_MDMAT()
89              macro then wrap-up the HASH processing in feeding the last input buffer through the
90              same API HAL_HASH_xxx_Start_DMA(). The digest can then be retrieved with a call to
91              API HAL_HASH_xxx_Finish().
92              (+++) HMAC processing (requires to resort to extended functions):
93              after initialization, the key and the first input buffer are entered
94              in the Peripheral with the API HAL_HMACEx_xxx_Step1_2_DMA(). This carries out HMAC step 1 and
95              starts step 2.
96              The following buffers are next entered with the API  HAL_HMACEx_xxx_Step2_DMA(). At this
97              point, the HMAC processing is still carrying out step 2.
98              Then, step 2 for the last input buffer and step 3 are carried out by a single call
99              to HAL_HMACEx_xxx_Step2_3_DMA().
100 
101              The digest can finally be retrieved with a call to API HAL_HASH_xxx_Finish().
102 
103 
104     (#)Context swapping.
105         (##) Two APIs are available to suspend HASH or HMAC processing:
106              (+++) HAL_HASH_SwFeed_ProcessSuspend() when data are entered by software (polling or IT mode),
107              (+++) HAL_HASH_DMAFeed_ProcessSuspend() when data are entered by DMA.
108 
109         (##) When HASH or HMAC processing is suspended, HAL_HASH_ContextSaving() allows
110             to save in memory the Peripheral context. This context can be restored afterwards
111             to resume the HASH processing thanks to HAL_HASH_ContextRestoring().
112 
113         (##) Once the HASH Peripheral has been restored to the same configuration as that at suspension
114              time, processing can be restarted with the same API call (same API, same handle,
115              same parameters) as done before the suspension. Relevant parameters to restart at
116              the proper location are internally saved in the HASH handle.
117 
118     (#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral.
119 
120      *** Remarks on message length ***
121      ===================================
122      [..]
123       (#) HAL in interruption mode (interruptions driven)
124 
125         (##)Due to HASH peripheral hardware design, the peripheral interruption is triggered every 64 bytes.
126         This is why, for driver implementation simplicity’s sake, user is requested to enter a message the
127         length of which is a multiple of 4 bytes.
128 
129         (##) When the message length (in bytes) is not a multiple of words, a specific field exists in HASH_STR
130         to specify which bits to discard at the end of the complete message to process only the message bits
131         and not extra bits.
132 
133         (##) If user needs to perform a hash computation of a large input buffer that is spread around various places
134         in memory and where each piece of this input buffer is not necessarily a multiple of 4 bytes in size, it becomes
135         necessary to use a temporary buffer to format the data accordingly before feeding them to the Peripheral.
136         It is advised to the user to
137        (+++) achieve the first formatting operation by software then enter the data
138        (+++) while the Peripheral is processing the first input set, carry out the second formatting
139         operation by software, to be ready when DINIS occurs.
140        (+++) repeat step 2 until the whole message is processed.
141 
142      [..]
143       (#) HAL in DMA mode
144 
145         (##) Again, due to hardware design, the DMA transfer to feed the data can only be done on a word-basis.
146         The same field described above in HASH_STR is used to specify which bits to discard at the end of the
147         DMA transfer to process only the message bits and not extra bits. Due to hardware implementation,
148         this is possible only at the end of the complete message. When several DMA transfers are needed to
149         enter the message, this is not applicable at the end of the intermediary transfers.
150 
151         (##) Similarly to the interruption-driven mode, it is suggested to the user to format the consecutive
152         chunks of data by software while the DMA transfer and processing is on-going for the first parts of
153         the message. Due to the 32-bit alignment required for the DMA transfer, it is underlined that the
154         software formatting operation is more complex than in the IT mode.
155 
156      *** Callback registration ***
157      ===================================
158      [..]
159       (#) The compilation define  USE_HAL_HASH_REGISTER_CALLBACKS when set to 1
160           allows the user to configure dynamically the driver callbacks.
161           Use function HAL_HASH_RegisterCallback() to register a user callback.
162 
163       (#) Function HAL_HASH_RegisterCallback() allows to register following callbacks:
164             (+) InCpltCallback    : callback for input completion.
165             (+) DgstCpltCallback  : callback for digest computation completion.
166             (+) ErrorCallback     : callback for error.
167             (+) MspInitCallback   : HASH MspInit.
168             (+) MspDeInitCallback : HASH MspDeInit.
169           This function takes as parameters the HAL peripheral handle, the Callback ID
170           and a pointer to the user callback function.
171 
172       (#) Use function HAL_HASH_UnRegisterCallback() to reset a callback to the default
173           weak (surcharged) function.
174           HAL_HASH_UnRegisterCallback() takes as parameters the HAL peripheral handle,
175           and the Callback ID.
176           This function allows to reset following callbacks:
177             (+) InCpltCallback    : callback for input completion.
178             (+) DgstCpltCallback  : callback for digest computation completion.
179             (+) ErrorCallback     : callback for error.
180             (+) MspInitCallback   : HASH MspInit.
181             (+) MspDeInitCallback : HASH MspDeInit.
182 
183       (#) By default, after the HAL_HASH_Init and if the state is HAL_HASH_STATE_RESET
184           all callbacks are reset to the corresponding legacy weak (surcharged) functions:
185           examples HAL_HASH_InCpltCallback(), HAL_HASH_DgstCpltCallback()
186           Exception done for MspInit and MspDeInit callbacks that are respectively
187           reset to the legacy weak (surcharged) functions in the HAL_HASH_Init
188           and HAL_HASH_DeInit only when these callbacks are null (not registered beforehand)
189           If not, MspInit or MspDeInit are not null, the HAL_HASH_Init and HAL_HASH_DeInit
190           keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
191 
192           Callbacks can be registered/unregistered in READY state only.
193           Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
194           in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
195           during the Init/DeInit.
196           In that case first register the MspInit/MspDeInit user callbacks
197           using HAL_HASH_RegisterCallback before calling HAL_HASH_DeInit
198           or HAL_HASH_Init function.
199 
200           When The compilation define USE_HAL_HASH_REGISTER_CALLBACKS is set to 0 or
201           not defined, the callback registering feature is not available
202           and weak (surcharged) callbacks are used.
203 
204   @endverbatim
205   ******************************************************************************
206   */
207 
208 /* Includes ------------------------------------------------------------------*/
209 #include "stm32l4xx_hal.h"
210 
211 
212 /** @addtogroup STM32L4xx_HAL_Driver
213   * @{
214   */
215 #if defined (HASH)
216 
217 /** @defgroup HASH  HASH
218   * @brief HASH HAL module driver.
219   * @{
220   */
221 
222 #ifdef HAL_HASH_MODULE_ENABLED
223 
224 /* Private typedef -----------------------------------------------------------*/
225 /* Private define ------------------------------------------------------------*/
226 /** @defgroup HASH_Private_Constants HASH Private Constants
227   * @{
228   */
229 
230 /** @defgroup HASH_Digest_Calculation_Status HASH Digest Calculation Status
231   * @{
232   */
233 #define HASH_DIGEST_CALCULATION_NOT_STARTED       ((uint32_t)0x00000000U) /*!< DCAL not set after input data written in DIN register */
234 #define HASH_DIGEST_CALCULATION_STARTED           ((uint32_t)0x00000001U) /*!< DCAL set after input data written in DIN register     */
235 /**
236   * @}
237   */
238 
239 /** @defgroup HASH_Number_Of_CSR_Registers HASH Number of Context Swap Registers
240   * @{
241   */
242 #define HASH_NUMBER_OF_CSR_REGISTERS              54U     /*!< Number of Context Swap Registers */
243 /**
244   * @}
245   */
246 
247 /** @defgroup HASH_TimeOut_Value HASH TimeOut Value
248   * @{
249   */
250 #define HASH_TIMEOUTVALUE                         1000U   /*!< Time-out value  */
251 /**
252   * @}
253   */
254 
255 /** @defgroup HASH_DMA_Suspension_Words_Limit HASH DMA suspension words limit
256   * @{
257   */
258 #define HASH_DMA_SUSPENSION_WORDS_LIMIT             20U   /*!< Number of words below which DMA suspension is aborted */
259 /**
260   * @}
261   */
262 
263 /**
264   * @}
265   */
266 
267 /* Private macro -------------------------------------------------------------*/
268 /* Private variables ---------------------------------------------------------*/
269 /* Private function prototypes -----------------------------------------------*/
270 /** @defgroup HASH_Private_Functions HASH Private Functions
271   * @{
272   */
273 static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma);
274 static void HASH_DMAError(DMA_HandleTypeDef *hdma);
275 static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size);
276 static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
277                                                      uint32_t Timeout);
278 static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size);
279 static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash);
280 static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash);
281 static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout);
282 /**
283   * @}
284   */
285 
286 /** @defgroup HASH_Exported_Functions HASH Exported Functions
287   * @{
288   */
289 
290 /** @defgroup HASH_Exported_Functions_Group1 Initialization and de-initialization functions
291   *  @brief    Initialization, configuration and call-back functions.
292   *
293 @verbatim
294  ===============================================================================
295               ##### Initialization and de-initialization functions #####
296  ===============================================================================
297     [..]  This section provides functions allowing to:
298       (+) Initialize the HASH according to the specified parameters
299           in the HASH_InitTypeDef and create the associated handle
300       (+) DeInitialize the HASH peripheral
301       (+) Initialize the HASH MCU Specific Package (MSP)
302       (+) DeInitialize the HASH MSP
303 
304     [..]  This section provides as well call back functions definitions for user
305           code to manage:
306       (+) Input data transfer to Peripheral completion
307       (+) Calculated digest retrieval completion
308       (+) Error management
309 
310 
311 
312 @endverbatim
313   * @{
314   */
315 
316 /**
317   * @brief  Initialize the HASH according to the specified parameters in the
318             HASH_HandleTypeDef and create the associated handle.
319   * @note   Only MDMAT and DATATYPE bits of HASH Peripheral are set by HAL_HASH_Init(),
320   *         other configuration bits are set by HASH or HMAC processing APIs.
321   * @note   MDMAT bit is systematically reset by HAL_HASH_Init(). To set it for
322   *         multi-buffer HASH processing, user needs to resort to
323   *         __HAL_HASH_SET_MDMAT() macro. For HMAC multi-buffer processing, the
324   *         relevant APIs manage themselves the MDMAT bit.
325   * @param  hhash HASH handle
326   * @retval HAL status
327   */
HAL_HASH_Init(HASH_HandleTypeDef * hhash)328 HAL_StatusTypeDef HAL_HASH_Init(HASH_HandleTypeDef *hhash)
329 {
330   /* Check the hash handle allocation */
331   if (hhash == NULL)
332   {
333     return HAL_ERROR;
334   }
335 
336   /* Check the parameters */
337   assert_param(IS_HASH_DATATYPE(hhash->Init.DataType));
338 
339 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
340   if (hhash->State == HAL_HASH_STATE_RESET)
341   {
342     /* Allocate lock resource and initialize it */
343     hhash->Lock = HAL_UNLOCKED;
344 
345     /* Reset Callback pointers in HAL_HASH_STATE_RESET only */
346     hhash->InCpltCallback =  HAL_HASH_InCpltCallback;     /* Legacy weak (surcharged) input completion callback */
347     hhash->DgstCpltCallback =  HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
348                                                              completion callback */
349     hhash->ErrorCallback =  HAL_HASH_ErrorCallback;       /* Legacy weak (surcharged) error callback */
350     if (hhash->MspInitCallback == NULL)
351     {
352       hhash->MspInitCallback = HAL_HASH_MspInit;
353     }
354 
355     /* Init the low level hardware */
356     hhash->MspInitCallback(hhash);
357   }
358 #else
359   if (hhash->State == HAL_HASH_STATE_RESET)
360   {
361     /* Allocate lock resource and initialize it */
362     hhash->Lock = HAL_UNLOCKED;
363 
364     /* Init the low level hardware */
365     HAL_HASH_MspInit(hhash);
366   }
367 #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
368 
369   /* Change the HASH state */
370   hhash->State = HAL_HASH_STATE_BUSY;
371 
372   /* Reset HashInCount, HashITCounter, HashBuffSize and NbWordsAlreadyPushed */
373   hhash->HashInCount = 0;
374   hhash->HashBuffSize = 0;
375   hhash->HashITCounter = 0;
376   hhash->NbWordsAlreadyPushed = 0;
377   /* Reset digest calculation bridle (MDMAT bit control) */
378   hhash->DigestCalculationDisable = RESET;
379   /* Set phase to READY */
380   hhash->Phase = HAL_HASH_PHASE_READY;
381   /* Reset suspension request flag */
382   hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
383 
384   /* Set the data type bit */
385   MODIFY_REG(HASH->CR, HASH_CR_DATATYPE, hhash->Init.DataType);
386   /* Reset MDMAT bit */
387   __HAL_HASH_RESET_MDMAT();
388   /* Reset HASH handle status */
389   hhash->Status = HAL_OK;
390 
391   /* Set the HASH state to Ready */
392   hhash->State = HAL_HASH_STATE_READY;
393 
394   /* Initialise the error code */
395   hhash->ErrorCode = HAL_HASH_ERROR_NONE;
396 
397   /* Return function status */
398   return HAL_OK;
399 }
400 
401 /**
402   * @brief  DeInitialize the HASH peripheral.
403   * @param  hhash HASH handle.
404   * @retval HAL status
405   */
HAL_HASH_DeInit(HASH_HandleTypeDef * hhash)406 HAL_StatusTypeDef HAL_HASH_DeInit(HASH_HandleTypeDef *hhash)
407 {
408   /* Check the HASH handle allocation */
409   if (hhash == NULL)
410   {
411     return HAL_ERROR;
412   }
413 
414   /* Change the HASH state */
415   hhash->State = HAL_HASH_STATE_BUSY;
416 
417   /* Set the default HASH phase */
418   hhash->Phase = HAL_HASH_PHASE_READY;
419 
420   /* Reset HashInCount, HashITCounter and HashBuffSize */
421   hhash->HashInCount = 0;
422   hhash->HashBuffSize = 0;
423   hhash->HashITCounter = 0;
424   /* Reset digest calculation bridle (MDMAT bit control) */
425   hhash->DigestCalculationDisable = RESET;
426 
427 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
428   if (hhash->MspDeInitCallback == NULL)
429   {
430     hhash->MspDeInitCallback = HAL_HASH_MspDeInit;
431   }
432 
433   /* DeInit the low level hardware */
434   hhash->MspDeInitCallback(hhash);
435 #else
436   /* DeInit the low level hardware: CLOCK, NVIC */
437   HAL_HASH_MspDeInit(hhash);
438 #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
439 
440 
441   /* Reset HASH handle status */
442   hhash->Status = HAL_OK;
443 
444   /* Set the HASH state to Ready */
445   hhash->State = HAL_HASH_STATE_RESET;
446 
447   /* Initialise the error code */
448   hhash->ErrorCode = HAL_HASH_ERROR_NONE;
449 
450   /* Reset multi buffers accumulation flag */
451   hhash->Accumulation = 0U;
452 
453   /* Return function status */
454   return HAL_OK;
455 }
456 
457 /**
458   * @brief  Initialize the HASH MSP.
