1 /**
2   ******************************************************************************
3   * @file    stm32g0xx_ll_tim.h
4   * @author  MCD Application Team
5   * @brief   Header file of TIM LL module.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2018 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 
19 /* Define to prevent recursive inclusion -------------------------------------*/
20 #ifndef __STM32G0xx_LL_TIM_H
21 #define __STM32G0xx_LL_TIM_H
22 
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26 
27 /* Includes ------------------------------------------------------------------*/
28 #include "stm32g0xx.h"
29 
30 /** @addtogroup STM32G0xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) ||  defined (TIM14) ||  defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM6) || defined (TIM7)
35 
36 /** @defgroup TIM_LL TIM
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /** @defgroup TIM_LL_Private_Variables TIM Private Variables
43   * @{
44   */
45 static const uint8_t OFFSET_TAB_CCMRx[] =
46 {
47   0x00U,   /* 0: TIMx_CH1  */
48   0x00U,   /* 1: TIMx_CH1N */
49   0x00U,   /* 2: TIMx_CH2  */
50   0x00U,   /* 3: TIMx_CH2N */
51   0x04U,   /* 4: TIMx_CH3  */
52   0x04U,   /* 5: TIMx_CH3N */
53   0x04U,   /* 6: TIMx_CH4  */
54   0x3CU,   /* 7: TIMx_CH5  */
55   0x3CU    /* 8: TIMx_CH6  */
56 };
57 
58 static const uint8_t SHIFT_TAB_OCxx[] =
59 {
60   0U,            /* 0: OC1M, OC1FE, OC1PE */
61   0U,            /* 1: - NA */
62   8U,            /* 2: OC2M, OC2FE, OC2PE */
63   0U,            /* 3: - NA */
64   0U,            /* 4: OC3M, OC3FE, OC3PE */
65   0U,            /* 5: - NA */
66   8U,            /* 6: OC4M, OC4FE, OC4PE */
67   0U,            /* 7: OC5M, OC5FE, OC5PE */
68   8U             /* 8: OC6M, OC6FE, OC6PE */
69 };
70 
71 static const uint8_t SHIFT_TAB_ICxx[] =
72 {
73   0U,            /* 0: CC1S, IC1PSC, IC1F */
74   0U,            /* 1: - NA */
75   8U,            /* 2: CC2S, IC2PSC, IC2F */
76   0U,            /* 3: - NA */
77   0U,            /* 4: CC3S, IC3PSC, IC3F */
78   0U,            /* 5: - NA */
79   8U,            /* 6: CC4S, IC4PSC, IC4F */
80   0U,            /* 7: - NA */
81   0U             /* 8: - NA */
82 };
83 
84 static const uint8_t SHIFT_TAB_CCxP[] =
85 {
86   0U,            /* 0: CC1P */
87   2U,            /* 1: CC1NP */
88   4U,            /* 2: CC2P */
89   6U,            /* 3: CC2NP */
90   8U,            /* 4: CC3P */
91   10U,           /* 5: CC3NP */
92   12U,           /* 6: CC4P */
93   16U,           /* 7: CC5P */
94   20U            /* 8: CC6P */
95 };
96 
97 static const uint8_t SHIFT_TAB_OISx[] =
98 {
99   0U,            /* 0: OIS1 */
100   1U,            /* 1: OIS1N */
101   2U,            /* 2: OIS2 */
102   3U,            /* 3: OIS2N */
103   4U,            /* 4: OIS3 */
104   5U,            /* 5: OIS3N */
105   6U,            /* 6: OIS4 */
106   8U,            /* 7: OIS5 */
107   10U            /* 8: OIS6 */
108 };
109 /**
110   * @}
111   */
112 
113 /* Private constants ---------------------------------------------------------*/
114 /** @defgroup TIM_LL_Private_Constants TIM Private Constants
115   * @{
116   */
117 
118 /* Defines used for the bit position in the register and perform offsets */
119 #if defined(COMP3)
120 #define TIM_POSITION_BRK_SOURCE \
121   ((Source == LL_TIM_BKIN_SOURCE_BKIN)    ? 0U :\
122    (Source == LL_TIM_BKIN_SOURCE_BKCOMP1) ? 1U :\
123    (Source == LL_TIM_BKIN_SOURCE_BKCOMP2) ? 2U :3U)
124 #else
125 #define TIM_POSITION_BRK_SOURCE            ((Source >> 1U) & 0x1FUL)
126 #endif
127 
128 /* Generic bit definitions for TIMx_AF1 register */
129 #define TIMx_AF1_BKINP     TIM1_AF1_BKINP     /*!< BRK BKIN input polarity */
130 #define TIMx_AF1_ETRSEL    TIM1_AF1_ETRSEL    /*!< TIMx ETR source selection */
131 
132 
133 /* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
134 #define DT_DELAY_1 ((uint8_t)0x7F)
135 #define DT_DELAY_2 ((uint8_t)0x3F)
136 #define DT_DELAY_3 ((uint8_t)0x1F)
137 #define DT_DELAY_4 ((uint8_t)0x1F)
138 
139 /* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
140 #define DT_RANGE_1 ((uint8_t)0x00)
141 #define DT_RANGE_2 ((uint8_t)0x80)
142 #define DT_RANGE_3 ((uint8_t)0xC0)
143 #define DT_RANGE_4 ((uint8_t)0xE0)
144 
145 /** Legacy definitions for compatibility purpose
146 @cond 0
147   */
148 /**
149 @endcond
150   */
151 
152 #define OCREF_CLEAR_SELECT_Pos (16U)
153 #define OCREF_CLEAR_SELECT_Msk (0x1U << OCREF_CLEAR_SELECT_Pos)                /*!< 0x00010000 */
154 /**
155   * @}
156   */
157 
158 /* Private macros ------------------------------------------------------------*/
159 /** @defgroup TIM_LL_Private_Macros TIM Private Macros
160   * @{
161   */
162 /** @brief  Convert channel id into channel index.
163   * @param  __CHANNEL__ This parameter can be one of the following values:
164   *         @arg @ref LL_TIM_CHANNEL_CH1
165   *         @arg @ref LL_TIM_CHANNEL_CH1N
166   *         @arg @ref LL_TIM_CHANNEL_CH2
167   *         @arg @ref LL_TIM_CHANNEL_CH2N
168   *         @arg @ref LL_TIM_CHANNEL_CH3
169   *         @arg @ref LL_TIM_CHANNEL_CH3N
170   *         @arg @ref LL_TIM_CHANNEL_CH4
171   *         @arg @ref LL_TIM_CHANNEL_CH5
172   *         @arg @ref LL_TIM_CHANNEL_CH6
173   * @retval none
174   */
175 #define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
176   (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
177    ((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
178    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
179    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
180    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
181    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U :\
182    ((__CHANNEL__) == LL_TIM_CHANNEL_CH4) ? 6U :\
183    ((__CHANNEL__) == LL_TIM_CHANNEL_CH5) ? 7U : 8U)
184 
185 /** @brief  Calculate the deadtime sampling period(in ps).
186   * @param  __TIMCLK__ timer input clock frequency (in Hz).
187   * @param  __CKD__ This parameter can be one of the following values:
188   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
189   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
190   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
191   * @retval none
192   */
193 #define TIM_CALC_DTS(__TIMCLK__, __CKD__)                                                        \
194   (((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__))         : \
195    ((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
196    ((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
197 /**
198   * @}
199   */
200 
201 
202 /* Exported types ------------------------------------------------------------*/
203 #if defined(USE_FULL_LL_DRIVER)
204 /** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
205   * @{
206   */
207 
208 /**
209   * @brief  TIM Time Base configuration structure definition.
210   */
211 typedef struct
212 {
213   uint16_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
214                                    This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
215 
216                                    This feature can be modified afterwards using unitary function
217                                    @ref LL_TIM_SetPrescaler().*/
218 
219   uint32_t CounterMode;       /*!< Specifies the counter mode.
220                                    This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
221 
222                                    This feature can be modified afterwards using unitary function
223                                    @ref LL_TIM_SetCounterMode().*/
224 
225   uint32_t Autoreload;        /*!< Specifies the auto reload value to be loaded into the active
226                                    Auto-Reload Register at the next update event.
227                                    This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
228                                    Some timer instances may support 32 bits counters. In that case this parameter must
229                                    be a number between 0x0000 and 0xFFFFFFFF.
230 
231                                    This feature can be modified afterwards using unitary function
232                                    @ref LL_TIM_SetAutoReload().*/
233 
234   uint32_t ClockDivision;     /*!< Specifies the clock division.
235                                    This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
236 
237                                    This feature can be modified afterwards using unitary function
238                                    @ref LL_TIM_SetClockDivision().*/
239 
240   uint32_t RepetitionCounter;  /*!< Specifies the repetition counter value. Each time the RCR downcounter
241                                    reaches zero, an update event is generated and counting restarts
242                                    from the RCR value (N).
243                                    This means in PWM mode that (N+1) corresponds to:
244                                       - the number of PWM periods in edge-aligned mode
245                                       - the number of half PWM period in center-aligned mode
246                                    GP timers: this parameter must be a number between Min_Data = 0x00 and
247                                    Max_Data = 0xFF.
248                                    Advanced timers: this parameter must be a number between Min_Data = 0x0000 and
249                                    Max_Data = 0xFFFF.
250 
251                                    This feature can be modified afterwards using unitary function
252                                    @ref LL_TIM_SetRepetitionCounter().*/
253 } LL_TIM_InitTypeDef;
254 
255 /**
256   * @brief  TIM Output Compare configuration structure definition.
257   */
258 typedef struct
259 {
260   uint32_t OCMode;        /*!< Specifies the output mode.
261                                This parameter can be a value of @ref TIM_LL_EC_OCMODE.
262 
263                                This feature can be modified afterwards using unitary function
264                                @ref LL_TIM_OC_SetMode().*/
265 
266   uint32_t OCState;       /*!< Specifies the TIM Output Compare state.
267                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
268 
269                                This feature can be modified afterwards using unitary functions
270                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
271 
272   uint32_t OCNState;      /*!< Specifies the TIM complementary Output Compare state.
273                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
274 
275                                This feature can be modified afterwards using unitary functions
276                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
277 
278   uint32_t CompareValue;  /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
279                                This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
280 
281                                This feature can be modified afterwards using unitary function
282                                LL_TIM_OC_SetCompareCHx (x=1..6).*/
283 
284   uint32_t OCPolarity;    /*!< Specifies the output polarity.
285                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
286 
287                                This feature can be modified afterwards using unitary function
288                                @ref LL_TIM_OC_SetPolarity().*/
289 
290   uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
291                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
292 
293                                This feature can be modified afterwards using unitary function
294                                @ref LL_TIM_OC_SetPolarity().*/
295 
296 
297   uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
298                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
299 
300                                This feature can be modified afterwards using unitary function
301                                @ref LL_TIM_OC_SetIdleState().*/
302 
303   uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
304                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
305 
306                                This feature can be modified afterwards using unitary function
307                                @ref LL_TIM_OC_SetIdleState().*/
308 } LL_TIM_OC_InitTypeDef;
309 
310 /**
311   * @brief  TIM Input Capture configuration structure definition.
312   */
313 
314 typedef struct
315 {
316 
317   uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
318                                This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
319 
320                                This feature can be modified afterwards using unitary function
321                                @ref LL_TIM_IC_SetPolarity().*/
322 
323   uint32_t ICActiveInput; /*!< Specifies the input.
324                                This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
325 
326                                This feature can be modified afterwards using unitary function
327                                @ref LL_TIM_IC_SetActiveInput().*/
328 
329   uint32_t ICPrescaler;   /*!< Specifies the Input Capture Prescaler.
330                                This parameter can be a value of @ref TIM_LL_EC_ICPSC.
331 
332                                This feature can be modified afterwards using unitary function
333                                @ref LL_TIM_IC_SetPrescaler().*/
334 
335   uint32_t ICFilter;      /*!< Specifies the input capture filter.
336                                This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
337 
338                                This feature can be modified afterwards using unitary function
339                                @ref LL_TIM_IC_SetFilter().*/
340 } LL_TIM_IC_InitTypeDef;
341 
342 
343 /**
344   * @brief  TIM Encoder interface configuration structure definition.
345   */
346 typedef struct
347 {
348   uint32_t EncoderMode;     /*!< Specifies the encoder resolution (x2 or x4).
349                                  This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
350 
351                                  This feature can be modified afterwards using unitary function
352                                  @ref LL_TIM_SetEncoderMode().*/
353 
354   uint32_t IC1Polarity;     /*!< Specifies the active edge of TI1 input.
355                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
356 
357                                  This feature can be modified afterwards using unitary function
358                                  @ref LL_TIM_IC_SetPolarity().*/
359 
360   uint32_t IC1ActiveInput;  /*!< Specifies the TI1 input source
361                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
362 
363                                  This feature can be modified afterwards using unitary function
364                                  @ref LL_TIM_IC_SetActiveInput().*/
365 
366   uint32_t IC1Prescaler;    /*!< Specifies the TI1 input prescaler value.
367                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
368 
369                                  This feature can be modified afterwards using unitary function
370                                  @ref LL_TIM_IC_SetPrescaler().*/
371 
372   uint32_t IC1Filter;       /*!< Specifies the TI1 input filter.
373                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
374 
375                                  This feature can be modified afterwards using unitary function
376                                  @ref LL_TIM_IC_SetFilter().*/
377 
378   uint32_t IC2Polarity;      /*!< Specifies the active edge of TI2 input.
379                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
380 
381                                  This feature can be modified afterwards using unitary function
382                                  @ref LL_TIM_IC_SetPolarity().*/
383 
384   uint32_t IC2ActiveInput;  /*!< Specifies the TI2 input source
385                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
386 
387                                  This feature can be modified afterwards using unitary function
388                                  @ref LL_TIM_IC_SetActiveInput().*/
389 
390   uint32_t IC2Prescaler;    /*!< Specifies the TI2 input prescaler value.
391                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
392 
393                                  This feature can be modified afterwards using unitary function
394                                  @ref LL_TIM_IC_SetPrescaler().*/
395 
396   uint32_t IC2Filter;       /*!< Specifies the TI2 input filter.
397                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
398 
399                                  This feature can be modified afterwards using unitary function
400                                  @ref LL_TIM_IC_SetFilter().*/
401 
402 } LL_TIM_ENCODER_InitTypeDef;
403 
404 /**
405   * @brief  TIM Hall sensor interface configuration structure definition.
406   */
407 typedef struct
408 {
409 
410   uint32_t IC1Polarity;        /*!< Specifies the active edge of TI1 input.
411                                     This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
412 
413                                     This feature can be modified afterwards using unitary function
414                                     @ref LL_TIM_IC_SetPolarity().*/
415 
416   uint32_t IC1Prescaler;       /*!< Specifies the TI1 input prescaler value.
417                                     Prescaler must be set to get a maximum counter period longer than the
418                                     time interval between 2 consecutive changes on the Hall inputs.
419                                     This parameter can be a value of @ref TIM_LL_EC_ICPSC.
420 
421                                     This feature can be modified afterwards using unitary function
422                                     @ref LL_TIM_IC_SetPrescaler().*/
423 
424   uint32_t IC1Filter;          /*!< Specifies the TI1 input filter.
425                                     This parameter can be a value of
426                                     @ref TIM_LL_EC_IC_FILTER.
427 
428                                     This feature can be modified afterwards using unitary function
429                                     @ref LL_TIM_IC_SetFilter().*/
430 
431   uint32_t CommutationDelay;   /*!< Specifies the compare value to be loaded into the Capture Compare Register.
432                                     A positive pulse (TRGO event) is generated with a programmable delay every time
433                                     a change occurs on the Hall inputs.
434                                     This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
435 
436                                     This feature can be modified afterwards using unitary function
437                                     @ref LL_TIM_OC_SetCompareCH2().*/
438 } LL_TIM_HALLSENSOR_InitTypeDef;
439 
440 /**
441   * @brief  BDTR (Break and Dead Time) structure definition
442   */
443 typedef struct
444 {
445   uint32_t OSSRState;            /*!< Specifies the Off-State selection used in Run mode.
446                                       This parameter can be a value of @ref TIM_LL_EC_OSSR
447 
448                                       This feature can be modified afterwards using unitary function
449                                       @ref LL_TIM_SetOffStates()
450 
451                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
452                                        programmed. */
453 
454   uint32_t OSSIState;            /*!< Specifies the Off-State used in Idle state.
455                                       This parameter can be a value of @ref TIM_LL_EC_OSSI
456 
457                                       This feature can be modified afterwards using unitary function
458                                       @ref LL_TIM_SetOffStates()
459 
460                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
461                                       programmed. */
462 
463   uint32_t LockLevel;            /*!< Specifies the LOCK level parameters.
464                                       This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
465 
466                                       @note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR
467                                       register has been written, their content is frozen until the next reset.*/
468 
469   uint8_t DeadTime;              /*!< Specifies the delay time between the switching-off and the
470                                       switching-on of the outputs.
471                                       This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
472 
473                                       This feature can be modified afterwards using unitary function
474                                       @ref LL_TIM_OC_SetDeadTime()
475 
476                                       @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been
477                                        programmed. */
478 
479   uint16_t BreakState;           /*!< Specifies whether the TIM Break input is enabled or not.
480                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
481 
482                                       This feature can be modified afterwards using unitary functions
483                                       @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
484 
485                                       @note This bit-field can not be modified as long as LOCK level 1 has been
486                                       programmed. */
487 
488   uint32_t BreakPolarity;        /*!< Specifies the TIM Break Input pin polarity.
489                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
490 
491                                       This feature can be modified afterwards using unitary function
492                                       @ref LL_TIM_ConfigBRK()
493 
494                                       @note This bit-field can not be modified as long as LOCK level 1 has been
495                                       programmed. */
496 
497   uint32_t BreakFilter;          /*!< Specifies the TIM Break Filter.
498                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_FILTER
499 
500                                       This feature can be modified afterwards using unitary function
501                                       @ref LL_TIM_ConfigBRK()
502 
503                                       @note This bit-field can not be modified as long as LOCK level 1 has been
504                                       programmed. */
505 
506   uint32_t BreakAFMode;           /*!< Specifies the alternate function mode of the break input.
507                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_AFMODE
508 
509                                       This feature can be modified afterwards using unitary functions
510                                       @ref LL_TIM_ConfigBRK()
511 
512                                       @note Bidirectional break input is only supported by advanced timers instances.
513 
514                                       @note This bit-field can not be modified as long as LOCK level 1 has been
515                                       programmed. */
516 
517   uint32_t Break2State;          /*!< Specifies whether the TIM Break2 input is enabled or not.
518                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_ENABLE
519 
520                                       This feature can be modified afterwards using unitary functions
521                                       @ref LL_TIM_EnableBRK2() or @ref LL_TIM_DisableBRK2()
522 
523                                       @note This bit-field can not be modified as long as LOCK level 1 has been
524                                       programmed. */
525 
526   uint32_t Break2Polarity;        /*!< Specifies the TIM Break2 Input pin polarity.
527                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_POLARITY
528 
529                                       This feature can be modified afterwards using unitary function
530                                       @ref LL_TIM_ConfigBRK2()
531 
532                                       @note This bit-field can not be modified as long as LOCK level 1 has been
533                                       programmed. */
534 
535   uint32_t Break2Filter;          /*!< Specifies the TIM Break2 Filter.
536                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_FILTER
537 
538                                       This feature can be modified afterwards using unitary function
539                                       @ref LL_TIM_ConfigBRK2()
540 
541                                       @note This bit-field can not be modified as long as LOCK level 1 has been
542                                       programmed. */
543 
544   uint32_t Break2AFMode;          /*!< Specifies the alternate function mode of the break2 input.
545                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_AFMODE
546 
547                                       This feature can be modified afterwards using unitary functions
548                                       @ref LL_TIM_ConfigBRK2()
549 
550                                       @note Bidirectional break input is only supported by advanced timers instances.
551 
552                                       @note This bit-field can not be modified as long as LOCK level 1 has been
553                                       programmed. */
554 
555   uint32_t AutomaticOutput;      /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
556                                       This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
557 
558                                       This feature can be modified afterwards using unitary functions
559                                       @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
560 
561                                       @note This bit-field can not be modified as long as LOCK level 1 has been
562                                       programmed. */
563 } LL_TIM_BDTR_InitTypeDef;
564 
565 /**
566   * @}
567   */
568 #endif /* USE_FULL_LL_DRIVER */
569 
570 /* Exported constants --------------------------------------------------------*/
571 /** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
572   * @{
573   */
574 
575 /** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
576   * @brief    Flags defines which can be used with LL_TIM_ReadReg function.
577   * @{
578   */
579 #define LL_TIM_SR_UIF                          TIM_SR_UIF           /*!< Update interrupt flag */
580 #define LL_TIM_SR_CC1IF                        TIM_SR_CC1IF         /*!< Capture/compare 1 interrupt flag */
581 #define LL_TIM_SR_CC2IF                        TIM_SR_CC2IF         /*!< Capture/compare 2 interrupt flag */
582 #define LL_TIM_SR_CC3IF                        TIM_SR_CC3IF         /*!< Capture/compare 3 interrupt flag */
583 #define LL_TIM_SR_CC4IF                        TIM_SR_CC4IF         /*!< Capture/compare 4 interrupt flag */
584 #define LL_TIM_SR_CC5IF                        TIM_SR_CC5IF         /*!< Capture/compare 5 interrupt flag */
585 #define LL_TIM_SR_CC6IF                        TIM_SR_CC6IF         /*!< Capture/compare 6 interrupt flag */
586 #define LL_TIM_SR_COMIF                        TIM_SR_COMIF         /*!< COM interrupt flag */
587 #define LL_TIM_SR_TIF                          TIM_SR_TIF           /*!< Trigger interrupt flag */
588 #define LL_TIM_SR_BIF                          TIM_SR_BIF           /*!< Break interrupt flag */
589 #define LL_TIM_SR_B2IF                         TIM_SR_B2IF          /*!< Second break interrupt flag */
590 #define LL_TIM_SR_CC1OF                        TIM_SR_CC1OF         /*!< Capture/Compare 1 overcapture flag */
591 #define LL_TIM_SR_CC2OF                        TIM_SR_CC2OF         /*!< Capture/Compare 2 overcapture flag */
592 #define LL_TIM_SR_CC3OF                        TIM_SR_CC3OF         /*!< Capture/Compare 3 overcapture flag */
593 #define LL_TIM_SR_CC4OF                        TIM_SR_CC4OF         /*!< Capture/Compare 4 overcapture flag */
594 #define LL_TIM_SR_SBIF                         TIM_SR_SBIF          /*!< System Break interrupt flag  */
595 /**
596   * @}
597   */
598 
599 #if defined(USE_FULL_LL_DRIVER)
600 /** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
601   * @{
602   */
603 #define LL_TIM_BREAK_DISABLE            0x00000000U             /*!< Break function disabled */
604 #define LL_TIM_BREAK_ENABLE             TIM_BDTR_BKE            /*!< Break function enabled */
605 /**
606   * @}
607   */
608 
609 /** @defgroup TIM_LL_EC_BREAK2_ENABLE Break2 Enable
610   * @{
611   */
612 #define LL_TIM_BREAK2_DISABLE            0x00000000U              /*!< Break2 function disabled */
613 #define LL_TIM_BREAK2_ENABLE             TIM_BDTR_BK2E            /*!< Break2 function enabled */
614 /**
615   * @}
616   */
617 
618 /** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
619   * @{
620   */
621 #define LL_TIM_AUTOMATICOUTPUT_DISABLE         0x00000000U             /*!< MOE can be set only by software */
622 #define LL_TIM_AUTOMATICOUTPUT_ENABLE          TIM_BDTR_AOE            /*!< MOE can be set by software or automatically at the next update event */
623 /**
624   * @}
625   */
626 #endif /* USE_FULL_LL_DRIVER */
627 
628 /** @defgroup TIM_LL_EC_IT IT Defines
629   * @brief    IT defines which can be used with LL_TIM_ReadReg and  LL_TIM_WriteReg functions.