459   * @param  hhash HASH handle.
460   * @retval None
461   */
HAL_HASH_MspInit(HASH_HandleTypeDef * hhash)462 __weak void HAL_HASH_MspInit(HASH_HandleTypeDef *hhash)
463 {
464   /* Prevent unused argument(s) compilation warning */
465   UNUSED(hhash);
466 
467   /* NOTE : This function should not be modified; when the callback is needed,
468             HAL_HASH_MspInit() can be implemented in the user file.
469    */
470 }
471 
472 /**
473   * @brief  DeInitialize the HASH MSP.
474   * @param  hhash HASH handle.
475   * @retval None
476   */
HAL_HASH_MspDeInit(HASH_HandleTypeDef * hhash)477 __weak void HAL_HASH_MspDeInit(HASH_HandleTypeDef *hhash)
478 {
479   /* Prevent unused argument(s) compilation warning */
480   UNUSED(hhash);
481 
482   /* NOTE : This function should not be modified; when the callback is needed,
483             HAL_HASH_MspDeInit() can be implemented in the user file.
484    */
485 }
486 
487 /**
488   * @brief  Input data transfer complete call back.
489   * @note   HAL_HASH_InCpltCallback() is called when the complete input message
490   *         has been fed to the Peripheral. This API is invoked only when input data are
491   *         entered under interruption or through DMA.
492   * @note   In case of HASH or HMAC multi-buffer DMA feeding case (MDMAT bit set),
493   *         HAL_HASH_InCpltCallback() is called at the end of each buffer feeding
494   *         to the Peripheral.
495   * @param  hhash HASH handle.
496   * @retval None
497   */
HAL_HASH_InCpltCallback(HASH_HandleTypeDef * hhash)498 __weak void HAL_HASH_InCpltCallback(HASH_HandleTypeDef *hhash)
499 {
500   /* Prevent unused argument(s) compilation warning */
501   UNUSED(hhash);
502 
503   /* NOTE : This function should not be modified; when the callback is needed,
504             HAL_HASH_InCpltCallback() can be implemented in the user file.
505    */
506 }
507 
508 /**
509   * @brief  Digest computation complete call back.
510   * @note   HAL_HASH_DgstCpltCallback() is used under interruption, is not
511   *         relevant with DMA.
512   * @param  hhash HASH handle.
513   * @retval None
514   */
HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef * hhash)515 __weak void HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef *hhash)
516 {
517   /* Prevent unused argument(s) compilation warning */
518   UNUSED(hhash);
519 
520   /* NOTE : This function should not be modified; when the callback is needed,
521             HAL_HASH_DgstCpltCallback() can be implemented in the user file.
522    */
523 }
524 
525 /**
526   * @brief  Error callback.
527   * @note   Code user can resort to hhash->Status (HAL_ERROR, HAL_TIMEOUT,...)
528   *         to retrieve the error type.
529   * @param  hhash HASH handle.
530   * @retval None
531   */
HAL_HASH_ErrorCallback(HASH_HandleTypeDef * hhash)532 __weak void HAL_HASH_ErrorCallback(HASH_HandleTypeDef *hhash)
533 {
534   /* Prevent unused argument(s) compilation warning */
535   UNUSED(hhash);
536 
537   /* NOTE : This function should not be modified; when the callback is needed,
538             HAL_HASH_ErrorCallback() can be implemented in the user file.
539    */
540 }
541 
542 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
543 /**
544   * @brief  Register a User HASH Callback
545   *         To be used instead of the weak (surcharged) predefined callback
546   * @param hhash HASH handle
547   * @param CallbackID ID of the callback to be registered
548   *        This parameter can be one of the following values:
549   *          @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
550   *          @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
551   *          @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
552   *          @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
553   *          @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
554   * @param pCallback pointer to the Callback function
555   * @retval status
556   */
HAL_HASH_RegisterCallback(HASH_HandleTypeDef * hhash,HAL_HASH_CallbackIDTypeDef CallbackID,pHASH_CallbackTypeDef pCallback)557 HAL_StatusTypeDef HAL_HASH_RegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID,
558                                             pHASH_CallbackTypeDef pCallback)
559 {
560   HAL_StatusTypeDef status = HAL_OK;
561 
562   if (pCallback == NULL)
563   {
564     /* Update the error code */
565     hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
566     return HAL_ERROR;
567   }
568   /* Process locked */
569   __HAL_LOCK(hhash);
570 
571   if (HAL_HASH_STATE_READY == hhash->State)
572   {
573     switch (CallbackID)
574     {
575       case HAL_HASH_INPUTCPLT_CB_ID :
576         hhash->InCpltCallback = pCallback;
577         break;
578 
579       case HAL_HASH_DGSTCPLT_CB_ID :
580         hhash->DgstCpltCallback = pCallback;
581         break;
582 
583       case HAL_HASH_ERROR_CB_ID :
584         hhash->ErrorCallback = pCallback;
585         break;
586 
587       case HAL_HASH_MSPINIT_CB_ID :
588         hhash->MspInitCallback = pCallback;
589         break;
590 
591       case HAL_HASH_MSPDEINIT_CB_ID :
592         hhash->MspDeInitCallback = pCallback;
593         break;
594 
595       default :
596         /* Update the error code */
597         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
598         /* update return status */
599         status =  HAL_ERROR;
600         break;
601     }
602   }
603   else if (HAL_HASH_STATE_RESET == hhash->State)
604   {
605     switch (CallbackID)
606     {
607       case HAL_HASH_MSPINIT_CB_ID :
608         hhash->MspInitCallback = pCallback;
609         break;
610 
611       case HAL_HASH_MSPDEINIT_CB_ID :
612         hhash->MspDeInitCallback = pCallback;
613         break;
614 
615       default :
616         /* Update the error code */
617         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
618         /* update return status */
619         status =  HAL_ERROR;
620         break;
621     }
622   }
623   else
624   {
625     /* Update the error code */
626     hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
627     /* update return status */
628     status =  HAL_ERROR;
629   }
630 
631   /* Release Lock */
632   __HAL_UNLOCK(hhash);
633   return status;
634 }
635 
636 /**
637   * @brief  Unregister a HASH Callback
638   *         HASH Callback is redirected to the weak (surcharged) predefined callback
639   * @param hhash HASH handle
640   * @param CallbackID ID of the callback to be unregistered
641   *        This parameter can be one of the following values:
642   *          @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
643   *          @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
644   *          @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
645   *          @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
646   *          @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
647   * @retval status
648   */
HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef * hhash,HAL_HASH_CallbackIDTypeDef CallbackID)649 HAL_StatusTypeDef HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID)
650 {
651   HAL_StatusTypeDef status = HAL_OK;
652 
653   /* Process locked */
654   __HAL_LOCK(hhash);
655 
656   if (HAL_HASH_STATE_READY == hhash->State)
657   {
658     switch (CallbackID)
659     {
660       case HAL_HASH_INPUTCPLT_CB_ID :
661         hhash->InCpltCallback = HAL_HASH_InCpltCallback;     /* Legacy weak (surcharged) input completion callback */
662         break;
663 
664       case HAL_HASH_DGSTCPLT_CB_ID :
665         hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
666                                                                 completion callback */
667         break;
668 
669       case HAL_HASH_ERROR_CB_ID :
670         hhash->ErrorCallback = HAL_HASH_ErrorCallback;       /* Legacy weak (surcharged) error callback */
671         break;
672 
673       case HAL_HASH_MSPINIT_CB_ID :
674         hhash->MspInitCallback = HAL_HASH_MspInit;           /* Legacy weak (surcharged) Msp Init */
675         break;
676 
677       case HAL_HASH_MSPDEINIT_CB_ID :
678         hhash->MspDeInitCallback = HAL_HASH_MspDeInit;       /* Legacy weak (surcharged) Msp DeInit */
679         break;
680 
681       default :
682         /* Update the error code */
683         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
684         /* update return status */
685         status =  HAL_ERROR;
686         break;
687     }
688   }
689   else if (HAL_HASH_STATE_RESET == hhash->State)
690   {
691     switch (CallbackID)
692     {
693       case HAL_HASH_MSPINIT_CB_ID :
694         hhash->MspInitCallback = HAL_HASH_MspInit;           /* Legacy weak (surcharged) Msp Init */
695         break;
696 
697       case HAL_HASH_MSPDEINIT_CB_ID :
698         hhash->MspDeInitCallback = HAL_HASH_MspDeInit;       /* Legacy weak (surcharged) Msp DeInit */
699         break;
700 
701       default :
702         /* Update the error code */
703         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
704         /* update return status */
705         status =  HAL_ERROR;
706         break;
707     }
708   }
709   else
710   {
711     /* Update the error code */
712     hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
713     /* update return status */
714     status =  HAL_ERROR;
715   }
716 
717   /* Release Lock */
718   __HAL_UNLOCK(hhash);
719   return status;
720 }
721 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
722 
723 /**
724   * @}
725   */
726 
727 /** @defgroup HASH_Exported_Functions_Group2 HASH processing functions in polling mode
728   *  @brief   HASH processing functions using polling mode.
729   *
730 @verbatim
731  ===============================================================================
732                  ##### Polling mode HASH processing functions #####
733  ===============================================================================
734     [..]  This section provides functions allowing to calculate in polling mode
735           the hash value using one of the following algorithms:
736       (+) MD5
737          (++) HAL_HASH_MD5_Start()
738          (++) HAL_HASH_MD5_Accmlt()
739          (++) HAL_HASH_MD5_Accmlt_End()
740       (+) SHA1
741          (++) HAL_HASH_SHA1_Start()
742          (++) HAL_HASH_SHA1_Accmlt()
743          (++) HAL_HASH_SHA1_Accmlt_End()
744 
745     [..] For a single buffer to be hashed, user can resort to HAL_HASH_xxx_Start().
746 
747     [..]  In case of multi-buffer HASH processing (a single digest is computed while
748           several buffers are fed to the Peripheral), the user can resort to successive calls
749           to HAL_HASH_xxx_Accumulate() and wrap-up the digest computation by a call
750           to HAL_HASH_xxx_Accumulate_End().
751 
752 @endverbatim
753   * @{
754   */
755 
756 /**
757   * @brief  Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
758   *         read the computed digest.
759   * @note   Digest is available in pOutBuffer.
760   * @param  hhash HASH handle.
761   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
762   * @param  Size length of the input buffer in bytes.
763   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
764   * @param  Timeout Timeout value
765   * @retval HAL status
766   */
HAL_HASH_MD5_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)767 HAL_StatusTypeDef HAL_HASH_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
768                                      uint32_t Timeout)
769 {
770   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
771 }
772 
773 /**
774   * @brief  If not already done, initialize the HASH peripheral in MD5 mode then
775   *         processes pInBuffer.
776   * @note   Consecutive calls to HAL_HASH_MD5_Accmlt() can be used to feed
777   *         several input buffers back-to-back to the Peripheral that will yield a single
778   *         HASH signature once all buffers have been entered. Wrap-up of input
779   *         buffers feeding and retrieval of digest is done by a call to
780   *         HAL_HASH_MD5_Accmlt_End().
781   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
782   *         the Peripheral has already been initialized.
783   * @note   Digest is not retrieved by this API, user must resort to HAL_HASH_MD5_Accmlt_End()
784   *         to read it, feeding at the same time the last input buffer to the Peripheral.
785   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
786   *         HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End() is able
787   *         to manage the ending buffer with a length in bytes not a multiple of 4.
788   * @param  hhash HASH handle.
789   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
790   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
791   * @retval HAL status
792   */
HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)793 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
794 {
795   return  HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
796 }
797 
798 /**
799   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt() API.
800   * @note   Digest is available in pOutBuffer.
801   * @param  hhash HASH handle.
802   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
803   * @param  Size length of the input buffer in bytes.
804   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
805   * @param  Timeout Timeout value
806   * @retval HAL status
807   */
HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)808 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
809                                           uint8_t *pOutBuffer, uint32_t Timeout)
810 {
811   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
812 }
813 
814 /**
815   * @brief  Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
816   *         read the computed digest.
817   * @note   Digest is available in pOutBuffer.
818   * @param  hhash HASH handle.
819   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
820   * @param  Size length of the input buffer in bytes.
821   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
822   * @param  Timeout Timeout value
823   * @retval HAL status
824   */
HAL_HASH_SHA1_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)825 HAL_StatusTypeDef HAL_HASH_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
826                                       uint32_t Timeout)
827 {
828   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
829 }
830 
831 /**
832   * @brief  If not already done, initialize the HASH peripheral in SHA1 mode then
833   *         processes pInBuffer.
834   * @note   Consecutive calls to HAL_HASH_SHA1_Accmlt() can be used to feed
835   *         several input buffers back-to-back to the Peripheral that will yield a single
836   *         HASH signature once all buffers have been entered. Wrap-up of input
837   *         buffers feeding and retrieval of digest is done by a call to
838   *         HAL_HASH_SHA1_Accmlt_End().
839   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
840   *         the Peripheral has already been initialized.
841   * @note   Digest is not retrieved by this API, user must resort to HAL_HASH_SHA1_Accmlt_End()
842   *         to read it, feeding at the same time the last input buffer to the Peripheral.
843   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
844   *         HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End() is able
845   *         to manage the ending buffer with a length in bytes not a multiple of 4.
846   * @param  hhash HASH handle.
847   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
848   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
849   * @retval HAL status
850   */
HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)851 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
852 {
853   return  HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
854 }
855 
856 /**
857   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt() API.
858   * @note   Digest is available in pOutBuffer.
859   * @param  hhash HASH handle.
860   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
861   * @param  Size length of the input buffer in bytes.
862   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
863   * @param  Timeout Timeout value
864   * @retval HAL status
865   */
HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)866 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
867                                            uint8_t *pOutBuffer, uint32_t Timeout)
868 {
869   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
870 }
871 
872 /**
873   * @}
874   */
875 
876 /** @defgroup HASH_Exported_Functions_Group3 HASH processing functions in interrupt mode
877   *  @brief   HASH processing functions using interrupt mode.
878   *
879 @verbatim
880  ===============================================================================
881                  ##### Interruption mode HASH processing functions #####
882  ===============================================================================
883     [..]  This section provides functions allowing to calculate in interrupt mode
884           the hash value using one of the following algorithms:
885       (+) MD5
886          (++) HAL_HASH_MD5_Start_IT()
887          (++) HAL_HASH_MD5_Accmlt_IT()
888          (++) HAL_HASH_MD5_Accmlt_End_IT()
889       (+) SHA1
890          (++) HAL_HASH_SHA1_Start_IT()
891          (++) HAL_HASH_SHA1_Accmlt_IT()
892          (++) HAL_HASH_SHA1_Accmlt_End_IT()
893 
894     [..]  API HAL_HASH_IRQHandler() manages each HASH interruption.
895 
896     [..] Note that HAL_HASH_IRQHandler() manages as well HASH Peripheral interruptions when in
897          HMAC processing mode.
898 
899 
900 @endverbatim
901   * @{
902   */
903 
904 /**
905   * @brief  Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
906   *         read the computed digest in interruption mode.