630   * @{
631   */
632 #define LL_TIM_DIER_UIE                        TIM_DIER_UIE         /*!< Update interrupt enable */
633 #define LL_TIM_DIER_CC1IE                      TIM_DIER_CC1IE       /*!< Capture/compare 1 interrupt enable */
634 #define LL_TIM_DIER_CC2IE                      TIM_DIER_CC2IE       /*!< Capture/compare 2 interrupt enable */
635 #define LL_TIM_DIER_CC3IE                      TIM_DIER_CC3IE       /*!< Capture/compare 3 interrupt enable */
636 #define LL_TIM_DIER_CC4IE                      TIM_DIER_CC4IE       /*!< Capture/compare 4 interrupt enable */
637 #define LL_TIM_DIER_COMIE                      TIM_DIER_COMIE       /*!< COM interrupt enable */
638 #define LL_TIM_DIER_TIE                        TIM_DIER_TIE         /*!< Trigger interrupt enable */
639 #define LL_TIM_DIER_BIE                        TIM_DIER_BIE         /*!< Break interrupt enable */
640 /**
641   * @}
642   */
643 
644 /** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
645   * @{
646   */
647 #define LL_TIM_UPDATESOURCE_REGULAR            0x00000000U          /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
648 #define LL_TIM_UPDATESOURCE_COUNTER            TIM_CR1_URS          /*!< Only counter overflow/underflow generates an update request */
649 /**
650   * @}
651   */
652 
653 /** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
654   * @{
655   */
656 #define LL_TIM_ONEPULSEMODE_SINGLE             TIM_CR1_OPM          /*!< Counter stops counting at the next update event */
657 #define LL_TIM_ONEPULSEMODE_REPETITIVE         0x00000000U          /*!< Counter is not stopped at update event */
658 /**
659   * @}
660   */
661 
662 /** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
663   * @{
664   */
665 #define LL_TIM_COUNTERMODE_UP                  0x00000000U          /*!<Counter used as upcounter */
666 #define LL_TIM_COUNTERMODE_DOWN                TIM_CR1_DIR          /*!< Counter used as downcounter */
667 #define LL_TIM_COUNTERMODE_CENTER_DOWN         TIM_CR1_CMS_0        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting down. */
668 #define LL_TIM_COUNTERMODE_CENTER_UP           TIM_CR1_CMS_1        /*!<The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up */
669 #define LL_TIM_COUNTERMODE_CENTER_UP_DOWN      TIM_CR1_CMS          /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up or down. */
670 /**
671   * @}
672   */
673 
674 /** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
675   * @{
676   */
677 #define LL_TIM_CLOCKDIVISION_DIV1              0x00000000U          /*!< tDTS=tCK_INT */
678 #define LL_TIM_CLOCKDIVISION_DIV2              TIM_CR1_CKD_0        /*!< tDTS=2*tCK_INT */
679 #define LL_TIM_CLOCKDIVISION_DIV4              TIM_CR1_CKD_1        /*!< tDTS=4*tCK_INT */
680 /**
681   * @}
682   */
683 
684 /** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
685   * @{
686   */
687 #define LL_TIM_COUNTERDIRECTION_UP             0x00000000U          /*!< Timer counter counts up */
688 #define LL_TIM_COUNTERDIRECTION_DOWN           TIM_CR1_DIR          /*!< Timer counter counts down */
689 /**
690   * @}
691   */
692 
693 /** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare  Update Source
694   * @{
695   */
696 #define LL_TIM_CCUPDATESOURCE_COMG_ONLY        0x00000000U          /*!< Capture/compare control bits are updated by setting the COMG bit only */
697 #define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI    TIM_CR2_CCUS         /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
698 /**
699   * @}
700   */
701 
702 /** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
703   * @{
704   */
705 #define LL_TIM_CCDMAREQUEST_CC                 0x00000000U          /*!< CCx DMA request sent when CCx event occurs */
706 #define LL_TIM_CCDMAREQUEST_UPDATE             TIM_CR2_CCDS         /*!< CCx DMA requests sent when update event occurs */
707 /**
708   * @}
709   */
710 
711 /** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
712   * @{
713   */
714 #define LL_TIM_LOCKLEVEL_OFF                   0x00000000U          /*!< LOCK OFF - No bit is write protected */
715 #define LL_TIM_LOCKLEVEL_1                     TIM_BDTR_LOCK_0      /*!< LOCK Level 1 */
716 #define LL_TIM_LOCKLEVEL_2                     TIM_BDTR_LOCK_1      /*!< LOCK Level 2 */
717 #define LL_TIM_LOCKLEVEL_3                     TIM_BDTR_LOCK        /*!< LOCK Level 3 */
718 /**
719   * @}
720   */
721 
722 /** @defgroup TIM_LL_EC_CHANNEL Channel
723   * @{
724   */
725 #define LL_TIM_CHANNEL_CH1                     TIM_CCER_CC1E     /*!< Timer input/output channel 1 */
726 #define LL_TIM_CHANNEL_CH1N                    TIM_CCER_CC1NE    /*!< Timer complementary output channel 1 */
727 #define LL_TIM_CHANNEL_CH2                     TIM_CCER_CC2E     /*!< Timer input/output channel 2 */
728 #define LL_TIM_CHANNEL_CH2N                    TIM_CCER_CC2NE    /*!< Timer complementary output channel 2 */
729 #define LL_TIM_CHANNEL_CH3                     TIM_CCER_CC3E     /*!< Timer input/output channel 3 */
730 #define LL_TIM_CHANNEL_CH3N                    TIM_CCER_CC3NE    /*!< Timer complementary output channel 3 */
731 #define LL_TIM_CHANNEL_CH4                     TIM_CCER_CC4E     /*!< Timer input/output channel 4 */
732 #define LL_TIM_CHANNEL_CH5                     TIM_CCER_CC5E     /*!< Timer output channel 5 */
733 #define LL_TIM_CHANNEL_CH6                     TIM_CCER_CC6E     /*!< Timer output channel 6 */
734 /**
735   * @}
736   */
737 
738 #if defined(USE_FULL_LL_DRIVER)
739 /** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
740   * @{
741   */
742 #define LL_TIM_OCSTATE_DISABLE                 0x00000000U             /*!< OCx is not active */
743 #define LL_TIM_OCSTATE_ENABLE                  TIM_CCER_CC1E           /*!< OCx signal is output on the corresponding output pin */
744 /**
745   * @}
746   */
747 #endif /* USE_FULL_LL_DRIVER */
748 
749 /** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
750   * @{
751   */
752 #define LL_TIM_OCMODE_FROZEN                   0x00000000U                                              /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
753 #define LL_TIM_OCMODE_ACTIVE                   TIM_CCMR1_OC1M_0                                         /*!<OCyREF is forced high on compare match*/
754 #define LL_TIM_OCMODE_INACTIVE                 TIM_CCMR1_OC1M_1                                         /*!<OCyREF is forced low on compare match*/
755 #define LL_TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF toggles on compare match*/
756 #define LL_TIM_OCMODE_FORCED_INACTIVE          TIM_CCMR1_OC1M_2                                         /*!<OCyREF is forced low*/
757 #define LL_TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF is forced high*/
758 #define LL_TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1)                    /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive.  In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
759 #define LL_TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active.  In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
760 #define LL_TIM_OCMODE_RETRIG_OPM1              TIM_CCMR1_OC1M_3                                         /*!<Retrigerrable OPM mode 1*/
761 #define LL_TIM_OCMODE_RETRIG_OPM2              (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0)                    /*!<Retrigerrable OPM mode 2*/
762 #define LL_TIM_OCMODE_COMBINED_PWM1            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_2)                    /*!<Combined PWM mode 1*/
763 #define LL_TIM_OCMODE_COMBINED_PWM2            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 2*/
764 #define LL_TIM_OCMODE_ASSYMETRIC_PWM1          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!<Asymmetric PWM mode 1*/
765 #define LL_TIM_OCMODE_ASSYMETRIC_PWM2          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M)                      /*!<Asymmetric PWM mode 2*/
766 /**
767   * @}
768   */
769 
770 /** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
771   * @{
772   */
773 #define LL_TIM_OCPOLARITY_HIGH                 0x00000000U                 /*!< OCxactive high*/
774 #define LL_TIM_OCPOLARITY_LOW                  TIM_CCER_CC1P               /*!< OCxactive low*/
775 /**
776   * @}
777   */
778 
779 /** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
780   * @{
781   */
782 #define LL_TIM_OCIDLESTATE_LOW                 0x00000000U             /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
783 #define LL_TIM_OCIDLESTATE_HIGH                TIM_CR2_OIS1            /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
784 /**
785   * @}
786   */
787 
788 /** @defgroup TIM_LL_EC_GROUPCH5 GROUPCH5
789   * @{
790   */
791 #define LL_TIM_GROUPCH5_NONE                   0x00000000U           /*!< No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC */
792 #define LL_TIM_GROUPCH5_OC1REFC                TIM_CCR5_GC5C1        /*!< OC1REFC is the logical AND of OC1REFC and OC5REF */
793 #define LL_TIM_GROUPCH5_OC2REFC                TIM_CCR5_GC5C2        /*!< OC2REFC is the logical AND of OC2REFC and OC5REF */
794 #define LL_TIM_GROUPCH5_OC3REFC                TIM_CCR5_GC5C3        /*!< OC3REFC is the logical AND of OC3REFC and OC5REF */
795 /**
796   * @}
797   */
798 
799 /** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
800   * @{
801   */
802 #define LL_TIM_ACTIVEINPUT_DIRECTTI            (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
803 #define LL_TIM_ACTIVEINPUT_INDIRECTTI          (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
804 #define LL_TIM_ACTIVEINPUT_TRC                 (TIM_CCMR1_CC1S << 16U)   /*!< ICx is mapped on TRC */
805 /**
806   * @}
807   */
808 
809 /** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
810   * @{
811   */
812 #define LL_TIM_ICPSC_DIV1                      0x00000000U                    /*!< No prescaler, capture is done each time an edge is detected on the capture input */
813 #define LL_TIM_ICPSC_DIV2                      (TIM_CCMR1_IC1PSC_0 << 16U)    /*!< Capture is done once every 2 events */
814 #define LL_TIM_ICPSC_DIV4                      (TIM_CCMR1_IC1PSC_1 << 16U)    /*!< Capture is done once every 4 events */
815 #define LL_TIM_ICPSC_DIV8                      (TIM_CCMR1_IC1PSC << 16U)      /*!< Capture is done once every 8 events */
816 /**
817   * @}
818   */
819 
820 /** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
821   * @{
822   */
823 #define LL_TIM_IC_FILTER_FDIV1                 0x00000000U                                                        /*!< No filter, sampling is done at fDTS */
824 #define LL_TIM_IC_FILTER_FDIV1_N2              (TIM_CCMR1_IC1F_0 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=2 */
825 #define LL_TIM_IC_FILTER_FDIV1_N4              (TIM_CCMR1_IC1F_1 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=4 */
826 #define LL_TIM_IC_FILTER_FDIV1_N8              ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fCK_INT, N=8 */
827 #define LL_TIM_IC_FILTER_FDIV2_N6              (TIM_CCMR1_IC1F_2 << 16U)                                          /*!< fSAMPLING=fDTS/2, N=6 */
828 #define LL_TIM_IC_FILTER_FDIV2_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/2, N=8 */
829 #define LL_TIM_IC_FILTER_FDIV4_N6              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/4, N=6 */
830 #define LL_TIM_IC_FILTER_FDIV4_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/4, N=8 */
831 #define LL_TIM_IC_FILTER_FDIV8_N6              (TIM_CCMR1_IC1F_3 << 16U)                                          /*!< fSAMPLING=fDTS/8, N=6 */
832 #define LL_TIM_IC_FILTER_FDIV8_N8              ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/8, N=8 */
833 #define LL_TIM_IC_FILTER_FDIV16_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/16, N=5 */
834 #define LL_TIM_IC_FILTER_FDIV16_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/16, N=6 */
835 #define LL_TIM_IC_FILTER_FDIV16_N8             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U)                     /*!< fSAMPLING=fDTS/16, N=8 */
836 #define LL_TIM_IC_FILTER_FDIV32_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/32, N=5 */
837 #define LL_TIM_IC_FILTER_FDIV32_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)  /*!< fSAMPLING=fDTS/32, N=6 */
838 #define LL_TIM_IC_FILTER_FDIV32_N8             (TIM_CCMR1_IC1F << 16U)                                            /*!< fSAMPLING=fDTS/32, N=8 */
839 /**
840   * @}
841   */
842 
843 /** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
844   * @{
845   */
846 #define LL_TIM_IC_POLARITY_RISING              0x00000000U                      /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
847 #define LL_TIM_IC_POLARITY_FALLING             TIM_CCER_CC1P                    /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
848 #define LL_TIM_IC_POLARITY_BOTHEDGE            (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
849 /**
850   * @}
851   */
852 
853 /** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
854   * @{
855   */
856 #define LL_TIM_CLOCKSOURCE_INTERNAL            0x00000000U                                          /*!< The timer is clocked by the internal clock provided from the RCC */
857 #define LL_TIM_CLOCKSOURCE_EXT_MODE1           (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)   /*!< Counter counts at each rising or falling edge on a selected input*/
858 #define LL_TIM_CLOCKSOURCE_EXT_MODE2           TIM_SMCR_ECE                                         /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
859 /**
860   * @}
861   */
862 
863 /** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
864   * @{
865   */
866 #define LL_TIM_ENCODERMODE_X2_TI1                     TIM_SMCR_SMS_0                                                     /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
867 #define LL_TIM_ENCODERMODE_X2_TI2                     TIM_SMCR_SMS_1                                                     /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
868 #define LL_TIM_ENCODERMODE_X4_TI12                   (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)                                   /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
869 /**
870   * @}
871   */
872 
873 /** @defgroup TIM_LL_EC_TRGO Trigger Output
874   * @{
875   */
876 #define LL_TIM_TRGO_RESET                      0x00000000U                                     /*!< UG bit from the TIMx_EGR register is used as trigger output */
877 #define LL_TIM_TRGO_ENABLE                     TIM_CR2_MMS_0                                   /*!< Counter Enable signal (CNT_EN) is used as trigger output */
878 #define LL_TIM_TRGO_UPDATE                     TIM_CR2_MMS_1                                   /*!< Update event is used as trigger output */
879 #define LL_TIM_TRGO_CC1IF                      (TIM_CR2_MMS_1 | TIM_CR2_MMS_0)                 /*!< CC1 capture or a compare match is used as trigger output */
880 #define LL_TIM_TRGO_OC1REF                     TIM_CR2_MMS_2                                   /*!< OC1REF signal is used as trigger output */
881 #define LL_TIM_TRGO_OC2REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_0)                 /*!< OC2REF signal is used as trigger output */
882 #define LL_TIM_TRGO_OC3REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1)                 /*!< OC3REF signal is used as trigger output */
883 #define LL_TIM_TRGO_OC4REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
884 /**
885   * @}
886   */
887 
888 /** @defgroup TIM_LL_EC_TRGO2 Trigger Output 2
889   * @{
890   */
891 #define LL_TIM_TRGO2_RESET                     0x00000000U                                                         /*!< UG bit from the TIMx_EGR register is used as trigger output 2 */
892 #define LL_TIM_TRGO2_ENABLE                    TIM_CR2_MMS2_0                                                      /*!< Counter Enable signal (CNT_EN) is used as trigger output 2 */
893 #define LL_TIM_TRGO2_UPDATE                    TIM_CR2_MMS2_1                                                      /*!< Update event is used as trigger output 2 */
894 #define LL_TIM_TRGO2_CC1F                      (TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                                   /*!< CC1 capture or a compare match is used as trigger output 2 */
895 #define LL_TIM_TRGO2_OC1                       TIM_CR2_MMS2_2                                                      /*!< OC1REF signal is used as trigger output 2 */
896 #define LL_TIM_TRGO2_OC2                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                                   /*!< OC2REF signal is used as trigger output 2 */
897 #define LL_TIM_TRGO2_OC3                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1)                                   /*!< OC3REF signal is used as trigger output 2 */
898 #define LL_TIM_TRGO2_OC4                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC4REF signal is used as trigger output 2 */
899 #define LL_TIM_TRGO2_OC5                       TIM_CR2_MMS2_3                                                      /*!< OC5REF signal is used as trigger output 2 */
900 #define LL_TIM_TRGO2_OC6                       (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_0)                                   /*!< OC6REF signal is used as trigger output 2 */
901 #define LL_TIM_TRGO2_OC4_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1)                                   /*!< OC4REF rising or falling edges are used as trigger output 2 */
902 #define LL_TIM_TRGO2_OC6_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC6REF rising or falling edges are used as trigger output 2 */
903 #define LL_TIM_TRGO2_OC4_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2)                                   /*!< OC4REF or OC6REF rising edges are used as trigger output 2 */
904 #define LL_TIM_TRGO2_OC4_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                  /*!< OC4REF rising or OC6REF falling edges are used as trigger output 2 */
905 #define LL_TIM_TRGO2_OC5_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 |TIM_CR2_MMS2_1)                   /*!< OC5REF or OC6REF rising edges are used as trigger output 2 */
906 #define LL_TIM_TRGO2_OC5_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC5REF rising or OC6REF falling edges are used as trigger output 2 */
907 /**
908   * @}
909   */
910 
911 /** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
912   * @{
913   */
914 #define LL_TIM_SLAVEMODE_DISABLED              0x00000000U                         /*!< Slave mode disabled */
915 #define LL_TIM_SLAVEMODE_RESET                 TIM_SMCR_SMS_2                      /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
916 #define LL_TIM_SLAVEMODE_GATED                 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)   /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
917 #define LL_TIM_SLAVEMODE_TRIGGER               (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)   /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
918 #define LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER TIM_SMCR_SMS_3                      /*!< Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI)  reinitializes the counter, generates an update of the registers and starts the counter */
919 /**
920   * @}
921   */
922 
923 /** @defgroup TIM_LL_EC_TS Trigger Selection
924   * @{
925   */
926 #define LL_TIM_TS_ITR0                         0x00000000U                                                     /*!< Internal Trigger 0 (ITR0) is used as trigger input */
927 #define LL_TIM_TS_ITR1                         TIM_SMCR_TS_0                                                   /*!< Internal Trigger 1 (ITR1) is used as trigger input */
928 #define LL_TIM_TS_ITR2                         TIM_SMCR_TS_1                                                   /*!< Internal Trigger 2 (ITR2) is used as trigger input */
929 #define LL_TIM_TS_ITR3                         (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)                                 /*!< Internal Trigger 3 (ITR3) is used as trigger input */
930 #if defined(USB_BASE)
931 #define LL_TIM_TS_ITR7                         (TIM_SMCR_TS_3 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Internal Trigger 7 (ITR7) is used as trigger input */
932 #endif /* USB_BASE */
933 #define LL_TIM_TS_TI1F_ED                      TIM_SMCR_TS_2                                                   /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
934 #define LL_TIM_TS_TI1FP1                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_0)                                 /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
935 #define LL_TIM_TS_TI2FP2                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_1)                                 /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
936 #define LL_TIM_TS_ETRF                         (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Filtered external Trigger (ETRF) is used as trigger input */
937 /**
938   * @}
939   */
940 
941 /** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
942   * @{
943   */
944 #define LL_TIM_ETR_POLARITY_NONINVERTED        0x00000000U             /*!< ETR is non-inverted, active at high level or rising edge */
945 #define LL_TIM_ETR_POLARITY_INVERTED           TIM_SMCR_ETP            /*!< ETR is inverted, active at low level or falling edge */
946 /**
947   * @}
948   */
949 
950 /** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
951   * @{
952   */
953 #define LL_TIM_ETR_PRESCALER_DIV1              0x00000000U             /*!< ETR prescaler OFF */
954 #define LL_TIM_ETR_PRESCALER_DIV2              TIM_SMCR_ETPS_0         /*!< ETR frequency is divided by 2 */
955 #define LL_TIM_ETR_PRESCALER_DIV4              TIM_SMCR_ETPS_1         /*!< ETR frequency is divided by 4 */
956 #define LL_TIM_ETR_PRESCALER_DIV8              TIM_SMCR_ETPS           /*!< ETR frequency is divided by 8 */
957 /**
958   * @}
959   */
960 
961 /** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
962   * @{
963   */
964 #define LL_TIM_ETR_FILTER_FDIV1                0x00000000U                                          /*!< No filter, sampling is done at fDTS */
965 #define LL_TIM_ETR_FILTER_FDIV1_N2             TIM_SMCR_ETF_0                                       /*!< fSAMPLING=fCK_INT, N=2 */
966 #define LL_TIM_ETR_FILTER_FDIV1_N4             TIM_SMCR_ETF_1                                       /*!< fSAMPLING=fCK_INT, N=4 */
967 #define LL_TIM_ETR_FILTER_FDIV1_N8             (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fCK_INT, N=8 */
968 #define LL_TIM_ETR_FILTER_FDIV2_N6             TIM_SMCR_ETF_2                                       /*!< fSAMPLING=fDTS/2, N=6 */
969 #define LL_TIM_ETR_FILTER_FDIV2_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/2, N=8 */
970 #define LL_TIM_ETR_FILTER_FDIV4_N6             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/4, N=6 */
971 #define LL_TIM_ETR_FILTER_FDIV4_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/4, N=8 */
972 #define LL_TIM_ETR_FILTER_FDIV8_N6             TIM_SMCR_ETF_3                                       /*!< fSAMPLING=fDTS/8, N=8 */
973 #define LL_TIM_ETR_FILTER_FDIV8_N8             (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/16, N=5 */
974 #define LL_TIM_ETR_FILTER_FDIV16_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/16, N=6 */
975 #define LL_TIM_ETR_FILTER_FDIV16_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/16, N=8 */
976 #define LL_TIM_ETR_FILTER_FDIV16_N8            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2)                    /*!< fSAMPLING=fDTS/16, N=5 */
977 #define LL_TIM_ETR_FILTER_FDIV32_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/32, N=5 */
978 #define LL_TIM_ETR_FILTER_FDIV32_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)   /*!< fSAMPLING=fDTS/32, N=6 */
979 #define LL_TIM_ETR_FILTER_FDIV32_N8            TIM_SMCR_ETF                                         /*!< fSAMPLING=fDTS/32, N=8 */
980 /**
981   * @}
982   */
983 
984 /** @defgroup TIM_LL_EC_ETRSOURCE External Trigger Source
985   * @{
986   */
987 #define LL_TIM_ETRSOURCE_GPIO                  0x00000000U                                                 /*!< ETR input is connected to GPIO */
988 #if defined(COMP1) && defined(COMP2)
989 #define LL_TIM_ETRSOURCE_COMP1                 TIM1_AF1_ETRSEL_0                                 /*!< ETR input is connected to COMP1_OUT */
990 #define LL_TIM_ETRSOURCE_COMP2                 TIM1_AF1_ETRSEL_1                                 /*!< ETR input is connected to COMP2_OUT */
991 #endif /* COMP1 && COMP2 */
992 #if defined(COMP3)
993 #define LL_TIM_ETRSOURCE_COMP3                 (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1) /*!< ETR input is connected to COMP3_OUT */
994 #endif /* COMP3 */
995 #define LL_TIM_ETRSOURCE_ADC1_AWD1             (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to ADC1 analog watchdog 1 */
996 #define LL_TIM_ETRSOURCE_ADC1_AWD2             TIM1_AF1_ETRSEL_2                                 /*!< ETR input is connected to ADC1 analog watchdog 2 */
997 #define LL_TIM_ETRSOURCE_ADC1_AWD3             (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to ADC1 analog watchdog 3 */
998 #define LL_TIM_ETRSOURCE_LSE                   (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to LSE */
999 #define LL_TIM_ETRSOURCE_MCO                   TIM1_AF1_ETRSEL_2                                 /*!< ETR input is connected to MCO */
1000 #define LL_TIM_ETRSOURCE_MCO2                  (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to MCO2 */
1001 /**
1002   * @}
1003   */
1004 
1005 /** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
1006   * @{
1007   */
1008 #define LL_TIM_BREAK_POLARITY_LOW              0x00000000U               /*!< Break input BRK is active low */
1009 #define LL_TIM_BREAK_POLARITY_HIGH             TIM_BDTR_BKP              /*!< Break input BRK is active high */
1010 /**
1011   * @}
1012   */
1013 
1014 /** @defgroup TIM_LL_EC_BREAK_FILTER break filter
1015   * @{
1016   */
1017 #define LL_TIM_BREAK_FILTER_FDIV1              0x00000000U   /*!< No filter, BRK acts asynchronously */
1018 #define LL_TIM_BREAK_FILTER_FDIV1_N2           0x00010000U   /*!< fSAMPLING=fCK_INT, N=2 */
1019 #define LL_TIM_BREAK_FILTER_FDIV1_N4           0x00020000U   /*!< fSAMPLING=fCK_INT, N=4 */
1020 #define LL_TIM_BREAK_FILTER_FDIV1_N8           0x00030000U   /*!< fSAMPLING=fCK_INT, N=8 */
1021 #define LL_TIM_BREAK_FILTER_FDIV2_N6           0x00040000U   /*!< fSAMPLING=fDTS/2, N=6 */
1022 #define LL_TIM_BREAK_FILTER_FDIV2_N8           0x00050000U   /*!< fSAMPLING=fDTS/2, N=8 */
1023 #define LL_TIM_BREAK_FILTER_FDIV4_N6           0x00060000U   /*!< fSAMPLING=fDTS/4, N=6 */
1024 #define LL_TIM_BREAK_FILTER_FDIV4_N8           0x00070000U   /*!< fSAMPLING=fDTS/4, N=8 */
1025 #define LL_TIM_BREAK_FILTER_FDIV8_N6           0x00080000U   /*!< fSAMPLING=fDTS/8, N=6 */
1026 #define LL_TIM_BREAK_FILTER_FDIV8_N8           0x00090000U   /*!< fSAMPLING=fDTS/8, N=8 */
1027 #define LL_TIM_BREAK_FILTER_FDIV16_N5          0x000A0000U   /*!< fSAMPLING=fDTS/16, N=5 */
1028 #define LL_TIM_BREAK_FILTER_FDIV16_N6          0x000B0000U   /*!< fSAMPLING=fDTS/16, N=6 */
1029 #define LL_TIM_BREAK_FILTER_FDIV16_N8          0x000C0000U   /*!< fSAMPLING=fDTS/16, N=8 */
1030 #define LL_TIM_BREAK_FILTER_FDIV32_N5          0x000D0000U   /*!< fSAMPLING=fDTS/32, N=5 */
1031 #define LL_TIM_BREAK_FILTER_FDIV32_N6          0x000E0000U   /*!< fSAMPLING=fDTS/32, N=6 */
1032 #define LL_TIM_BREAK_FILTER_FDIV32_N8          0x000F0000U   /*!< fSAMPLING=fDTS/32, N=8 */
1033 /**
1034   * @}
1035   */
1036 
1037 /** @defgroup TIM_LL_EC_BREAK2_POLARITY BREAK2 POLARITY
1038   * @{
1039   */
1040 #define LL_TIM_BREAK2_POLARITY_LOW             0x00000000U             /*!< Break input BRK2 is active low */
1041 #define LL_TIM_BREAK2_POLARITY_HIGH            TIM_BDTR_BK2P           /*!< Break input BRK2 is active high */
1042 /**
1043   * @}
1044   */
1045 
1046 /** @defgroup TIM_LL_EC_BREAK2_FILTER BREAK2 FILTER
1047   * @{
1048   */
1049 #define LL_TIM_BREAK2_FILTER_FDIV1             0x00000000U   /*!< No filter, BRK acts asynchronously */
1050 #define LL_TIM_BREAK2_FILTER_FDIV1_N2          0x00100000U   /*!< fSAMPLING=fCK_INT, N=2 */
1051 #define LL_TIM_BREAK2_FILTER_FDIV1_N4          0x00200000U   /*!< fSAMPLING=fCK_INT, N=4 */
1052 #define LL_TIM_BREAK2_FILTER_FDIV1_N8          0x00300000U   /*!< fSAMPLING=fCK_INT, N=8 */
1053 #define LL_TIM_BREAK2_FILTER_FDIV2_N6          0x00400000U   /*!< fSAMPLING=fDTS/2, N=6 */
1054 #define LL_TIM_BREAK2_FILTER_FDIV2_N8          0x00500000U   /*!< fSAMPLING=fDTS/2, N=8 */
1055 #define LL_TIM_BREAK2_FILTER_FDIV4_N6          0x00600000U   /*!< fSAMPLING=fDTS/4, N=6 */
1056 #define LL_TIM_BREAK2_FILTER_FDIV4_N8          0x00700000U   /*!< fSAMPLING=fDTS/4, N=8 */
1057 #define LL_TIM_BREAK2_FILTER_FDIV8_N6          0x00800000U   /*!< fSAMPLING=fDTS/8, N=6 */
1058 #define LL_TIM_BREAK2_FILTER_FDIV8_N8          0x00900000U   /*!< fSAMPLING=fDTS/8, N=8 */
1059 #define LL_TIM_BREAK2_FILTER_FDIV16_N5         0x00A00000U   /*!< fSAMPLING=fDTS/16, N=5 */
1060 #define LL_TIM_BREAK2_FILTER_FDIV16_N6         0x00B00000U   /*!< fSAMPLING=fDTS/16, N=6 */
1061 #define LL_TIM_BREAK2_FILTER_FDIV16_N8         0x00C00000U   /*!< fSAMPLING=fDTS/16, N=8 */
1062 #define LL_TIM_BREAK2_FILTER_FDIV32_N5         0x00D00000U   /*!< fSAMPLING=fDTS/32, N=5 */
1063 #define LL_TIM_BREAK2_FILTER_FDIV32_N6         0x00E00000U   /*!< fSAMPLING=fDTS/32, N=6 */
1064 #define LL_TIM_BREAK2_FILTER_FDIV32_N8         0x00F00000U   /*!< fSAMPLING=fDTS/32, N=8 */
1065 /**
1066   * @}
1067   */
1068 
1069 /** @defgroup TIM_LL_EC_OSSI OSSI
1070   * @{
1071   */
1072 #define LL_TIM_OSSI_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1073 #define LL_TIM_OSSI_ENABLE                     TIM_BDTR_OSSI           /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
1074 /**
1075   * @}
1076   */
1077 
1078 /** @defgroup TIM_LL_EC_OSSR OSSR
1079   * @{
1080   */
1081 #define LL_TIM_OSSR_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1082 #define LL_TIM_OSSR_ENABLE                     TIM_BDTR_OSSR           /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
1083 /**
1084   * @}
1085   */
1086 
1087 /** @defgroup TIM_LL_EC_BREAK_INPUT BREAK INPUT
1088   * @{
1089   */
1090 #define LL_TIM_BREAK_INPUT_BKIN                0x00000000U  /*!< TIMx_BKIN input */
1091 #define LL_TIM_BREAK_INPUT_BKIN2               0x00000004U  /*!< TIMx_BKIN2 input */
1092 /**
1093   * @}
1094   */
1095 
1096 /** @defgroup TIM_LL_EC_BKIN_SOURCE BKIN SOURCE
1097   * @{
1098   */
1099 #define LL_TIM_BKIN_SOURCE_BKIN                TIM1_AF1_BKINE      /*!< BKIN input from AF controller */
1100 #if defined(COMP1) && defined(COMP2)
1101 #define LL_TIM_BKIN_SOURCE_BKCOMP1             TIM1_AF1_BKCMP1E    /*!< internal signal: COMP1 output */
1102 #define LL_TIM_BKIN_SOURCE_BKCOMP2             TIM1_AF1_BKCMP2E    /*!< internal signal: COMP2 output */
1103 #endif /* COMP1 && COMP2 */
1104 #if defined(COMP3)
1105 #define LL_TIM_BKIN_SOURCE_BKCOMP3             TIM1_AF1_BKCMP3E    /*!< internal signal: COMP3 output */
1106 #endif /* COMP3 */
1107 /**
1108   * @}
1109   */
1110 
1111 /** @defgroup TIM_LL_EC_BKIN_POLARITY BKIN POLARITY
1112   * @{
1113   */
1114 #define LL_TIM_BKIN_POLARITY_LOW               TIM1_AF1_BKINP           /*!< BRK BKIN input is active low */
1115 #define LL_TIM_BKIN_POLARITY_HIGH              0x00000000U              /*!< BRK BKIN input is active high */
1116 /**
1117   * @}
1118   */
1119 
1120 /** @defgroup TIM_LL_EC_BREAK_AFMODE BREAK AF MODE
1121   * @{
1122   */
1123 #define LL_TIM_BREAK_AFMODE_INPUT              0x00000000U              /*!< Break input BRK in input mode */
1124 #define LL_TIM_BREAK_AFMODE_BIDIRECTIONAL      TIM_BDTR_BKBID           /*!< Break input BRK in bidirectional mode */
1125 /**
1126   * @}
1127   */
1128 
1129 /** @defgroup TIM_LL_EC_BREAK2_AFMODE BREAK2 AF MODE
1130   * @{
1131   */
1132 #define LL_TIM_BREAK2_AFMODE_INPUT             0x00000000U             /*!< Break2 input BRK2 in input mode */
1133 #define LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL     TIM_BDTR_BK2BID         /*!< Break2 input BRK2 in bidirectional mode */
1134 /**
1135   * @}
1136   */
1137 
1138 /** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
1139   * @{
1140   */
1141 #define LL_TIM_DMABURST_BASEADDR_CR1           0x00000000U                                                      /*!< TIMx_CR1 register is the DMA base address for DMA burst */
1142 #define LL_TIM_DMABURST_BASEADDR_CR2           TIM_DCR_DBA_0                                                    /*!< TIMx_CR2 register is the DMA base address for DMA burst */
1143 #define LL_TIM_DMABURST_BASEADDR_SMCR          TIM_DCR_DBA_1                                                    /*!< TIMx_SMCR register is the DMA base address for DMA burst */
1144 #define LL_TIM_DMABURST_BASEADDR_DIER          (TIM_DCR_DBA_1 |  TIM_DCR_DBA_0)                                 /*!< TIMx_DIER register is the DMA base address for DMA burst */
1145 #define LL_TIM_DMABURST_BASEADDR_SR            TIM_DCR_DBA_2                                                    /*!< TIMx_SR register is the DMA base address for DMA burst */
1146 #define LL_TIM_DMABURST_BASEADDR_EGR           (TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                                  /*!< TIMx_EGR register is the DMA base address for DMA burst */
1147 #define LL_TIM_DMABURST_BASEADDR_CCMR1         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
1148 #define LL_TIM_DMABURST_BASEADDR_CCMR2         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
1149 #define LL_TIM_DMABURST_BASEADDR_CCER          TIM_DCR_DBA_3                                                    /*!< TIMx_CCER register is the DMA base address for DMA burst */
1150 #define LL_TIM_DMABURST_BASEADDR_CNT           (TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                                  /*!< TIMx_CNT register is the DMA base address for DMA burst */
1151 #define LL_TIM_DMABURST_BASEADDR_PSC           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                                  /*!< TIMx_PSC register is the DMA base address for DMA burst */
1152 #define LL_TIM_DMABURST_BASEADDR_ARR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_ARR register is the DMA base address for DMA burst */
1153 #define LL_TIM_DMABURST_BASEADDR_RCR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_2)                                  /*!< TIMx_RCR register is the DMA base address for DMA burst */
1154 #define LL_TIM_DMABURST_BASEADDR_CCR1          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
1155 #define LL_TIM_DMABURST_BASEADDR_CCR2          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
1156 #define LL_TIM_DMABURST_BASEADDR_CCR3          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
1157 #define LL_TIM_DMABURST_BASEADDR_CCR4          TIM_DCR_DBA_4                                                    /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
1158 #define LL_TIM_DMABURST_BASEADDR_BDTR          (TIM_DCR_DBA_4 | TIM_DCR_DBA_0)                                  /*!< TIMx_BDTR register is the DMA base address for DMA burst */
1159 #define LL_TIM_DMABURST_BASEADDR_OR1           (TIM_DCR_DBA_4 | TIM_DCR_DBA_2)                                  /*!< TIMx_OR1 register is the DMA base address for DMA burst */
1160 #define LL_TIM_DMABURST_BASEADDR_CCMR3         (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR3 register is the DMA base address for DMA burst */
1161 #define LL_TIM_DMABURST_BASEADDR_CCR5          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR5 register is the DMA base address for DMA burst */
1162 #define LL_TIM_DMABURST_BASEADDR_CCR6          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR6 register is the DMA base address for DMA burst */
1163 #define LL_TIM_DMABURST_BASEADDR_AF1           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3)                                  /*!< TIMx_AF1 register is the DMA base address for DMA burst */
1164 #define LL_TIM_DMABURST_BASEADDR_AF2           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                  /*!< TIMx_AF2 register is the DMA base address for DMA burst */
1165 #define LL_TIM_DMABURST_BASEADDR_TISEL         (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                  /*!< TIMx_TISEL register is the DMA base address for DMA burst */
1166 /**
1167   * @}
1168   */
1169 
1170 /** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
1171   * @{
1172   */
1173 #define LL_TIM_DMABURST_LENGTH_1TRANSFER       0x00000000U                                                     /*!< Transfer is done to 1 register starting from the DMA burst base address */
1174 #define LL_TIM_DMABURST_LENGTH_2TRANSFERS      TIM_DCR_DBL_0                                                   /*!< Transfer is done to 2 registers starting from the DMA burst base address */
1175 #define LL_TIM_DMABURST_LENGTH_3TRANSFERS      TIM_DCR_DBL_1                                                   /*!< Transfer is done to 3 registers starting from the DMA burst base address */
1176 #define LL_TIM_DMABURST_LENGTH_4TRANSFERS      (TIM_DCR_DBL_1 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 4 registers starting from the DMA burst base address */
1177 #define LL_TIM_DMABURST_LENGTH_5TRANSFERS      TIM_DCR_DBL_2                                                   /*!< Transfer is done to 5 registers starting from the DMA burst base address */
1178 #define LL_TIM_DMABURST_LENGTH_6TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 6 registers starting from the DMA burst base address */
1179 #define LL_TIM_DMABURST_LENGTH_7TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 7 registers starting from the DMA burst base address */
1180 #define LL_TIM_DMABURST_LENGTH_8TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 1 registers starting from the DMA burst base address */
1181 #define LL_TIM_DMABURST_LENGTH_9TRANSFERS      TIM_DCR_DBL_3                                                   /*!< Transfer is done to 9 registers starting from the DMA burst base address */
1182 #define LL_TIM_DMABURST_LENGTH_10TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 10 registers starting from the DMA burst base address */
1183 #define LL_TIM_DMABURST_LENGTH_11TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 11 registers starting from the DMA burst base address */
1184 #define LL_TIM_DMABURST_LENGTH_12TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 12 registers starting from the DMA burst base address */
1185 #define LL_TIM_DMABURST_LENGTH_13TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 13 registers starting from the DMA burst base address */
1186 #define LL_TIM_DMABURST_LENGTH_14TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 14 registers starting from the DMA burst base address */
1187 #define LL_TIM_DMABURST_LENGTH_15TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 15 registers starting from the DMA burst base address */
1188 #define LL_TIM_DMABURST_LENGTH_16TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
1189 #define LL_TIM_DMABURST_LENGTH_17TRANSFERS     TIM_DCR_DBL_4                                                   /*!< Transfer is done to 17 registers starting from the DMA burst base address */
1190 #define LL_TIM_DMABURST_LENGTH_18TRANSFERS     (TIM_DCR_DBL_4 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 18 registers starting from the DMA burst base address */
1191 /**
1192   * @}
1193   */
1194 
1195 /** @defgroup TIM_LL_EC_TIM1_TI1_RMP  TIM1 Timer Input Ch1 Remap
1196   * @{
1197   */
1198 #define LL_TIM_TIM1_TI1_RMP_GPIO   0x00000000U                                       /*!< TIM1 input 1 is connected to GPIO */
1199 #if defined(COMP1)
1200 #define LL_TIM_TIM1_TI1_RMP_COMP1  TIM_TISEL_TI1SEL_0                                /*!< TIM1 input 1 is connected to COMP1_OUT */
1201 #endif /* COMP1 */
1202 /**
1203   * @}
1204   */
1205 
1206 /** @defgroup TIM_LL_EC_TIM1_TI2_RMP  TIM1 Timer Input Ch2 Remap
1207   * @{
1208   */
1209 #define LL_TIM_TIM1_TI2_RMP_GPIO   0x00000000U                                       /*!< TIM1 input 2 is connected to GPIO */
1210 #if defined(COMP2)
1211 #define LL_TIM_TIM1_TI2_RMP_COMP2  TIM_TISEL_TI2SEL_0                                /*!< TIM1 input 2 is connected to COMP2_OUT */
1212 #endif /* COMP2 */
1213 /**
1214   * @}
1215   */
1216 
1217 /** @defgroup TIM_LL_EC_TIM1_TI3_RMP  TIM1 Timer Input Ch3 Remap
1218   * @{
1219   */
1220 #define LL_TIM_TIM1_TI3_RMP_GPIO   0x00000000U                                       /*!< TIM1 input 3 is connected to GPIO */
1221 #if defined(COMP3)
1222 #define LL_TIM_TIM1_TI3_RMP_COMP3  TIM_TISEL_TI3SEL_0                                /*!< TIM1 input 3 is connected to COMP3_OUT */
1223 #endif  /* COMP3 */
1224 /**
1225   * @}
1226   */
1227 
1228 #if defined(TIM2)
1229 /** @defgroup TIM_LL_EC_TIM2_TI1_RMP  TIM2 Timer Input Ch1 Remap
1230   * @{
1231   */
1232 #define LL_TIM_TIM2_TI1_RMP_GPIO   0x00000000U                                       /*!< TIM2 input 1 is connected to GPIO */
1233 #define LL_TIM_TIM2_TI1_RMP_COMP1  TIM_TISEL_TI1SEL_0                                /*!< TIM2 input 1 is connected to COMP1_OUT */
1234 /**
1235   * @}
1236   */
1237 
1238 /** @defgroup TIM_LL_EC_TIM2_TI2_RMP  TIM2 Timer Input Ch2 Remap
1239   * @{
1240   */
1241 #define LL_TIM_TIM2_TI2_RMP_GPIO   0x00000000U                                       /*!< TIM2 input 2 is connected to GPIO */
1242 #define LL_TIM_TIM2_TI2_RMP_COMP2  TIM_TISEL_TI2SEL_0                                /*!< TIM2 input 2 is connected to COMP2_OUT */
1243 /**
1244   * @}
1245   */
1246 
1247 /** @defgroup TIM_LL_EC_TIM2_TI3_RMP  TIM2 Timer Input Ch3 Remap
1248   * @{
1249   */
1250 #define LL_TIM_TIM2_TI3_RMP_GPIO   0x00000000U                                       /*!< TIM2 input 3 is connected to GPIO */
1251 #if defined(COMP3)
1252 #define LL_TIM_TIM2_TI3_RMP_COMP3  TIM_TISEL_TI3SEL_0                                /*!< TIM2 input 3 is connected to COMP3_OUT */
1253 #endif /* COMP3 */
1254 /**
1255   * @}
1256   */
1257 #endif /* TIM2 */
1258 
1259 /** @defgroup TIM_LL_EC_TIM3_TI1_RMP  TIM3 Timer Input Ch1 Remap
1260   * @{
1261   */
1262 #define LL_TIM_TIM3_TI1_RMP_GPIO   0x00000000U                                       /*!< TIM3 input 1 is connected to GPIO */
1263 #if defined(COMP1)
1264 #define LL_TIM_TIM3_TI1_RMP_COMP1  TIM_TISEL_TI1SEL_0                                /*!< TIM3 input 1 is connected to COMP1_OUT */
1265 #endif /* COMP1 */
1266 /**
1267   * @}
1268   */
1269 
1270 /** @defgroup TIM_LL_EC_TIM3_TI2_RMP  TIM3 Timer Input Ch2 Remap
1271   * @{
1272   */
1273 #define LL_TIM_TIM3_TI2_RMP_GPIO   0x00000000U                                       /*!< TIM3 input 2 is connected to GPIO */
1274 #if defined(COMP2)
1275 #define LL_TIM_TIM3_TI2_RMP_COMP2  TIM_TISEL_TI2SEL_0                                /*!< TIM3 input 2 is connected to COMP2_OUT */
1276 #endif /* COMP2 */
1277 /**
1278   * @}
1279   */
1280 
1281 /** @defgroup TIM_LL_EC_TIM3_TI3_RMP  TIM3 Timer Input Ch3 Remap
1282   * @{
1283   */
1284 #define LL_TIM_TIM3_TI3_RMP_GPIO   0x00000000U                                       /*!< TIM3 input 3 is connected to GPIO */
1285 #if defined(COMP3)
1286 #define LL_TIM_TIM3_TI3_RMP_COMP3  TIM_TISEL_TI3SEL_0                                /*!< TIM3 input 3 is connected to COMP3_OUT */
1287 #endif /* COMP3 */
1288 /**
1289   * @}
1290   */
1291 
1292 #if defined(TIM4)
1293 /** @defgroup TIM_LL_EC_TIM4_TI1_RMP  TIM4 Timer Input Ch1 Remap
1294   * @{
1295   */
1296 #define LL_TIM_TIM4_TI1_RMP_GPIO   0x00000000U                                       /*!< TIM4 input 1 is connected to GPIO */
1297 #if defined(COMP1)
1298 #define LL_TIM_TIM4_TI1_RMP_COMP1  TIM_TISEL_TI1SEL_0                                /*!< TIM4 input 1 is connected to COMP1_OUT */
1299 #endif /* COMP1 */
1300 /**
1301   * @}
1302   */
1303 
1304 /** @defgroup TIM_LL_EC_TIM4_TI2_RMP  TIM4 Timer Input Ch2 Remap
1305   * @{
1306   */
1307 #define LL_TIM_TIM4_TI2_RMP_GPIO   0x00000000U                                       /*!< TIM4 input 2 is connected to GPIO */
1308 #if defined(COMP2)
1309 #define LL_TIM_TIM4_TI2_RMP_COMP2  TIM_TISEL_TI2SEL_0                                /*!< TIM4 input 2 is connected to COMP2_OUT */
1310 #endif /* COMP2 */
1311 /**
1312   * @}
1313   */
1314 
1315 /** @defgroup TIM_LL_EC_TIM4_TI3_RMP  TIM4 Timer Input Ch3 Remap
1316   * @{
1317   */
1318 #define LL_TIM_TIM4_TI3_RMP_GPIO   0x00000000U                                       /*!< TIM4 input 3 is connected to GPIO */
1319 #if defined(COMP3)
1320 #define LL_TIM_TIM4_TI3_RMP_COMP3  TIM_TISEL_TI3SEL_0                                /*!< TIM4 input 3 is connected to COMP3_OUT */
1321 #endif /* COMP3 */
1322 /**
1323   * @}
1324   */
1325 #endif /* TIM4 */
1326 
1327 /** @defgroup TIM_LL_EC_TIM14_TI1_RMP  TIM14 Timer Input Ch1 Remap
1328   * @{
1329   */
1330 #define LL_TIM_TIM14_TI1_RMP_GPIO     0x00000000U                                    /*!< TIM14 input 1 is connected to GPIO */
1331 #define LL_TIM_TIM14_TI1_RMP_RTC_CLK  TIM_TISEL_TI1SEL_0                             /*!< TIM14 input 1 is connected to RTC clock */
1332 #define LL_TIM_TIM14_TI1_RMP_HSE_32   TIM_TISEL_TI1SEL_1                             /*!< TIM14 input 1 is connected to HSE/32 clock */
1333 #define LL_TIM_TIM14_TI1_RMP_MCO     (TIM_TISEL_TI1SEL_0  | TIM_TISEL_TI1SEL_1)     /*!< TIM14 input 1 is connected to MCO */
1334 #define LL_TIM_TIM14_TI1_RMP_MCO2    TIM_TISEL_TI1SEL_2                             /*!< TIM14 input 1 is connected to MCO2 */
1335 /**
1336   * @}
1337   */
1338 
1339 /** @defgroup TIM_LL_EC_TIM15_TI1_RMP  TIM15 Timer Input Ch1 Remap
1340   * @{
1341   */
1342 #if defined(TIM15)
1343 #define LL_TIM_TIM15_TI1_RMP_GPIO     0x00000000U                                    /*!< TIM15 input 1 is connected to GPIO */
1344 #if defined(TIM2)
1345 #define LL_TIM_TIM15_TI1_RMP_TIM2_IC1 TIM_TISEL_TI1SEL_0                             /*!< TIM15 input 1 is connected to TIM2 input 1 */
1346 #endif /* TIM2 */
1347 #if defined(TIM3)
1348 #define LL_TIM_TIM15_TI1_RMP_TIM3_IC1 TIM_TISEL_TI1SEL_1                             /*!< TIM15 input 1 is connected to TIM3 input 1 */
1349 #endif /* TIM3 */
1350 #endif /* TIM15 */
1351 /**
1352   * @}
1353   */
1354 
1355 /** @defgroup TIM_LL_EC_TIM15_TI2_RMP  TIM15 Timer Input Ch2 Remap
1356   * @{
1357   */
1358 #if defined(TIM15)
1359 #define LL_TIM_TIM15_TI2_RMP_GPIO     0x00000000U                                    /*!< TIM15 input 2 is connected to GPIO */
1360 #if defined(TIM2)
1361 #define LL_TIM_TIM15_TI2_RMP_TIM2_IC2 TIM_TISEL_TI2SEL_0                             /*!< TIM15 input 2 is connected to TIM2 input 2 */
1362 #endif /* TIM2 */
1363 #if defined(TIM3)
1364 #define LL_TIM_TIM15_TI2_RMP_TIM3_IC2 TIM_TISEL_TI1SEL_1                             /*!< TIM15 input 2 is connected to TIM3 input 2 */
1365 #endif /* TIM3 */
1366 #endif /* TIM15 */
1367 /**
1368   * @}
1369   */
1370 
1371 /** @defgroup TIM_LL_EC_TIM16_TI1_RMP  TIM16 Timer Input Ch1 Remap
1372   * @{
1373   */
1374 #define LL_TIM_TIM16_TI1_RMP_GPIO    0x00000000U                                     /*!< TIM16 input 1 is connected to GPIO */
1375 #define LL_TIM_TIM16_TI1_RMP_LSI     TIM_TISEL_TI1SEL_0                              /*!< TIM16 input 1 is connected to LSI */
1376 #define LL_TIM_TIM16_TI1_RMP_LSE     TIM_TISEL_TI1SEL_1                              /*!< TIM16 input 1 is connected to LSE */
1377 #define LL_TIM_TIM16_TI1_RMP_RTC_WK  (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1)       /*!< TIM16 input 1 is connected to RTC_WAKEUP */
1378 #define LL_TIM_TIM16_TI1_RMP_MCO2    TIM_TISEL_TI1SEL_2                              /*!< TIM16 input 1 is connected to MCO2 */
1379 /**
1380   * @}
1381   */
1382 
1383 /** @defgroup TIM_LL_EC_TIM17_TI1_RMP  TIM17 Timer Input Ch1 Remap
1384   * @{
1385   */
1386 #define LL_TIM_TIM17_TI1_RMP_GPIO    0x00000000U                                     /*!< TIM17 input 1 is connected to GPIO */
1387 #define LL_TIM_TIM17_TI1_RMP_HSI48   TIM_TISEL_TI1SEL_0                              /*!< TIM17 input 1 is connected to HSI48/256 */
1388 #define LL_TIM_TIM17_TI1_RMP_HSE_32  TIM_TISEL_TI1SEL_1                              /*!< TIM17 input 1 is connected to HSE/32 clock */
1389 #define LL_TIM_TIM17_TI1_RMP_MCO    (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1)        /*!< TIM17 input 1 is connected to MCO */
1390 #define LL_TIM_TIM17_TI1_RMP_MCO2    TIM_TISEL_TI1SEL_2                              /*!< TIM17 input 1 is connected to MCO2 */
1391 /**
1392   * @}
1393   */
1394 
1395 /** @defgroup TIM_LL_EC_OCREF_CLR_INT OCREF clear input selection
1396   * @{
1397   */
1398 #define LL_TIM_OCREF_CLR_INT_ETR         OCREF_CLEAR_SELECT_Msk       /*!< OCREF_CLR_INT is connected to ETRF */
1399 #if defined(COMP1) && defined(COMP2)
1400 #define LL_TIM_OCREF_CLR_INT_COMP1       0x00000000U                  /*!< OCREF clear input is connected to COMP1_OUT */
1401 #if defined(COMP3)
1402 #define LL_TIM_OCREF_CLR_INT_COMP2       TIM1_OR1_OCREF_CLR_0         /*!< OCREF clear input is connected to COMP2_OUT */
1403 #define LL_TIM_OCREF_CLR_INT_COMP3       TIM1_OR1_OCREF_CLR_1         /*!< OCREF clear input is connected to COMP3_OUT */
1404 #else
1405 #define LL_TIM_OCREF_CLR_INT_COMP2       TIM1_OR1_OCREF_CLR           /*!< OCREF clear input is connected to COMP2_OUT */
1406 #endif /* COMP3 */
1407 #endif /* COMP1 & COMP2 */
1408 /**
1409   * @}
1410   */
1411 
1412 /** Legacy definitions for compatibility purpose
1413 @cond 0
1414   */
1415 #define LL_TIM_BKIN_SOURCE_DFBK  LL_TIM_BKIN_SOURCE_DF1BK
1416 /**
1417 @endcond
1418   */
1419 /**
1420   * @}
1421   */
1422 
1423 /* Exported macro ------------------------------------------------------------*/
1424 /** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
1425   * @{
1426   */
1427 
1428 /** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
1429   * @{
1430   */
1431 /**
1432   * @brief  Write a value in TIM register.
1433   * @param  __INSTANCE__ TIM Instance
1434   * @param  __REG__ Register to be written
1435   * @param  __VALUE__ Value to be written in the register
1436   * @retval None
1437   */
1438 #define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
1439 
1440 /**
1441   * @brief  Read a value in TIM register.
1442   * @param  __INSTANCE__ TIM Instance
1443   * @param  __REG__ Register to be read
1444   * @retval Register value
1445   */
1446 #define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
1447 /**
1448   * @}
1449   */
1450 
1451 /** @defgroup TIM_LL_EM_Exported_Macros Exported_Macros
1452   * @{
1453   */
1454 
1455 /**
1456   * @brief  HELPER macro retrieving the UIFCPY flag from the counter value.
1457   * @note ex: @ref __LL_TIM_GETFLAG_UIFCPY (@ref LL_TIM_GetCounter ());
1458   * @note  Relevant only if UIF flag remapping has been enabled  (UIF status bit is copied
1459   *        to TIMx_CNT register bit 31)
1460   * @param  __CNT__ Counter value
1461   * @retval UIF status bit
1462   */
1463 #define __LL_TIM_GETFLAG_UIFCPY(__CNT__)  \
1464   (READ_BIT((__CNT__), TIM_CNT_UIFCPY) >> TIM_CNT_UIFCPY_Pos)
1465 
1466 /**
1467   * @brief  HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
1468   * @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
1469   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1470   * @param  __CKD__ This parameter can be one of the following values:
1471   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1472   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1473   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1474   * @param  __DT__ deadtime duration (in ns)
1475   * @retval DTG[0:7]
1476   */
1477 #define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__)  \
1478   ( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))    ?  \
1479     (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__)))  & DT_DELAY_1) :      \
1480     (((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1481     (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),   \
1482                                                  (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
1483     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1484     (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1485                                                  (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
1486     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ?  \
1487     (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1488                                                  (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
1489     0U)
1490 
1491 /**
1492   * @brief  HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
1493   * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
1494   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1495   * @param  __CNTCLK__ counter clock frequency (in Hz)
1496   * @retval Prescaler value  (between Min_Data=0 and Max_Data=65535)
1497   */
1498 #define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__)   \
1499   (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((((__TIMCLK__) + (__CNTCLK__)/2U)/(__CNTCLK__)) - 1U) : 0U)
1500 
1501 /**
1502   * @brief  HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
1503   * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
1504   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1505   * @param  __PSC__ prescaler
1506   * @param  __FREQ__ output signal frequency (in Hz)
1507   * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1508   */
1509 #define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
1510   ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
1511 
1512 /**
1513   * @brief  HELPER macro calculating the compare value required to achieve the required timer output compare
1514   *         active/inactive delay.
1515   * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
1516   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1517   * @param  __PSC__ prescaler
1518   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1519   * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
1520   */
1521 #define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__)  \
1522   ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
1523               / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
1524 
1525 /**
1526   * @brief  HELPER macro calculating the auto-reload value to achieve the required pulse duration
1527   *         (when the timer operates in one pulse mode).
1528   * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
1529   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1530   * @param  __PSC__ prescaler
1531   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1532   * @param  __PULSE__ pulse duration (in us)
1533   * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1534   */
1535 #define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
1536   ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
1537               + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
1538 
1539 /**
1540   * @brief  HELPER macro retrieving the ratio of the input capture prescaler
1541   * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
1542   * @param  __ICPSC__ This parameter can be one of the following values:
1543   *         @arg @ref LL_TIM_ICPSC_DIV1
1544   *         @arg @ref LL_TIM_ICPSC_DIV2
1545   *         @arg @ref LL_TIM_ICPSC_DIV4
1546   *         @arg @ref LL_TIM_ICPSC_DIV8
1547   * @retval Input capture prescaler ratio (1, 2, 4 or 8)
1548   */
1549 #define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__)  \
1550   ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
1551 
1552 
1553 /**
1554   * @}
1555   */
1556 
1557 
1558 /**
1559   * @}
1560   */
1561 
1562 /* Exported functions --------------------------------------------------------*/
1563 /** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
1564   * @{
1565   */
1566 
1567 /** @defgroup TIM_LL_EF_Time_Base Time Base configuration
1568   * @{
1569   */
1570 /**
1571   * @brief  Enable timer counter.
1572   * @rmtoll CR1          CEN           LL_TIM_EnableCounter
1573   * @param  TIMx Timer instance
1574   * @retval None
1575   */
LL_TIM_EnableCounter(TIM_TypeDef * TIMx)1576 __STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
1577 {
1578   SET_BIT(TIMx->CR1, TIM_CR1_CEN);
1579 }
1580 
1581 /**
1582   * @brief  Disable timer counter.
1583   * @rmtoll CR1          CEN           LL_TIM_DisableCounter
1584   * @param  TIMx Timer instance
1585   * @retval None
1586   */
LL_TIM_DisableCounter(TIM_TypeDef * TIMx)1587 __STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
1588 {
1589   CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
1590 }
1591 
1592 /**
1593   * @brief  Indicates whether the timer counter is enabled.
1594   * @rmtoll CR1          CEN           LL_TIM_IsEnabledCounter
1595   * @param  TIMx Timer instance
1596   * @retval State of bit (1 or 0).
1597   */
LL_TIM_IsEnabledCounter(const TIM_TypeDef * TIMx)1598 __STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(const TIM_TypeDef *TIMx)
1599 {
1600   return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
1601 }
1602 
1603 /**
1604   * @brief  Enable update event generation.
1605   * @rmtoll CR1          UDIS          LL_TIM_EnableUpdateEvent
1606   * @param  TIMx Timer instance
1607   * @retval None
1608   */
LL_TIM_EnableUpdateEvent(TIM_TypeDef * TIMx)1609 __STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
1610 {
1611   CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
1612 }
1613 
1614 /**
1615   * @brief  Disable update event generation.
1616   * @rmtoll CR1          UDIS          LL_TIM_DisableUpdateEvent
1617   * @param  TIMx Timer instance
1618   * @retval None
1619   */
LL_TIM_DisableUpdateEvent(TIM_TypeDef * TIMx)1620 __STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
1621 {
1622   SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
1623 }
1624 
1625 /**
1626   * @brief  Indicates whether update event generation is enabled.
1627   * @rmtoll CR1          UDIS          LL_TIM_IsEnabledUpdateEvent
1628   * @param  TIMx Timer instance
1629   * @retval Inverted state of bit (0 or 1).
1630   */
LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef * TIMx)1631 __STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef *TIMx)
1632 {
1633   return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
1634 }
1635 
1636 /**
1637   * @brief  Set update event source
1638   * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
1639   *       generate an update interrupt or DMA request if enabled:
1640   *        - Counter overflow/underflow
1641   *        - Setting the UG bit
1642   *        - Update generation through the slave mode controller
1643   * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
1644   *       overflow/underflow generates an update interrupt or DMA request if enabled.
1645   * @rmtoll CR1          URS           LL_TIM_SetUpdateSource
1646   * @param  TIMx Timer instance
1647   * @param  UpdateSource This parameter can be one of the following values:
1648   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1649   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1650   * @retval None
1651   */
LL_TIM_SetUpdateSource(TIM_TypeDef * TIMx,uint32_t UpdateSource)1652 __STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
1653 {
1654   MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
1655 }
1656 
1657 /**
1658   * @brief  Get actual event update source
1659   * @rmtoll CR1          URS           LL_TIM_GetUpdateSource
1660   * @param  TIMx Timer instance
1661   * @retval Returned value can be one of the following values:
1662   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1663   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1664   */
LL_TIM_GetUpdateSource(const TIM_TypeDef * TIMx)1665 __STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(const TIM_TypeDef *TIMx)
1666 {
1667   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
1668 }
1669 
1670 /**
1671   * @brief  Set one pulse mode (one shot v.s. repetitive).
1672   * @rmtoll CR1          OPM           LL_TIM_SetOnePulseMode
1673   * @param  TIMx Timer instance
1674   * @param  OnePulseMode This parameter can be one of the following values:
1675   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1676   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1677   * @retval None
1678   */
LL_TIM_SetOnePulseMode(TIM_TypeDef * TIMx,uint32_t OnePulseMode)1679 __STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
1680 {
1681   MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
1682 }
1683 
1684 /**
1685   * @brief  Get actual one pulse mode.
1686   * @rmtoll CR1          OPM           LL_TIM_GetOnePulseMode
1687   * @param  TIMx Timer instance
1688   * @retval Returned value can be one of the following values:
1689   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1690   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1691   */
LL_TIM_GetOnePulseMode(const TIM_TypeDef * TIMx)1692 __STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(const TIM_TypeDef *TIMx)
1693 {
1694   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
1695 }
1696 
1697 /**
1698   * @brief  Set the timer counter counting mode.
1699   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1700   *       check whether or not the counter mode selection feature is supported
1701   *       by a timer instance.
1702   * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1703   *       requires a timer reset to avoid unexpected direction
1704   *       due to DIR bit readonly in center aligned mode.
1705   * @rmtoll CR1          DIR           LL_TIM_SetCounterMode\n
1706   *         CR1          CMS           LL_TIM_SetCounterMode
1707   * @param  TIMx Timer instance
1708   * @param  CounterMode This parameter can be one of the following values:
1709   *         @arg @ref LL_TIM_COUNTERMODE_UP
1710   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1711   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1712   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1713   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1714   * @retval None
1715   */
LL_TIM_SetCounterMode(TIM_TypeDef * TIMx,uint32_t CounterMode)1716 __STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
1717 {
1718   MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
1719 }
1720 
1721 /**
1722   * @brief  Get actual counter mode.
1723   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1724   *       check whether or not the counter mode selection feature is supported
1725   *       by a timer instance.
1726   * @rmtoll CR1          DIR           LL_TIM_GetCounterMode\n
1727   *         CR1          CMS           LL_TIM_GetCounterMode
1728   * @param  TIMx Timer instance
1729   * @retval Returned value can be one of the following values:
1730   *         @arg @ref LL_TIM_COUNTERMODE_UP
1731   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1732   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1733   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1734   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1735   */
LL_TIM_GetCounterMode(const TIM_TypeDef * TIMx)1736 __STATIC_INLINE uint32_t LL_TIM_GetCounterMode(const TIM_TypeDef *TIMx)
1737 {
1738   uint32_t counter_mode;
1739 
1740   counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CMS));
1741 
1742   if (counter_mode == 0U)
1743   {
1744     counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1745   }
1746 
1747   return counter_mode;
1748 }
1749 
1750 /**
1751   * @brief  Enable auto-reload (ARR) preload.
1752   * @rmtoll CR1          ARPE          LL_TIM_EnableARRPreload
1753   * @param  TIMx Timer instance
1754   * @retval None
1755   */
LL_TIM_EnableARRPreload(TIM_TypeDef * TIMx)1756 __STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
1757 {
1758   SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
1759 }
1760 
1761 /**
1762   * @brief  Disable auto-reload (ARR) preload.