907   * @note   Digest is available in pOutBuffer.
908   * @param  hhash HASH handle.
909   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
910   * @param  Size length of the input buffer in bytes.
911   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
912   * @retval HAL status
913   */
HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)914 HAL_StatusTypeDef HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
915                                         uint8_t *pOutBuffer)
916 {
917   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
918 }
919 
920 /**
921   * @brief  If not already done, initialize the HASH peripheral in MD5 mode then
922   *         processes pInBuffer in interruption mode.
923   * @note   Consecutive calls to HAL_HASH_MD5_Accmlt_IT() can be used to feed
924   *         several input buffers back-to-back to the Peripheral that will yield a single
925   *         HASH signature once all buffers have been entered. Wrap-up of input
926   *         buffers feeding and retrieval of digest is done by a call to
927   *         HAL_HASH_MD5_Accmlt_End_IT().
928   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
929   *         the Peripheral has already been initialized.
930   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
931   *         HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End_IT() is able
932   *         to manage the ending buffer with a length in bytes not a multiple of 4.
933   * @param  hhash HASH handle.
934   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
935   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
936   * @retval HAL status
937   */
HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)938 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
939 {
940   return  HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
941 }
942 
943 /**
944   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt_IT() API.
945   * @note   Digest is available in pOutBuffer.
946   * @param  hhash HASH handle.
947   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
948   * @param  Size length of the input buffer in bytes.
949   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
950   * @retval HAL status
951   */
HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)952 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
953                                              uint8_t *pOutBuffer)
954 {
955   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
956 }
957 
958 /**
959   * @brief  Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
960   *         read the computed digest in interruption mode.
961   * @note   Digest is available in pOutBuffer.
962   * @param  hhash HASH handle.
963   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
964   * @param  Size length of the input buffer in bytes.
965   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
966   * @retval HAL status
967   */
HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)968 HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
969                                          uint8_t *pOutBuffer)
970 {
971   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
972 }
973 
974 
975 /**
976   * @brief  If not already done, initialize the HASH peripheral in SHA1 mode then
977   *         processes pInBuffer in interruption mode.
978   * @note   Consecutive calls to HAL_HASH_SHA1_Accmlt_IT() can be used to feed
979   *         several input buffers back-to-back to the Peripheral that will yield a single
980   *         HASH signature once all buffers have been entered. Wrap-up of input
981   *         buffers feeding and retrieval of digest is done by a call to
982   *         HAL_HASH_SHA1_Accmlt_End_IT().
983   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
984   *         the Peripheral has already been initialized.
985   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
986   *         HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End_IT() is able
987   *         to manage the ending buffer with a length in bytes not a multiple of 4.
988   * @param  hhash HASH handle.
989   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
990   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
991   * @retval HAL status
992   */
HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)993 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
994 {
995   return  HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
996 }
997 
998 /**
999   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt_IT() API.
1000   * @note   Digest is available in pOutBuffer.
1001   * @param  hhash HASH handle.
1002   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1003   * @param  Size length of the input buffer in bytes.
1004   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1005   * @retval HAL status
1006   */
HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1007 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1008                                               uint8_t *pOutBuffer)
1009 {
1010   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
1011 }
1012 
1013 /**
1014   * @brief Handle HASH interrupt request.
1015   * @param hhash HASH handle.
1016   * @note  HAL_HASH_IRQHandler() handles interrupts in HMAC processing as well.
1017   * @note  In case of error reported during the HASH interruption processing,
1018   *        HAL_HASH_ErrorCallback() API is called so that user code can
1019   *        manage the error. The error type is available in hhash->Status field.
1020   * @retval None
1021   */
HAL_HASH_IRQHandler(HASH_HandleTypeDef * hhash)1022 void HAL_HASH_IRQHandler(HASH_HandleTypeDef *hhash)
1023 {
1024   hhash->Status = HASH_IT(hhash);
1025   if (hhash->Status != HAL_OK)
1026   {
1027     hhash->ErrorCode |= HAL_HASH_ERROR_IT;
1028 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1029     hhash->ErrorCallback(hhash);
1030 #else
1031     HAL_HASH_ErrorCallback(hhash);
1032 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1033     /* After error handling by code user, reset HASH handle HAL status */
1034     hhash->Status = HAL_OK;
1035   }
1036 }
1037 
1038 /**
1039   * @}
1040   */
1041 
1042 /** @defgroup HASH_Exported_Functions_Group4 HASH processing functions in DMA mode
1043   *  @brief   HASH processing functions using DMA mode.
1044   *
1045 @verbatim
1046  ===============================================================================
1047                     ##### DMA mode HASH processing functions #####
1048  ===============================================================================
1049     [..]  This section provides functions allowing to calculate in DMA mode
1050           the hash value using one of the following algorithms:
1051       (+) MD5
1052          (++) HAL_HASH_MD5_Start_DMA()
1053          (++) HAL_HASH_MD5_Finish()
1054       (+) SHA1
1055          (++) HAL_HASH_SHA1_Start_DMA()
1056          (++) HAL_HASH_SHA1_Finish()
1057 
1058     [..]  When resorting to DMA mode to enter the data in the Peripheral, user must resort
1059           to  HAL_HASH_xxx_Start_DMA() then read the resulting digest with
1060           HAL_HASH_xxx_Finish().
1061     [..]  In case of multi-buffer HASH processing, MDMAT bit must first be set before
1062           the successive calls to HAL_HASH_xxx_Start_DMA(). Then, MDMAT bit needs to be
1063           reset before the last call to HAL_HASH_xxx_Start_DMA(). Digest is finally
1064           retrieved thanks to HAL_HASH_xxx_Finish().
1065 
1066 @endverbatim
1067   * @{
1068   */
1069 
1070 /**
1071   * @brief  Initialize the HASH peripheral in MD5 mode then initiate a DMA transfer
1072   *         to feed the input buffer to the Peripheral.
1073   * @note   Once the DMA transfer is finished, HAL_HASH_MD5_Finish() API must
1074   *         be called to retrieve the computed digest.
1075   * @param  hhash HASH handle.
1076   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1077   * @param  Size length of the input buffer in bytes.
1078   * @retval HAL status
1079   */
HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1080 HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1081 {
1082   return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
1083 }
1084 
1085 /**
1086   * @brief  Return the computed digest in MD5 mode.
1087   * @note   The API waits for DCIS to be set then reads the computed digest.
1088   * @note   HAL_HASH_MD5_Finish() can be used as well to retrieve the digest in
1089   *         HMAC MD5 mode.
1090   * @param  hhash HASH handle.
1091   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1092   * @param  Timeout Timeout value.
1093   * @retval HAL status
1094   */
HAL_HASH_MD5_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)1095 HAL_StatusTypeDef HAL_HASH_MD5_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
1096 {
1097   return HASH_Finish(hhash, pOutBuffer, Timeout);
1098 }
1099 
1100 /**
1101   * @brief  Initialize the HASH peripheral in SHA1 mode then initiate a DMA transfer
1102   *         to feed the input buffer to the Peripheral.
1103   * @note   Once the DMA transfer is finished, HAL_HASH_SHA1_Finish() API must
1104   *         be called to retrieve the computed digest.
1105   * @param  hhash HASH handle.
1106   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1107   * @param  Size length of the input buffer in bytes.
1108   * @retval HAL status
1109   */
HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1110 HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1111 {
1112   return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
1113 }
1114 
1115 
1116 /**
1117   * @brief  Return the computed digest in SHA1 mode.
1118   * @note   The API waits for DCIS to be set then reads the computed digest.
1119   * @note   HAL_HASH_SHA1_Finish() can be used as well to retrieve the digest in
1120   *         HMAC SHA1 mode.
1121   * @param  hhash HASH handle.
1122   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1123   * @param  Timeout Timeout value.
1124   * @retval HAL status
1125   */
HAL_HASH_SHA1_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)1126 HAL_StatusTypeDef HAL_HASH_SHA1_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
1127 {
1128   return HASH_Finish(hhash, pOutBuffer, Timeout);
1129 }
1130 
1131 /**
1132   * @}
1133   */
1134 
1135 /** @defgroup HASH_Exported_Functions_Group5 HMAC processing functions in polling mode
1136   *  @brief   HMAC processing functions using polling mode.
1137   *
1138 @verbatim
1139  ===============================================================================
1140                  ##### Polling mode HMAC processing functions #####
1141  ===============================================================================
1142     [..]  This section provides functions allowing to calculate in polling mode
1143           the HMAC value using one of the following algorithms:
1144       (+) MD5
1145          (++) HAL_HMAC_MD5_Start()
1146       (+) SHA1
1147          (++) HAL_HMAC_SHA1_Start()
1148 
1149 
1150 @endverbatim
1151   * @{
1152   */
1153 
1154 /**
1155   * @brief  Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
1156   *         read the computed digest.
1157   * @note   Digest is available in pOutBuffer.
1158   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1159   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1160   * @param  hhash HASH handle.
1161   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1162   * @param  Size length of the input buffer in bytes.
1163   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1164   * @param  Timeout Timeout value.
1165   * @retval HAL status
1166   */
HAL_HMAC_MD5_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)1167 HAL_StatusTypeDef HAL_HMAC_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
1168                                      uint32_t Timeout)
1169 {
1170   return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
1171 }
1172 
1173 /**
1174   * @brief  Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
1175   *         read the computed digest.
1176   * @note   Digest is available in pOutBuffer.
1177   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1178   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1179   * @param  hhash HASH handle.
1180   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1181   * @param  Size length of the input buffer in bytes.
1182   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1183   * @param  Timeout Timeout value.
1184   * @retval HAL status
1185   */
HAL_HMAC_SHA1_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)1186 HAL_StatusTypeDef HAL_HMAC_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
1187                                       uint32_t Timeout)
1188 {
1189   return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
1190 }
1191 
1192 /**
1193   * @}
1194   */
1195 
1196 
1197 /** @defgroup HASH_Exported_Functions_Group6 HMAC processing functions in interrupt mode
1198   *  @brief   HMAC processing functions using interrupt mode.
1199   *
1200 @verbatim
1201  ===============================================================================
1202                  ##### Interrupt mode HMAC processing functions #####
1203  ===============================================================================
1204     [..]  This section provides functions allowing to calculate in interrupt mode
1205           the HMAC value using one of the following algorithms:
1206       (+) MD5
1207          (++) HAL_HMAC_MD5_Start_IT()
1208       (+) SHA1
1209          (++) HAL_HMAC_SHA1_Start_IT()
1210 
1211 @endverbatim
1212   * @{
1213   */
1214 
1215 
1216 /**
1217   * @brief  Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
1218   *         read the computed digest in interrupt mode.
1219   * @note   Digest is available in pOutBuffer.
1220   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1221   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1222   * @param  hhash HASH handle.
1223   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1224   * @param  Size length of the input buffer in bytes.
1225   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1226   * @retval HAL status
1227   */
HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1228 HAL_StatusTypeDef HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1229                                         uint8_t *pOutBuffer)
1230 {
1231   return  HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
1232 }
1233 
1234 /**
1235   * @brief  Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
1236   *         read the computed digest in interrupt mode.
1237   * @note   Digest is available in pOutBuffer.
1238   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1239   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1240   * @param  hhash HASH handle.
1241   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1242   * @param  Size length of the input buffer in bytes.
1243   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1244   * @retval HAL status
1245   */
HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1246 HAL_StatusTypeDef HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1247                                          uint8_t *pOutBuffer)
1248 {
1249   return  HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
1250 }
1251 
1252 /**
1253   * @}
1254   */
1255 
1256 
1257 
1258 /** @defgroup HASH_Exported_Functions_Group7 HMAC processing functions in DMA mode
1259   *  @brief   HMAC processing functions using DMA modes.
1260   *
1261 @verbatim
1262  ===============================================================================
1263                  ##### DMA mode HMAC processing functions #####
1264  ===============================================================================
1265     [..]  This section provides functions allowing to calculate in DMA mode
1266           the HMAC value using one of the following algorithms:
1267       (+) MD5
1268          (++) HAL_HMAC_MD5_Start_DMA()
1269       (+) SHA1
1270          (++) HAL_HMAC_SHA1_Start_DMA()
1271 
1272     [..]  When resorting to DMA mode to enter the data in the Peripheral for HMAC processing,
1273           user must resort to  HAL_HMAC_xxx_Start_DMA() then read the resulting digest
1274           with HAL_HASH_xxx_Finish().
1275 
1276 @endverbatim
1277   * @{
1278   */
1279 
1280 
1281 /**
1282   * @brief  Initialize the HASH peripheral in HMAC MD5 mode then initiate the required
1283   *         DMA transfers to feed the key and the input buffer to the Peripheral.
1284   * @note   Once the DMA transfers are finished (indicated by hhash->State set back
1285   *         to HAL_HASH_STATE_READY), HAL_HASH_MD5_Finish() API must be called to retrieve
1286   *         the computed digest.
1287   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1288   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1289   * @note   If MDMAT bit is set before calling this function (multi-buffer
1290   *          HASH processing case), the input buffer size (in bytes) must be
1291   *          a multiple of 4 otherwise, the HASH digest computation is corrupted.
1292   *          For the processing of the last buffer of the thread, MDMAT bit must
1293   *          be reset and the buffer length (in bytes) doesn't have to be a
1294   *          multiple of 4.
1295   * @param  hhash HASH handle.
1296   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1297   * @param  Size length of the input buffer in bytes.
1298   * @retval HAL status
1299   */
HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1300 HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1301 {
1302   return  HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
1303 }
1304 
1305 
1306 /**
1307   * @brief  Initialize the HASH peripheral in HMAC SHA1 mode then initiate the required
1308   *         DMA transfers to feed the key and the input buffer to the Peripheral.
1309   * @note   Once the DMA transfers are finished (indicated by hhash->State set back
1310   *         to HAL_HASH_STATE_READY), HAL_HASH_SHA1_Finish() API must be called to retrieve
1311   *         the computed digest.
1312   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1313   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1314   * @note   If MDMAT bit is set before calling this function (multi-buffer
1315   *          HASH processing case), the input buffer size (in bytes) must be
1316   *          a multiple of 4 otherwise, the HASH digest computation is corrupted.
1317   *          For the processing of the last buffer of the thread, MDMAT bit must
1318   *          be reset and the buffer length (in bytes) doesn't have to be a
1319   *          multiple of 4.
1320   * @param  hhash HASH handle.
1321   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1322   * @param  Size length of the input buffer in bytes.
1323   * @retval HAL status
1324   */
HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1325 HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1326 {
1327   return  HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
1328 }
1329 
1330 /**
1331   * @}
1332   */
1333 
1334 /** @defgroup HASH_Exported_Functions_Group8 Peripheral states functions
1335   *  @brief   Peripheral State functions.
1336   *
1337 @verbatim
1338  ===============================================================================
1339                       ##### Peripheral State methods #####
1340  ===============================================================================
1341     [..]
1342     This section permits to get in run-time the state and the peripheral handle
1343     status of the peripheral:
1344       (+) HAL_HASH_GetState()
1345       (+) HAL_HASH_GetStatus()
1346 
1347     [..]
1348     Additionally, this subsection provides functions allowing to save and restore
1349     the HASH or HMAC processing context in case of calculation suspension:
1350       (+) HAL_HASH_ContextSaving()
1351       (+) HAL_HASH_ContextRestoring()
1352 
1353     [..]
1354     This subsection provides functions allowing to suspend the HASH processing
1355       (+) when input are fed to the Peripheral by software
1356           (++) HAL_HASH_SwFeed_ProcessSuspend()
1357       (+) when input are fed to the Peripheral by DMA
1358           (++) HAL_HASH_DMAFeed_ProcessSuspend()
1359 
1360 
1361 
1362 @endverbatim
1363   * @{
1364   */
1365 
1366 /**
1367   * @brief  Return the HASH handle state.
1368   * @note   The API yields the current state of the handle (BUSY, READY,...).
1369   * @param  hhash HASH handle.
1370   * @retval HAL HASH state
1371   */
HAL_HASH_GetState(HASH_HandleTypeDef * hhash)1372 HAL_HASH_StateTypeDef HAL_HASH_GetState(HASH_HandleTypeDef *hhash)
1373 {
1374   return hhash->State;
1375 }
1376 
1377 
1378 /**
1379   * @brief Return the HASH HAL status.
1380   * @note  The API yields the HAL status of the handle: it is the result of the
1381   *        latest HASH processing and allows to report any issue (e.g. HAL_TIMEOUT).
1382   * @param  hhash HASH handle.
1383   * @retval HAL status
1384   */
HAL_HASH_GetStatus(HASH_HandleTypeDef * hhash)1385 HAL_StatusTypeDef HAL_HASH_GetStatus(HASH_HandleTypeDef *hhash)
1386 {
1387   return hhash->Status;
1388 }
1389 
1390 /**
1391   * @brief  Save the HASH context in case of processing suspension.
1392   * @param  hhash HASH handle.
1393   * @param  pMemBuffer pointer to the memory buffer where the HASH context
1394   *         is saved.
1395   * @note   The IMR, STR, CR then all the CSR registers are saved
1396   *         in that order. Only the r/w bits are read to be restored later on.
1397   * @note   By default, all the context swap registers (there are
1398   *         HASH_NUMBER_OF_CSR_REGISTERS of those) are saved.
1399   * @note   pMemBuffer points to a buffer allocated by the user. The buffer size
1400   *         must be at least (HASH_NUMBER_OF_CSR_REGISTERS + 3) * 4 uint8 long.
1401   * @retval None
1402   */
HAL_HASH_ContextSaving(HASH_HandleTypeDef * hhash,uint8_t * pMemBuffer)1403 void HAL_HASH_ContextSaving(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
1404 {
1405   uint32_t mem_ptr = (uint32_t)pMemBuffer;
1406   uint32_t csr_ptr = (uint32_t)HASH->CSR;
1407   uint32_t i;
1408 
1409   /* Prevent unused argument(s) compilation warning */
1410   UNUSED(hhash);
1411 
1412   /* Save IMR register content */
1413   *(uint32_t *)(mem_ptr) = READ_BIT(HASH->IMR, HASH_IT_DINI | HASH_IT_DCI);
1414   mem_ptr += 4U;
1415   /* Save STR register content */
1416   *(uint32_t *)(mem_ptr) = READ_BIT(HASH->STR, HASH_STR_NBLW);
1417   mem_ptr += 4U;
1418   /* Save CR register content */
1419   *(uint32_t *)(mem_ptr) = READ_BIT(HASH->CR, HASH_CR_DMAE | HASH_CR_DATATYPE | HASH_CR_MODE | HASH_CR_ALGO |
1420                                     HASH_CR_LKEY | HASH_CR_MDMAT);
1421   mem_ptr += 4U;
1422   /* By default, save all CSRs registers */
1423   for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
1424   {
1425     *(uint32_t *)(mem_ptr) = *(uint32_t *)(csr_ptr);
1426     mem_ptr += 4U;
1427     csr_ptr += 4U;
1428   }
1429 }
1430 
1431 
1432 /**
1433   * @brief  Restore the HASH context in case of processing resumption.
1434   * @param  hhash HASH handle.
1435   * @param  pMemBuffer pointer to the memory buffer where the HASH context
1436   *         is stored.
1437   * @note   The IMR, STR, CR then all the CSR registers are restored
1438   *         in that order. Only the r/w bits are restored.
1439   * @note   By default, all the context swap registers (HASH_NUMBER_OF_CSR_REGISTERS
1440   *         of those) are restored (all of them have been saved by default
1441   *         beforehand).
1442   * @retval None
1443   */
HAL_HASH_ContextRestoring(HASH_HandleTypeDef * hhash,uint8_t * pMemBuffer)1444 void HAL_HASH_ContextRestoring(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
1445 {
1446   uint32_t mem_ptr = (uint32_t)pMemBuffer;
1447   uint32_t csr_ptr = (uint32_t)HASH->CSR;
1448   uint32_t i;
1449 
1450   /* Prevent unused argument(s) compilation warning */
1451   UNUSED(hhash);
1452 
1453   /* Restore IMR register content */
1454   WRITE_REG(HASH->IMR, (*(uint32_t *)(mem_ptr)));
1455   mem_ptr += 4U;
1456   /* Restore STR register content */
1457   WRITE_REG(HASH->STR, (*(uint32_t *)(mem_ptr)));
1458   mem_ptr += 4U;
1459   /* Restore CR register content */
1460   WRITE_REG(HASH->CR, (*(uint32_t *)(mem_ptr)));
1461   mem_ptr += 4U;
1462 
1463   /* Reset the HASH processor before restoring the Context
1464   Swap Registers (CSR) */
1465   __HAL_HASH_INIT();
1466 
1467   /* By default, restore all CSR registers */
1468   for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
1469   {
1470     WRITE_REG((*(uint32_t *)(csr_ptr)), (*(uint32_t *)(mem_ptr)));
1471     mem_ptr += 4U;
1472     csr_ptr += 4U;
1473   }
1474 }
1475 
1476 
1477 /**
1478   * @brief  Initiate HASH processing suspension when in polling or interruption mode.
1479   * @param  hhash HASH handle.
1480   * @note   Set the handle field SuspendRequest to the appropriate value so that
1481   *         the on-going HASH processing is suspended as soon as the required
1482   *         conditions are met. Note that the actual suspension is carried out
1483   *         by the functions HASH_WriteData() in polling mode and HASH_IT() in
1484   *         interruption mode.
1485   * @retval None
1486   */
HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef * hhash)1487 void HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
1488 {
1489   /* Set Handle Suspend Request field */
1490   hhash->SuspendRequest = HAL_HASH_SUSPEND;
1491 }
1492 
1493 /**
1494   * @brief  Suspend the HASH processing when in DMA mode.
1495   * @param  hhash HASH handle.
1496   * @note   When suspension attempt occurs at the very end of a DMA transfer and
1497   *         all the data have already been entered in the Peripheral, hhash->State is
1498   *         set to HAL_HASH_STATE_READY and the API returns HAL_ERROR. It is
1499   *         recommended to wrap-up the processing in reading the digest as usual.
1500   * @retval HAL status
1501   */
HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef * hhash)1502 HAL_StatusTypeDef HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
1503 {
1504   uint32_t tmp_remaining_DMATransferSize_inWords;
1505   uint32_t tmp_initial_DMATransferSize_inWords;
1506   uint32_t tmp_words_already_pushed;
1507 
1508   if (hhash->State == HAL_HASH_STATE_READY)
1509   {
1510     return HAL_ERROR;
1511   }
1512   else
1513   {
1514 
1515     /* Make sure there is enough time to suspend the processing */
1516     tmp_remaining_DMATransferSize_inWords = ((DMA_Channel_TypeDef *)hhash->hdmain->Instance)->CNDTR;
1517 
1518     if (tmp_remaining_DMATransferSize_inWords <= HASH_DMA_SUSPENSION_WORDS_LIMIT)
1519     {
1520       /* No suspension attempted since almost to the end of the transferred data. */
1521       /* Best option for user code is to wrap up low priority message hashing     */
1522       return HAL_ERROR;
1523     }
1524 
1525     /* Wait for BUSY flag to be reset */
1526     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1527     {
1528       return HAL_TIMEOUT;
1529     }
1530 
1531     if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
1532     {
1533       return HAL_ERROR;
1534     }
1535 
1536     /* Wait for BUSY flag to be set */
1537     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, RESET, HASH_TIMEOUTVALUE) != HAL_OK)
1538     {
1539       return HAL_TIMEOUT;
1540     }
1541     /* Disable DMA channel */
1542     /* Note that the Abort function will
1543       - Clear the transfer error flags
1544       - Unlock
1545       - Set the State
1546     */
1547     if (HAL_DMA_Abort(hhash->hdmain) != HAL_OK)
1548     {
1549       return HAL_ERROR;
1550     }
1551 
1552     /* Clear DMAE bit */
1553     CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
1554 
1555     /* Wait for BUSY flag to be reset */
1556     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1557     {
1558       return HAL_TIMEOUT;
1559     }
1560 
1561     if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
1562     {
1563       return HAL_ERROR;
1564     }
1565 
1566     /* At this point, DMA interface is disabled and no transfer is on-going */
1567     /* Retrieve from the DMA handle how many words remain to be written */
1568     tmp_remaining_DMATransferSize_inWords = ((DMA_Channel_TypeDef *)hhash->hdmain->Instance)->CNDTR;
1569 
1570     if (tmp_remaining_DMATransferSize_inWords == 0U)
1571     {
1572       /* All the DMA transfer is actually done. Suspension occurred at the very end
1573          of the transfer. Either the digest computation is about to start (HASH case)
1574          or processing is about to move from one step to another (HMAC case).
1575          In both cases, the processing can't be suspended at this point. It is
1576          safer to
1577          - retrieve the low priority block digest before starting the high
1578            priority block processing (HASH case)
1579          - re-attempt a new suspension (HMAC case)
1580          */
1581       return HAL_ERROR;
1582     }
1583     else
1584     {
1585 
1586       /* Compute how many words were supposed to be transferred by DMA */
1587       tmp_initial_DMATransferSize_inWords = (((hhash->HashInCount % 4U) != 0U) ? \
1588                                              ((hhash->HashInCount + 3U) / 4U) : (hhash->HashInCount / 4U));
1589 
1590       /* If discrepancy between the number of words reported by DMA Peripheral and
1591         the numbers of words entered as reported by HASH Peripheral, correct it */
1592       /* tmp_words_already_pushed reflects the number of words that were already pushed before
1593          the start of DMA transfer (multi-buffer processing case) */
1594       tmp_words_already_pushed = hhash->NbWordsAlreadyPushed;
1595       if (((tmp_words_already_pushed + tmp_initial_DMATransferSize_inWords - \
1596             tmp_remaining_DMATransferSize_inWords) % 16U) != HASH_NBW_PUSHED())
1597       {
1598         tmp_remaining_DMATransferSize_inWords--; /* one less word to be transferred again */
1599       }
1600 
1601       /* Accordingly, update the input pointer that points at the next word to be
1602          transferred to the Peripheral by DMA */
1603       hhash->pHashInBuffPtr +=  4U * (tmp_initial_DMATransferSize_inWords - tmp_remaining_DMATransferSize_inWords) ;
1604 
1605       /* And store in HashInCount the remaining size to transfer (in bytes) */
1606       hhash->HashInCount = 4U * tmp_remaining_DMATransferSize_inWords;
1607 
1608     }
1609 
1610     /* Set State as suspended */
1611     hhash->State = HAL_HASH_STATE_SUSPENDED;
1612 
1613     return HAL_OK;
1614 
1615   }
1616 }
1617 
1618 /**
1619   * @brief  Return the HASH handle error code.
1620   * @param  hhash pointer to a HASH_HandleTypeDef structure.
1621   * @retval HASH Error Code
1622   */
HAL_HASH_GetError(HASH_HandleTypeDef * hhash)1623 uint32_t HAL_HASH_GetError(HASH_HandleTypeDef *hhash)
1624 {
1625   /* Return HASH Error Code */
1626   return hhash->ErrorCode;
1627 }
1628 /**
1629   * @}
1630   */
1631 
1632 
1633 /**
1634   * @}
1635   */
1636 
1637 /** @defgroup HASH_Private_Functions HASH Private Functions
1638   * @{
1639   */
1640 
1641 /**
1642   * @brief DMA HASH Input Data transfer completion callback.
1643   * @param hdma DMA handle.
1644   * @note  In case of HMAC processing, HASH_DMAXferCplt() initiates
1645   *        the next DMA transfer for the following HMAC step.
1646   * @retval None
1647   */
HASH_DMAXferCplt(DMA_HandleTypeDef * hdma)1648 static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma)
1649 {
1650   HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
1651   uint32_t inputaddr;
1652   uint32_t buffersize;
1653   HAL_StatusTypeDef status = HAL_OK;
1654 
1655   if (hhash->State != HAL_HASH_STATE_SUSPENDED)
1656   {
1657 
1658     /* Disable the DMA transfer */
1659     CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
1660 
1661     if (READ_BIT(HASH->CR, HASH_CR_MODE) == 0U)
1662     {
1663       /* If no HMAC processing, input data transfer is now over */
1664 
1665       /* Change the HASH state to ready */
1666       hhash->State = HAL_HASH_STATE_READY;
1667 
1668       /* Call Input data transfer complete call back */
1669 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1670       hhash->InCpltCallback(hhash);
1671 #else
1672       HAL_HASH_InCpltCallback(hhash);
1673 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1674 
1675     }
1676     else
1677     {
1678       /* HMAC processing: depending on the current HMAC step and whether or
1679       not multi-buffer processing is on-going, the next step is initiated
1680       and MDMAT bit is set.  */
1681 
1682 
1683       if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
1684       {
1685         /* This is the end of HMAC processing */
1686 
1687         /* Change the HASH state to ready */
1688         hhash->State = HAL_HASH_STATE_READY;
1689 
1690         /* Call Input data transfer complete call back
1691         (note that the last DMA transfer was that of the key
1692         for the outer HASH operation). */
1693 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1694         hhash->InCpltCallback(hhash);
1695 #else
1696         HAL_HASH_InCpltCallback(hhash);
1697 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1698 
1699         return;
1700       }
1701       else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
1702       {
1703         inputaddr = (uint32_t)hhash->pHashMsgBuffPtr;     /* DMA transfer start address */
1704         buffersize = hhash->HashBuffSize;                 /* DMA transfer size (in bytes) */
1705         hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;        /* Move phase from Step 1 to Step 2 */
1706 
1707         /* In case of suspension request, save the new starting parameters */
1708         hhash->HashInCount = hhash->HashBuffSize;         /* Initial DMA transfer size (in bytes) */
1709         hhash->pHashInBuffPtr  = hhash->pHashMsgBuffPtr ; /* DMA transfer start address           */
1710 
1711         hhash->NbWordsAlreadyPushed = 0U;                  /* Reset number of words already pushed */
1712         /* Check whether or not digest calculation must be disabled (in case of multi-buffer HMAC processing) */
1713         if (hhash->DigestCalculationDisable != RESET)
1714         {
1715           /* Digest calculation is disabled: Step 2 must start with MDMAT bit set,
1716           no digest calculation will be triggered at the end of the input buffer feeding to the Peripheral */
1717           __HAL_HASH_SET_MDMAT();
1718         }
1719       }
1720       else  /*case (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)*/
1721       {
1722         if (hhash->DigestCalculationDisable != RESET)
1723         {
1724           /* No automatic move to Step 3 as a new message buffer will be fed to the Peripheral
1725           (case of multi-buffer HMAC processing):