1763   * @rmtoll CR1          ARPE          LL_TIM_DisableARRPreload
1764   * @param  TIMx Timer instance
1765   * @retval None
1766   */
LL_TIM_DisableARRPreload(TIM_TypeDef * TIMx)1767 __STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
1768 {
1769   CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
1770 }
1771 
1772 /**
1773   * @brief  Indicates whether auto-reload (ARR) preload is enabled.
1774   * @rmtoll CR1          ARPE          LL_TIM_IsEnabledARRPreload
1775   * @param  TIMx Timer instance
1776   * @retval State of bit (1 or 0).
1777   */
LL_TIM_IsEnabledARRPreload(const TIM_TypeDef * TIMx)1778 __STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(const TIM_TypeDef *TIMx)
1779 {
1780   return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
1781 }
1782 
1783 /**
1784   * @brief  Set the division ratio between the timer clock  and the sampling clock used by the dead-time generators
1785   *         (when supported) and the digital filters.
1786   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1787   *       whether or not the clock division feature is supported by the timer
1788   *       instance.
1789   * @rmtoll CR1          CKD           LL_TIM_SetClockDivision
1790   * @param  TIMx Timer instance
1791   * @param  ClockDivision This parameter can be one of the following values:
1792   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1793   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1794   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1795   * @retval None
1796   */
LL_TIM_SetClockDivision(TIM_TypeDef * TIMx,uint32_t ClockDivision)1797 __STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
1798 {
1799   MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
1800 }
1801 
1802 /**
1803   * @brief  Get the actual division ratio between the timer clock  and the sampling clock used by the dead-time
1804   *         generators (when supported) and the digital filters.
1805   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1806   *       whether or not the clock division feature is supported by the timer
1807   *       instance.
1808   * @rmtoll CR1          CKD           LL_TIM_GetClockDivision
1809   * @param  TIMx Timer instance
1810   * @retval Returned value can be one of the following values:
1811   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1812   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1813   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1814   */
LL_TIM_GetClockDivision(const TIM_TypeDef * TIMx)1815 __STATIC_INLINE uint32_t LL_TIM_GetClockDivision(const TIM_TypeDef *TIMx)
1816 {
1817   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
1818 }
1819 
1820 /**
1821   * @brief  Set the counter value.
1822   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1823   *       whether or not a timer instance supports a 32 bits counter.
1824   * @rmtoll CNT          CNT           LL_TIM_SetCounter
1825   * @param  TIMx Timer instance
1826   * @param  Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1827   * @retval None
1828   */
LL_TIM_SetCounter(TIM_TypeDef * TIMx,uint32_t Counter)1829 __STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
1830 {
1831   WRITE_REG(TIMx->CNT, Counter);
1832 }
1833 
1834 /**
1835   * @brief  Get the counter value.
1836   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1837   *       whether or not a timer instance supports a 32 bits counter.
1838   * @rmtoll CNT          CNT           LL_TIM_GetCounter
1839   * @param  TIMx Timer instance
1840   * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1841   */
LL_TIM_GetCounter(const TIM_TypeDef * TIMx)1842 __STATIC_INLINE uint32_t LL_TIM_GetCounter(const TIM_TypeDef *TIMx)
1843 {
1844   return (uint32_t)(READ_REG(TIMx->CNT));
1845 }
1846 
1847 /**
1848   * @brief  Get the current direction of the counter
1849   * @rmtoll CR1          DIR           LL_TIM_GetDirection
1850   * @param  TIMx Timer instance
1851   * @retval Returned value can be one of the following values:
1852   *         @arg @ref LL_TIM_COUNTERDIRECTION_UP
1853   *         @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
1854   */
LL_TIM_GetDirection(const TIM_TypeDef * TIMx)1855 __STATIC_INLINE uint32_t LL_TIM_GetDirection(const TIM_TypeDef *TIMx)
1856 {
1857   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1858 }
1859 
1860 /**
1861   * @brief  Set the prescaler value.
1862   * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
1863   * @note The prescaler can be changed on the fly as this control register is buffered. The new
1864   *       prescaler ratio is taken into account at the next update event.
1865   * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
1866   * @rmtoll PSC          PSC           LL_TIM_SetPrescaler
1867   * @param  TIMx Timer instance
1868   * @param  Prescaler between Min_Data=0 and Max_Data=65535
1869   * @retval None
1870   */
LL_TIM_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Prescaler)1871 __STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
1872 {
1873   WRITE_REG(TIMx->PSC, Prescaler);
1874 }
1875 
1876 /**
1877   * @brief  Get the prescaler value.
1878   * @rmtoll PSC          PSC           LL_TIM_GetPrescaler
1879   * @param  TIMx Timer instance
1880   * @retval  Prescaler value between Min_Data=0 and Max_Data=65535
1881   */
LL_TIM_GetPrescaler(const TIM_TypeDef * TIMx)1882 __STATIC_INLINE uint32_t LL_TIM_GetPrescaler(const TIM_TypeDef *TIMx)
1883 {
1884   return (uint32_t)(READ_REG(TIMx->PSC));
1885 }
1886 
1887 /**
1888   * @brief  Set the auto-reload value.
1889   * @note The counter is blocked while the auto-reload value is null.
1890   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1891   *       whether or not a timer instance supports a 32 bits counter.
1892   * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
1893   * @rmtoll ARR          ARR           LL_TIM_SetAutoReload
1894   * @param  TIMx Timer instance
1895   * @param  AutoReload between Min_Data=0 and Max_Data=65535
1896   * @retval None
1897   */
LL_TIM_SetAutoReload(TIM_TypeDef * TIMx,uint32_t AutoReload)1898 __STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
1899 {
1900   WRITE_REG(TIMx->ARR, AutoReload);
1901 }
1902 
1903 /**
1904   * @brief  Get the auto-reload value.
1905   * @rmtoll ARR          ARR           LL_TIM_GetAutoReload
1906   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1907   *       whether or not a timer instance supports a 32 bits counter.
1908   * @param  TIMx Timer instance
1909   * @retval Auto-reload value
1910   */
LL_TIM_GetAutoReload(const TIM_TypeDef * TIMx)1911 __STATIC_INLINE uint32_t LL_TIM_GetAutoReload(const TIM_TypeDef *TIMx)
1912 {
1913   return (uint32_t)(READ_REG(TIMx->ARR));
1914 }
1915 
1916 /**
1917   * @brief  Set the repetition counter value.
1918   * @note For advanced timer instances RepetitionCounter can be up to 65535.
1919   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1920   *       whether or not a timer instance supports a repetition counter.
1921   * @rmtoll RCR          REP           LL_TIM_SetRepetitionCounter
1922   * @param  TIMx Timer instance
1923   * @param  RepetitionCounter between Min_Data=0 and Max_Data=255 or 65535 for advanced timer.
1924   * @retval None
1925   */
LL_TIM_SetRepetitionCounter(TIM_TypeDef * TIMx,uint32_t RepetitionCounter)1926 __STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
1927 {
1928   WRITE_REG(TIMx->RCR, RepetitionCounter);
1929 }
1930 
1931 /**
1932   * @brief  Get the repetition counter value.
1933   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1934   *       whether or not a timer instance supports a repetition counter.
1935   * @rmtoll RCR          REP           LL_TIM_GetRepetitionCounter
1936   * @param  TIMx Timer instance
1937   * @retval Repetition counter value
1938   */
LL_TIM_GetRepetitionCounter(const TIM_TypeDef * TIMx)1939 __STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(const TIM_TypeDef *TIMx)
1940 {
1941   return (uint32_t)(READ_REG(TIMx->RCR));
1942 }
1943 
1944 /**
1945   * @brief  Force a continuous copy of the update interrupt flag (UIF) into the timer counter register (bit 31).
1946   * @note This allows both the counter value and a potential roll-over condition signalled by the UIFCPY flag to be read
1947   *       in an atomic way.
1948   * @rmtoll CR1          UIFREMAP      LL_TIM_EnableUIFRemap
1949   * @param  TIMx Timer instance
1950   * @retval None
1951   */
LL_TIM_EnableUIFRemap(TIM_TypeDef * TIMx)1952 __STATIC_INLINE void LL_TIM_EnableUIFRemap(TIM_TypeDef *TIMx)
1953 {
1954   SET_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1955 }
1956 
1957 /**
1958   * @brief  Disable update interrupt flag (UIF) remapping.
1959   * @rmtoll CR1          UIFREMAP      LL_TIM_DisableUIFRemap
1960   * @param  TIMx Timer instance
1961   * @retval None
1962   */
LL_TIM_DisableUIFRemap(TIM_TypeDef * TIMx)1963 __STATIC_INLINE void LL_TIM_DisableUIFRemap(TIM_TypeDef *TIMx)
1964 {
1965   CLEAR_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1966 }
1967 
1968 /**
1969   * @brief  Indicate whether update interrupt flag (UIF) copy is set.
1970   * @param  Counter Counter value
1971   * @retval State of bit (1 or 0).
1972   */
LL_TIM_IsActiveUIFCPY(const uint32_t Counter)1973 __STATIC_INLINE uint32_t LL_TIM_IsActiveUIFCPY(const uint32_t Counter)
1974 {
1975   return (((Counter & TIM_CNT_UIFCPY) == (TIM_CNT_UIFCPY)) ? 1UL : 0UL);
1976 }
1977 
1978 /**
1979   * @}
1980   */
1981 
1982 /** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
1983   * @{
1984   */
1985 /**
1986   * @brief  Enable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1987   * @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
1988   *       they are updated only when a commutation event (COM) occurs.
1989   * @note Only on channels that have a complementary output.
1990   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1991   *       whether or not a timer instance is able to generate a commutation event.
1992   * @rmtoll CR2          CCPC          LL_TIM_CC_EnablePreload
1993   * @param  TIMx Timer instance
1994   * @retval None
1995   */
LL_TIM_CC_EnablePreload(TIM_TypeDef * TIMx)1996 __STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
1997 {
1998   SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
1999 }
2000 
2001 /**
2002   * @brief  Disable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
2003   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
2004   *       whether or not a timer instance is able to generate a commutation event.
2005   * @rmtoll CR2          CCPC          LL_TIM_CC_DisablePreload
2006   * @param  TIMx Timer instance
2007   * @retval None
2008   */
LL_TIM_CC_DisablePreload(TIM_TypeDef * TIMx)2009 __STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
2010 {
2011   CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
2012 }
2013 
2014 /**
2015   * @brief  Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
2016   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
2017   *       whether or not a timer instance is able to generate a commutation event.
2018   * @rmtoll CR2          CCUS          LL_TIM_CC_SetUpdate
2019   * @param  TIMx Timer instance
2020   * @param  CCUpdateSource This parameter can be one of the following values:
2021   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
2022   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
2023   * @retval None
2024   */
LL_TIM_CC_SetUpdate(TIM_TypeDef * TIMx,uint32_t CCUpdateSource)2025 __STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
2026 {
2027   MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
2028 }
2029 
2030 /**
2031   * @brief  Set the trigger of the capture/compare DMA request.
2032   * @rmtoll CR2          CCDS          LL_TIM_CC_SetDMAReqTrigger
2033   * @param  TIMx Timer instance
2034   * @param  DMAReqTrigger This parameter can be one of the following values:
2035   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
2036   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
2037   * @retval None
2038   */
LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef * TIMx,uint32_t DMAReqTrigger)2039 __STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
2040 {
2041   MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
2042 }
2043 
2044 /**
2045   * @brief  Get actual trigger of the capture/compare DMA request.
2046   * @rmtoll CR2          CCDS          LL_TIM_CC_GetDMAReqTrigger
2047   * @param  TIMx Timer instance
2048   * @retval Returned value can be one of the following values:
2049   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
2050   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
2051   */
LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef * TIMx)2052 __STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef *TIMx)
2053 {
2054   return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
2055 }
2056 
2057 /**
2058   * @brief  Set the lock level to freeze the
2059   *         configuration of several capture/compare parameters.
2060   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2061   *       the lock mechanism is supported by a timer instance.
2062   * @rmtoll BDTR         LOCK          LL_TIM_CC_SetLockLevel
2063   * @param  TIMx Timer instance
2064   * @param  LockLevel This parameter can be one of the following values:
2065   *         @arg @ref LL_TIM_LOCKLEVEL_OFF
2066   *         @arg @ref LL_TIM_LOCKLEVEL_1
2067   *         @arg @ref LL_TIM_LOCKLEVEL_2
2068   *         @arg @ref LL_TIM_LOCKLEVEL_3
2069   * @retval None
2070   */
LL_TIM_CC_SetLockLevel(TIM_TypeDef * TIMx,uint32_t LockLevel)2071 __STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
2072 {
2073   MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
2074 }
2075 
2076 /**
2077   * @brief  Enable capture/compare channels.
2078   * @rmtoll CCER         CC1E          LL_TIM_CC_EnableChannel\n
2079   *         CCER         CC1NE         LL_TIM_CC_EnableChannel\n
2080   *         CCER         CC2E          LL_TIM_CC_EnableChannel\n
2081   *         CCER         CC2NE         LL_TIM_CC_EnableChannel\n
2082   *         CCER         CC3E          LL_TIM_CC_EnableChannel\n
2083   *         CCER         CC3NE         LL_TIM_CC_EnableChannel\n
2084   *         CCER         CC4E          LL_TIM_CC_EnableChannel\n
2085   *         CCER         CC5E          LL_TIM_CC_EnableChannel\n
2086   *         CCER         CC6E          LL_TIM_CC_EnableChannel
2087   * @param  TIMx Timer instance
2088   * @param  Channels This parameter can be a combination of the following values:
2089   *         @arg @ref LL_TIM_CHANNEL_CH1
2090   *         @arg @ref LL_TIM_CHANNEL_CH1N
2091   *         @arg @ref LL_TIM_CHANNEL_CH2
2092   *         @arg @ref LL_TIM_CHANNEL_CH2N
2093   *         @arg @ref LL_TIM_CHANNEL_CH3
2094   *         @arg @ref LL_TIM_CHANNEL_CH3N
2095   *         @arg @ref LL_TIM_CHANNEL_CH4
2096   *         @arg @ref LL_TIM_CHANNEL_CH5
2097   *         @arg @ref LL_TIM_CHANNEL_CH6
2098   * @retval None
2099   */
LL_TIM_CC_EnableChannel(TIM_TypeDef * TIMx,uint32_t Channels)2100 __STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
2101 {
2102   SET_BIT(TIMx->CCER, Channels);
2103 }
2104 
2105 /**
2106   * @brief  Disable capture/compare channels.
2107   * @rmtoll CCER         CC1E          LL_TIM_CC_DisableChannel\n
2108   *         CCER         CC1NE         LL_TIM_CC_DisableChannel\n
2109   *         CCER         CC2E          LL_TIM_CC_DisableChannel\n
2110   *         CCER         CC2NE         LL_TIM_CC_DisableChannel\n
2111   *         CCER         CC3E          LL_TIM_CC_DisableChannel\n
2112   *         CCER         CC3NE         LL_TIM_CC_DisableChannel\n
2113   *         CCER         CC4E          LL_TIM_CC_DisableChannel\n
2114   *         CCER         CC5E          LL_TIM_CC_DisableChannel\n
2115   *         CCER         CC6E          LL_TIM_CC_DisableChannel
2116   * @param  TIMx Timer instance
2117   * @param  Channels This parameter can be a combination of the following values:
2118   *         @arg @ref LL_TIM_CHANNEL_CH1
2119   *         @arg @ref LL_TIM_CHANNEL_CH1N
2120   *         @arg @ref LL_TIM_CHANNEL_CH2
2121   *         @arg @ref LL_TIM_CHANNEL_CH2N
2122   *         @arg @ref LL_TIM_CHANNEL_CH3
2123   *         @arg @ref LL_TIM_CHANNEL_CH3N
2124   *         @arg @ref LL_TIM_CHANNEL_CH4
2125   *         @arg @ref LL_TIM_CHANNEL_CH5
2126   *         @arg @ref LL_TIM_CHANNEL_CH6
2127   * @retval None
2128   */
LL_TIM_CC_DisableChannel(TIM_TypeDef * TIMx,uint32_t Channels)2129 __STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
2130 {
2131   CLEAR_BIT(TIMx->CCER, Channels);
2132 }
2133 
2134 /**
2135   * @brief  Indicate whether channel(s) is(are) enabled.
2136   * @rmtoll CCER         CC1E          LL_TIM_CC_IsEnabledChannel\n
2137   *         CCER         CC1NE         LL_TIM_CC_IsEnabledChannel\n
2138   *         CCER         CC2E          LL_TIM_CC_IsEnabledChannel\n
2139   *         CCER         CC2NE         LL_TIM_CC_IsEnabledChannel\n
2140   *         CCER         CC3E          LL_TIM_CC_IsEnabledChannel\n
2141   *         CCER         CC3NE         LL_TIM_CC_IsEnabledChannel\n
2142   *         CCER         CC4E          LL_TIM_CC_IsEnabledChannel\n
2143   *         CCER         CC5E          LL_TIM_CC_IsEnabledChannel\n
2144   *         CCER         CC6E          LL_TIM_CC_IsEnabledChannel
2145   * @param  TIMx Timer instance
2146   * @param  Channels This parameter can be a combination of the following values:
2147   *         @arg @ref LL_TIM_CHANNEL_CH1
2148   *         @arg @ref LL_TIM_CHANNEL_CH1N
2149   *         @arg @ref LL_TIM_CHANNEL_CH2
2150   *         @arg @ref LL_TIM_CHANNEL_CH2N
2151   *         @arg @ref LL_TIM_CHANNEL_CH3
2152   *         @arg @ref LL_TIM_CHANNEL_CH3N
2153   *         @arg @ref LL_TIM_CHANNEL_CH4
2154   *         @arg @ref LL_TIM_CHANNEL_CH5
2155   *         @arg @ref LL_TIM_CHANNEL_CH6
2156   * @retval State of bit (1 or 0).
2157   */
LL_TIM_CC_IsEnabledChannel(TIM_TypeDef * TIMx,uint32_t Channels)2158 __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(TIM_TypeDef *TIMx, uint32_t Channels)
2159 {
2160   return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
2161 }
2162 
2163 /**
2164   * @}
2165   */
2166 
2167 /** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
2168   * @{
2169   */
2170 /**
2171   * @brief  Configure an output channel.
2172   * @rmtoll CCMR1        CC1S          LL_TIM_OC_ConfigOutput\n
2173   *         CCMR1        CC2S          LL_TIM_OC_ConfigOutput\n
2174   *         CCMR2        CC3S          LL_TIM_OC_ConfigOutput\n
2175   *         CCMR2        CC4S          LL_TIM_OC_ConfigOutput\n
2176   *         CCMR3        CC5S          LL_TIM_OC_ConfigOutput\n
2177   *         CCMR3        CC6S          LL_TIM_OC_ConfigOutput\n
2178   *         CCER         CC1P          LL_TIM_OC_ConfigOutput\n
2179   *         CCER         CC2P          LL_TIM_OC_ConfigOutput\n
2180   *         CCER         CC3P          LL_TIM_OC_ConfigOutput\n
2181   *         CCER         CC4P          LL_TIM_OC_ConfigOutput\n
2182   *         CCER         CC5P          LL_TIM_OC_ConfigOutput\n
2183   *         CCER         CC6P          LL_TIM_OC_ConfigOutput\n
2184   *         CR2          OIS1          LL_TIM_OC_ConfigOutput\n
2185   *         CR2          OIS2          LL_TIM_OC_ConfigOutput\n
2186   *         CR2          OIS3          LL_TIM_OC_ConfigOutput\n
2187   *         CR2          OIS4          LL_TIM_OC_ConfigOutput\n
2188   *         CR2          OIS5          LL_TIM_OC_ConfigOutput\n
2189   *         CR2          OIS6          LL_TIM_OC_ConfigOutput
2190   * @param  TIMx Timer instance
2191   * @param  Channel This parameter can be one of the following values:
2192   *         @arg @ref LL_TIM_CHANNEL_CH1
2193   *         @arg @ref LL_TIM_CHANNEL_CH2
2194   *         @arg @ref LL_TIM_CHANNEL_CH3
2195   *         @arg @ref LL_TIM_CHANNEL_CH4
2196   *         @arg @ref LL_TIM_CHANNEL_CH5
2197   *         @arg @ref LL_TIM_CHANNEL_CH6
2198   * @param  Configuration This parameter must be a combination of all the following values:
2199   *         @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
2200   *         @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
2201   * @retval None
2202   */
LL_TIM_OC_ConfigOutput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2203 __STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2204 {
2205   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2206   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2207   CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
2208   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
2209              (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
2210   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
2211              (Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
2212 }
2213 
2214 /**
2215   * @brief  Define the behavior of the output reference signal OCxREF from which
2216   *         OCx and OCxN (when relevant) are derived.
2217   * @rmtoll CCMR1        OC1M          LL_TIM_OC_SetMode\n
2218   *         CCMR1        OC2M          LL_TIM_OC_SetMode\n
2219   *         CCMR2        OC3M          LL_TIM_OC_SetMode\n
2220   *         CCMR2        OC4M          LL_TIM_OC_SetMode\n
2221   *         CCMR3        OC5M          LL_TIM_OC_SetMode\n
2222   *         CCMR3        OC6M          LL_TIM_OC_SetMode
2223   * @param  TIMx Timer instance
2224   * @param  Channel This parameter can be one of the following values:
2225   *         @arg @ref LL_TIM_CHANNEL_CH1
2226   *         @arg @ref LL_TIM_CHANNEL_CH2
2227   *         @arg @ref LL_TIM_CHANNEL_CH3
2228   *         @arg @ref LL_TIM_CHANNEL_CH4
2229   *         @arg @ref LL_TIM_CHANNEL_CH5
2230   *         @arg @ref LL_TIM_CHANNEL_CH6
2231   * @param  Mode This parameter can be one of the following values:
2232   *         @arg @ref LL_TIM_OCMODE_FROZEN
2233   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2234   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2235   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2236   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2237   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2238   *         @arg @ref LL_TIM_OCMODE_PWM1
2239   *         @arg @ref LL_TIM_OCMODE_PWM2
2240   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2241   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2242   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2243   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2244   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
2245   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
2246   * @retval None
2247   */
LL_TIM_OC_SetMode(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Mode)2248 __STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
2249 {
2250   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2251   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2252   MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]);
2253 }
2254 
2255 /**
2256   * @brief  Get the output compare mode of an output channel.
2257   * @rmtoll CCMR1        OC1M          LL_TIM_OC_GetMode\n
2258   *         CCMR1        OC2M          LL_TIM_OC_GetMode\n
2259   *         CCMR2        OC3M          LL_TIM_OC_GetMode\n
2260   *         CCMR2        OC4M          LL_TIM_OC_GetMode\n
2261   *         CCMR3        OC5M          LL_TIM_OC_GetMode\n
2262   *         CCMR3        OC6M          LL_TIM_OC_GetMode
2263   * @param  TIMx Timer instance
2264   * @param  Channel This parameter can be one of the following values:
2265   *         @arg @ref LL_TIM_CHANNEL_CH1
2266   *         @arg @ref LL_TIM_CHANNEL_CH2
2267   *         @arg @ref LL_TIM_CHANNEL_CH3
2268   *         @arg @ref LL_TIM_CHANNEL_CH4
2269   *         @arg @ref LL_TIM_CHANNEL_CH5
2270   *         @arg @ref LL_TIM_CHANNEL_CH6
2271   * @retval Returned value can be one of the following values:
2272   *         @arg @ref LL_TIM_OCMODE_FROZEN
2273   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2274   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2275   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2276   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2277   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2278   *         @arg @ref LL_TIM_OCMODE_PWM1
2279   *         @arg @ref LL_TIM_OCMODE_PWM2
2280   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2281   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2282   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2283   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2284   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
2285   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
2286   */
LL_TIM_OC_GetMode(const TIM_TypeDef * TIMx,uint32_t Channel)2287 __STATIC_INLINE uint32_t LL_TIM_OC_GetMode(const TIM_TypeDef *TIMx, uint32_t Channel)
2288 {
2289   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2290   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2291   return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
2292 }
2293 
2294 /**
2295   * @brief  Set the polarity of an output channel.
2296   * @rmtoll CCER         CC1P          LL_TIM_OC_SetPolarity\n
2297   *         CCER         CC1NP         LL_TIM_OC_SetPolarity\n
2298   *         CCER         CC2P          LL_TIM_OC_SetPolarity\n
2299   *         CCER         CC2NP         LL_TIM_OC_SetPolarity\n
2300   *         CCER         CC3P          LL_TIM_OC_SetPolarity\n
2301   *         CCER         CC3NP         LL_TIM_OC_SetPolarity\n
2302   *         CCER         CC4P          LL_TIM_OC_SetPolarity\n
2303   *         CCER         CC5P          LL_TIM_OC_SetPolarity\n
2304   *         CCER         CC6P          LL_TIM_OC_SetPolarity
2305   * @param  TIMx Timer instance
2306   * @param  Channel This parameter can be one of the following values:
2307   *         @arg @ref LL_TIM_CHANNEL_CH1
2308   *         @arg @ref LL_TIM_CHANNEL_CH1N
2309   *         @arg @ref LL_TIM_CHANNEL_CH2
2310   *         @arg @ref LL_TIM_CHANNEL_CH2N
2311   *         @arg @ref LL_TIM_CHANNEL_CH3
2312   *         @arg @ref LL_TIM_CHANNEL_CH3N
2313   *         @arg @ref LL_TIM_CHANNEL_CH4
2314   *         @arg @ref LL_TIM_CHANNEL_CH5
2315   *         @arg @ref LL_TIM_CHANNEL_CH6
2316   * @param  Polarity This parameter can be one of the following values:
2317   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2318   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2319   * @retval None
2320   */
LL_TIM_OC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Polarity)2321 __STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
2322 {
2323   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2324   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),  Polarity << SHIFT_TAB_CCxP[iChannel]);
2325 }
2326 
2327 /**
2328   * @brief  Get the polarity of an output channel.
2329   * @rmtoll CCER         CC1P          LL_TIM_OC_GetPolarity\n
2330   *         CCER         CC1NP         LL_TIM_OC_GetPolarity\n
2331   *         CCER         CC2P          LL_TIM_OC_GetPolarity\n
2332   *         CCER         CC2NP         LL_TIM_OC_GetPolarity\n
2333   *         CCER         CC3P          LL_TIM_OC_GetPolarity\n
2334   *         CCER         CC3NP         LL_TIM_OC_GetPolarity\n
2335   *         CCER         CC4P          LL_TIM_OC_GetPolarity\n
2336   *         CCER         CC5P          LL_TIM_OC_GetPolarity\n
2337   *         CCER         CC6P          LL_TIM_OC_GetPolarity
2338   * @param  TIMx Timer instance
2339   * @param  Channel This parameter can be one of the following values:
2340   *         @arg @ref LL_TIM_CHANNEL_CH1
2341   *         @arg @ref LL_TIM_CHANNEL_CH1N
2342   *         @arg @ref LL_TIM_CHANNEL_CH2
2343   *         @arg @ref LL_TIM_CHANNEL_CH2N
2344   *         @arg @ref LL_TIM_CHANNEL_CH3
2345   *         @arg @ref LL_TIM_CHANNEL_CH3N
2346   *         @arg @ref LL_TIM_CHANNEL_CH4
2347   *         @arg @ref LL_TIM_CHANNEL_CH5
2348   *         @arg @ref LL_TIM_CHANNEL_CH6
2349   * @retval Returned value can be one of the following values:
2350   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2351   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2352   */
LL_TIM_OC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)2353 __STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
2354 {
2355   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2356   return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
2357 }
2358 
2359 /**
2360   * @brief  Set the IDLE state of an output channel
2361   * @note This function is significant only for the timer instances
2362   *       supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx)
2363   *       can be used to check whether or not a timer instance provides
2364   *       a break input.
2365   * @rmtoll CR2         OIS1          LL_TIM_OC_SetIdleState\n
2366   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2367   *         CR2         OIS2          LL_TIM_OC_SetIdleState\n
2368   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2369   *         CR2         OIS3          LL_TIM_OC_SetIdleState\n
2370   *         CR2         OIS3N         LL_TIM_OC_SetIdleState\n
2371   *         CR2         OIS4          LL_TIM_OC_SetIdleState\n
2372   *         CR2         OIS5          LL_TIM_OC_SetIdleState\n
2373   *         CR2         OIS6          LL_TIM_OC_SetIdleState
2374   * @param  TIMx Timer instance
2375   * @param  Channel This parameter can be one of the following values:
2376   *         @arg @ref LL_TIM_CHANNEL_CH1
2377   *         @arg @ref LL_TIM_CHANNEL_CH1N
2378   *         @arg @ref LL_TIM_CHANNEL_CH2
2379   *         @arg @ref LL_TIM_CHANNEL_CH2N
2380   *         @arg @ref LL_TIM_CHANNEL_CH3
2381   *         @arg @ref LL_TIM_CHANNEL_CH3N
2382   *         @arg @ref LL_TIM_CHANNEL_CH4
2383   *         @arg @ref LL_TIM_CHANNEL_CH5
2384   *         @arg @ref LL_TIM_CHANNEL_CH6
2385   * @param  IdleState This parameter can be one of the following values:
2386   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2387   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2388   * @retval None
2389   */
LL_TIM_OC_SetIdleState(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t IdleState)2390 __STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
2391 {
2392   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2393   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),  IdleState << SHIFT_TAB_OISx[iChannel]);
2394 }
2395 
2396 /**
2397   * @brief  Get the IDLE state of an output channel
2398   * @rmtoll CR2         OIS1          LL_TIM_OC_GetIdleState\n
2399   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2400   *         CR2         OIS2          LL_TIM_OC_GetIdleState\n
2401   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2402   *         CR2         OIS3          LL_TIM_OC_GetIdleState\n
2403   *         CR2         OIS3N         LL_TIM_OC_GetIdleState\n
2404   *         CR2         OIS4          LL_TIM_OC_GetIdleState\n
2405   *         CR2         OIS5          LL_TIM_OC_GetIdleState\n
2406   *         CR2         OIS6          LL_TIM_OC_GetIdleState
2407   * @param  TIMx Timer instance
2408   * @param  Channel This parameter can be one of the following values:
2409   *         @arg @ref LL_TIM_CHANNEL_CH1
2410   *         @arg @ref LL_TIM_CHANNEL_CH1N
2411   *         @arg @ref LL_TIM_CHANNEL_CH2
2412   *         @arg @ref LL_TIM_CHANNEL_CH2N
2413   *         @arg @ref LL_TIM_CHANNEL_CH3
2414   *         @arg @ref LL_TIM_CHANNEL_CH3N
2415   *         @arg @ref LL_TIM_CHANNEL_CH4
2416   *         @arg @ref LL_TIM_CHANNEL_CH5
2417   *         @arg @ref LL_TIM_CHANNEL_CH6
2418   * @retval Returned value can be one of the following values:
2419   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2420   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2421   */
LL_TIM_OC_GetIdleState(const TIM_TypeDef * TIMx,uint32_t Channel)2422 __STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(const TIM_TypeDef *TIMx, uint32_t Channel)
2423 {
2424   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2425   return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
2426 }
2427 
2428 /**
2429   * @brief  Enable fast mode for the output channel.
2430   * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
2431   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_EnableFast\n
2432   *         CCMR1        OC2FE          LL_TIM_OC_EnableFast\n
2433   *         CCMR2        OC3FE          LL_TIM_OC_EnableFast\n
2434   *         CCMR2        OC4FE          LL_TIM_OC_EnableFast\n
2435   *         CCMR3        OC5FE          LL_TIM_OC_EnableFast\n
2436   *         CCMR3        OC6FE          LL_TIM_OC_EnableFast
2437   * @param  TIMx Timer instance
2438   * @param  Channel This parameter can be one of the following values:
2439   *         @arg @ref LL_TIM_CHANNEL_CH1
2440   *         @arg @ref LL_TIM_CHANNEL_CH2
2441   *         @arg @ref LL_TIM_CHANNEL_CH3
2442   *         @arg @ref LL_TIM_CHANNEL_CH4
2443   *         @arg @ref LL_TIM_CHANNEL_CH5
2444   *         @arg @ref LL_TIM_CHANNEL_CH6
2445   * @retval None
2446   */
LL_TIM_OC_EnableFast(TIM_TypeDef * TIMx,uint32_t Channel)2447 __STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2448 {
2449   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2450   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2451   SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2452 
2453 }
2454 
2455 /**
2456   * @brief  Disable fast mode for the output channel.
2457   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_DisableFast\n
2458   *         CCMR1        OC2FE          LL_TIM_OC_DisableFast\n
2459   *         CCMR2        OC3FE          LL_TIM_OC_DisableFast\n
2460   *         CCMR2        OC4FE          LL_TIM_OC_DisableFast\n
2461   *         CCMR3        OC5FE          LL_TIM_OC_DisableFast\n
2462   *         CCMR3        OC6FE          LL_TIM_OC_DisableFast
2463   * @param  TIMx Timer instance
2464   * @param  Channel This parameter can be one of the following values:
2465   *         @arg @ref LL_TIM_CHANNEL_CH1
2466   *         @arg @ref LL_TIM_CHANNEL_CH2
2467   *         @arg @ref LL_TIM_CHANNEL_CH3
2468   *         @arg @ref LL_TIM_CHANNEL_CH4
2469   *         @arg @ref LL_TIM_CHANNEL_CH5
2470   *         @arg @ref LL_TIM_CHANNEL_CH6
2471   * @retval None
2472   */
LL_TIM_OC_DisableFast(TIM_TypeDef * TIMx,uint32_t Channel)2473 __STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2474 {
2475   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2476   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2477   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2478 
2479 }
2480 
2481 /**
2482   * @brief  Indicates whether fast mode is enabled for the output channel.
2483   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_IsEnabledFast\n
2484   *         CCMR1        OC2FE          LL_TIM_OC_IsEnabledFast\n
2485   *         CCMR2        OC3FE          LL_TIM_OC_IsEnabledFast\n
2486   *         CCMR2        OC4FE          LL_TIM_OC_IsEnabledFast\n
2487   *         CCMR3        OC5FE          LL_TIM_OC_IsEnabledFast\n
2488   *         CCMR3        OC6FE          LL_TIM_OC_IsEnabledFast
2489   * @param  TIMx Timer instance
2490   * @param  Channel This parameter can be one of the following values:
2491   *         @arg @ref LL_TIM_CHANNEL_CH1
2492   *         @arg @ref LL_TIM_CHANNEL_CH2
2493   *         @arg @ref LL_TIM_CHANNEL_CH3
2494   *         @arg @ref LL_TIM_CHANNEL_CH4
2495   *         @arg @ref LL_TIM_CHANNEL_CH5
2496   *         @arg @ref LL_TIM_CHANNEL_CH6
2497   * @retval State of bit (1 or 0).
2498   */
LL_TIM_OC_IsEnabledFast(TIM_TypeDef * TIMx,uint32_t Channel)2499 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(TIM_TypeDef *TIMx, uint32_t Channel)
2500 {
2501   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2502   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2503   uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
2504   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2505 }
2506 
2507 /**
2508   * @brief  Enable compare register (TIMx_CCRx) preload for the output channel.
2509   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_EnablePreload\n
2510   *         CCMR1        OC2PE          LL_TIM_OC_EnablePreload\n
2511   *         CCMR2        OC3PE          LL_TIM_OC_EnablePreload\n
2512   *         CCMR2        OC4PE          LL_TIM_OC_EnablePreload\n
2513   *         CCMR3        OC5PE          LL_TIM_OC_EnablePreload\n
2514   *         CCMR3        OC6PE          LL_TIM_OC_EnablePreload
2515   * @param  TIMx Timer instance
2516   * @param  Channel This parameter can be one of the following values:
2517   *         @arg @ref LL_TIM_CHANNEL_CH1
2518   *         @arg @ref LL_TIM_CHANNEL_CH2
2519   *         @arg @ref LL_TIM_CHANNEL_CH3
2520   *         @arg @ref LL_TIM_CHANNEL_CH4
2521   *         @arg @ref LL_TIM_CHANNEL_CH5
2522   *         @arg @ref LL_TIM_CHANNEL_CH6
2523   * @retval None
2524   */
LL_TIM_OC_EnablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2525 __STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2526 {
2527   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2528   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2529   SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2530 }
2531 
2532 /**
2533   * @brief  Disable compare register (TIMx_CCRx) preload for the output channel.
2534   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_DisablePreload\n
2535   *         CCMR1        OC2PE          LL_TIM_OC_DisablePreload\n
2536   *         CCMR2        OC3PE          LL_TIM_OC_DisablePreload\n
2537   *         CCMR2        OC4PE          LL_TIM_OC_DisablePreload\n
2538   *         CCMR3        OC5PE          LL_TIM_OC_DisablePreload\n
2539   *         CCMR3        OC6PE          LL_TIM_OC_DisablePreload
2540   * @param  TIMx Timer instance
2541   * @param  Channel This parameter can be one of the following values:
2542   *         @arg @ref LL_TIM_CHANNEL_CH1
2543   *         @arg @ref LL_TIM_CHANNEL_CH2
2544   *         @arg @ref LL_TIM_CHANNEL_CH3
2545   *         @arg @ref LL_TIM_CHANNEL_CH4
2546   *         @arg @ref LL_TIM_CHANNEL_CH5
2547   *         @arg @ref LL_TIM_CHANNEL_CH6
2548   * @retval None
2549   */
LL_TIM_OC_DisablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2550 __STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2551 {
2552   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2553   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2554   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2555 }
2556 
2557 /**
2558   * @brief  Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
2559   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_IsEnabledPreload\n
2560   *         CCMR1        OC2PE          LL_TIM_OC_IsEnabledPreload\n
2561   *         CCMR2        OC3PE          LL_TIM_OC_IsEnabledPreload\n
2562   *         CCMR2        OC4PE          LL_TIM_OC_IsEnabledPreload\n
2563   *         CCMR3        OC5PE          LL_TIM_OC_IsEnabledPreload\n
2564   *         CCMR3        OC6PE          LL_TIM_OC_IsEnabledPreload
2565   * @param  TIMx Timer instance
2566   * @param  Channel This parameter can be one of the following values:
2567   *         @arg @ref LL_TIM_CHANNEL_CH1
2568   *         @arg @ref LL_TIM_CHANNEL_CH2
2569   *         @arg @ref LL_TIM_CHANNEL_CH3
2570   *         @arg @ref LL_TIM_CHANNEL_CH4
2571   *         @arg @ref LL_TIM_CHANNEL_CH5
2572   *         @arg @ref LL_TIM_CHANNEL_CH6
2573   * @retval State of bit (1 or 0).
2574   */
LL_TIM_OC_IsEnabledPreload(TIM_TypeDef * TIMx,uint32_t Channel)2575 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(TIM_TypeDef *TIMx, uint32_t Channel)
2576 {
2577   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2578   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2579   uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
2580   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2581 }
2582 
2583 /**
2584   * @brief  Enable clearing the output channel on an external event.
2585   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2586   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2587   *       or not a timer instance can clear the OCxREF signal on an external event.
2588   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_EnableClear\n
2589   *         CCMR1        OC2CE          LL_TIM_OC_EnableClear\n
2590   *         CCMR2        OC3CE          LL_TIM_OC_EnableClear\n
2591   *         CCMR2        OC4CE          LL_TIM_OC_EnableClear\n
2592   *         CCMR3        OC5CE          LL_TIM_OC_EnableClear\n
2593   *         CCMR3        OC6CE          LL_TIM_OC_EnableClear
2594   * @param  TIMx Timer instance
2595   * @param  Channel This parameter can be one of the following values:
2596   *         @arg @ref LL_TIM_CHANNEL_CH1
2597   *         @arg @ref LL_TIM_CHANNEL_CH2
2598   *         @arg @ref LL_TIM_CHANNEL_CH3
2599   *         @arg @ref LL_TIM_CHANNEL_CH4
2600   *         @arg @ref LL_TIM_CHANNEL_CH5
2601   *         @arg @ref LL_TIM_CHANNEL_CH6
2602   * @retval None
2603   */
LL_TIM_OC_EnableClear(TIM_TypeDef * TIMx,uint32_t Channel)2604 __STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2605 {
2606   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2607   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2608   SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2609 }
2610 
2611 /**
2612   * @brief  Disable clearing the output channel on an external event.
2613   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2614   *       or not a timer instance can clear the OCxREF signal on an external event.
2615   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_DisableClear\n
2616   *         CCMR1        OC2CE          LL_TIM_OC_DisableClear\n
2617   *         CCMR2        OC3CE          LL_TIM_OC_DisableClear\n
2618   *         CCMR2        OC4CE          LL_TIM_OC_DisableClear\n
2619   *         CCMR3        OC5CE          LL_TIM_OC_DisableClear\n
2620   *         CCMR3        OC6CE          LL_TIM_OC_DisableClear
2621   * @param  TIMx Timer instance
2622   * @param  Channel This parameter can be one of the following values:
2623   *         @arg @ref LL_TIM_CHANNEL_CH1
2624   *         @arg @ref LL_TIM_CHANNEL_CH2
2625   *         @arg @ref LL_TIM_CHANNEL_CH3
2626   *         @arg @ref LL_TIM_CHANNEL_CH4
2627   *         @arg @ref LL_TIM_CHANNEL_CH5
2628   *         @arg @ref LL_TIM_CHANNEL_CH6
2629   * @retval None
2630   */
LL_TIM_OC_DisableClear(TIM_TypeDef * TIMx,uint32_t Channel)2631 __STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2632 {
2633   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2634   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2635   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2636 }
2637 
2638 /**
2639   * @brief  Indicates clearing the output channel on an external event is enabled for the output channel.
2640   * @note This function enables clearing the output channel on an external event.
2641   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2642   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2643   *       or not a timer instance can clear the OCxREF signal on an external event.
2644   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_IsEnabledClear\n
2645   *         CCMR1        OC2CE          LL_TIM_OC_IsEnabledClear\n
2646   *         CCMR2        OC3CE          LL_TIM_OC_IsEnabledClear\n
2647   *         CCMR2        OC4CE          LL_TIM_OC_IsEnabledClear\n
2648   *         CCMR3        OC5CE          LL_TIM_OC_IsEnabledClear\n
2649   *         CCMR3        OC6CE          LL_TIM_OC_IsEnabledClear
2650   * @param  TIMx Timer instance
2651   * @param  Channel This parameter can be one of the following values:
2652   *         @arg @ref LL_TIM_CHANNEL_CH1
2653   *         @arg @ref LL_TIM_CHANNEL_CH2
2654   *         @arg @ref LL_TIM_CHANNEL_CH3
2655   *         @arg @ref LL_TIM_CHANNEL_CH4
2656   *         @arg @ref LL_TIM_CHANNEL_CH5
2657   *         @arg @ref LL_TIM_CHANNEL_CH6
2658   * @retval State of bit (1 or 0).
2659   */
LL_TIM_OC_IsEnabledClear(TIM_TypeDef * TIMx,uint32_t Channel)2660 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(TIM_TypeDef *TIMx, uint32_t Channel)
2661 {
2662   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2663   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2664   uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
2665   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2666 }
2667 
2668 /**
2669   * @brief  Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of
2670   *         the Ocx and OCxN signals).
2671   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2672   *       dead-time insertion feature is supported by a timer instance.
2673   * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
2674   * @rmtoll BDTR         DTG           LL_TIM_OC_SetDeadTime
2675   * @param  TIMx Timer instance
2676   * @param  DeadTime between Min_Data=0 and Max_Data=255
2677   * @retval None
2678   */
LL_TIM_OC_SetDeadTime(TIM_TypeDef * TIMx,uint32_t DeadTime)2679 __STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
2680 {
2681   MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
2682 }
2683 
2684 /**
2685   * @brief  Set compare value for output channel 1 (TIMx_CCR1).
2686   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2687   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2688   *       whether or not a timer instance supports a 32 bits counter.
2689   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2690   *       output channel 1 is supported by a timer instance.
2691   * @rmtoll CCR1         CCR1          LL_TIM_OC_SetCompareCH1
2692   * @param  TIMx Timer instance
2693   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2694   * @retval None
2695   */
LL_TIM_OC_SetCompareCH1(TIM_TypeDef * TIMx,uint32_t CompareValue)2696 __STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
2697 {
2698   WRITE_REG(TIMx->CCR1, CompareValue);
2699 }
2700 
2701 /**
2702   * @brief  Set compare value for output channel 2 (TIMx_CCR2).
2703   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2704   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2705   *       whether or not a timer instance supports a 32 bits counter.
2706   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2707   *       output channel 2 is supported by a timer instance.
2708   * @rmtoll CCR2         CCR2          LL_TIM_OC_SetCompareCH2
2709   * @param  TIMx Timer instance
2710   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2711   * @retval None
2712   */
LL_TIM_OC_SetCompareCH2(TIM_TypeDef * TIMx,uint32_t CompareValue)2713 __STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
2714 {
2715   WRITE_REG(TIMx->CCR2, CompareValue);
2716 }
2717 
2718 /**
2719   * @brief  Set compare value for output channel 3 (TIMx_CCR3).
2720   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2721   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2722   *       whether or not a timer instance supports a 32 bits counter.
2723   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2724   *       output channel is supported by a timer instance.
2725   * @rmtoll CCR3         CCR3          LL_TIM_OC_SetCompareCH3
2726   * @param  TIMx Timer instance
2727   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2728   * @retval None
2729   */
LL_TIM_OC_SetCompareCH3(TIM_TypeDef * TIMx,uint32_t CompareValue)2730 __STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
2731 {
2732   WRITE_REG(TIMx->CCR3, CompareValue);
2733 }
2734 
2735 /**
2736   * @brief  Set compare value for output channel 4 (TIMx_CCR4).
2737   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2738   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2739   *       whether or not a timer instance supports a 32 bits counter.
2740   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2741   *       output channel 4 is supported by a timer instance.
2742   * @rmtoll CCR4         CCR4          LL_TIM_OC_SetCompareCH4
2743   * @param  TIMx Timer instance
2744   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2745   * @retval None
2746   */
LL_TIM_OC_SetCompareCH4(TIM_TypeDef * TIMx,uint32_t CompareValue)2747 __STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
2748 {
2749   WRITE_REG(TIMx->CCR4, CompareValue);
2750 }
2751 
2752 /**
2753   * @brief  Set compare value for output channel 5 (TIMx_CCR5).
2754   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2755   *       output channel 5 is supported by a timer instance.
2756   * @rmtoll CCR5         CCR5          LL_TIM_OC_SetCompareCH5
2757   * @param  TIMx Timer instance
2758   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2759   * @retval None
2760   */
LL_TIM_OC_SetCompareCH5(TIM_TypeDef * TIMx,uint32_t CompareValue)2761 __STATIC_INLINE void LL_TIM_OC_SetCompareCH5(TIM_TypeDef *TIMx, uint32_t CompareValue)
2762 {
2763   MODIFY_REG(TIMx->CCR5, TIM_CCR5_CCR5, CompareValue);
2764 }
2765 
2766 /**
2767   * @brief  Set compare value for output channel 6 (TIMx_CCR6).
2768   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2769   *       output channel 6 is supported by a timer instance.
2770   * @rmtoll CCR6         CCR6          LL_TIM_OC_SetCompareCH6
2771   * @param  TIMx Timer instance
2772   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2773   * @retval None
2774   */
LL_TIM_OC_SetCompareCH6(TIM_TypeDef * TIMx,uint32_t CompareValue)2775 __STATIC_INLINE void LL_TIM_OC_SetCompareCH6(TIM_TypeDef *TIMx, uint32_t CompareValue)
2776 {
2777   WRITE_REG(TIMx->CCR6, CompareValue);
2778 }
2779 
2780 /**
2781   * @brief  Get compare value (TIMx_CCR1) set for  output channel 1.
2782   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2783   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2784   *       whether or not a timer instance supports a 32 bits counter.
2785   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2786   *       output channel 1 is supported by a timer instance.
2787   * @rmtoll CCR1         CCR1          LL_TIM_OC_GetCompareCH1
2788   * @param  TIMx Timer instance
2789   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2790   */
LL_TIM_OC_GetCompareCH1(const TIM_TypeDef * TIMx)2791 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(const TIM_TypeDef *TIMx)
2792 {
2793   return (uint32_t)(READ_REG(TIMx->CCR1));
2794 }
2795 
2796 /**
2797   * @brief  Get compare value (TIMx_CCR2) set for  output channel 2.
2798   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2799   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2800   *       whether or not a timer instance supports a 32 bits counter.
2801   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2802   *       output channel 2 is supported by a timer instance.
2803   * @rmtoll CCR2         CCR2          LL_TIM_OC_GetCompareCH2
2804   * @param  TIMx Timer instance
2805   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2806   */
LL_TIM_OC_GetCompareCH2(const TIM_TypeDef * TIMx)2807 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(const TIM_TypeDef *TIMx)
2808 {
2809   return (uint32_t)(READ_REG(TIMx->CCR2));
2810 }
2811 
2812 /**
2813   * @brief  Get compare value (TIMx_CCR3) set for  output channel 3.
2814   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2815   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2816   *       whether or not a timer instance supports a 32 bits counter.
2817   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2818   *       output channel 3 is supported by a timer instance.
2819   * @rmtoll CCR3         CCR3          LL_TIM_OC_GetCompareCH3
2820   * @param  TIMx Timer instance
2821   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2822   */
LL_TIM_OC_GetCompareCH3(const TIM_TypeDef * TIMx)2823 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(const TIM_TypeDef *TIMx)
2824 {
2825   return (uint32_t)(READ_REG(TIMx->CCR3));
2826 }
2827 
2828 /**
2829   * @brief  Get compare value (TIMx_CCR4) set for  output channel 4.
2830   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2831   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2832   *       whether or not a timer instance supports a 32 bits counter.
2833   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2834   *       output channel 4 is supported by a timer instance.
2835   * @rmtoll CCR4         CCR4          LL_TIM_OC_GetCompareCH4
2836   * @param  TIMx Timer instance
2837   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2838   */
LL_TIM_OC_GetCompareCH4(const TIM_TypeDef * TIMx)2839 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(const TIM_TypeDef *TIMx)
2840 {
2841   return (uint32_t)(READ_REG(TIMx->CCR4));
2842 }
2843 
2844 /**
2845   * @brief  Get compare value (TIMx_CCR5) set for  output channel 5.
2846   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2847   *       output channel 5 is supported by a timer instance.
2848   * @rmtoll CCR5         CCR5          LL_TIM_OC_GetCompareCH5
2849   * @param  TIMx Timer instance
2850   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2851   */
LL_TIM_OC_GetCompareCH5(const TIM_TypeDef * TIMx)2852 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH5(const TIM_TypeDef *TIMx)
2853 {
2854   return (uint32_t)(READ_BIT(TIMx->CCR5, TIM_CCR5_CCR5));
2855 }
2856 
2857 /**
2858   * @brief  Get compare value (TIMx_CCR6) set for  output channel 6.
2859   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2860   *       output channel 6 is supported by a timer instance.
2861   * @rmtoll CCR6         CCR6          LL_TIM_OC_GetCompareCH6
2862   * @param  TIMx Timer instance
2863   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2864   */
LL_TIM_OC_GetCompareCH6(const TIM_TypeDef * TIMx)2865 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH6(const TIM_TypeDef *TIMx)
2866 {
2867   return (uint32_t)(READ_REG(TIMx->CCR6));
2868 }
2869 
2870 /**
2871   * @brief  Select on which reference signal the OC5REF is combined to.
2872   * @note Macro IS_TIM_COMBINED3PHASEPWM_INSTANCE(TIMx) can be used to check
2873   *       whether or not a timer instance supports the combined 3-phase PWM mode.
2874   * @rmtoll CCR5         GC5C3          LL_TIM_SetCH5CombinedChannels\n
2875   *         CCR5         GC5C2          LL_TIM_SetCH5CombinedChannels\n
2876   *         CCR5         GC5C1          LL_TIM_SetCH5CombinedChannels
2877   * @param  TIMx Timer instance
2878   * @param  GroupCH5 This parameter can be a combination of the following values:
2879   *         @arg @ref LL_TIM_GROUPCH5_NONE
2880   *         @arg @ref LL_TIM_GROUPCH5_OC1REFC
2881   *         @arg @ref LL_TIM_GROUPCH5_OC2REFC
2882   *         @arg @ref LL_TIM_GROUPCH5_OC3REFC
2883   * @retval None
2884   */
LL_TIM_SetCH5CombinedChannels(TIM_TypeDef * TIMx,uint32_t GroupCH5)2885 __STATIC_INLINE void LL_TIM_SetCH5CombinedChannels(TIM_TypeDef *TIMx, uint32_t GroupCH5)
2886 {
2887   MODIFY_REG(TIMx->CCR5, (TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1), GroupCH5);
2888 }
2889 
2890 /**
2891   * @}
2892   */
2893 
2894 /** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
2895   * @{
2896   */
2897 /**
2898   * @brief  Configure input channel.
2899   * @rmtoll CCMR1        CC1S          LL_TIM_IC_Config\n
2900   *         CCMR1        IC1PSC        LL_TIM_IC_Config\n
2901   *         CCMR1        IC1F          LL_TIM_IC_Config\n
2902   *         CCMR1        CC2S          LL_TIM_IC_Config\n
2903   *         CCMR1        IC2PSC        LL_TIM_IC_Config\n
2904   *         CCMR1        IC2F          LL_TIM_IC_Config\n
2905   *         CCMR2        CC3S          LL_TIM_IC_Config\n
2906   *         CCMR2        IC3PSC        LL_TIM_IC_Config\n
2907   *         CCMR2        IC3F          LL_TIM_IC_Config\n
2908   *         CCMR2        CC4S          LL_TIM_IC_Config\n
2909   *         CCMR2        IC4PSC        LL_TIM_IC_Config\n
2910   *         CCMR2        IC4F          LL_TIM_IC_Config\n
2911   *         CCER         CC1P          LL_TIM_IC_Config\n
2912   *         CCER         CC1NP         LL_TIM_IC_Config\n
2913   *         CCER         CC2P          LL_TIM_IC_Config\n
2914   *         CCER         CC2NP         LL_TIM_IC_Config\n
2915   *         CCER         CC3P          LL_TIM_IC_Config\n
2916   *         CCER         CC3NP         LL_TIM_IC_Config\n
2917   *         CCER         CC4P          LL_TIM_IC_Config\n
2918   *         CCER         CC4NP         LL_TIM_IC_Config
2919   * @param  TIMx Timer instance
2920   * @param  Channel This parameter can be one of the following values:
2921   *         @arg @ref LL_TIM_CHANNEL_CH1
2922   *         @arg @ref LL_TIM_CHANNEL_CH2
2923   *         @arg @ref LL_TIM_CHANNEL_CH3
2924   *         @arg @ref LL_TIM_CHANNEL_CH4
2925   * @param  Configuration This parameter must be a combination of all the following values:
2926   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
2927   *         @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
2928   *         @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
2929   *         @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
2930   * @retval None
2931   */
LL_TIM_IC_Config(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2932 __STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2933 {
2934   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2935   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2936   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
2937              ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S))                \
2938              << SHIFT_TAB_ICxx[iChannel]);
2939   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2940              (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
2941 }
2942 
2943 /**
2944   * @brief  Set the active input.
2945   * @rmtoll CCMR1        CC1S          LL_TIM_IC_SetActiveInput\n
2946   *         CCMR1        CC2S          LL_TIM_IC_SetActiveInput\n
2947   *         CCMR2        CC3S          LL_TIM_IC_SetActiveInput\n
2948   *         CCMR2        CC4S          LL_TIM_IC_SetActiveInput
2949   * @param  TIMx Timer instance
2950   * @param  Channel This parameter can be one of the following values:
2951   *         @arg @ref LL_TIM_CHANNEL_CH1
2952   *         @arg @ref LL_TIM_CHANNEL_CH2
2953   *         @arg @ref LL_TIM_CHANNEL_CH3
2954   *         @arg @ref LL_TIM_CHANNEL_CH4
2955   * @param  ICActiveInput This parameter can be one of the following values:
2956   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2957   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2958   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2959   * @retval None
2960   */
LL_TIM_IC_SetActiveInput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICActiveInput)2961 __STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
2962 {
2963   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2964   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2965   MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2966 }
2967 
2968 /**
2969   * @brief  Get the current active input.
2970   * @rmtoll CCMR1        CC1S          LL_TIM_IC_GetActiveInput\n
2971   *         CCMR1        CC2S          LL_TIM_IC_GetActiveInput\n
2972   *         CCMR2        CC3S          LL_TIM_IC_GetActiveInput\n
2973   *         CCMR2        CC4S          LL_TIM_IC_GetActiveInput
2974   * @param  TIMx Timer instance
2975   * @param  Channel This parameter can be one of the following values:
2976   *         @arg @ref LL_TIM_CHANNEL_CH1
2977   *         @arg @ref LL_TIM_CHANNEL_CH2
2978   *         @arg @ref LL_TIM_CHANNEL_CH3
2979   *         @arg @ref LL_TIM_CHANNEL_CH4
2980   * @retval Returned value can be one of the following values:
2981   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2982   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2983   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2984   */
LL_TIM_IC_GetActiveInput(const TIM_TypeDef * TIMx,uint32_t Channel)2985 __STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(const TIM_TypeDef *TIMx, uint32_t Channel)
2986 {
2987   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2988   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2989   return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2990 }
2991 
2992 /**
2993   * @brief  Set the prescaler of input channel.
2994   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_SetPrescaler\n
2995   *         CCMR1        IC2PSC        LL_TIM_IC_SetPrescaler\n
2996   *         CCMR2        IC3PSC        LL_TIM_IC_SetPrescaler\n
2997   *         CCMR2        IC4PSC        LL_TIM_IC_SetPrescaler
2998   * @param  TIMx Timer instance
2999   * @param  Channel This parameter can be one of the following values:
3000   *         @arg @ref LL_TIM_CHANNEL_CH1
3001   *         @arg @ref LL_TIM_CHANNEL_CH2
3002   *         @arg @ref LL_TIM_CHANNEL_CH3
3003   *         @arg @ref LL_TIM_CHANNEL_CH4
3004   * @param  ICPrescaler This parameter can be one of the following values:
3005   *         @arg @ref LL_TIM_ICPSC_DIV1
3006   *         @arg @ref LL_TIM_ICPSC_DIV2
3007   *         @arg @ref LL_TIM_ICPSC_DIV4
3008   *         @arg @ref LL_TIM_ICPSC_DIV8
3009   * @retval None
3010   */
LL_TIM_IC_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPrescaler)3011 __STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
3012 {
3013   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3014   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3015   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
3016 }
3017 
3018 /**
3019   * @brief  Get the current prescaler value acting on an  input channel.