1726           DCAL must not be set.
1727           Phase remains in Step 2, MDMAT remains set at this point.
1728           Change the HASH state to ready and call Input data transfer complete call back. */
1729           hhash->State = HAL_HASH_STATE_READY;
1730 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1731           hhash->InCpltCallback(hhash);
1732 #else
1733           HAL_HASH_InCpltCallback(hhash);
1734 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1735           return ;
1736         }
1737         else
1738         {
1739           /* Digest calculation is not disabled (case of single buffer input or last buffer
1740           of multi-buffer HMAC processing) */
1741           inputaddr = (uint32_t)hhash->Init.pKey;       /* DMA transfer start address */
1742           buffersize = hhash->Init.KeySize;             /* DMA transfer size (in bytes) */
1743           hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;    /* Move phase from Step 2 to Step 3 */
1744           /* In case of suspension request, save the new starting parameters */
1745           hhash->HashInCount = hhash->Init.KeySize;     /* Initial size for second DMA transfer (input data) */
1746           hhash->pHashInBuffPtr  = hhash->Init.pKey ;   /* address passed to DMA, now entering data message */
1747 
1748           hhash->NbWordsAlreadyPushed = 0U;              /* Reset number of words already pushed */
1749         }
1750       }
1751 
1752       /* Configure the Number of valid bits in last word of the message */
1753       __HAL_HASH_SET_NBVALIDBITS(buffersize);
1754 
1755       /* Set the HASH DMA transfer completion call back */
1756       hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
1757 
1758       /* Enable the DMA In DMA channel */
1759       status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
1760                                 (((buffersize % 4U) != 0U) ? ((buffersize + (4U - (buffersize % 4U))) / 4U) : \
1761                                  (buffersize / 4U)));
1762 
1763       /* Enable DMA requests */
1764       SET_BIT(HASH->CR, HASH_CR_DMAE);
1765 
1766       /* Return function status */
1767       if (status != HAL_OK)
1768       {
1769         /* Update HASH state machine to error */
1770         hhash->State = HAL_HASH_STATE_ERROR;
1771       }
1772       else
1773       {
1774         /* Change HASH state */
1775         hhash->State = HAL_HASH_STATE_BUSY;
1776       }
1777     }
1778   }
1779 
1780   return;
1781 }
1782 
1783 /**
1784   * @brief DMA HASH communication error callback.
1785   * @param hdma DMA handle.
1786   * @note  HASH_DMAError() callback invokes HAL_HASH_ErrorCallback() that
1787   *        can contain user code to manage the error.
1788   * @retval None
1789   */
HASH_DMAError(DMA_HandleTypeDef * hdma)1790 static void HASH_DMAError(DMA_HandleTypeDef *hdma)
1791 {
1792   HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
1793 
1794   if (hhash->State != HAL_HASH_STATE_SUSPENDED)
1795   {
1796     hhash->ErrorCode |= HAL_HASH_ERROR_DMA;
1797     /* Set HASH state to ready to prevent any blocking issue in user code
1798        present in HAL_HASH_ErrorCallback() */
1799     hhash->State = HAL_HASH_STATE_READY;
1800     /* Set HASH handle status to error */
1801     hhash->Status = HAL_ERROR;
1802 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1803     hhash->ErrorCallback(hhash);
1804 #else
1805     HAL_HASH_ErrorCallback(hhash);
1806 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1807     /* After error handling by code user, reset HASH handle HAL status */
1808     hhash->Status = HAL_OK;
1809 
1810   }
1811 }
1812 
1813 /**
1814   * @brief  Feed the input buffer to the HASH Peripheral.
1815   * @param  hhash HASH handle.
1816   * @param  pInBuffer pointer to input buffer.
1817   * @param  Size the size of input buffer in bytes.
1818   * @note   HASH_WriteData() regularly reads hhash->SuspendRequest to check whether
1819   *         or not the HASH processing must be suspended. If this is the case, the
1820   *         processing is suspended when possible and the Peripheral feeding point reached at
1821   *         suspension time is stored in the handle for resumption later on.
1822   * @retval HAL status
1823   */
HASH_WriteData(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1824 static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1825 {
1826   uint32_t buffercounter;
1827   __IO uint32_t inputaddr = (uint32_t) pInBuffer;
1828 
1829   for (buffercounter = 0U; buffercounter < Size; buffercounter += 4U)
1830   {
1831     /* Write input data 4 bytes at a time */
1832     HASH->DIN = *(uint32_t *)inputaddr;
1833     inputaddr += 4U;
1834 
1835     /* If the suspension flag has been raised and if the processing is not about
1836     to end, suspend processing */
1837     if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter + 4U) < Size))
1838     {
1839       /* Wait for DINIS = 1, which occurs when 16 32-bit locations are free
1840       in the input buffer */
1841       if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
1842       {
1843         /* Reset SuspendRequest */
1844         hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
1845 
1846         /* Depending whether the key or the input data were fed to the Peripheral, the feeding point
1847         reached at suspension time is not saved in the same handle fields */
1848         if ((hhash->Phase == HAL_HASH_PHASE_PROCESS) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2))
1849         {
1850           /* Save current reading and writing locations of Input and Output buffers */
1851           hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
1852           /* Save the number of bytes that remain to be processed at this point */
1853           hhash->HashInCount    =  Size - (buffercounter + 4U);
1854         }
1855         else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
1856         {
1857           /* Save current reading and writing locations of Input and Output buffers */
1858           hhash->pHashKeyBuffPtr  = (uint8_t *)inputaddr;
1859           /* Save the number of bytes that remain to be processed at this point */
1860           hhash->HashKeyCount  =  Size - (buffercounter + 4U);
1861         }
1862         else
1863         {
1864           /* Unexpected phase: unlock process and report error */
1865           hhash->State = HAL_HASH_STATE_READY;
1866           __HAL_UNLOCK(hhash);
1867           return HAL_ERROR;
1868         }
1869 
1870         /* Set the HASH state to Suspended and exit to stop entering data */
1871         hhash->State = HAL_HASH_STATE_SUSPENDED;
1872 
1873         return HAL_OK;
1874       } /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))  */
1875     } /* if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter+4) < Size)) */
1876   }   /* for(buffercounter = 0; buffercounter < Size; buffercounter+=4)                 */
1877 
1878   /* At this point, all the data have been entered to the Peripheral: exit */
1879   return  HAL_OK;
1880 }
1881 
1882 /**
1883   * @brief  Retrieve the message digest.
1884   * @param  pMsgDigest pointer to the computed digest.
1885   * @param  Size message digest size in bytes.
1886   * @retval None
1887   */
HASH_GetDigest(uint8_t * pMsgDigest,uint8_t Size)1888 static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size)
1889 {
1890   uint32_t msgdigest = (uint32_t)pMsgDigest;
1891 
1892   switch (Size)
1893   {
1894     /* Read the message digest */
1895     case 16:  /* MD5 */
1896       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1897       msgdigest += 4U;
1898       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1899       msgdigest += 4U;
1900       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1901       msgdigest += 4U;
1902       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1903       break;
1904     case 20:  /* SHA1 */
1905       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1906       msgdigest += 4U;
1907       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1908       msgdigest += 4U;
1909       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1910       msgdigest += 4U;
1911       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1912       msgdigest += 4U;
1913       *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1914       break;
1915     case 28:  /* SHA224 */
1916       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1917       msgdigest += 4U;
1918       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1919       msgdigest += 4U;
1920       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1921       msgdigest += 4U;
1922       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1923       msgdigest += 4U;
1924       *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1925       msgdigest += 4U;
1926       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
1927       msgdigest += 4U;
1928       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
1929       break;
1930     case 32:   /* SHA256 */
1931       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1932       msgdigest += 4U;
1933       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1934       msgdigest += 4U;
1935       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1936       msgdigest += 4U;
1937       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1938       msgdigest += 4U;
1939       *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1940       msgdigest += 4U;
1941       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
1942       msgdigest += 4U;
1943       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
1944       msgdigest += 4U;
1945       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[7]);
1946       break;
1947     default:
1948       break;
1949   }
1950 }
1951 
1952 
1953 
1954 /**
1955   * @brief  Handle HASH processing Timeout.
1956   * @param  hhash HASH handle.
1957   * @param  Flag specifies the HASH flag to check.
1958   * @param  Status the Flag status (SET or RESET).
1959   * @param  Timeout Timeout duration.
1960   * @retval HAL status
1961   */
HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef * hhash,uint32_t Flag,FlagStatus Status,uint32_t Timeout)1962 static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
1963                                                      uint32_t Timeout)
1964 {
1965   uint32_t tickstart = HAL_GetTick();
1966 
1967   /* Wait until flag is set */
1968   if (Status == RESET)
1969   {
1970     while (__HAL_HASH_GET_FLAG(Flag) == RESET)
1971     {
1972       /* Check for the Timeout */
1973       if (Timeout != HAL_MAX_DELAY)
1974       {
1975         if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
1976         {
1977           /* Set State to Ready to be able to restart later on */
1978           hhash->State  = HAL_HASH_STATE_READY;
1979           /* Store time out issue in handle status */
1980           hhash->Status = HAL_TIMEOUT;
1981 
1982           /* Process Unlocked */
1983           __HAL_UNLOCK(hhash);
1984 
1985           return HAL_TIMEOUT;
1986         }
1987       }
1988     }
1989   }
1990   else
1991   {
1992     while (__HAL_HASH_GET_FLAG(Flag) != RESET)
1993     {
1994       /* Check for the Timeout */
1995       if (Timeout != HAL_MAX_DELAY)
1996       {
1997         if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
1998         {
1999           /* Set State to Ready to be able to restart later on */
2000           hhash->State  = HAL_HASH_STATE_READY;
2001           /* Store time out issue in handle status */
2002           hhash->Status = HAL_TIMEOUT;
2003 
2004           /* Process Unlocked */
2005           __HAL_UNLOCK(hhash);
2006 
2007           return HAL_TIMEOUT;
2008         }
2009       }
2010     }
2011   }
2012   return HAL_OK;
2013 }
2014 
2015 
2016 /**
2017   * @brief  HASH processing in interruption mode.
2018   * @param  hhash HASH handle.
2019   * @note   HASH_IT() regularly reads hhash->SuspendRequest to check whether
2020   *         or not the HASH processing must be suspended. If this is the case, the
2021   *         processing is suspended when possible and the Peripheral feeding point reached at
2022   *         suspension time is stored in the handle for resumption later on.
2023   * @retval HAL status
2024   */
HASH_IT(HASH_HandleTypeDef * hhash)2025 static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash)
2026 {
2027   if (hhash->State == HAL_HASH_STATE_BUSY)
2028   {
2029     /* ITCounter must not be equal to 0 at this point. Report an error if this is the case. */
2030     if (hhash->HashITCounter == 0U)
2031     {
2032       /* Disable Interrupts */
2033       __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2034       /* HASH state set back to Ready to prevent any issue in user code
2035          present in HAL_HASH_ErrorCallback() */
2036       hhash->State = HAL_HASH_STATE_READY;
2037       return HAL_ERROR;
2038     }
2039     else if (hhash->HashITCounter == 1U)
2040     {
2041       /* This is the first call to HASH_IT, the first input data are about to be
2042          entered in the Peripheral. A specific processing is carried out at this point to
2043          start-up the processing. */
2044       hhash->HashITCounter = 2U;
2045     }
2046     else
2047     {
2048       /* Cruise speed reached, HashITCounter remains equal to 3 until the end of
2049         the HASH processing or the end of the current step for HMAC processing. */
2050       hhash->HashITCounter = 3U;
2051     }
2052 
2053     /* If digest is ready */
2054     if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS))
2055     {
2056       /* Read the digest */
2057       HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
2058 
2059       /* Disable Interrupts */
2060       __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2061       /* Change the HASH state */
2062       hhash->State = HAL_HASH_STATE_READY;
2063       /* Reset HASH state machine */
2064       hhash->Phase = HAL_HASH_PHASE_READY;
2065       /* Call digest computation complete call back */
2066 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2067       hhash->DgstCpltCallback(hhash);
2068 #else
2069       HAL_HASH_DgstCpltCallback(hhash);
2070 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2071 
2072       return HAL_OK;
2073     }
2074 
2075     /* If Peripheral ready to accept new data */
2076     if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
2077     {
2078 
2079       /* If the suspension flag has been raised and if the processing is not about
2080          to end, suspend processing */
2081       if ((hhash->HashInCount != 0U) && (hhash->SuspendRequest == HAL_HASH_SUSPEND))
2082       {
2083         /* Disable Interrupts */
2084         __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2085 
2086         /* Reset SuspendRequest */
2087         hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
2088 
2089         /* Change the HASH state */
2090         hhash->State = HAL_HASH_STATE_SUSPENDED;
2091 
2092         return HAL_OK;
2093       }
2094 
2095       /* Enter input data in the Peripheral through HASH_Write_Block_Data() call and
2096         check whether the digest calculation has been triggered */
2097       if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED)
2098       {
2099         /* Call Input data transfer complete call back
2100            (called at the end of each step for HMAC) */
2101 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2102         hhash->InCpltCallback(hhash);
2103 #else
2104         HAL_HASH_InCpltCallback(hhash);
2105 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2106 
2107         if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
2108         {
2109           /* Wait until Peripheral is not busy anymore */
2110           if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
2111           {
2112             /* Disable Interrupts */
2113             __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2114             return HAL_TIMEOUT;
2115           }
2116           /* Initialization start for HMAC STEP 2 */
2117           hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;        /* Move phase from Step 1 to Step 2 */
2118           __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize);  /* Set NBLW for the input message */
2119           hhash->HashInCount = hhash->HashBuffSize;         /* Set the input data size (in bytes) */
2120           hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr;   /* Set the input data address */
2121           hhash->HashITCounter = 1;                         /* Set ITCounter to 1 to indicate the start
2122                                                                of a new phase */
2123           __HAL_HASH_ENABLE_IT(HASH_IT_DINI);               /* Enable IT (was disabled in HASH_Write_Block_Data) */
2124         }
2125         else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
2126         {
2127           /* Wait until Peripheral is not busy anymore */
2128           if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
2129           {
2130             /* Disable Interrupts */
2131             __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2132             return HAL_TIMEOUT;
2133           }
2134           /* Initialization start for HMAC STEP 3 */
2135           hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;         /* Move phase from Step 2 to Step 3 */
2136           __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);   /* Set NBLW for the key */
2137           hhash->HashInCount = hhash->Init.KeySize;          /* Set the key size (in bytes) */
2138           hhash->pHashInBuffPtr = hhash->Init.pKey;          /* Set the key address */
2139           hhash->HashITCounter = 1;                          /* Set ITCounter to 1 to indicate the start
2140                                                                 of a new phase */
2141           __HAL_HASH_ENABLE_IT(HASH_IT_DINI);                /* Enable IT (was disabled in HASH_Write_Block_Data) */
2142         }
2143         else
2144         {
2145           /* Nothing to do */
2146         }
2147       } /* if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED) */
2148     }  /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))*/
2149 
2150     /* Return function status */
2151     return HAL_OK;
2152   }
2153   else
2154   {
2155     return HAL_BUSY;
2156   }
2157 }
2158 
2159 
2160 /**
2161   * @brief  Write a block of data in HASH Peripheral in interruption mode.