3020   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_GetPrescaler\n
3021   *         CCMR1        IC2PSC        LL_TIM_IC_GetPrescaler\n
3022   *         CCMR2        IC3PSC        LL_TIM_IC_GetPrescaler\n
3023   *         CCMR2        IC4PSC        LL_TIM_IC_GetPrescaler
3024   * @param  TIMx Timer instance
3025   * @param  Channel This parameter can be one of the following values:
3026   *         @arg @ref LL_TIM_CHANNEL_CH1
3027   *         @arg @ref LL_TIM_CHANNEL_CH2
3028   *         @arg @ref LL_TIM_CHANNEL_CH3
3029   *         @arg @ref LL_TIM_CHANNEL_CH4
3030   * @retval Returned value can be one of the following values:
3031   *         @arg @ref LL_TIM_ICPSC_DIV1
3032   *         @arg @ref LL_TIM_ICPSC_DIV2
3033   *         @arg @ref LL_TIM_ICPSC_DIV4
3034   *         @arg @ref LL_TIM_ICPSC_DIV8
3035   */
LL_TIM_IC_GetPrescaler(const TIM_TypeDef * TIMx,uint32_t Channel)3036 __STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(const TIM_TypeDef *TIMx, uint32_t Channel)
3037 {
3038   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3039   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3040   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
3041 }
3042 
3043 /**
3044   * @brief  Set the input filter duration.
3045   * @rmtoll CCMR1        IC1F          LL_TIM_IC_SetFilter\n
3046   *         CCMR1        IC2F          LL_TIM_IC_SetFilter\n
3047   *         CCMR2        IC3F          LL_TIM_IC_SetFilter\n
3048   *         CCMR2        IC4F          LL_TIM_IC_SetFilter
3049   * @param  TIMx Timer instance
3050   * @param  Channel This parameter can be one of the following values:
3051   *         @arg @ref LL_TIM_CHANNEL_CH1
3052   *         @arg @ref LL_TIM_CHANNEL_CH2
3053   *         @arg @ref LL_TIM_CHANNEL_CH3
3054   *         @arg @ref LL_TIM_CHANNEL_CH4
3055   * @param  ICFilter This parameter can be one of the following values:
3056   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
3057   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
3058   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
3059   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
3060   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
3061   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
3062   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
3063   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
3064   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
3065   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
3066   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
3067   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
3068   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
3069   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
3070   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
3071   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
3072   * @retval None
3073   */
LL_TIM_IC_SetFilter(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICFilter)3074 __STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
3075 {
3076   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3077   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3078   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
3079 }
3080 
3081 /**
3082   * @brief  Get the input filter duration.
3083   * @rmtoll CCMR1        IC1F          LL_TIM_IC_GetFilter\n
3084   *         CCMR1        IC2F          LL_TIM_IC_GetFilter\n
3085   *         CCMR2        IC3F          LL_TIM_IC_GetFilter\n
3086   *         CCMR2        IC4F          LL_TIM_IC_GetFilter
3087   * @param  TIMx Timer instance
3088   * @param  Channel This parameter can be one of the following values:
3089   *         @arg @ref LL_TIM_CHANNEL_CH1
3090   *         @arg @ref LL_TIM_CHANNEL_CH2
3091   *         @arg @ref LL_TIM_CHANNEL_CH3
3092   *         @arg @ref LL_TIM_CHANNEL_CH4
3093   * @retval Returned value can be one of the following values:
3094   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
3095   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
3096   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
3097   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
3098   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
3099   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
3100   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
3101   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
3102   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
3103   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
3104   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
3105   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
3106   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
3107   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
3108   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
3109   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
3110   */
LL_TIM_IC_GetFilter(const TIM_TypeDef * TIMx,uint32_t Channel)3111 __STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(const TIM_TypeDef *TIMx, uint32_t Channel)
3112 {
3113   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3114   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3115   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
3116 }
3117 
3118 /**
3119   * @brief  Set the input channel polarity.
3120   * @rmtoll CCER         CC1P          LL_TIM_IC_SetPolarity\n
3121   *         CCER         CC1NP         LL_TIM_IC_SetPolarity\n
3122   *         CCER         CC2P          LL_TIM_IC_SetPolarity\n
3123   *         CCER         CC2NP         LL_TIM_IC_SetPolarity\n
3124   *         CCER         CC3P          LL_TIM_IC_SetPolarity\n
3125   *         CCER         CC3NP         LL_TIM_IC_SetPolarity\n
3126   *         CCER         CC4P          LL_TIM_IC_SetPolarity\n
3127   *         CCER         CC4NP         LL_TIM_IC_SetPolarity
3128   * @param  TIMx Timer instance
3129   * @param  Channel This parameter can be one of the following values:
3130   *         @arg @ref LL_TIM_CHANNEL_CH1
3131   *         @arg @ref LL_TIM_CHANNEL_CH2
3132   *         @arg @ref LL_TIM_CHANNEL_CH3
3133   *         @arg @ref LL_TIM_CHANNEL_CH4
3134   * @param  ICPolarity This parameter can be one of the following values:
3135   *         @arg @ref LL_TIM_IC_POLARITY_RISING
3136   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
3137   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
3138   * @retval None
3139   */
LL_TIM_IC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPolarity)3140 __STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
3141 {
3142   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3143   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
3144              ICPolarity << SHIFT_TAB_CCxP[iChannel]);
3145 }
3146 
3147 /**
3148   * @brief  Get the current input channel polarity.
3149   * @rmtoll CCER         CC1P          LL_TIM_IC_GetPolarity\n
3150   *         CCER         CC1NP         LL_TIM_IC_GetPolarity\n
3151   *         CCER         CC2P          LL_TIM_IC_GetPolarity\n
3152   *         CCER         CC2NP         LL_TIM_IC_GetPolarity\n
3153   *         CCER         CC3P          LL_TIM_IC_GetPolarity\n
3154   *         CCER         CC3NP         LL_TIM_IC_GetPolarity\n
3155   *         CCER         CC4P          LL_TIM_IC_GetPolarity\n
3156   *         CCER         CC4NP         LL_TIM_IC_GetPolarity
3157   * @param  TIMx Timer instance
3158   * @param  Channel This parameter can be one of the following values:
3159   *         @arg @ref LL_TIM_CHANNEL_CH1
3160   *         @arg @ref LL_TIM_CHANNEL_CH2
3161   *         @arg @ref LL_TIM_CHANNEL_CH3
3162   *         @arg @ref LL_TIM_CHANNEL_CH4
3163   * @retval Returned value can be one of the following values:
3164   *         @arg @ref LL_TIM_IC_POLARITY_RISING
3165   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
3166   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
3167   */
LL_TIM_IC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)3168 __STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
3169 {
3170   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3171   return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
3172           SHIFT_TAB_CCxP[iChannel]);
3173 }
3174 
3175 /**
3176   * @brief  Connect the TIMx_CH1, CH2 and CH3 pins  to the TI1 input (XOR combination).
3177   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3178   *       a timer instance provides an XOR input.
3179   * @rmtoll CR2          TI1S          LL_TIM_IC_EnableXORCombination
3180   * @param  TIMx Timer instance
3181   * @retval None
3182   */
LL_TIM_IC_EnableXORCombination(TIM_TypeDef * TIMx)3183 __STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
3184 {
3185   SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
3186 }
3187 
3188 /**
3189   * @brief  Disconnect the TIMx_CH1, CH2 and CH3 pins  from the TI1 input.
3190   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3191   *       a timer instance provides an XOR input.
3192   * @rmtoll CR2          TI1S          LL_TIM_IC_DisableXORCombination
3193   * @param  TIMx Timer instance
3194   * @retval None
3195   */
LL_TIM_IC_DisableXORCombination(TIM_TypeDef * TIMx)3196 __STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
3197 {
3198   CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
3199 }
3200 
3201 /**
3202   * @brief  Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
3203   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3204   * a timer instance provides an XOR input.
3205   * @rmtoll CR2          TI1S          LL_TIM_IC_IsEnabledXORCombination
3206   * @param  TIMx Timer instance
3207   * @retval State of bit (1 or 0).
3208   */
LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef * TIMx)3209 __STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef *TIMx)
3210 {
3211   return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
3212 }
3213 
3214 /**
3215   * @brief  Get captured value for input channel 1.
3216   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3217   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3218   *       whether or not a timer instance supports a 32 bits counter.
3219   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
3220   *       input channel 1 is supported by a timer instance.
3221   * @rmtoll CCR1         CCR1          LL_TIM_IC_GetCaptureCH1
3222   * @param  TIMx Timer instance
3223   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3224   */
LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef * TIMx)3225 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef *TIMx)
3226 {
3227   return (uint32_t)(READ_REG(TIMx->CCR1));
3228 }
3229 
3230 /**
3231   * @brief  Get captured value for input channel 2.
3232   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3233   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3234   *       whether or not a timer instance supports a 32 bits counter.
3235   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
3236   *       input channel 2 is supported by a timer instance.
3237   * @rmtoll CCR2         CCR2          LL_TIM_IC_GetCaptureCH2
3238   * @param  TIMx Timer instance
3239   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3240   */
LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef * TIMx)3241 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef *TIMx)
3242 {
3243   return (uint32_t)(READ_REG(TIMx->CCR2));
3244 }
3245 
3246 /**
3247   * @brief  Get captured value for input channel 3.
3248   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3249   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3250   *       whether or not a timer instance supports a 32 bits counter.
3251   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
3252   *       input channel 3 is supported by a timer instance.
3253   * @rmtoll CCR3         CCR3          LL_TIM_IC_GetCaptureCH3
3254   * @param  TIMx Timer instance
3255   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3256   */
LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef * TIMx)3257 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef *TIMx)
3258 {
3259   return (uint32_t)(READ_REG(TIMx->CCR3));
3260 }
3261 
3262 /**
3263   * @brief  Get captured value for input channel 4.
3264   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3265   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3266   *       whether or not a timer instance supports a 32 bits counter.
3267   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
3268   *       input channel 4 is supported by a timer instance.
3269   * @rmtoll CCR4         CCR4          LL_TIM_IC_GetCaptureCH4
3270   * @param  TIMx Timer instance
3271   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3272   */
LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef * TIMx)3273 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef *TIMx)
3274 {
3275   return (uint32_t)(READ_REG(TIMx->CCR4));
3276 }
3277 
3278 /**
3279   * @}
3280   */
3281 
3282 /** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
3283   * @{
3284   */
3285 /**
3286   * @brief  Enable external clock mode 2.
3287   * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
3288   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3289   *       whether or not a timer instance supports external clock mode2.
3290   * @rmtoll SMCR         ECE           LL_TIM_EnableExternalClock
3291   * @param  TIMx Timer instance
3292   * @retval None
3293   */
LL_TIM_EnableExternalClock(TIM_TypeDef * TIMx)3294 __STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
3295 {
3296   SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3297 }
3298 
3299 /**
3300   * @brief  Disable external clock mode 2.
3301   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3302   *       whether or not a timer instance supports external clock mode2.
3303   * @rmtoll SMCR         ECE           LL_TIM_DisableExternalClock
3304   * @param  TIMx Timer instance
3305   * @retval None
3306   */
LL_TIM_DisableExternalClock(TIM_TypeDef * TIMx)3307 __STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
3308 {
3309   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3310 }
3311 
3312 /**
3313   * @brief  Indicate whether external clock mode 2 is enabled.
3314   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3315   *       whether or not a timer instance supports external clock mode2.
3316   * @rmtoll SMCR         ECE           LL_TIM_IsEnabledExternalClock
3317   * @param  TIMx Timer instance
3318   * @retval State of bit (1 or 0).
3319   */
LL_TIM_IsEnabledExternalClock(const TIM_TypeDef * TIMx)3320 __STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(const TIM_TypeDef *TIMx)
3321 {
3322   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
3323 }
3324 
3325 /**
3326   * @brief  Set the clock source of the counter clock.
3327   * @note when selected clock source is external clock mode 1, the timer input
3328   *       the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
3329   *       function. This timer input must be configured by calling
3330   *       the @ref LL_TIM_IC_Config() function.
3331   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
3332   *       whether or not a timer instance supports external clock mode1.
3333   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3334   *       whether or not a timer instance supports external clock mode2.
3335   * @rmtoll SMCR         SMS           LL_TIM_SetClockSource\n
3336   *         SMCR         ECE           LL_TIM_SetClockSource
3337   * @param  TIMx Timer instance
3338   * @param  ClockSource This parameter can be one of the following values:
3339   *         @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
3340   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
3341   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
3342   * @retval None
3343   */
LL_TIM_SetClockSource(TIM_TypeDef * TIMx,uint32_t ClockSource)3344 __STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
3345 {
3346   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
3347 }
3348 
3349 /**
3350   * @brief  Set the encoder interface mode.
3351   * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
3352   *       whether or not a timer instance supports the encoder mode.
3353   * @rmtoll SMCR         SMS           LL_TIM_SetEncoderMode
3354   * @param  TIMx Timer instance
3355   * @param  EncoderMode This parameter can be one of the following values:
3356   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI1
3357   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI2
3358   *         @arg @ref LL_TIM_ENCODERMODE_X4_TI12
3359   * @retval None
3360   */
LL_TIM_SetEncoderMode(TIM_TypeDef * TIMx,uint32_t EncoderMode)3361 __STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
3362 {
3363   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
3364 }
3365 
3366 /**
3367   * @}
3368   */
3369 
3370 /** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
3371   * @{
3372   */
3373 /**
3374   * @brief  Set the trigger output (TRGO) used for timer synchronization .
3375   * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
3376   *       whether or not a timer instance can operate as a master timer.
3377   * @rmtoll CR2          MMS           LL_TIM_SetTriggerOutput
3378   * @param  TIMx Timer instance
3379   * @param  TimerSynchronization This parameter can be one of the following values:
3380   *         @arg @ref LL_TIM_TRGO_RESET
3381   *         @arg @ref LL_TIM_TRGO_ENABLE
3382   *         @arg @ref LL_TIM_TRGO_UPDATE
3383   *         @arg @ref LL_TIM_TRGO_CC1IF
3384   *         @arg @ref LL_TIM_TRGO_OC1REF
3385   *         @arg @ref LL_TIM_TRGO_OC2REF
3386   *         @arg @ref LL_TIM_TRGO_OC3REF
3387   *         @arg @ref LL_TIM_TRGO_OC4REF
3388   * @retval None
3389   */
LL_TIM_SetTriggerOutput(TIM_TypeDef * TIMx,uint32_t TimerSynchronization)3390 __STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
3391 {
3392   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
3393 }
3394 
3395 /**
3396   * @brief  Set the trigger output 2 (TRGO2) used for ADC synchronization .
3397   * @note Macro IS_TIM_TRGO2_INSTANCE(TIMx) can be used to check
3398   *       whether or not a timer instance can be used for ADC synchronization.
3399   * @rmtoll CR2          MMS2          LL_TIM_SetTriggerOutput2
3400   * @param  TIMx Timer Instance
3401   * @param  ADCSynchronization This parameter can be one of the following values:
3402   *         @arg @ref LL_TIM_TRGO2_RESET
3403   *         @arg @ref LL_TIM_TRGO2_ENABLE
3404   *         @arg @ref LL_TIM_TRGO2_UPDATE
3405   *         @arg @ref LL_TIM_TRGO2_CC1F
3406   *         @arg @ref LL_TIM_TRGO2_OC1
3407   *         @arg @ref LL_TIM_TRGO2_OC2
3408   *         @arg @ref LL_TIM_TRGO2_OC3
3409   *         @arg @ref LL_TIM_TRGO2_OC4
3410   *         @arg @ref LL_TIM_TRGO2_OC5
3411   *         @arg @ref LL_TIM_TRGO2_OC6
3412   *         @arg @ref LL_TIM_TRGO2_OC4_RISINGFALLING
3413   *         @arg @ref LL_TIM_TRGO2_OC6_RISINGFALLING
3414   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_RISING
3415   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_FALLING
3416   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_RISING
3417   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_FALLING
3418   * @retval None
3419   */
LL_TIM_SetTriggerOutput2(TIM_TypeDef * TIMx,uint32_t ADCSynchronization)3420 __STATIC_INLINE void LL_TIM_SetTriggerOutput2(TIM_TypeDef *TIMx, uint32_t ADCSynchronization)
3421 {
3422   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS2, ADCSynchronization);
3423 }
3424 
3425 /**
3426   * @brief  Set the synchronization mode of a slave timer.
3427   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3428   *       a timer instance can operate as a slave timer.
3429   * @rmtoll SMCR         SMS           LL_TIM_SetSlaveMode
3430   * @param  TIMx Timer instance
3431   * @param  SlaveMode This parameter can be one of the following values:
3432   *         @arg @ref LL_TIM_SLAVEMODE_DISABLED
3433   *         @arg @ref LL_TIM_SLAVEMODE_RESET
3434   *         @arg @ref LL_TIM_SLAVEMODE_GATED
3435   *         @arg @ref LL_TIM_SLAVEMODE_TRIGGER
3436   *         @arg @ref LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER
3437   * @retval None
3438   */
LL_TIM_SetSlaveMode(TIM_TypeDef * TIMx,uint32_t SlaveMode)3439 __STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
3440 {
3441   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
3442 }
3443 
3444 /**
3445   * @brief  Set the selects the trigger input to be used to synchronize the counter.
3446   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3447   *       a timer instance can operate as a slave timer.
3448   * @rmtoll SMCR         TS            LL_TIM_SetTriggerInput
3449   * @param  TIMx Timer instance
3450   * @param  TriggerInput This parameter can be one of the following values:
3451   *         @arg @ref LL_TIM_TS_ITR0
3452   *         @arg @ref LL_TIM_TS_ITR1
3453   *         @arg @ref LL_TIM_TS_ITR2
3454   *         @arg @ref LL_TIM_TS_ITR3
3455   *         @arg @ref LL_TIM_TS_ITR7 (*)
3456   *         @arg @ref LL_TIM_TS_TI1F_ED
3457   *         @arg @ref LL_TIM_TS_TI1FP1
3458   *         @arg @ref LL_TIM_TS_TI2FP2
3459   *         @arg @ref LL_TIM_TS_ETRF
3460   *
3461   *      (*)  Value not defined in all devices.
3462   * @retval None
3463   */
LL_TIM_SetTriggerInput(TIM_TypeDef * TIMx,uint32_t TriggerInput)3464 __STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
3465 {
3466   MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
3467 }
3468 
3469 /**
3470   * @brief  Enable the Master/Slave mode.
3471   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3472   *       a timer instance can operate as a slave timer.
3473   * @rmtoll SMCR         MSM           LL_TIM_EnableMasterSlaveMode
3474   * @param  TIMx Timer instance
3475   * @retval None
3476   */
LL_TIM_EnableMasterSlaveMode(TIM_TypeDef * TIMx)3477 __STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
3478 {
3479   SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3480 }
3481 
3482 /**
3483   * @brief  Disable the Master/Slave mode.
3484   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3485   *       a timer instance can operate as a slave timer.
3486   * @rmtoll SMCR         MSM           LL_TIM_DisableMasterSlaveMode
3487   * @param  TIMx Timer instance
3488   * @retval None
3489   */
LL_TIM_DisableMasterSlaveMode(TIM_TypeDef * TIMx)3490 __STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
3491 {
3492   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3493 }
3494 
3495 /**
3496   * @brief Indicates whether the Master/Slave mode is enabled.
3497   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3498   * a timer instance can operate as a slave timer.
3499   * @rmtoll SMCR         MSM           LL_TIM_IsEnabledMasterSlaveMode
3500   * @param  TIMx Timer instance
3501   * @retval State of bit (1 or 0).
3502   */
LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef * TIMx)3503 __STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef *TIMx)
3504 {
3505   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
3506 }
3507 
3508 /**
3509   * @brief  Configure the external trigger (ETR) input.
3510   * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
3511   *       a timer instance provides an external trigger input.
3512   * @rmtoll SMCR         ETP           LL_TIM_ConfigETR\n
3513   *         SMCR         ETPS          LL_TIM_ConfigETR\n
3514   *         SMCR         ETF           LL_TIM_ConfigETR
3515   * @param  TIMx Timer instance
3516   * @param  ETRPolarity This parameter can be one of the following values:
3517   *         @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
3518   *         @arg @ref LL_TIM_ETR_POLARITY_INVERTED
3519   * @param  ETRPrescaler This parameter can be one of the following values:
3520   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV1
3521   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV2
3522   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV4
3523   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV8
3524   * @param  ETRFilter This parameter can be one of the following values:
3525   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1
3526   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
3527   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
3528   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
3529   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
3530   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
3531   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
3532   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
3533   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
3534   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
3535   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
3536   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
3537   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
3538   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
3539   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
3540   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
3541   * @retval None
3542   */
LL_TIM_ConfigETR(TIM_TypeDef * TIMx,uint32_t ETRPolarity,uint32_t ETRPrescaler,uint32_t ETRFilter)3543 __STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
3544                                       uint32_t ETRFilter)
3545 {
3546   MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
3547 }
3548 
3549 /**
3550   * @brief  Select the external trigger (ETR) input source.
3551   * @note Macro IS_TIM_ETRSEL_INSTANCE(TIMx) can be used to check whether or
3552   *       not a timer instance supports ETR source selection.
3553   * @rmtoll AF1          ETRSEL        LL_TIM_SetETRSource
3554   * @param  TIMx Timer instance
3555   * @param  ETRSource This parameter can be one of the following values:
3556   *         TIM1
3557   *
3558   *         @arg @ref LL_TIM_ETRSOURCE_GPIO
3559   *         @arg @ref LL_TIM_ETRSOURCE_COMP1 (**)
3560   *         @arg @ref LL_TIM_ETRSOURCE_COMP2 (**)
3561   *         @arg @ref LL_TIM_ETRSOURCE_COMP3 (**)
3562   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD1
3563   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD2
3564   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD3
3565   *
3566   *         TIM2 (*)
3567   *
3568   *         @arg @ref LL_TIM_ETRSOURCE_GPIO
3569   *         @arg @ref LL_TIM_ETRSOURCE_COMP1
3570   *         @arg @ref LL_TIM_ETRSOURCE_COMP2
3571   *         @arg @ref LL_TIM_ETRSOURCE_COMP3 (**)
3572   *         @arg @ref LL_TIM_ETRSOURCE_LSE
3573   *         @arg @ref LL_TIM_ETRSOURCE_MCO (**)
3574   *         @arg @ref LL_TIM_ETRSOURCE_MCO2 (**)
3575   *
3576   *         TIM3
3577   *
3578   *         @arg @ref LL_TIM_ETRSOURCE_GPIO
3579   *         @arg @ref LL_TIM_ETRSOURCE_COMP1 (**)
3580   *         @arg @ref LL_TIM_ETRSOURCE_COMP2 (**)
3581   *         @arg @ref LL_TIM_ETRSOURCE_COMP3 (**)
3582   *
3583   *         TIM4 (*)
3584   *
3585   *         @arg @ref LL_TIM_ETRSOURCE_GPIO
3586   *         @arg @ref LL_TIM_ETRSOURCE_COMP1
3587   *         @arg @ref LL_TIM_ETRSOURCE_COMP2
3588   *         @arg @ref LL_TIM_ETRSOURCE_COMP3 (**)
3589   *
3590   *  (*) Timer instance not available on all devices \n
3591   *  (**) Value not defined in all devices. \n
3592   *
3593   * @retval None
3594   */
LL_TIM_SetETRSource(TIM_TypeDef * TIMx,uint32_t ETRSource)3595 __STATIC_INLINE void LL_TIM_SetETRSource(TIM_TypeDef *TIMx, uint32_t ETRSource)
3596 {
3597 #if defined(COMP3)
3598   uint32_t etrsel_shift = ((ETRSource == LL_TIM_ETRSOURCE_COMP3) ? 1u : 0u);
3599   if ((TIMx == TIM1) || (TIMx == TIM2))
3600   {
3601     MODIFY_REG(TIMx->AF1, TIMx_AF1_ETRSEL, ETRSource);
3602   }
3603   else
3604   {
3605     MODIFY_REG(TIMx->AF1, TIMx_AF1_ETRSEL, ETRSource >> etrsel_shift);
3606   }
3607 #else
3608   MODIFY_REG(TIMx->AF1, TIMx_AF1_ETRSEL, ETRSource);
3609 #endif /* COMP3 */
3610 }
3611 
3612 /**
3613   * @}
3614   */
3615 
3616 /** @defgroup TIM_LL_EF_Break_Function Break function configuration
3617   * @{
3618   */
3619 /**
3620   * @brief  Enable the break function.
3621   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3622   *       a timer instance provides a break input.
3623   * @rmtoll BDTR         BKE           LL_TIM_EnableBRK
3624   * @param  TIMx Timer instance
3625   * @retval None
3626   */
LL_TIM_EnableBRK(TIM_TypeDef * TIMx)3627 __STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
3628 {
3629   SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3630 }
3631 
3632 /**
3633   * @brief  Disable the break function.
3634   * @rmtoll BDTR         BKE           LL_TIM_DisableBRK
3635   * @param  TIMx Timer instance
3636   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3637   *       a timer instance provides a break input.
3638   * @retval None
3639   */
LL_TIM_DisableBRK(TIM_TypeDef * TIMx)3640 __STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
3641 {
3642   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3643 }
3644 
3645 /**
3646   * @brief  Configure the break input.
3647   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3648   *       a timer instance provides a break input.
3649   * @note Bidirectional mode is only supported by advanced timer instances.
3650   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
3651   *       a timer instance is an advanced-control timer.
3652   * @note In bidirectional mode (BKBID bit set), the Break input is configured both
3653   *        in input mode and in open drain output mode. Any active Break event will
3654   *        assert a low logic level on the Break input to indicate an internal break
3655   *        event to external devices.
3656   * @note When bidirectional mode isn't supported, BreakAFMode must be set to
3657   *       LL_TIM_BREAK_AFMODE_INPUT.
3658   * @rmtoll BDTR         BKP           LL_TIM_ConfigBRK\n
3659   *         BDTR         BKF           LL_TIM_ConfigBRK\n
3660   *         BDTR         BKBID         LL_TIM_ConfigBRK
3661   * @param  TIMx Timer instance
3662   * @param  BreakPolarity This parameter can be one of the following values:
3663   *         @arg @ref LL_TIM_BREAK_POLARITY_LOW
3664   *         @arg @ref LL_TIM_BREAK_POLARITY_HIGH
3665   * @param  BreakFilter This parameter can be one of the following values:
3666   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1
3667   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N2
3668   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N4
3669   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N8
3670   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N6
3671   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N8
3672   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N6
3673   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N8
3674   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N6
3675   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N8
3676   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N5
3677   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N6
3678   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N8
3679   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N5
3680   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N6
3681   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N8
3682   * @param  BreakAFMode This parameter can be one of the following values:
3683   *         @arg @ref LL_TIM_BREAK_AFMODE_INPUT
3684   *         @arg @ref LL_TIM_BREAK_AFMODE_BIDIRECTIONAL
3685   * @retval None
3686   */
LL_TIM_ConfigBRK(TIM_TypeDef * TIMx,uint32_t BreakPolarity,uint32_t BreakFilter,uint32_t BreakAFMode)3687 __STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity, uint32_t BreakFilter,
3688                                       uint32_t BreakAFMode)
3689 {
3690   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP | TIM_BDTR_BKF | TIM_BDTR_BKBID, BreakPolarity | BreakFilter | BreakAFMode);
3691 }
3692 
3693 /**
3694   * @brief  Disarm the break input (when it operates in bidirectional mode).
3695   * @note  The break input can be disarmed only when it is configured in
3696   *        bidirectional mode and when when MOE is reset.
3697   * @note  Purpose is to be able to have the input voltage back to high-state,
3698   *        whatever the time constant on the output .
3699   * @rmtoll BDTR         BKDSRM        LL_TIM_DisarmBRK
3700   * @param  TIMx Timer instance
3701   * @retval None
3702   */
LL_TIM_DisarmBRK(TIM_TypeDef * TIMx)3703 __STATIC_INLINE void LL_TIM_DisarmBRK(TIM_TypeDef *TIMx)
3704 {
3705   SET_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
3706 }
3707 
3708 /**
3709   * @brief  Re-arm the break input (when it operates in bidirectional mode).
3710   * @note  The Break input is automatically armed as soon as MOE bit is set.
3711   * @rmtoll BDTR         BKDSRM        LL_TIM_ReArmBRK
3712   * @param  TIMx Timer instance
3713   * @retval None
3714   */
LL_TIM_ReArmBRK(TIM_TypeDef * TIMx)3715 __STATIC_INLINE void LL_TIM_ReArmBRK(TIM_TypeDef *TIMx)
3716 {
3717   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
3718 }
3719 
3720 /**
3721   * @brief  Enable the break 2 function.
3722   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3723   *       a timer instance provides a second break input.
3724   * @rmtoll BDTR         BK2E          LL_TIM_EnableBRK2
3725   * @param  TIMx Timer instance
3726   * @retval None
3727   */
LL_TIM_EnableBRK2(TIM_TypeDef * TIMx)3728 __STATIC_INLINE void LL_TIM_EnableBRK2(TIM_TypeDef *TIMx)
3729 {
3730   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3731 }
3732 
3733 /**
3734   * @brief  Disable the break  2 function.
3735   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3736   *       a timer instance provides a second break input.
3737   * @rmtoll BDTR         BK2E          LL_TIM_DisableBRK2
3738   * @param  TIMx Timer instance
3739   * @retval None
3740   */
LL_TIM_DisableBRK2(TIM_TypeDef * TIMx)3741 __STATIC_INLINE void LL_TIM_DisableBRK2(TIM_TypeDef *TIMx)
3742 {
3743   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3744 }
3745 
3746 /**
3747   * @brief  Configure the break 2 input.
3748   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3749   *       a timer instance provides a second break input.
3750   * @note Bidirectional mode is only supported by advanced timer instances.
3751   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
3752   *       a timer instance is an advanced-control timer.