2162   * @param  hhash HASH handle.
2163   * @note   HASH_Write_Block_Data() is called under interruption by HASH_IT().
2164   * @retval HAL status
2165   */
HASH_Write_Block_Data(HASH_HandleTypeDef * hhash)2166 static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash)
2167 {
2168   uint32_t inputaddr;
2169   uint32_t buffercounter;
2170   uint32_t inputcounter;
2171   uint32_t ret = HASH_DIGEST_CALCULATION_NOT_STARTED;
2172 
2173   /* If there are more than 64 bytes remaining to be entered */
2174   if (hhash->HashInCount > 64U)
2175   {
2176     inputaddr = (uint32_t)hhash->pHashInBuffPtr;
2177     /* Write the Input block in the Data IN register
2178       (16 32-bit words, or 64 bytes are entered) */
2179     for (buffercounter = 0U; buffercounter < 64U; buffercounter += 4U)
2180     {
2181       HASH->DIN = *(uint32_t *)inputaddr;
2182       inputaddr += 4U;
2183     }
2184     /* If this is the start of input data entering, an additional word
2185       must be entered to start up the HASH processing */
2186     if (hhash->HashITCounter == 2U)
2187     {
2188       HASH->DIN = *(uint32_t *)inputaddr;
2189       if (hhash->HashInCount >= 68U)
2190       {
2191         /* There are still data waiting to be entered in the Peripheral.
2192            Decrement buffer counter and set pointer to the proper
2193            memory location for the next data entering round. */
2194         hhash->HashInCount -= 68U;
2195         hhash->pHashInBuffPtr += 68U;
2196       }
2197       else
2198       {
2199         /* All the input buffer has been fed to the HW. */
2200         hhash->HashInCount = 0U;
2201       }
2202     }
2203     else
2204     {
2205       /* 64 bytes have been entered and there are still some remaining:
2206          Decrement buffer counter and set pointer to the proper
2207         memory location for the next data entering round.*/
2208       hhash->HashInCount -= 64U;
2209       hhash->pHashInBuffPtr += 64U;
2210     }
2211   }
2212   else
2213   {
2214     /* 64 or less bytes remain to be entered. This is the last
2215       data entering round. */
2216 
2217     /* Get the buffer address */
2218     inputaddr = (uint32_t)hhash->pHashInBuffPtr;
2219     /* Get the buffer counter */
2220     inputcounter = hhash->HashInCount;
2221     /* Disable Interrupts */
2222     __HAL_HASH_DISABLE_IT(HASH_IT_DINI);
2223 
2224     /* Write the Input block in the Data IN register */
2225     for (buffercounter = 0U; buffercounter < ((inputcounter + 3U) / 4U); buffercounter++)
2226     {
2227       HASH->DIN = *(uint32_t *)inputaddr;
2228       inputaddr += 4U;
2229     }
2230 
2231     if (hhash->Accumulation == 1U)
2232     {
2233       /* Field accumulation is set, API only feeds data to the Peripheral and under interruption.
2234          The digest computation will be started when the last buffer data are entered. */
2235 
2236       /* Reset multi buffers accumulation flag */
2237       hhash->Accumulation = 0U;
2238       /* Change the HASH state */
2239       hhash->State = HAL_HASH_STATE_READY;
2240       /* Call Input data transfer complete call back */
2241 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2242       hhash->InCpltCallback(hhash);
2243 #else
2244       HAL_HASH_InCpltCallback(hhash);
2245 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2246     }
2247     else
2248     {
2249       /* Start the Digest calculation */
2250       __HAL_HASH_START_DIGEST();
2251       /* Return indication that digest calculation has started:
2252          this return value triggers the call to Input data transfer
2253          complete call back as well as the proper transition from
2254          one step to another in HMAC mode. */
2255       ret = HASH_DIGEST_CALCULATION_STARTED;
2256     }
2257     /* Reset buffer counter */
2258     hhash->HashInCount = 0;
2259   }
2260 
2261   /* Return whether or digest calculation has started */
2262   return ret;
2263 }
2264 
2265 /**
2266   * @brief  HMAC processing in polling mode.
2267   * @param  hhash HASH handle.
2268   * @param  Timeout Timeout value.
2269   * @retval HAL status
2270   */
HMAC_Processing(HASH_HandleTypeDef * hhash,uint32_t Timeout)2271 static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout)
2272 {
2273   /* Ensure first that Phase is correct */
2274   if ((hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_1) && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_2)
2275       && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_3))
2276   {
2277     /* Change the HASH state */
2278     hhash->State = HAL_HASH_STATE_READY;
2279 
2280     /* Process Unlock */
2281     __HAL_UNLOCK(hhash);
2282 
2283     /* Return function status */
2284     return HAL_ERROR;
2285   }
2286 
2287   /* HMAC Step 1 processing */
2288   if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
2289   {
2290     /************************** STEP 1 ******************************************/
2291     /* Configure the Number of valid bits in last word of the message */
2292     __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
2293 
2294     /* Write input buffer in Data register */
2295     hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
2296     if (hhash->Status != HAL_OK)
2297     {
2298       return hhash->Status;
2299     }
2300 
2301     /* Check whether or not key entering process has been suspended */
2302     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2303     {
2304       /* Process Unlocked */
2305       __HAL_UNLOCK(hhash);
2306 
2307       /* Stop right there and return function status */
2308       return HAL_OK;
2309     }
2310 
2311     /* No processing suspension at this point: set DCAL bit. */
2312     __HAL_HASH_START_DIGEST();
2313 
2314     /* Wait for BUSY flag to be cleared */
2315     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
2316     {
2317       return HAL_TIMEOUT;
2318     }
2319 
2320     /* Move from Step 1 to Step 2 */
2321     hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;
2322 
2323   }
2324 
2325   /* HMAC Step 2 processing.
2326      After phase check, HMAC_Processing() may
2327      - directly start up from this point in resumption case
2328        if the same Step 2 processing was suspended previously
2329     - or fall through from the Step 1 processing carried out hereabove */
2330   if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
2331   {
2332     /************************** STEP 2 ******************************************/
2333     /* Configure the Number of valid bits in last word of the message */
2334     __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize);
2335 
2336     /* Write input buffer in Data register */
2337     hhash->Status = HASH_WriteData(hhash, hhash->pHashInBuffPtr, hhash->HashInCount);
2338     if (hhash->Status != HAL_OK)
2339     {
2340       return hhash->Status;
2341     }
2342 
2343     /* Check whether or not data entering process has been suspended */
2344     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2345     {
2346       /* Process Unlocked */
2347       __HAL_UNLOCK(hhash);
2348 
2349       /* Stop right there and return function status */
2350       return HAL_OK;
2351     }
2352 
2353     /* No processing suspension at this point: set DCAL bit. */
2354     __HAL_HASH_START_DIGEST();
2355 
2356     /* Wait for BUSY flag to be cleared */
2357     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
2358     {
2359       return HAL_TIMEOUT;
2360     }
2361 
2362     /* Move from Step 2 to Step 3 */
2363     hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;
2364     /* In case Step 1 phase was suspended then resumed,
2365        set again Key input buffers and size before moving to
2366        next step */
2367     hhash->pHashKeyBuffPtr = hhash->Init.pKey;
2368     hhash->HashKeyCount    = hhash->Init.KeySize;
2369   }
2370 
2371 
2372   /* HMAC Step 3 processing.
2373       After phase check, HMAC_Processing() may
2374       - directly start up from this point in resumption case
2375         if the same Step 3 processing was suspended previously
2376      - or fall through from the Step 2 processing carried out hereabove */
2377   if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
2378   {
2379     /************************** STEP 3 ******************************************/
2380     /* Configure the Number of valid bits in last word of the message */
2381     __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
2382 
2383     /* Write input buffer in Data register */
2384     hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
2385     if (hhash->Status != HAL_OK)
2386     {
2387       return hhash->Status;
2388     }
2389 
2390     /* Check whether or not key entering process has been suspended */
2391     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2392     {
2393       /* Process Unlocked */
2394       __HAL_UNLOCK(hhash);
2395 
2396       /* Stop right there and return function status */
2397       return HAL_OK;
2398     }
2399 
2400     /* No processing suspension at this point: start the Digest calculation. */
2401     __HAL_HASH_START_DIGEST();
2402 
2403     /* Wait for DCIS flag to be set */
2404     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
2405     {
2406       return HAL_TIMEOUT;
2407     }
2408 
2409     /* Read the message digest */
2410     HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
2411 
2412     /* Reset HASH state machine */
2413     hhash->Phase = HAL_HASH_PHASE_READY;
2414   }
2415 
2416   /* Change the HASH state */
2417   hhash->State = HAL_HASH_STATE_READY;
2418 
2419   /* Process Unlock */
2420   __HAL_UNLOCK(hhash);
2421 
2422   /* Return function status */
2423   return HAL_OK;
2424 }
2425 
2426 
2427 /**
2428   * @brief  Initialize the HASH peripheral, next process pInBuffer then
2429   *         read the computed digest.
2430   * @note   Digest is available in pOutBuffer.
2431   * @param  hhash HASH handle.
2432   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2433   * @param  Size length of the input buffer in bytes.
2434   * @param  pOutBuffer pointer to the computed digest.
2435   * @param  Timeout Timeout value.
2436   * @param  Algorithm HASH algorithm.
2437   * @retval HAL status
2438   */
HASH_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout,uint32_t Algorithm)2439 HAL_StatusTypeDef HASH_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
2440                              uint32_t Timeout, uint32_t Algorithm)
2441 {
2442   uint8_t *pInBuffer_tmp;  /* input data address, input parameter of HASH_WriteData()         */
2443   uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */
2444   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2445 
2446 
2447   /* Initiate HASH processing in case of start or resumption */
2448   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2449   {
2450     /* Check input parameters */
2451     if ((pInBuffer == NULL) || (pOutBuffer == NULL))
2452     {
2453       hhash->State = HAL_HASH_STATE_READY;
2454       return  HAL_ERROR;
2455     }
2456 
2457     /* Process Locked */
2458     __HAL_LOCK(hhash);
2459 
2460     /* Check if initialization phase has not been already performed */
2461     if (hhash->Phase == HAL_HASH_PHASE_READY)
2462     {
2463       /* Change the HASH state */
2464       hhash->State = HAL_HASH_STATE_BUSY;
2465 
2466       /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2467       MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2468 
2469       /* Configure the number of valid bits in last word of the message */
2470       __HAL_HASH_SET_NBVALIDBITS(Size);
2471 
2472       /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2473       input parameters of HASH_WriteData() */
2474       pInBuffer_tmp = pInBuffer;   /* pInBuffer_tmp is set to the input data address */
2475       Size_tmp = Size;             /* Size_tmp contains the input data size in bytes */
2476 
2477       /* Set the phase */
2478       hhash->Phase = HAL_HASH_PHASE_PROCESS;
2479     }
2480     else if (hhash->Phase == HAL_HASH_PHASE_PROCESS)
2481     {
2482       /* if the Peripheral has already been initialized, two cases are possible */
2483 
2484       /* Process resumption time ... */
2485       if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2486       {
2487         /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
2488         to the API input parameters but to those saved beforehand by HASH_WriteData()
2489         when the processing was suspended */
2490         pInBuffer_tmp = hhash->pHashInBuffPtr;
2491         Size_tmp = hhash->HashInCount;
2492       }
2493       /* ... or multi-buffer HASH processing end */
2494       else
2495       {
2496         /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2497         input parameters of HASH_WriteData() */
2498         pInBuffer_tmp = pInBuffer;
2499         Size_tmp = Size;
2500         /* Configure the number of valid bits in last word of the message */
2501         __HAL_HASH_SET_NBVALIDBITS(Size);
2502       }
2503       /* Change the HASH state */
2504       hhash->State = HAL_HASH_STATE_BUSY;
2505     }
2506     else
2507     {
2508       /* Phase error */
2509       hhash->State = HAL_HASH_STATE_READY;
2510 
2511       /* Process Unlocked */
2512       __HAL_UNLOCK(hhash);
2513 
2514       /* Return function status */
2515       return HAL_ERROR;
2516     }
2517 
2518 
2519     /* Write input buffer in Data register */
2520     hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
2521     if (hhash->Status != HAL_OK)
2522     {
2523       return hhash->Status;
2524     }
2525 
2526     /* If the process has not been suspended, carry on to digest calculation */
2527     if (hhash->State != HAL_HASH_STATE_SUSPENDED)
2528     {
2529       /* Start the Digest calculation */
2530       __HAL_HASH_START_DIGEST();
2531 
2532       /* Wait for DCIS flag to be set */
2533       if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
2534       {
2535         return HAL_TIMEOUT;
2536       }
2537 
2538       /* Read the message digest */
2539       HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
2540 
2541       /* Change the HASH state */
2542       hhash->State = HAL_HASH_STATE_READY;
2543 
2544       /* Reset HASH state machine */
2545       hhash->Phase = HAL_HASH_PHASE_READY;
2546 
2547     }
2548 
2549     /* Process Unlocked */
2550     __HAL_UNLOCK(hhash);
2551 
2552     /* Return function status */
2553     return HAL_OK;
2554 
2555   }
2556   else
2557   {
2558     return HAL_BUSY;
2559   }
2560 }
2561 
2562 
2563 /**
2564   * @brief  If not already done, initialize the HASH peripheral then
2565   *         processes pInBuffer.
2566   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
2567   *         the Peripheral has already been initialized.
2568   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
2569   *         HASH digest computation is corrupted.
2570   * @param  hhash HASH handle.
2571   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2572   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
2573   * @param  Algorithm HASH algorithm.
2574   * @retval HAL status
2575   */
HASH_Accumulate(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2576 HAL_StatusTypeDef HASH_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2577 {
2578   uint8_t *pInBuffer_tmp;   /* input data address, input parameter of HASH_WriteData()         */
2579   uint32_t Size_tmp;  /* input data size (in bytes), input parameter of HASH_WriteData() */
2580   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2581 
2582   /* Make sure the input buffer size (in bytes) is a multiple of 4 */
2583   if ((Size % 4U) != 0U)
2584   {
2585     return  HAL_ERROR;
2586   }
2587 
2588   /* Initiate HASH processing in case of start or resumption */
2589   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2590   {
2591     /* Check input parameters */
2592     if ((pInBuffer == NULL) || (Size == 0U))
2593     {
2594       hhash->State = HAL_HASH_STATE_READY;
2595       return  HAL_ERROR;
2596     }
2597 
2598     /* Process Locked */
2599     __HAL_LOCK(hhash);
2600 
2601     /* If resuming the HASH processing */
2602     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2603     {
2604       /* Change the HASH state */
2605       hhash->State = HAL_HASH_STATE_BUSY;
2606 
2607       /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
2608          to the API input parameters but to those saved beforehand by HASH_WriteData()
2609          when the processing was suspended */
2610       pInBuffer_tmp = hhash->pHashInBuffPtr;  /* pInBuffer_tmp is set to the input data address */
2611       Size_tmp = hhash->HashInCount;          /* Size_tmp contains the input data size in bytes */
2612 
2613     }
2614     else
2615     {
2616       /* Change the HASH state */
2617       hhash->State = HAL_HASH_STATE_BUSY;
2618 
2619       /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2620          input parameters of HASH_WriteData() */
2621       pInBuffer_tmp = pInBuffer;    /* pInBuffer_tmp is set to the input data address */
2622       Size_tmp = Size;              /* Size_tmp contains the input data size in bytes */
2623 
2624       /* Check if initialization phase has already be performed */
2625       if (hhash->Phase == HAL_HASH_PHASE_READY)
2626       {
2627         /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2628         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2629       }
2630 
2631       /* Set the phase */
2632       hhash->Phase = HAL_HASH_PHASE_PROCESS;
2633 
2634     }
2635 
2636     /* Write input buffer in Data register */
2637     hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
2638     if (hhash->Status != HAL_OK)
2639     {
2640       return hhash->Status;
2641     }
2642 
2643     /* If the process has not been suspended, move the state to Ready */
2644     if (hhash->State != HAL_HASH_STATE_SUSPENDED)
2645     {
2646       /* Change the HASH state */
2647       hhash->State = HAL_HASH_STATE_READY;
2648     }
2649 
2650     /* Process Unlocked */
2651     __HAL_UNLOCK(hhash);
2652 
2653     /* Return function status */
2654     return HAL_OK;
2655 
2656   }
2657   else
2658   {
2659     return HAL_BUSY;
2660   }
2661 
2662 
2663 }
2664 
2665 
2666 /**
2667   * @brief  If not already done, initialize the HASH peripheral then
2668   *         processes pInBuffer in interruption mode.
2669   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
2670   *         the Peripheral has already been initialized.
2671   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
2672   *         HASH digest computation is corrupted.
2673   * @param  hhash HASH handle.
2674   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2675   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
2676   * @param  Algorithm HASH algorithm.
2677   * @retval HAL status
2678   */
HASH_Accumulate_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2679 HAL_StatusTypeDef HASH_Accumulate_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2680 {
2681   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2682   __IO uint32_t inputaddr = (uint32_t) pInBuffer;
2683   uint32_t SizeVar = Size;
2684 
2685   /* Make sure the input buffer size (in bytes) is a multiple of 4 */
2686   if ((Size % 4U) != 0U)
2687   {
2688     return  HAL_ERROR;
2689   }
2690 
2691   /* Initiate HASH processing in case of start or resumption */
2692   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2693   {
2694     /* Check input parameters */
2695     if ((pInBuffer == NULL) || (Size == 0U))
2696     {
2697       hhash->State = HAL_HASH_STATE_READY;
2698       return  HAL_ERROR;
2699     }
2700 
2701     /* Process Locked */
2702     __HAL_LOCK(hhash);
2703 
2704     /* If resuming the HASH processing */
2705     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2706     {
2707       /* Change the HASH state */
2708       hhash->State = HAL_HASH_STATE_BUSY;
2709     }
2710     else
2711     {
2712       /* Change the HASH state */
2713       hhash->State = HAL_HASH_STATE_BUSY;
2714 
2715       /* Check if initialization phase has already be performed */
2716       if (hhash->Phase == HAL_HASH_PHASE_READY)
2717       {
2718         /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2719         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2720         hhash->HashITCounter = 1;
2721       }
2722       else
2723       {
2724         hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
2725       }
2726 
2727       /* Set the phase */
2728       hhash->Phase = HAL_HASH_PHASE_PROCESS;
2729 
2730       /* If DINIS is equal to 0 (for example if an incomplete block has been previously
2731        fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
2732        Therefore, first words are manually entered until DINIS raises, or until there
2733        is not more data to enter. */
2734       while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 0U))
2735       {
2736 
2737         /* Write input data 4 bytes at a time */
2738         HASH->DIN = *(uint32_t *)inputaddr;
2739         inputaddr += 4U;
2740         SizeVar -= 4U;
2741       }
2742 
2743       /* If DINIS is still not set or if all the data have been fed, stop here */
2744       if ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) || (SizeVar == 0U))
2745       {
2746         /* Change the HASH state */
2747         hhash->State = HAL_HASH_STATE_READY;
2748 
2749         /* Process Unlock */
2750         __HAL_UNLOCK(hhash);
2751 
2752         /* Return function status */
2753         return HAL_OK;
2754       }
2755 
2756       /* otherwise, carry on in interrupt-mode */
2757       hhash->HashInCount = SizeVar;               /* Counter used to keep track of number of data
2758                                                   to be fed to the Peripheral */
2759       hhash->pHashInBuffPtr = (uint8_t *)inputaddr;       /* Points at data which will be fed to the Peripheral at
2760                                                   the next interruption */
2761       /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
2762          the information describing where the HASH process is stopped.
2763          These variables are used later on to resume the HASH processing at the
2764          correct location. */
2765 
2766     }
2767 
2768     /* Set multi buffers accumulation flag */
2769     hhash->Accumulation = 1U;
2770 
2771     /* Process Unlock */
2772     __HAL_UNLOCK(hhash);
2773 
2774     /* Enable Data Input interrupt */
2775     __HAL_HASH_ENABLE_IT(HASH_IT_DINI);
2776 
2777     /* Return function status */
2778     return HAL_OK;
2779 
2780   }
2781   else
2782   {
2783     return HAL_BUSY;
2784   }
2785 
2786 }
2787 
2788 
2789 
2790 /**
2791   * @brief  Initialize the HASH peripheral, next process pInBuffer then
2792   *         read the computed digest in interruption mode.
2793   * @note   Digest is available in pOutBuffer.
2794   * @param  hhash HASH handle.
2795   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2796   * @param  Size length of the input buffer in bytes.
2797   * @param  pOutBuffer pointer to the computed digest.
2798   * @param  Algorithm HASH algorithm.
2799   * @retval HAL status
2800   */
HASH_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Algorithm)2801 HAL_StatusTypeDef HASH_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
2802                                 uint32_t Algorithm)
2803 {
2804   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2805   __IO uint32_t inputaddr = (uint32_t) pInBuffer;
2806   uint32_t polling_step = 0U;
2807   uint32_t initialization_skipped = 0U;
2808   uint32_t SizeVar = Size;
2809 
2810   /* If State is ready or suspended, start or resume IT-based HASH processing */
2811   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2812   {
2813     /* Check input parameters */
2814     if ((pInBuffer == NULL) || (Size == 0U) || (pOutBuffer == NULL))
2815     {
2816       hhash->State = HAL_HASH_STATE_READY;
2817       return  HAL_ERROR;
2818     }
2819 
2820     /* Process Locked */
2821     __HAL_LOCK(hhash);
2822 
2823     /* Change the HASH state */
2824     hhash->State = HAL_HASH_STATE_BUSY;
2825 
2826     /* Initialize IT counter */
2827     hhash->HashITCounter = 1;
2828 
2829     /* Check if initialization phase has already be performed */
2830     if (hhash->Phase == HAL_HASH_PHASE_READY)
2831     {
2832       /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2833       MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2834 
2835       /* Configure the number of valid bits in last word of the message */
2836       __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2837 
2838 
2839       hhash->HashInCount = SizeVar;            /* Counter used to keep track of number of data
2840                                                   to be fed to the Peripheral */
2841       hhash->pHashInBuffPtr = pInBuffer;       /* Points at data which will be fed to the Peripheral at
2842                                                   the next interruption */
2843       /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
2844          the information describing where the HASH process is stopped.
2845          These variables are used later on to resume the HASH processing at the
2846          correct location. */
2847 
2848       hhash->pHashOutBuffPtr = pOutBuffer;     /* Points at the computed digest */
2849     }
2850     else
2851     {
2852       initialization_skipped = 1; /* info user later on in case of multi-buffer */
2853     }
2854 
2855     /* Set the phase */
2856     hhash->Phase = HAL_HASH_PHASE_PROCESS;
2857 
2858     /* If DINIS is equal to 0 (for example if an incomplete block has been previously
2859       fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
2860       Therefore, first words are manually entered until DINIS raises. */
2861     while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 3U))
2862     {
2863       polling_step = 1U; /* note that some words are entered before enabling the interrupt */
2864 
2865       /* Write input data 4 bytes at a time */
2866       HASH->DIN = *(uint32_t *)inputaddr;
2867       inputaddr += 4U;
2868       SizeVar -= 4U;
2869     }
2870 
2871     if (polling_step == 1U)
2872     {
2873       if (SizeVar == 0U)
2874       {
2875         /* If all the data have been entered at this point, it only remains to
2876          read the digest */
2877         hhash->pHashOutBuffPtr = pOutBuffer;     /* Points at the computed digest */
2878 
2879         /* Start the Digest calculation */
2880         __HAL_HASH_START_DIGEST();
2881         /* Process Unlock */
2882         __HAL_UNLOCK(hhash);
2883 
2884         /* Enable Interrupts */
2885         __HAL_HASH_ENABLE_IT(HASH_IT_DCI);
2886 
2887         /* Return function status */
2888         return HAL_OK;
2889       }
2890       else if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
2891       {
2892         /* It remains data to enter and the Peripheral is ready to trigger DINIE,
2893            carry on as usual.
2894            Update HashInCount and pHashInBuffPtr accordingly. */
2895         hhash->HashInCount = SizeVar;
2896         hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
2897         /* Update the configuration of the number of valid bits in last word of the message */
2898         __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2899         hhash->pHashOutBuffPtr = pOutBuffer;  /* Points at the computed digest */
2900         if (initialization_skipped == 1U)
2901         {
2902           hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
2903         }
2904       }
2905       else
2906       {
2907         /* DINIS is not set but it remains a few data to enter (not enough for a full word).
2908            Manually enter the last bytes before enabling DCIE. */
2909         __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2910         HASH->DIN = *(uint32_t *)inputaddr;
2911 
2912         /* Start the Digest calculation */
2913         hhash->pHashOutBuffPtr = pOutBuffer;     /* Points at the computed digest */
2914         __HAL_HASH_START_DIGEST();
2915         /* Process Unlock */
2916         __HAL_UNLOCK(hhash);
2917 
2918         /* Enable Interrupts */
2919         __HAL_HASH_ENABLE_IT(HASH_IT_DCI);
2920 
2921         /* Return function status */
2922         return HAL_OK;
2923       }
2924     } /*  if (polling_step == 1) */
2925 
2926 
2927     /* Process Unlock */
2928     __HAL_UNLOCK(hhash);
2929 
2930     /* Enable Interrupts */
2931     __HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2932 
2933     /* Return function status */
2934     return HAL_OK;
2935   }
2936   else
2937   {
2938     return HAL_BUSY;
2939   }
2940 
2941 }
2942 
2943 
2944 /**
2945   * @brief  Initialize the HASH peripheral then initiate a DMA transfer
2946   *         to feed the input buffer to the Peripheral.
2947   * @note   If MDMAT bit is set before calling this function (multi-buffer
2948   *          HASH processing case), the input buffer size (in bytes) must be
2949   *          a multiple of 4 otherwise, the HASH digest computation is corrupted.
2950   *          For the processing of the last buffer of the thread, MDMAT bit must
2951   *          be reset and the buffer length (in bytes) doesn't have to be a
2952   *          multiple of 4.
2953   * @param  hhash HASH handle.
2954   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2955   * @param  Size length of the input buffer in bytes.
2956   * @param  Algorithm HASH algorithm.
2957   * @retval HAL status
2958   */
HASH_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2959 HAL_StatusTypeDef HASH_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2960 {
2961   uint32_t inputaddr;
2962   uint32_t inputSize;
2963   HAL_StatusTypeDef status ;
2964   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2965 
2966 #if defined (HASH_CR_MDMAT)
2967   /* Make sure the input buffer size (in bytes) is a multiple of 4 when MDMAT bit is set
2968      (case of multi-buffer HASH processing) */
2969   assert_param(IS_HASH_DMA_MULTIBUFFER_SIZE(Size));
2970 #endif /* MDMA defined*/
2971   /* If State is ready or suspended, start or resume polling-based HASH processing */
2972   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2973   {
2974     /* Check input parameters */
2975     if ((pInBuffer == NULL) || (Size == 0U) ||
2976         /* Check phase coherency. Phase must be
2977            either READY (fresh start)
2978            or PROCESS (multi-buffer HASH management) */
2979         ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HASH_PROCESSING(hhash)))))
2980     {
2981       hhash->State = HAL_HASH_STATE_READY;
2982       return  HAL_ERROR;
2983     }
2984 
2985 
2986     /* Process Locked */
2987     __HAL_LOCK(hhash);
2988 
2989     /* If not a resumption case */
2990     if (hhash->State == HAL_HASH_STATE_READY)
2991     {
2992       /* Change the HASH state */
2993       hhash->State = HAL_HASH_STATE_BUSY;
2994 
2995       /* Check if initialization phase has already been performed.
2996          If Phase is already set to HAL_HASH_PHASE_PROCESS, this means the
2997          API is processing a new input data message in case of multi-buffer HASH
2998          computation. */
2999       if (hhash->Phase == HAL_HASH_PHASE_READY)
3000       {
3001         /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
3002         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
3003 
3004         /* Set the phase */
3005         hhash->Phase = HAL_HASH_PHASE_PROCESS;
3006       }
3007 
3008       /* Configure the Number of valid bits in last word of the message */
3009       __HAL_HASH_SET_NBVALIDBITS(Size);
3010 
3011       inputaddr = (uint32_t)pInBuffer;     /* DMA transfer start address   */
3012       inputSize = Size;                    /* DMA transfer size (in bytes) */
3013 
3014       /* In case of suspension request, save the starting parameters */
3015       hhash->pHashInBuffPtr =  pInBuffer;  /* DMA transfer start address   */
3016       hhash->HashInCount = Size;           /* DMA transfer size (in bytes) */
3017 
3018     }
3019     /* If resumption case */
3020     else
3021     {
3022       /* Change the HASH state */
3023       hhash->State = HAL_HASH_STATE_BUSY;
3024 
3025       /* Resumption case, inputaddr and inputSize are not set to the API input parameters
3026          but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
3027          processing was suspended */
3028       inputaddr = (uint32_t)hhash->pHashInBuffPtr;  /* DMA transfer start address   */
3029       inputSize = hhash->HashInCount;               /* DMA transfer size (in bytes) */
3030 
3031     }
3032 
3033     /* Set the HASH DMA transfer complete callback */
3034     hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
3035     /* Set the DMA error callback */
3036     hhash->hdmain->XferErrorCallback = HASH_DMAError;
3037 
3038     /* Store number of words already pushed to manage proper DMA processing suspension */
3039     hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
3040 
3041     /* Enable the DMA In DMA channel */
3042     status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
3043                               (((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) : \
3044                                (inputSize / 4U)));
3045 
3046     /* Enable DMA requests */
3047     SET_BIT(HASH->CR, HASH_CR_DMAE);
3048 
3049     /* Process Unlock */
3050     __HAL_UNLOCK(hhash);
3051 
3052     /* Return function status */
3053     if (status != HAL_OK)
3054     {
3055       /* Update HASH state machine to error */
3056       hhash->State = HAL_HASH_STATE_ERROR;
3057     }
3058 
3059     return status;
3060   }
3061   else
3062   {
3063     return HAL_BUSY;
3064   }
3065 }
3066 
3067 /**
3068   * @brief  Return the computed digest.