3753   * @note In bidirectional mode (BK2BID bit set), the Break 2 input is configured both
3754   *        in input mode and in open drain output mode. Any active Break event will
3755   *        assert a low logic level on the Break 2 input to indicate an internal break
3756   *        event to external devices.
3757   * @note When bidirectional mode isn't supported, Break2AFMode must be set to
3758   *       LL_TIM_BREAK2_AFMODE_INPUT.
3759   * @rmtoll BDTR         BK2P          LL_TIM_ConfigBRK2\n
3760   *         BDTR         BK2F          LL_TIM_ConfigBRK2\n
3761   *         BDTR         BK2BID        LL_TIM_ConfigBRK2
3762   * @param  TIMx Timer instance
3763   * @param  Break2Polarity This parameter can be one of the following values:
3764   *         @arg @ref LL_TIM_BREAK2_POLARITY_LOW
3765   *         @arg @ref LL_TIM_BREAK2_POLARITY_HIGH
3766   * @param  Break2Filter This parameter can be one of the following values:
3767   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1
3768   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N2
3769   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N4
3770   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N8
3771   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N6
3772   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N8
3773   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N6
3774   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N8
3775   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N6
3776   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N8
3777   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N5
3778   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N6
3779   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N8
3780   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N5
3781   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N6
3782   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N8
3783   * @param  Break2AFMode This parameter can be one of the following values:
3784   *         @arg @ref LL_TIM_BREAK2_AFMODE_INPUT
3785   *         @arg @ref LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL
3786   * @retval None
3787   */
LL_TIM_ConfigBRK2(TIM_TypeDef * TIMx,uint32_t Break2Polarity,uint32_t Break2Filter,uint32_t Break2AFMode)3788 __STATIC_INLINE void LL_TIM_ConfigBRK2(TIM_TypeDef *TIMx, uint32_t Break2Polarity, uint32_t Break2Filter,
3789                                        uint32_t Break2AFMode)
3790 {
3791   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BK2P | TIM_BDTR_BK2F | TIM_BDTR_BK2BID, Break2Polarity | Break2Filter | Break2AFMode);
3792 }
3793 
3794 /**
3795   * @brief  Disarm the break 2 input (when it operates in bidirectional mode).
3796   * @note  The break 2 input can be disarmed only when it is configured in
3797   *        bidirectional mode and when when MOE is reset.
3798   * @note  Purpose is to be able to have the input voltage back to high-state,
3799   *        whatever the time constant on the output.
3800   * @rmtoll BDTR         BK2DSRM       LL_TIM_DisarmBRK2
3801   * @param  TIMx Timer instance
3802   * @retval None
3803   */
LL_TIM_DisarmBRK2(TIM_TypeDef * TIMx)3804 __STATIC_INLINE void LL_TIM_DisarmBRK2(TIM_TypeDef *TIMx)
3805 {
3806   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
3807 }
3808 
3809 /**
3810   * @brief  Re-arm the break 2 input (when it operates in bidirectional mode).
3811   * @note  The Break 2 input is automatically armed as soon as MOE bit is set.
3812   * @rmtoll BDTR         BK2DSRM       LL_TIM_ReArmBRK2
3813   * @param  TIMx Timer instance
3814   * @retval None
3815   */
LL_TIM_ReArmBRK2(TIM_TypeDef * TIMx)3816 __STATIC_INLINE void LL_TIM_ReArmBRK2(TIM_TypeDef *TIMx)
3817 {
3818   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
3819 }
3820 
3821 /**
3822   * @brief  Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
3823   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3824   *       a timer instance provides a break input.
3825   * @rmtoll BDTR         OSSI          LL_TIM_SetOffStates\n
3826   *         BDTR         OSSR          LL_TIM_SetOffStates
3827   * @param  TIMx Timer instance
3828   * @param  OffStateIdle This parameter can be one of the following values:
3829   *         @arg @ref LL_TIM_OSSI_DISABLE
3830   *         @arg @ref LL_TIM_OSSI_ENABLE
3831   * @param  OffStateRun This parameter can be one of the following values:
3832   *         @arg @ref LL_TIM_OSSR_DISABLE
3833   *         @arg @ref LL_TIM_OSSR_ENABLE
3834   * @retval None
3835   */
LL_TIM_SetOffStates(TIM_TypeDef * TIMx,uint32_t OffStateIdle,uint32_t OffStateRun)3836 __STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
3837 {
3838   MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
3839 }
3840 
3841 /**
3842   * @brief  Enable automatic output (MOE can be set by software or automatically when a break input is active).
3843   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3844   *       a timer instance provides a break input.
3845   * @rmtoll BDTR         AOE           LL_TIM_EnableAutomaticOutput
3846   * @param  TIMx Timer instance
3847   * @retval None
3848   */
LL_TIM_EnableAutomaticOutput(TIM_TypeDef * TIMx)3849 __STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
3850 {
3851   SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3852 }
3853 
3854 /**
3855   * @brief  Disable automatic output (MOE can be set only by software).
3856   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3857   *       a timer instance provides a break input.
3858   * @rmtoll BDTR         AOE           LL_TIM_DisableAutomaticOutput
3859   * @param  TIMx Timer instance
3860   * @retval None
3861   */
LL_TIM_DisableAutomaticOutput(TIM_TypeDef * TIMx)3862 __STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
3863 {
3864   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3865 }
3866 
3867 /**
3868   * @brief  Indicate whether automatic output is enabled.
3869   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3870   *       a timer instance provides a break input.
3871   * @rmtoll BDTR         AOE           LL_TIM_IsEnabledAutomaticOutput
3872   * @param  TIMx Timer instance
3873   * @retval State of bit (1 or 0).
3874   */
LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef * TIMx)3875 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef *TIMx)
3876 {
3877   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
3878 }
3879 
3880 /**
3881   * @brief  Enable the outputs (set the MOE bit in TIMx_BDTR register).
3882   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3883   *       software and is reset in case of break or break2 event
3884   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3885   *       a timer instance provides a break input.
3886   * @rmtoll BDTR         MOE           LL_TIM_EnableAllOutputs
3887   * @param  TIMx Timer instance
3888   * @retval None
3889   */
LL_TIM_EnableAllOutputs(TIM_TypeDef * TIMx)3890 __STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
3891 {
3892   SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3893 }
3894 
3895 /**
3896   * @brief  Disable the outputs (reset the MOE bit in TIMx_BDTR register).
3897   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3898   *       software and is reset in case of break or break2 event.
3899   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3900   *       a timer instance provides a break input.
3901   * @rmtoll BDTR         MOE           LL_TIM_DisableAllOutputs
3902   * @param  TIMx Timer instance
3903   * @retval None
3904   */
LL_TIM_DisableAllOutputs(TIM_TypeDef * TIMx)3905 __STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
3906 {
3907   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3908 }
3909 
3910 /**
3911   * @brief  Indicates whether outputs are enabled.
3912   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3913   *       a timer instance provides a break input.
3914   * @rmtoll BDTR         MOE           LL_TIM_IsEnabledAllOutputs
3915   * @param  TIMx Timer instance
3916   * @retval State of bit (1 or 0).
3917   */
LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef * TIMx)3918 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef *TIMx)
3919 {
3920   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
3921 }
3922 
3923 /**
3924   * @brief  Enable the signals connected to the designated timer break input.
3925   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3926   *       or not a timer instance allows for break input selection.
3927   * @rmtoll AF1          BKINE         LL_TIM_EnableBreakInputSource\n
3928   *         AF1          BKCMP1E       LL_TIM_EnableBreakInputSource\n
3929   *         AF1          BKCMP2E       LL_TIM_EnableBreakInputSource\n
3930   *         AF1          BKCMP3E       LL_TIM_EnableBreakInputSource\n
3931   *         AF2          BK2INE        LL_TIM_EnableBreakInputSource\n
3932   *         AF2          BK2CMP1E      LL_TIM_EnableBreakInputSource\n
3933   *         AF2          BK2CMP2E      LL_TIM_EnableBreakInputSource\n
3934   *         AF2          BK2CMP3E      LL_TIM_EnableBreakInputSource
3935   * @param  TIMx Timer instance
3936   * @param  BreakInput This parameter can be one of the following values:
3937   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3938   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3939   * @param  Source This parameter can be one of the following values:
3940   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3941   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
3942   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
3943   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP3 (*)
3944   *
3945   *         (*)  Value not defined in all devices. \n
3946   *
3947   * @retval None
3948   */
LL_TIM_EnableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3949 __STATIC_INLINE void LL_TIM_EnableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3950 {
3951   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
3952   SET_BIT(*pReg, Source);
3953 }
3954 
3955 /**
3956   * @brief  Disable the signals connected to the designated timer break input.
3957   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3958   *       or not a timer instance allows for break input selection.
3959   * @rmtoll AF1          BKINE         LL_TIM_DisableBreakInputSource\n
3960   *         AF1          BKCMP1E       LL_TIM_DisableBreakInputSource\n
3961   *         AF1          BKCMP2E       LL_TIM_DisableBreakInputSource\n
3962   *         AF1          BKCMP3E       LL_TIM_DisableBreakInputSource\n
3963   *         AF2          BK2INE        LL_TIM_DisableBreakInputSource\n
3964   *         AF2          BK2CMP1E      LL_TIM_DisableBreakInputSource\n
3965   *         AF2          BK2CMP2E      LL_TIM_DisableBreakInputSource\n
3966   *         AF2          BK2CMP3E      LL_TIM_DisableBreakInputSource
3967   * @param  TIMx Timer instance
3968   * @param  BreakInput This parameter can be one of the following values:
3969   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3970   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3971   * @param  Source This parameter can be one of the following values:
3972   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3973   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
3974   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
3975   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP3 (*)
3976   *
3977   *         (*)  Value not defined in all devices. \n
3978   *
3979   * @retval None
3980   */
LL_TIM_DisableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3981 __STATIC_INLINE void LL_TIM_DisableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3982 {
3983   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
3984   CLEAR_BIT(*pReg, Source);
3985 }
3986 
3987 /**
3988   * @brief  Set the polarity of the break signal for the timer break input.
3989   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3990   *       or not a timer instance allows for break input selection.
3991   * @rmtoll AF1          BKINP         LL_TIM_SetBreakInputSourcePolarity\n
3992   *         AF1          BKCMP1P       LL_TIM_SetBreakInputSourcePolarity\n
3993   *         AF1          BKCMP2P       LL_TIM_SetBreakInputSourcePolarity\n
3994   *         AF1          BKCMP3P       LL_TIM_SetBreakInputSourcePolarity\n
3995   *         AF2          BK2INP        LL_TIM_SetBreakInputSourcePolarity\n
3996   *         AF2          BK2CMP1P      LL_TIM_SetBreakInputSourcePolarity\n
3997   *         AF2          BK2CMP2P      LL_TIM_SetBreakInputSourcePolarity\n
3998   *         AF2          BK2CMP3P      LL_TIM_SetBreakInputSourcePolarity
3999   * @param  TIMx Timer instance
4000   * @param  BreakInput This parameter can be one of the following values:
4001   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
4002   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
4003   * @param  Source This parameter can be one of the following values:
4004   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
4005   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
4006   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
4007   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP3 (*)
4008   * @param  Polarity This parameter can be one of the following values:
4009   *         @arg @ref LL_TIM_BKIN_POLARITY_LOW
4010   *         @arg @ref LL_TIM_BKIN_POLARITY_HIGH
4011   *
4012   *         (*)  Value not defined in all devices. \n
4013   *
4014   * @retval None
4015   */
LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source,uint32_t Polarity)4016 __STATIC_INLINE void LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source,
4017                                                         uint32_t Polarity)
4018 {
4019   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
4020   MODIFY_REG(*pReg, (TIMx_AF1_BKINP << TIM_POSITION_BRK_SOURCE), (Polarity << TIM_POSITION_BRK_SOURCE));
4021 }
4022 /**
4023   * @}
4024   */
4025 
4026 /** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
4027   * @{
4028   */
4029 /**
4030   * @brief  Configures the timer DMA burst feature.
4031   * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
4032   *       not a timer instance supports the DMA burst mode.
4033   * @rmtoll DCR          DBL           LL_TIM_ConfigDMABurst\n
4034   *         DCR          DBA           LL_TIM_ConfigDMABurst
4035   * @param  TIMx Timer instance
4036   * @param  DMABurstBaseAddress This parameter can be one of the following values:
4037   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
4038   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
4039   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
4040   *         @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
4041   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SR
4042   *         @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
4043   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
4044   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
4045   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
4046   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
4047   *         @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
4048   *         @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
4049   *         @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
4050   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
4051   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
4052   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
4053   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
4054   *         @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
4055   *         @arg @ref LL_TIM_DMABURST_BASEADDR_OR1
4056   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR3
4057   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR5
4058   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR6
4059   *         @arg @ref LL_TIM_DMABURST_BASEADDR_AF1
4060   *         @arg @ref LL_TIM_DMABURST_BASEADDR_AF2
4061   *         @arg @ref LL_TIM_DMABURST_BASEADDR_TISEL
4062   * @param  DMABurstLength This parameter can be one of the following values:
4063   *         @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
4064   *         @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
4065   *         @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
4066   *         @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
4067   *         @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
4068   *         @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
4069   *         @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
4070   *         @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
4071   *         @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
4072   *         @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
4073   *         @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
4074   *         @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
4075   *         @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
4076   *         @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
4077   *         @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
4078   *         @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
4079   *         @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
4080   *         @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
4081   * @retval None
4082   */
LL_TIM_ConfigDMABurst(TIM_TypeDef * TIMx,uint32_t DMABurstBaseAddress,uint32_t DMABurstLength)4083 __STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
4084 {
4085   MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
4086 }
4087 
4088 /**
4089   * @}
4090   */
4091 
4092 /** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
4093   * @{
4094   */
4095 /**
4096   * @brief  Remap TIM inputs (input channel, internal/external triggers).
4097   * @note Macro IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
4098   *       a some timer inputs can be remapped.
4099   * @rmtoll TIM1_TISEL    TI1SEL      LL_TIM_SetRemap\n
4100   *         TIM1_TISEL    TI2SEL      LL_TIM_SetRemap\n
4101   *         TIM2_TISEL    TI1SEL      LL_TIM_SetRemap\n
4102   *         TIM2_TISEL    TI2SEL      LL_TIM_SetRemap\n
4103   *         TIM3_TISEL    TI1SEL      LL_TIM_SetRemap\n
4104   *         TIM3_TISEL    TI2SEL      LL_TIM_SetRemap\n
4105   *         TIM4_TISEL    TI1SEL      LL_TIM_SetRemap\n
4106   *         TIM4_TISEL    TI2SEL      LL_TIM_SetRemap\n
4107   *         TIM4_TISEL    TI3SEL      LL_TIM_SetRemap\n
4108   *         TIM14_TISEL   TI1SEL      LL_TIM_SetRemap\n
4109   *         TIM15_TISEL   TI1SEL      LL_TIM_SetRemap\n
4110   *         TIM15_TISEL   TI2SEL      LL_TIM_SetRemap\n
4111   *         TIM16_TISEL   TI1SEL      LL_TIM_SetRemap\n
4112   *         TIM17_TISEL   TI1SEL      LL_TIM_SetRemap
4113   * @param  TIMx Timer instance
4114   * @param  Remap Remap param depends on the TIMx. Description available only
4115   *         in CHM version of the User Manual (not in .pdf).
4116   *         Otherwise see Reference Manual description of TISEL registers.
4117   *
4118   *         Below description summarizes "Timer Instance" and "Remap" param combinations:
4119   *
4120   *         TIM1: any combination of TI1_RMP and TI2_RMP where
4121   *
4122   *            . . TI1_RMP can be one of the following values
4123   *            @arg @ref LL_TIM_TIM1_TI1_RMP_GPIO
4124   *            @arg @ref LL_TIM_TIM1_TI1_RMP_COMP1 (**)
4125   *
4126   *            . . TI2_RMP can be one of the following values
4127   *            @arg @ref LL_TIM_TIM1_TI2_RMP_GPIO
4128   *            @arg @ref LL_TIM_TIM1_TI2_RMP_COMP2 (**)
4129   *
4130   *            . . TI3_RMP can be one of the following values
4131   *            @arg @ref LL_TIM_TIM1_TI3_RMP_GPIO
4132   *            @arg @ref LL_TIM_TIM1_TI3_RMP_COMP3 (**)
4133   *
4134   *         TIM2: any combination of TI1_RMP and TI2_RMP where
4135   *
4136   *            . . TI1_RMP can be one of the following values
4137   *            @arg @ref LL_TIM_TIM2_TI1_RMP_GPIO
4138   *            @arg @ref LL_TIM_TIM2_TI1_RMP_COMP1 (**)
4139   *
4140   *            . . TI2_RMP can be one of the following values
4141   *            @arg @ref LL_TIM_TIM2_TI2_RMP_GPIO
4142   *            @arg @ref LL_TIM_TIM2_TI2_RMP_COMP2 (**)
4143   *
4144   *            . . TI3_RMP can be one of the following values
4145   *            @arg @ref LL_TIM_TIM2_TI3_RMP_GPIO
4146   *            @arg @ref LL_TIM_TIM2_TI3_RMP_COMP3 (**)
4147   *
4148   *         TIM3: any combination of TI1_RMP and TI2_RMP where
4149   *
4150   *            . . TI1_RMP can be one of the following values
4151   *            @arg @ref LL_TIM_TIM3_TI1_RMP_GPIO
4152   *            @arg @ref LL_TIM_TIM3_TI1_RMP_COMP1 (**)
4153   *
4154   *            . . TI2_RMP can be one of the following values
4155   *            @arg @ref LL_TIM_TIM3_TI2_RMP_GPIO
4156   *            @arg @ref LL_TIM_TIM3_TI2_RMP_COMP2 (**)
4157   *
4158   *            . . TI3_RMP can be one of the following values
4159   *            @arg @ref LL_TIM_TIM3_TI3_RMP_GPIO
4160   *            @arg @ref LL_TIM_TIM3_TI3_RMP_COMP3 (**)
4161   *
4162   *         TIM4: any combination of TI1_RMP, TI2_RMP and TI3_RMP where  (*)
4163   *
4164   *            . . TI1_RMP can be one of the following values
4165   *            @arg @ref LL_TIM_TIM4_TI1_RMP_GPIO
4166   *            @arg @ref LL_TIM_TIM4_TI1_RMP_COMP1 (**)
4167   *
4168   *            . . TI2_RMP can be one of the following values
4169   *            @arg @ref LL_TIM_TIM4_TI2_RMP_GPIO
4170   *            @arg @ref LL_TIM_TIM4_TI2_RMP_COMP2 (**)
4171   *
4172   *            . . TI3_RMP can be one of the following values
4173   *            @arg @ref LL_TIM_TIM4_TI3_RMP_GPIO
4174   *            @arg @ref LL_TIM_TIM4_TI3_RMP_COMP3 (**)
4175   *
4176   *         TIM14: one of the following values
4177   *
4178   *            @arg @ref LL_TIM_TIM14_TI1_RMP_GPIO
4179   *            @arg @ref LL_TIM_TIM14_TI1_RMP_RTC_CLK
4180   *            @arg @ref LL_TIM_TIM14_TI1_RMP_HSE_32
4181   *            @arg @ref LL_TIM_TIM14_TI1_RMP_MCO
4182   *            @arg @ref LL_TIM_TIM14_TI1_RMP_MCO2 (**)
4183   *
4184   *         TIM15: any combination of TI1_RMP and TI2_RMP where
4185   *
4186   *            . . TI1_RMP can be one of the following values
4187   *            @arg @ref LL_TIM_TIM15_TI1_RMP_GPIO
4188   *            @arg @ref LL_TIM_TIM15_TI1_RMP_TIM2_IC1
4189   *            @arg @ref LL_TIM_TIM15_TI1_RMP_TIM3_IC1
4190   *
4191   *            . . TI2_RMP can be one of the following values
4192   *            @arg @ref LL_TIM_TIM15_TI2_RMP_GPIO
4193   *            @arg @ref LL_TIM_TIM15_TI2_RMP_TIM2_IC2
4194   *            @arg @ref LL_TIM_TIM15_TI2_RMP_TIM3_IC2
4195   *
4196   *         TIM16: one of the following values
4197   *
4198   *            @arg @ref LL_TIM_TIM16_TI1_RMP_GPIO
4199   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSI
4200   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSE
4201   *            @arg @ref LL_TIM_TIM16_TI1_RMP_RTC_WK
4202   *            @arg @ref LL_TIM_TIM16_TI1_RMP_MCO2(**)
4203   *
4204   *         TIM17: one of the following values
4205   *
4206   *            @arg @ref LL_TIM_TIM17_TI1_RMP_GPIO
4207   *            @arg @ref LL_TIM_TIM17_TI1_RMP_HSE_32
4208   *            @arg @ref LL_TIM_TIM17_TI1_RMP_MCO
4209   *            @arg @ref LL_TIM_TIM17_TI1_RMP_HSI48 (**)
4210   *            @arg @ref LL_TIM_TIM17_TI1_RMP_MCO2(**)
4211   *
4212   *  (*) Timer instance not available on all devices \n
4213   *  (**) Value not defined in all devices. \n
4214   *
4215   * @retval None
4216   */
LL_TIM_SetRemap(TIM_TypeDef * TIMx,uint32_t Remap)4217 __STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
4218 {
4219   MODIFY_REG(TIMx->TISEL, (TIM_TISEL_TI1SEL | TIM_TISEL_TI2SEL | TIM_TISEL_TI3SEL | TIM_TISEL_TI4SEL), Remap);
4220 }
4221 
4222 /**
4223   * @}
4224   */
4225 
4226 /** @defgroup TIM_LL_EF_OCREF_Clear OCREF_Clear_Management
4227   * @{
4228   */
4229 /**
4230   * @brief  Set the OCREF clear input source
4231   * @note The OCxREF signal of a given channel can be cleared when a high level is applied on the OCREF_CLR_INPUT
4232   * @note This function can only be used in Output compare and PWM modes.
4233   * @rmtoll SMCR          OCCS                LL_TIM_SetOCRefClearInputSource
4234   * @rmtoll OR1           OCREF_CLR           LL_TIM_SetOCRefClearInputSource
4235   * @param  TIMx Timer instance
4236   * @param  OCRefClearInputSource This parameter can be one of the following values:
4237   *         @arg @ref LL_TIM_OCREF_CLR_INT_ETR
4238   *         @arg @ref LL_TIM_OCREF_CLR_INT_COMP1 (*)
4239   *         @arg @ref LL_TIM_OCREF_CLR_INT_COMP2 (*)
4240   *         @arg @ref LL_TIM_OCREF_CLR_INT_COMP3 (*)
4241   *
4242   *         (*)  Value not defined in all devices. \n
4243   *
4244   * @retval None
4245   */
LL_TIM_SetOCRefClearInputSource(TIM_TypeDef * TIMx,uint32_t OCRefClearInputSource)4246 __STATIC_INLINE void LL_TIM_SetOCRefClearInputSource(TIM_TypeDef *TIMx, uint32_t OCRefClearInputSource)
4247 {
4248   MODIFY_REG(TIMx->SMCR, TIM_SMCR_OCCS,
4249              ((OCRefClearInputSource & OCREF_CLEAR_SELECT_Msk) >> OCREF_CLEAR_SELECT_Pos) << TIM_SMCR_OCCS_Pos);
4250   MODIFY_REG(TIMx->OR1, TIM1_OR1_OCREF_CLR, OCRefClearInputSource);
4251 }
4252 /**
4253   * @}
4254   */
4255 
4256 /** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
4257   * @{
4258   */
4259 /**
4260   * @brief  Clear the update interrupt flag (UIF).
4261   * @rmtoll SR           UIF           LL_TIM_ClearFlag_UPDATE
4262   * @param  TIMx Timer instance
4263   * @retval None
4264   */
LL_TIM_ClearFlag_UPDATE(TIM_TypeDef * TIMx)4265 __STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
4266 {
4267   WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
4268 }
4269 
4270 /**
4271   * @brief  Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
4272   * @rmtoll SR           UIF           LL_TIM_IsActiveFlag_UPDATE
4273   * @param  TIMx Timer instance
4274   * @retval State of bit (1 or 0).
4275   */
LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef * TIMx)4276 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef *TIMx)
4277 {
4278   return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
4279 }
4280 
4281 /**
4282   * @brief  Clear the Capture/Compare 1 interrupt flag (CC1F).
4283   * @rmtoll SR           CC1IF         LL_TIM_ClearFlag_CC1
4284   * @param  TIMx Timer instance
4285   * @retval None
4286   */
LL_TIM_ClearFlag_CC1(TIM_TypeDef * TIMx)4287 __STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
4288 {
4289   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
4290 }
4291 
4292 /**
4293   * @brief  Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
4294   * @rmtoll SR           CC1IF         LL_TIM_IsActiveFlag_CC1
4295   * @param  TIMx Timer instance
4296   * @retval State of bit (1 or 0).
4297   */
LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef * TIMx)4298 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef *TIMx)
4299 {
4300   return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
4301 }
4302 
4303 /**
4304   * @brief  Clear the Capture/Compare 2 interrupt flag (CC2F).
4305   * @rmtoll SR           CC2IF         LL_TIM_ClearFlag_CC2
4306   * @param  TIMx Timer instance
4307   * @retval None
4308   */
LL_TIM_ClearFlag_CC2(TIM_TypeDef * TIMx)4309 __STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
4310 {
4311   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
4312 }
4313 
4314 /**
4315   * @brief  Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
4316   * @rmtoll SR           CC2IF         LL_TIM_IsActiveFlag_CC2
4317   * @param  TIMx Timer instance
4318   * @retval State of bit (1 or 0).
4319   */
LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef * TIMx)4320 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef *TIMx)
4321 {
4322   return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
4323 }
4324 
4325 /**
4326   * @brief  Clear the Capture/Compare 3 interrupt flag (CC3F).
4327   * @rmtoll SR           CC3IF         LL_TIM_ClearFlag_CC3
4328   * @param  TIMx Timer instance
4329   * @retval None
4330   */
LL_TIM_ClearFlag_CC3(TIM_TypeDef * TIMx)4331 __STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
4332 {
4333   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
4334 }
4335 
4336 /**
4337   * @brief  Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
4338   * @rmtoll SR           CC3IF         LL_TIM_IsActiveFlag_CC3
4339   * @param  TIMx Timer instance
4340   * @retval State of bit (1 or 0).
4341   */
LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef * TIMx)4342 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef *TIMx)
4343 {
4344   return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
4345 }
4346 
4347 /**
4348   * @brief  Clear the Capture/Compare 4 interrupt flag (CC4F).
4349   * @rmtoll SR           CC4IF         LL_TIM_ClearFlag_CC4
4350   * @param  TIMx Timer instance
4351   * @retval None
4352   */
LL_TIM_ClearFlag_CC4(TIM_TypeDef * TIMx)4353 __STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
4354 {
4355   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
4356 }
4357 
4358 /**
4359   * @brief  Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
4360   * @rmtoll SR           CC4IF         LL_TIM_IsActiveFlag_CC4
4361   * @param  TIMx Timer instance
4362   * @retval State of bit (1 or 0).
4363   */
LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef * TIMx)4364 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef *TIMx)
4365 {
4366   return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
4367 }
4368 
4369 /**
4370   * @brief  Clear the Capture/Compare 5 interrupt flag (CC5F).
4371   * @rmtoll SR           CC5IF         LL_TIM_ClearFlag_CC5
4372   * @param  TIMx Timer instance
4373   * @retval None
4374   */
LL_TIM_ClearFlag_CC5(TIM_TypeDef * TIMx)4375 __STATIC_INLINE void LL_TIM_ClearFlag_CC5(TIM_TypeDef *TIMx)
4376 {
4377   WRITE_REG(TIMx->SR, ~(TIM_SR_CC5IF));
4378 }
4379 
4380 /**
4381   * @brief  Indicate whether Capture/Compare 5 interrupt flag (CC5F) is set (Capture/Compare 5 interrupt is pending).
4382   * @rmtoll SR           CC5IF         LL_TIM_IsActiveFlag_CC5
4383   * @param  TIMx Timer instance
4384   * @retval State of bit (1 or 0).
4385   */
LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef * TIMx)4386 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef *TIMx)
4387 {
4388   return ((READ_BIT(TIMx->SR, TIM_SR_CC5IF) == (TIM_SR_CC5IF)) ? 1UL : 0UL);
4389 }
4390 
4391 /**
4392   * @brief  Clear the Capture/Compare 6 interrupt flag (CC6F).
4393   * @rmtoll SR           CC6IF         LL_TIM_ClearFlag_CC6
4394   * @param  TIMx Timer instance
4395   * @retval None
4396   */
LL_TIM_ClearFlag_CC6(TIM_TypeDef * TIMx)4397 __STATIC_INLINE void LL_TIM_ClearFlag_CC6(TIM_TypeDef *TIMx)
4398 {
4399   WRITE_REG(TIMx->SR, ~(TIM_SR_CC6IF));
4400 }
4401 
4402 /**
4403   * @brief  Indicate whether Capture/Compare 6 interrupt flag (CC6F) is set (Capture/Compare 6 interrupt is pending).
4404   * @rmtoll SR           CC6IF         LL_TIM_IsActiveFlag_CC6
4405   * @param  TIMx Timer instance
4406   * @retval State of bit (1 or 0).
4407   */
LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef * TIMx)4408 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef *TIMx)
4409 {
4410   return ((READ_BIT(TIMx->SR, TIM_SR_CC6IF) == (TIM_SR_CC6IF)) ? 1UL : 0UL);
4411 }
4412 
4413 /**
4414   * @brief  Clear the commutation interrupt flag (COMIF).
4415   * @rmtoll SR           COMIF         LL_TIM_ClearFlag_COM
4416   * @param  TIMx Timer instance
4417   * @retval None
4418   */
LL_TIM_ClearFlag_COM(TIM_TypeDef * TIMx)4419 __STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
4420 {
4421   WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
4422 }
4423 
4424 /**
4425   * @brief  Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
4426   * @rmtoll SR           COMIF         LL_TIM_IsActiveFlag_COM
4427   * @param  TIMx Timer instance
4428   * @retval State of bit (1 or 0).
4429   */
LL_TIM_IsActiveFlag_COM(const TIM_TypeDef * TIMx)4430 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(const TIM_TypeDef *TIMx)
4431 {
4432   return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
4433 }
4434 
4435 /**
4436   * @brief  Clear the trigger interrupt flag (TIF).
4437   * @rmtoll SR           TIF           LL_TIM_ClearFlag_TRIG
4438   * @param  TIMx Timer instance
4439   * @retval None
4440   */
LL_TIM_ClearFlag_TRIG(TIM_TypeDef * TIMx)4441 __STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
4442 {
4443   WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
4444 }
4445 
4446 /**
4447   * @brief  Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
4448   * @rmtoll SR           TIF           LL_TIM_IsActiveFlag_TRIG
4449   * @param  TIMx Timer instance
4450   * @retval State of bit (1 or 0).
4451   */
LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef * TIMx)4452 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef *TIMx)
4453 {
4454   return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
4455 }
4456 
4457 /**
4458   * @brief  Clear the break interrupt flag (BIF).
4459   * @rmtoll SR           BIF           LL_TIM_ClearFlag_BRK
4460   * @param  TIMx Timer instance
4461   * @retval None
4462   */
LL_TIM_ClearFlag_BRK(TIM_TypeDef * TIMx)4463 __STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
4464 {
4465   WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
4466 }
4467 
4468 /**
4469   * @brief  Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
4470   * @rmtoll SR           BIF           LL_TIM_IsActiveFlag_BRK
4471   * @param  TIMx Timer instance
4472   * @retval State of bit (1 or 0).
4473   */
LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef * TIMx)4474 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef *TIMx)
4475 {
4476   return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
4477 }
4478 
4479 /**
4480   * @brief  Clear the break 2 interrupt flag (B2IF).
4481   * @rmtoll SR           B2IF          LL_TIM_ClearFlag_BRK2
4482   * @param  TIMx Timer instance
4483   * @retval None
4484   */
LL_TIM_ClearFlag_BRK2(TIM_TypeDef * TIMx)4485 __STATIC_INLINE void LL_TIM_ClearFlag_BRK2(TIM_TypeDef *TIMx)
4486 {
4487   WRITE_REG(TIMx->SR, ~(TIM_SR_B2IF));
4488 }
4489 
4490 /**
4491   * @brief  Indicate whether break 2 interrupt flag (B2IF) is set (break 2 interrupt is pending).
4492   * @rmtoll SR           B2IF          LL_TIM_IsActiveFlag_BRK2
4493   * @param  TIMx Timer instance
4494   * @retval State of bit (1 or 0).
4495   */
LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef * TIMx)4496 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef *TIMx)
4497 {
4498   return ((READ_BIT(TIMx->SR, TIM_SR_B2IF) == (TIM_SR_B2IF)) ? 1UL : 0UL);
4499 }
4500 
4501 /**
4502   * @brief  Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
4503   * @rmtoll SR           CC1OF         LL_TIM_ClearFlag_CC1OVR
4504   * @param  TIMx Timer instance
4505   * @retval None
4506   */
LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef * TIMx)4507 __STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
4508 {
4509   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
4510 }
4511 
4512 /**
4513   * @brief  Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set
4514   *         (Capture/Compare 1 interrupt is pending).
4515   * @rmtoll SR           CC1OF         LL_TIM_IsActiveFlag_CC1OVR
4516   * @param  TIMx Timer instance
4517   * @retval State of bit (1 or 0).
4518   */
LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef * TIMx)4519 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef *TIMx)
4520 {
4521   return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
4522 }
4523 
4524 /**
4525   * @brief  Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
4526   * @rmtoll SR           CC2OF         LL_TIM_ClearFlag_CC2OVR
4527   * @param  TIMx Timer instance
4528   * @retval None
4529   */
LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef * TIMx)4530 __STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
4531 {
4532   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
4533 }
4534 
4535 /**
4536   * @brief  Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set
4537   *         (Capture/Compare 2 over-capture interrupt is pending).
4538   * @rmtoll SR           CC2OF         LL_TIM_IsActiveFlag_CC2OVR
4539   * @param  TIMx Timer instance
4540   * @retval State of bit (1 or 0).
4541   */
LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef * TIMx)4542 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef *TIMx)
4543 {
4544   return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
4545 }
4546 
4547 /**
4548   * @brief  Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
4549   * @rmtoll SR           CC3OF         LL_TIM_ClearFlag_CC3OVR
4550   * @param  TIMx Timer instance
4551   * @retval None
4552   */
LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef * TIMx)4553 __STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
4554 {
4555   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
4556 }
4557 
4558 /**
4559   * @brief  Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set
4560   *         (Capture/Compare 3 over-capture interrupt is pending).
4561   * @rmtoll SR           CC3OF         LL_TIM_IsActiveFlag_CC3OVR
4562   * @param  TIMx Timer instance
4563   * @retval State of bit (1 or 0).
4564   */
LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef * TIMx)4565 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef *TIMx)
4566 {
4567   return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
4568 }
4569 
4570 /**
4571   * @brief  Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
4572   * @rmtoll SR           CC4OF         LL_TIM_ClearFlag_CC4OVR
4573   * @param  TIMx Timer instance
4574   * @retval None
4575   */
LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef * TIMx)4576 __STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
4577 {
4578   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
4579 }
4580 
4581 /**
4582   * @brief  Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set
4583   *         (Capture/Compare 4 over-capture interrupt is pending).
4584   * @rmtoll SR           CC4OF         LL_TIM_IsActiveFlag_CC4OVR
4585   * @param  TIMx Timer instance
4586   * @retval State of bit (1 or 0).
4587   */
LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef * TIMx)4588 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef *TIMx)
4589 {
4590   return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
4591 }
4592 
4593 /**
4594   * @brief  Clear the system break interrupt flag (SBIF).
4595   * @rmtoll SR           SBIF          LL_TIM_ClearFlag_SYSBRK
4596   * @param  TIMx Timer instance
4597   * @retval None
4598   */
LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef * TIMx)4599 __STATIC_INLINE void LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef *TIMx)
4600 {
4601   WRITE_REG(TIMx->SR, ~(TIM_SR_SBIF));
4602 }
4603 
4604 /**
4605   * @brief  Indicate whether system break interrupt flag (SBIF) is set (system break interrupt is pending).
4606   * @rmtoll SR           SBIF          LL_TIM_IsActiveFlag_SYSBRK
4607   * @param  TIMx Timer instance
4608   * @retval State of bit (1 or 0).
4609   */
LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef * TIMx)4610 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef *TIMx)
4611 {
4612   return ((READ_BIT(TIMx->SR, TIM_SR_SBIF) == (TIM_SR_SBIF)) ? 1UL : 0UL);
4613 }
4614 
4615 /**
4616   * @}
4617   */
4618 
4619 /** @defgroup TIM_LL_EF_IT_Management IT-Management
4620   * @{
4621   */
4622 /**
4623   * @brief  Enable update interrupt (UIE).
4624   * @rmtoll DIER         UIE           LL_TIM_EnableIT_UPDATE
4625   * @param  TIMx Timer instance
4626   * @retval None
4627   */
LL_TIM_EnableIT_UPDATE(TIM_TypeDef * TIMx)4628 __STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
4629 {
4630   SET_BIT(TIMx->DIER, TIM_DIER_UIE);
4631 }
4632 
4633 /**
4634   * @brief  Disable update interrupt (UIE).
4635   * @rmtoll DIER         UIE           LL_TIM_DisableIT_UPDATE
4636   * @param  TIMx Timer instance
4637   * @retval None
4638   */
LL_TIM_DisableIT_UPDATE(TIM_TypeDef * TIMx)4639 __STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
4640 {
4641   CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
4642 }
4643 
4644 /**
4645   * @brief  Indicates whether the update interrupt (UIE) is enabled.
4646   * @rmtoll DIER         UIE           LL_TIM_IsEnabledIT_UPDATE
4647   * @param  TIMx Timer instance
4648   * @retval State of bit (1 or 0).
4649   */
LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef * TIMx)4650 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef *TIMx)
4651 {
4652   return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
4653 }
4654 
4655 /**
4656   * @brief  Enable capture/compare 1 interrupt (CC1IE).
4657   * @rmtoll DIER         CC1IE         LL_TIM_EnableIT_CC1
4658   * @param  TIMx Timer instance
4659   * @retval None
4660   */
LL_TIM_EnableIT_CC1(TIM_TypeDef * TIMx)4661 __STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
4662 {
4663   SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4664 }
4665 
4666 /**
4667   * @brief  Disable capture/compare 1  interrupt (CC1IE).
4668   * @rmtoll DIER         CC1IE         LL_TIM_DisableIT_CC1
4669   * @param  TIMx Timer instance
4670   * @retval None
4671   */
LL_TIM_DisableIT_CC1(TIM_TypeDef * TIMx)4672 __STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
4673 {
4674   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4675 }
4676 
4677 /**
4678   * @brief  Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
4679   * @rmtoll DIER         CC1IE         LL_TIM_IsEnabledIT_CC1
4680   * @param  TIMx Timer instance
4681   * @retval State of bit (1 or 0).
4682   */
LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef * TIMx)4683 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef *TIMx)
4684 {
4685   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
4686 }
4687 
4688 /**
4689   * @brief  Enable capture/compare 2 interrupt (CC2IE).
4690   * @rmtoll DIER         CC2IE         LL_TIM_EnableIT_CC2
4691   * @param  TIMx Timer instance
4692   * @retval None
4693   */
LL_TIM_EnableIT_CC2(TIM_TypeDef * TIMx)4694 __STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
4695 {
4696   SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4697 }
4698 
4699 /**
4700   * @brief  Disable capture/compare 2  interrupt (CC2IE).
4701   * @rmtoll DIER         CC2IE         LL_TIM_DisableIT_CC2
4702   * @param  TIMx Timer instance
4703   * @retval None
4704   */
LL_TIM_DisableIT_CC2(TIM_TypeDef * TIMx)4705 __STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
4706 {
4707   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4708 }
4709 
4710 /**
4711   * @brief  Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
4712   * @rmtoll DIER         CC2IE         LL_TIM_IsEnabledIT_CC2
4713   * @param  TIMx Timer instance
4714   * @retval State of bit (1 or 0).
4715   */
LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef * TIMx)4716 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef *TIMx)
4717 {
4718   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
4719 }
4720 
4721 /**
4722   * @brief  Enable capture/compare 3 interrupt (CC3IE).
4723   * @rmtoll DIER         CC3IE         LL_TIM_EnableIT_CC3
4724   * @param  TIMx Timer instance
4725   * @retval None
4726   */
LL_TIM_EnableIT_CC3(TIM_TypeDef * TIMx)4727 __STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
4728 {
4729   SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4730 }
4731 
4732 /**
4733   * @brief  Disable capture/compare 3  interrupt (CC3IE).
4734   * @rmtoll DIER         CC3IE         LL_TIM_DisableIT_CC3
4735   * @param  TIMx Timer instance
4736   * @retval None
4737   */
LL_TIM_DisableIT_CC3(TIM_TypeDef * TIMx)4738 __STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
4739 {
4740   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4741 }
4742 
4743 /**
4744   * @brief  Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
4745   * @rmtoll DIER         CC3IE         LL_TIM_IsEnabledIT_CC3
4746   * @param  TIMx Timer instance
4747   * @retval State of bit (1 or 0).
4748   */
LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef * TIMx)4749 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef *TIMx)
4750 {
4751   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
4752 }
4753 
4754 /**
4755   * @brief  Enable capture/compare 4 interrupt (CC4IE).
4756   * @rmtoll DIER         CC4IE         LL_TIM_EnableIT_CC4
4757   * @param  TIMx Timer instance
4758   * @retval None
4759   */
LL_TIM_EnableIT_CC4(TIM_TypeDef * TIMx)4760 __STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
4761 {
4762   SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4763 }
4764 
4765 /**
4766   * @brief  Disable capture/compare 4  interrupt (CC4IE).
4767   * @rmtoll DIER         CC4IE         LL_TIM_DisableIT_CC4
4768   * @param  TIMx Timer instance
4769   * @retval None
4770   */
LL_TIM_DisableIT_CC4(TIM_TypeDef * TIMx)4771 __STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
4772 {
4773   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4774 }
4775 
4776 /**
4777   * @brief  Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
4778   * @rmtoll DIER         CC4IE         LL_TIM_IsEnabledIT_CC4
4779   * @param  TIMx Timer instance
4780   * @retval State of bit (1 or 0).
4781   */
LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef * TIMx)4782 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef *TIMx)
4783 {
4784   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
4785 }
4786 
4787 /**
4788   * @brief  Enable commutation interrupt (COMIE).
4789   * @rmtoll DIER         COMIE         LL_TIM_EnableIT_COM
4790   * @param  TIMx Timer instance
4791   * @retval None
4792   */
LL_TIM_EnableIT_COM(TIM_TypeDef * TIMx)4793 __STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
4794 {
4795   SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
4796 }
4797 
4798 /**
4799   * @brief  Disable commutation interrupt (COMIE).
4800   * @rmtoll DIER         COMIE         LL_TIM_DisableIT_COM
4801   * @param  TIMx Timer instance
4802   * @retval None
4803   */
LL_TIM_DisableIT_COM(TIM_TypeDef * TIMx)4804 __STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
4805 {
4806   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
4807 }
4808 
4809 /**
4810   * @brief  Indicates whether the commutation interrupt (COMIE) is enabled.
4811   * @rmtoll DIER         COMIE         LL_TIM_IsEnabledIT_COM
4812   * @param  TIMx Timer instance
4813   * @retval State of bit (1 or 0).
4814   */
LL_TIM_IsEnabledIT_COM(const TIM_TypeDef * TIMx)4815 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(const TIM_TypeDef *TIMx)
4816 {
4817   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
4818 }
4819 
4820 /**
4821   * @brief  Enable trigger interrupt (TIE).
4822   * @rmtoll DIER         TIE           LL_TIM_EnableIT_TRIG
4823   * @param  TIMx Timer instance
4824   * @retval None
4825   */
LL_TIM_EnableIT_TRIG(TIM_TypeDef * TIMx)4826 __STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
4827 {
4828   SET_BIT(TIMx->DIER, TIM_DIER_TIE);
4829 }
4830 
4831 /**
4832   * @brief  Disable trigger interrupt (TIE).
4833   * @rmtoll DIER         TIE           LL_TIM_DisableIT_TRIG
4834   * @param  TIMx Timer instance
4835   * @retval None
4836   */
LL_TIM_DisableIT_TRIG(TIM_TypeDef * TIMx)4837 __STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
4838 {
4839   CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
4840 }
4841 
4842 /**
4843   * @brief  Indicates whether the trigger interrupt (TIE) is enabled.
4844   * @rmtoll DIER         TIE           LL_TIM_IsEnabledIT_TRIG
4845   * @param  TIMx Timer instance
4846   * @retval State of bit (1 or 0).
4847   */
LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef * TIMx)4848 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef *TIMx)
4849 {
4850   return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
4851 }
4852 
4853 /**
4854   * @brief  Enable break interrupt (BIE).
4855   * @rmtoll DIER         BIE           LL_TIM_EnableIT_BRK
4856   * @param  TIMx Timer instance
4857   * @retval None
4858   */
LL_TIM_EnableIT_BRK(TIM_TypeDef * TIMx)4859 __STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
4860 {
4861   SET_BIT(TIMx->DIER, TIM_DIER_BIE);
4862 }
4863 
4864 /**
4865   * @brief  Disable break interrupt (BIE).
4866   * @rmtoll DIER         BIE           LL_TIM_DisableIT_BRK
4867   * @param  TIMx Timer instance
4868   * @retval None
4869   */
LL_TIM_DisableIT_BRK(TIM_TypeDef * TIMx)4870 __STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
4871 {
4872   CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
4873 }
4874 
4875 /**
4876   * @brief  Indicates whether the break interrupt (BIE) is enabled.
4877   * @rmtoll DIER         BIE           LL_TIM_IsEnabledIT_BRK
4878   * @param  TIMx Timer instance
4879   * @retval State of bit (1 or 0).
4880   */
LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef * TIMx)4881 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef *TIMx)
4882 {
4883   return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
4884 }
4885 
4886 /**
4887   * @}
4888   */
4889 
4890 /** @defgroup TIM_LL_EF_DMA_Management DMA Management
4891   * @{
4892   */
4893 /**
4894   * @brief  Enable update DMA request (UDE).
4895   * @rmtoll DIER         UDE           LL_TIM_EnableDMAReq_UPDATE
4896   * @param  TIMx Timer instance
4897   * @retval None
4898   */
LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef * TIMx)4899 __STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4900 {
4901   SET_BIT(TIMx->DIER, TIM_DIER_UDE);
4902 }
4903 
4904 /**
4905   * @brief  Disable update DMA request (UDE).
4906   * @rmtoll DIER         UDE           LL_TIM_DisableDMAReq_UPDATE
4907   * @param  TIMx Timer instance
4908   * @retval None
4909   */
LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef * TIMx)4910 __STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4911 {
4912   CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
4913 }
4914 
4915 /**
4916   * @brief  Indicates whether the update DMA request  (UDE) is enabled.
4917   * @rmtoll DIER         UDE           LL_TIM_IsEnabledDMAReq_UPDATE
4918   * @param  TIMx Timer instance
4919   * @retval State of bit (1 or 0).
4920   */
LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef * TIMx)4921 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef *TIMx)
4922 {
4923   return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
4924 }
4925 
4926 /**
4927   * @brief  Enable capture/compare 1 DMA request (CC1DE).
4928   * @rmtoll DIER         CC1DE         LL_TIM_EnableDMAReq_CC1
4929   * @param  TIMx Timer instance
4930   * @retval None
4931   */
LL_TIM_EnableDMAReq_CC1(TIM_TypeDef * TIMx)4932 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
4933 {
4934   SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4935 }
4936 
4937 /**
4938   * @brief  Disable capture/compare 1  DMA request (CC1DE).
4939   * @rmtoll DIER         CC1DE         LL_TIM_DisableDMAReq_CC1
4940   * @param  TIMx Timer instance
4941   * @retval None
4942   */
LL_TIM_DisableDMAReq_CC1(TIM_TypeDef * TIMx)4943 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
4944 {
4945   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4946 }
4947 
4948 /**
4949   * @brief  Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
4950   * @rmtoll DIER         CC1DE         LL_TIM_IsEnabledDMAReq_CC1
4951   * @param  TIMx Timer instance
4952   * @retval State of bit (1 or 0).
4953   */
LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef * TIMx)4954 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef *TIMx)
4955 {
4956   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
4957 }
4958 
4959 /**
4960   * @brief  Enable capture/compare 2 DMA request (CC2DE).
4961   * @rmtoll DIER         CC2DE         LL_TIM_EnableDMAReq_CC2
4962   * @param  TIMx Timer instance
4963   * @retval None
4964   */
LL_TIM_EnableDMAReq_CC2(TIM_TypeDef * TIMx)4965 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
4966 {
4967   SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4968 }
4969 
4970 /**
4971   * @brief  Disable capture/compare 2  DMA request (CC2DE).
4972   * @rmtoll DIER         CC2DE         LL_TIM_DisableDMAReq_CC2
4973   * @param  TIMx Timer instance
4974   * @retval None
4975   */
LL_TIM_DisableDMAReq_CC2(TIM_TypeDef * TIMx)4976 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
4977 {
4978   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4979 }
4980 
4981 /**
4982   * @brief  Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
4983   * @rmtoll DIER         CC2DE         LL_TIM_IsEnabledDMAReq_CC2
4984   * @param  TIMx Timer instance
4985   * @retval State of bit (1 or 0).
4986   */
LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef * TIMx)4987 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef *TIMx)
4988 {
4989   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
4990 }
4991 
4992 /**
4993   * @brief  Enable capture/compare 3 DMA request (CC3DE).
4994   * @rmtoll DIER         CC3DE         LL_TIM_EnableDMAReq_CC3
4995   * @param  TIMx Timer instance
4996   * @retval None
4997   */
LL_TIM_EnableDMAReq_CC3(TIM_TypeDef * TIMx)4998 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
4999 {
5000   SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
5001 }
5002 
5003 /**
5004   * @brief  Disable capture/compare 3  DMA request (CC3DE).
5005   * @rmtoll DIER         CC3DE         LL_TIM_DisableDMAReq_CC3
5006   * @param  TIMx Timer instance
5007   * @retval None
5008   */
LL_TIM_DisableDMAReq_CC3(TIM_TypeDef * TIMx)5009 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
5010 {
5011   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
5012 }
5013 
5014 /**
5015   * @brief  Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
5016   * @rmtoll DIER         CC3DE         LL_TIM_IsEnabledDMAReq_CC3
5017   * @param  TIMx Timer instance
5018   * @retval State of bit (1 or 0).
5019   */
LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef * TIMx)5020 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef *TIMx)
5021 {
5022   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
5023 }
5024 
5025 /**
5026   * @brief  Enable capture/compare 4 DMA request (CC4DE).
5027   * @rmtoll DIER         CC4DE         LL_TIM_EnableDMAReq_CC4
5028   * @param  TIMx Timer instance
5029   * @retval None
5030   */
LL_TIM_EnableDMAReq_CC4(TIM_TypeDef * TIMx)5031 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
5032 {
5033   SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
5034 }
5035 
5036 /**
5037   * @brief  Disable capture/compare 4  DMA request (CC4DE).
5038   * @rmtoll DIER         CC4DE         LL_TIM_DisableDMAReq_CC4
5039   * @param  TIMx Timer instance
5040   * @retval None
5041   */
LL_TIM_DisableDMAReq_CC4(TIM_TypeDef * TIMx)5042 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
5043 {
5044   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
5045 }
5046 
5047 /**
5048   * @brief  Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
5049   * @rmtoll DIER         CC4DE         LL_TIM_IsEnabledDMAReq_CC4
5050   * @param  TIMx Timer instance
5051   * @retval State of bit (1 or 0).
5052   */
LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef * TIMx)5053 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef *TIMx)
5054 {
5055   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
5056 }
5057 
5058 /**
5059   * @brief  Enable commutation DMA request (COMDE).
5060   * @rmtoll DIER         COMDE         LL_TIM_EnableDMAReq_COM
5061   * @param  TIMx Timer instance
5062   * @retval None
5063   */
LL_TIM_EnableDMAReq_COM(TIM_TypeDef * TIMx)5064 __STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
5065 {
5066   SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
5067 }
5068 
5069 /**
5070   * @brief  Disable commutation DMA request (COMDE).
5071   * @rmtoll DIER         COMDE         LL_TIM_DisableDMAReq_COM
5072   * @param  TIMx Timer instance
5073   * @retval None
5074   */
LL_TIM_DisableDMAReq_COM(TIM_TypeDef * TIMx)5075 __STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
5076 {
5077   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
5078 }
5079 
5080 /**
5081   * @brief  Indicates whether the commutation DMA request (COMDE) is enabled.
5082   * @rmtoll DIER         COMDE         LL_TIM_IsEnabledDMAReq_COM
5083   * @param  TIMx Timer instance
5084   * @retval State of bit (1 or 0).
5085   */
LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef * TIMx)5086 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef *TIMx)
5087 {
5088   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
5089 }
5090 
5091 /**
5092   * @brief  Enable trigger interrupt (TDE).
5093   * @rmtoll DIER         TDE           LL_TIM_EnableDMAReq_TRIG
5094   * @param  TIMx Timer instance
5095   * @retval None
5096   */
LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef * TIMx)5097 __STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
5098 {
5099   SET_BIT(TIMx->DIER, TIM_DIER_TDE);
5100 }
5101 
5102 /**
5103   * @brief  Disable trigger interrupt (TDE).
5104   * @rmtoll DIER         TDE           LL_TIM_DisableDMAReq_TRIG
5105   * @param  TIMx Timer instance
5106   * @retval None
5107   */
LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef * TIMx)5108 __STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
5109 {
5110   CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
5111 }
5112 
5113 /**
5114   * @brief  Indicates whether the trigger interrupt (TDE) is enabled.
5115   * @rmtoll DIER         TDE           LL_TIM_IsEnabledDMAReq_TRIG
5116   * @param  TIMx Timer instance
5117   * @retval State of bit (1 or 0).
5118   */
LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef * TIMx)5119 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef *TIMx)
5120 {
5121   return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
5122 }
5123 
5124 /**
5125   * @}
5126   */
5127 
5128 /** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
5129   * @{
5130   */
5131 /**
5132   * @brief  Generate an update event.
5133   * @rmtoll EGR          UG            LL_TIM_GenerateEvent_UPDATE
5134   * @param  TIMx Timer instance
5135   * @retval None
5136   */
LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef * TIMx)5137 __STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
5138 {
5139   SET_BIT(TIMx->EGR, TIM_EGR_UG);
5140 }
5141 
5142 /**
5143   * @brief  Generate Capture/Compare 1 event.
5144   * @rmtoll EGR          CC1G          LL_TIM_GenerateEvent_CC1
5145   * @param  TIMx Timer instance
5146   * @retval None
5147   */
LL_TIM_GenerateEvent_CC1(TIM_TypeDef * TIMx)5148 __STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
5149 {
5150   SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
5151 }
5152 
5153 /**
5154   * @brief  Generate Capture/Compare 2 event.
5155   * @rmtoll EGR          CC2G          LL_TIM_GenerateEvent_CC2
5156   * @param  TIMx Timer instance
5157   * @retval None
5158   */
LL_TIM_GenerateEvent_CC2(TIM_TypeDef * TIMx)5159 __STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
5160 {
5161   SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
5162 }
5163 
5164 /**
5165   * @brief  Generate Capture/Compare 3 event.
5166   * @rmtoll EGR          CC3G          LL_TIM_GenerateEvent_CC3
5167   * @param  TIMx Timer instance
5168   * @retval None
5169   */
LL_TIM_GenerateEvent_CC3(TIM_TypeDef * TIMx)5170 __STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
5171 {
5172   SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
5173 }
5174 
5175 /**
5176   * @brief  Generate Capture/Compare 4 event.
5177   * @rmtoll EGR          CC4G          LL_TIM_GenerateEvent_CC4
5178   * @param  TIMx Timer instance
5179   * @retval None
5180   */
LL_TIM_GenerateEvent_CC4(TIM_TypeDef * TIMx)5181 __STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
5182 {
5183   SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
5184 }
5185 
5186 /**
5187   * @brief  Generate commutation event.
5188   * @rmtoll EGR          COMG          LL_TIM_GenerateEvent_COM
5189   * @param  TIMx Timer instance
5190   * @retval None
5191   */
LL_TIM_GenerateEvent_COM(TIM_TypeDef * TIMx)5192 __STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
5193 {
5194   SET_BIT(TIMx->EGR, TIM_EGR_COMG);
5195 }
5196 
5197 /**
5198   * @brief  Generate trigger event.
5199   * @rmtoll EGR          TG            LL_TIM_GenerateEvent_TRIG
5200   * @param  TIMx Timer instance
5201   * @retval None
5202   */
LL_TIM_GenerateEvent_TRIG(TIM_TypeDef * TIMx)5203 __STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
5204 {
5205   SET_BIT(TIMx->EGR, TIM_EGR_TG);
5206 }
5207 
5208 /**
5209   * @brief  Generate break event.
5210   * @rmtoll EGR          BG            LL_TIM_GenerateEvent_BRK
5211   * @param  TIMx Timer instance
5212   * @retval None
5213   */
LL_TIM_GenerateEvent_BRK(TIM_TypeDef * TIMx)5214 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
5215 {
5216   SET_BIT(TIMx->EGR, TIM_EGR_BG);
5217 }
5218 
5219 /**
5220   * @brief  Generate break 2 event.
5221   * @rmtoll EGR          B2G           LL_TIM_GenerateEvent_BRK2
5222   * @param  TIMx Timer instance
5223   * @retval None
5224   */
LL_TIM_GenerateEvent_BRK2(TIM_TypeDef * TIMx)5225 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK2(TIM_TypeDef *TIMx)
5226 {
5227   SET_BIT(TIMx->EGR, TIM_EGR_B2G);
5228 }
5229 
5230 /**
5231   * @}
5232   */
5233 
5234 #if defined(USE_FULL_LL_DRIVER)
5235 /** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
5236   * @{
5237   */
5238 
5239 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx);
5240 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
5241 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct);
5242 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
5243 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
5244 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
5245 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
5246 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
5247 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
5248 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
5249 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
5250 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
5251 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
5252 /**
5253   * @}
5254   */
5255 #endif /* USE_FULL_LL_DRIVER */
5256 
5257 /**
5258   * @}
5259   */
5260 
5261 /**
5262   * @}
5263   */
5264 
5265 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM14 || TIM15 || TIM16 || TIM17 || TIM6 || TIM7 */
5266 
5267 /**
5268   * @}
5269   */
5270 
5271 #ifdef __cplusplus
5272 }
5273 #endif
5274 
5275 #endif /* __STM32G0xx_LL_TIM_H */
5276