3069   * @note   The API waits for DCIS to be set then reads the computed digest.
3070   * @param  hhash HASH handle.
3071   * @param  pOutBuffer pointer to the computed digest.
3072   * @param  Timeout Timeout value.
3073   * @retval HAL status
3074   */
HASH_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)3075 HAL_StatusTypeDef HASH_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
3076 {
3077 
3078   if (hhash->State == HAL_HASH_STATE_READY)
3079   {
3080     /* Check parameter */
3081     if (pOutBuffer == NULL)
3082     {
3083       return  HAL_ERROR;
3084     }
3085 
3086     /* Process Locked */
3087     __HAL_LOCK(hhash);
3088 
3089     /* Change the HASH state to busy */
3090     hhash->State = HAL_HASH_STATE_BUSY;
3091 
3092     /* Wait for DCIS flag to be set */
3093     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
3094     {
3095       return HAL_TIMEOUT;
3096     }
3097 
3098     /* Read the message digest */
3099     HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
3100 
3101     /* Change the HASH state to ready */
3102     hhash->State = HAL_HASH_STATE_READY;
3103 
3104     /* Reset HASH state machine */
3105     hhash->Phase = HAL_HASH_PHASE_READY;
3106 
3107     /* Process UnLock */
3108     __HAL_UNLOCK(hhash);
3109 
3110     /* Return function status */
3111     return HAL_OK;
3112 
3113   }
3114   else
3115   {
3116     return HAL_BUSY;
3117   }
3118 
3119 }
3120 
3121 
3122 /**
3123   * @brief  Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
3124   *         read the computed digest.
3125   * @note   Digest is available in pOutBuffer.
3126   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
3127   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3128   * @param  hhash HASH handle.
3129   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
3130   * @param  Size length of the input buffer in bytes.
3131   * @param  pOutBuffer pointer to the computed digest.
3132   * @param  Timeout Timeout value.
3133   * @param  Algorithm HASH algorithm.
3134   * @retval HAL status
3135   */
HMAC_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout,uint32_t Algorithm)3136 HAL_StatusTypeDef HMAC_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
3137                              uint32_t Timeout, uint32_t Algorithm)
3138 {
3139   HAL_HASH_StateTypeDef State_tmp = hhash->State;
3140 
3141   /* If State is ready or suspended, start or resume polling-based HASH processing */
3142   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3143   {
3144     /* Check input parameters */
3145     if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
3146         || (pOutBuffer == NULL))
3147     {
3148       hhash->State = HAL_HASH_STATE_READY;
3149       return  HAL_ERROR;
3150     }
3151 
3152     /* Process Locked */
3153     __HAL_LOCK(hhash);
3154 
3155     /* Change the HASH state */
3156     hhash->State = HAL_HASH_STATE_BUSY;
3157 
3158     /* Check if initialization phase has already be performed */
3159     if (hhash->Phase == HAL_HASH_PHASE_READY)
3160     {
3161       /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
3162       if (hhash->Init.KeySize > 64U)
3163       {
3164         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3165                    Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3166       }
3167       else
3168       {
3169         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3170                    Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3171       }
3172       /* Set the phase to Step 1 */
3173       hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3174       /* Resort to hhash internal fields to feed the Peripheral.
3175          Parameters will be updated in case of suspension to contain the proper
3176          information at resumption time. */
3177       hhash->pHashOutBuffPtr  = pOutBuffer;            /* Output digest address    */
3178       hhash->pHashInBuffPtr   = pInBuffer;             /* Input data address, HMAC_Processing input
3179                                                           parameter for Step 2     */
3180       hhash->HashInCount      = Size;                  /* Input data size, HMAC_Processing input
3181                                                           parameter for Step 2        */
3182       hhash->HashBuffSize     = Size;                  /* Store the input buffer size for the whole HMAC process*/
3183       hhash->pHashKeyBuffPtr  = hhash->Init.pKey;      /* Key address, HMAC_Processing input parameter for Step
3184                                                           1 and Step 3 */
3185       hhash->HashKeyCount     = hhash->Init.KeySize;   /* Key size, HMAC_Processing input parameter for Step 1
3186                                                           and Step 3    */
3187     }
3188 
3189     /* Carry out HMAC processing */
3190     return HMAC_Processing(hhash, Timeout);
3191 
3192   }
3193   else
3194   {
3195     return HAL_BUSY;
3196   }
3197 }
3198 
3199 
3200 
3201 /**
3202   * @brief  Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
3203   *         read the computed digest in interruption mode.
3204   * @note   Digest is available in pOutBuffer.
3205   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
3206   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3207   * @param  hhash HASH handle.
3208   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
3209   * @param  Size length of the input buffer in bytes.
3210   * @param  pOutBuffer pointer to the computed digest.
3211   * @param  Algorithm HASH algorithm.
3212   * @retval HAL status
3213   */
HMAC_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Algorithm)3214 HAL_StatusTypeDef HMAC_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
3215                                 uint32_t Algorithm)
3216 {
3217   HAL_HASH_StateTypeDef State_tmp = hhash->State;
3218 
3219   /* If State is ready or suspended, start or resume IT-based HASH processing */
3220   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3221   {
3222     /* Check input parameters */
3223     if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
3224         || (pOutBuffer == NULL))
3225     {
3226       hhash->State = HAL_HASH_STATE_READY;
3227       return  HAL_ERROR;
3228     }
3229 
3230     /* Process Locked */
3231     __HAL_LOCK(hhash);
3232 
3233     /* Change the HASH state */
3234     hhash->State = HAL_HASH_STATE_BUSY;
3235 
3236     /* Initialize IT counter */
3237     hhash->HashITCounter = 1;
3238 
3239     /* Check if initialization phase has already be performed */
3240     if (hhash->Phase == HAL_HASH_PHASE_READY)
3241     {
3242       /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
3243       if (hhash->Init.KeySize > 64U)
3244       {
3245         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3246                    Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3247       }
3248       else
3249       {
3250         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3251                    Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3252       }
3253 
3254       /* Resort to hhash internal fields hhash->pHashInBuffPtr and hhash->HashInCount
3255          to feed the Peripheral whatever the HMAC step.
3256          Lines below are set to start HMAC Step 1 processing where key is entered first. */
3257       hhash->HashInCount     = hhash->Init.KeySize; /* Key size                      */
3258       hhash->pHashInBuffPtr  = hhash->Init.pKey ;   /* Key address                   */
3259 
3260       /* Store input and output parameters in handle fields to manage steps transition
3261          or possible HMAC suspension/resumption */
3262       hhash->pHashKeyBuffPtr = hhash->Init.pKey;    /* Key address                   */
3263       hhash->pHashMsgBuffPtr = pInBuffer;           /* Input message address         */
3264       hhash->HashBuffSize    = Size;                /* Input message size (in bytes) */
3265       hhash->pHashOutBuffPtr = pOutBuffer;          /* Output digest address         */
3266 
3267       /* Configure the number of valid bits in last word of the key */
3268       __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
3269 
3270       /* Set the phase to Step 1 */
3271       hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3272     }
3273     else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
3274     {
3275       /* Restart IT-based HASH processing after Step 1 or Step 3 suspension */
3276 
3277     }
3278     else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
3279     {
3280       /* Restart IT-based HASH processing after Step 2 suspension */
3281 
3282     }
3283     else
3284     {
3285       /* Error report as phase incorrect */
3286       /* Process Unlock */
3287       __HAL_UNLOCK(hhash);
3288       hhash->State = HAL_HASH_STATE_READY;
3289       return HAL_ERROR;
3290     }
3291 
3292     /* Process Unlock */
3293     __HAL_UNLOCK(hhash);
3294 
3295     /* Enable Interrupts */
3296     __HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
3297 
3298     /* Return function status */
3299     return HAL_OK;
3300   }
3301   else
3302   {
3303     return HAL_BUSY;
3304   }
3305 
3306 }
3307 
3308 
3309 
3310 /**
3311   * @brief  Initialize the HASH peripheral in HMAC mode then initiate the required
3312   *         DMA transfers to feed the key and the input buffer to the Peripheral.
3313   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
3314   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3315   * @note   In case of multi-buffer HMAC processing, the input buffer size (in bytes) must
3316   *         be a multiple of 4 otherwise, the HASH digest computation is corrupted.
3317   *         Only the length of the last buffer of the thread doesn't have to be a
3318   *         multiple of 4.
3319   * @param  hhash HASH handle.
3320   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
3321   * @param  Size length of the input buffer in bytes.
3322   * @param  Algorithm HASH algorithm.
3323   * @retval HAL status
3324   */
HMAC_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)3325 HAL_StatusTypeDef HMAC_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
3326 {
3327   uint32_t inputaddr;
3328   uint32_t inputSize;
3329   HAL_StatusTypeDef status ;
3330   HAL_HASH_StateTypeDef State_tmp = hhash->State;
3331   /* Make sure the input buffer size (in bytes) is a multiple of 4 when digest calculation
3332      is disabled (multi-buffer HMAC processing, MDMAT bit to be set) */
3333   assert_param(IS_HMAC_DMA_MULTIBUFFER_SIZE(hhash, Size));
3334   /* If State is ready or suspended, start or resume DMA-based HASH processing */
3335   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3336   {
3337     /* Check input parameters */
3338     if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U) ||
3339         /* Check phase coherency. Phase must be
3340             either READY (fresh start)
3341             or one of HMAC PROCESS steps (multi-buffer HASH management) */
3342         ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HMAC_PROCESSING(hhash)))))
3343     {
3344       hhash->State = HAL_HASH_STATE_READY;
3345       return  HAL_ERROR;
3346     }
3347 
3348 
3349     /* Process Locked */
3350     __HAL_LOCK(hhash);
3351 
3352     /* If not a case of resumption after suspension */
3353     if (hhash->State == HAL_HASH_STATE_READY)
3354     {
3355       /* Check whether or not initialization phase has already be performed */
3356       if (hhash->Phase == HAL_HASH_PHASE_READY)
3357       {
3358         /* Change the HASH state */
3359         hhash->State = HAL_HASH_STATE_BUSY;
3360         /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits.
3361            At the same time, ensure MDMAT bit is cleared. */
3362         if (hhash->Init.KeySize > 64U)
3363         {
3364           MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3365                      Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3366         }
3367         else
3368         {
3369           MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3370                      Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3371         }
3372         /* Store input aparameters in handle fields to manage steps transition
3373            or possible HMAC suspension/resumption */
3374         hhash->HashInCount = hhash->Init.KeySize;   /* Initial size for first DMA transfer (key size)      */
3375         hhash->pHashKeyBuffPtr = hhash->Init.pKey;  /* Key address                                         */
3376         hhash->pHashInBuffPtr  = hhash->Init.pKey ; /* First address passed to DMA (key address at Step 1) */
3377         hhash->pHashMsgBuffPtr = pInBuffer;         /* Input data address                                  */
3378         hhash->HashBuffSize = Size;                 /* input data size (in bytes)                          */
3379 
3380         /* Set DMA input parameters */
3381         inputaddr = (uint32_t)(hhash->Init.pKey);   /* Address passed to DMA (start by entering Key message) */
3382         inputSize = hhash->Init.KeySize;            /* Size for first DMA transfer (in bytes) */
3383 
3384         /* Configure the number of valid bits in last word of the key */
3385         __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
3386 
3387         /* Set the phase to Step 1 */
3388         hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3389 
3390       }
3391       else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
3392       {
3393         /* Process a new input data message in case of multi-buffer HMAC processing
3394           (this is not a resumption case) */
3395 
3396         /* Change the HASH state */
3397         hhash->State = HAL_HASH_STATE_BUSY;
3398 
3399         /* Save input parameters to be able to manage possible suspension/resumption */
3400         hhash->HashInCount = Size;                /* Input message address       */
3401         hhash->pHashInBuffPtr = pInBuffer;        /* Input message size in bytes */
3402 
3403         /* Set DMA input parameters */
3404         inputaddr = (uint32_t)pInBuffer;           /* Input message address       */
3405         inputSize = Size;                          /* Input message size in bytes */
3406 
3407         if (hhash->DigestCalculationDisable == RESET)
3408         {
3409           /* This means this is the last buffer of the multi-buffer sequence: DCAL needs to be set. */
3410           __HAL_HASH_RESET_MDMAT();
3411           __HAL_HASH_SET_NBVALIDBITS(inputSize);
3412         }
3413       }
3414       else
3415       {
3416         /* Phase not aligned with handle READY state */
3417         __HAL_UNLOCK(hhash);
3418         /* Return function status */
3419         return HAL_ERROR;
3420       }
3421     }
3422     else
3423     {
3424       /* Resumption case (phase may be Step 1, 2 or 3) */
3425 
3426       /* Change the HASH state */
3427       hhash->State = HAL_HASH_STATE_BUSY;
3428 
3429       /* Set DMA input parameters at resumption location;
3430          inputaddr and inputSize are not set to the API input parameters
3431          but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
3432          processing was suspended. */
3433       inputaddr = (uint32_t)(hhash->pHashInBuffPtr);  /* Input message address       */
3434       inputSize = hhash->HashInCount;                 /* Input message size in bytes */
3435     }
3436 
3437 
3438     /* Set the HASH DMA transfer complete callback */
3439     hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
3440     /* Set the DMA error callback */
3441     hhash->hdmain->XferErrorCallback = HASH_DMAError;
3442 
3443     /* Store number of words already pushed to manage proper DMA processing suspension */
3444     hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
3445 
3446     /* Enable the DMA In DMA channel */
3447     status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN,  \
3448                               (((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) \
3449                               : (inputSize / 4U)));
3450 
3451     /* Enable DMA requests */
3452     SET_BIT(HASH->CR, HASH_CR_DMAE);
3453 
3454     /* Process Unlocked */
3455     __HAL_UNLOCK(hhash);
3456 
3457     /* Return function status */
3458     if (status != HAL_OK)
3459     {
3460       /* Update HASH state machine to error */
3461       hhash->State = HAL_HASH_STATE_ERROR;
3462     }
3463 
3464     /* Return function status */
3465     return status;
3466   }
3467   else
3468   {
3469     return HAL_BUSY;
3470   }
3471 }
3472 /**
3473   * @}
3474   */
3475 
3476 #endif /* HAL_HASH_MODULE_ENABLED */
3477 
3478 /**
3479   * @}
3480   */
3481 #endif /*  HASH*/
3482 /**
3483   * @}
3484   */
3485 
3486