1 /**
2 ******************************************************************************
3 * @file stm32g0xx_hal_rtc.c
4 * @author MCD Application Team
5 * @brief RTC HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Real-Time Clock (RTC) peripheral:
8 * + Initialization/de-initialization functions
9 * + Calendar (Time and Date) configuration
10 * + Alarms (Alarm A and Alarm B) configuration
11 * + WakeUp Timer configuration
12 * + TimeStamp configuration
13 * + Tampers configuration
14 * + Backup Data Registers configuration
15 * + RTC Tamper and TimeStamp Pins Selection
16 * + Interrupts and flags management
17 *
18 ******************************************************************************
19 * @attention
20 *
21 * Copyright (c) 2018 STMicroelectronics.
22 * All rights reserved.
23 *
24 * This software is licensed under terms that can be found in the LICENSE file
25 * in the root directory of this software component.
26 * If no LICENSE file comes with this software, it is provided AS-IS.
27 *
28 ******************************************************************************
29 @verbatim
30 ===============================================================================
31 ##### RTC Operating Condition #####
32 ===============================================================================
33 [..] The real-time clock (RTC) and the RTC backup registers can be powered
34 from the VBAT voltage when the main VDD supply is powered off.
35 To retain the content of the RTC backup registers and supply the RTC
36 when VDD is turned off, VBAT pin can be connected to an optional
37 standby voltage supplied by a battery or by another source.
38
39 ##### Backup Domain Reset #####
40 ===============================================================================
41 [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
42 to their reset values.
43 A backup domain reset is generated when one of the following events occurs:
44 (+) Software reset, triggered by setting the BDRST bit in the
45 RCC Backup domain control register (RCC_BDCR).
46 (+) VDD or VBAT power on, if both supplies have previously been powered off.
47 (+) Tamper detection event resets all data backup registers.
48
49 ##### Backup Domain Access #####
50 =============================================================================
51 [..] After reset, the backup domain (RTC registers and RTC backup data registers)
52 is protected against possible unwanted write accesses.
53 [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
54 (+) Enable the Power Controller (PWR) APB1 interface clock using the
55 __HAL_RCC_PWR_CLK_ENABLE() function.
56 (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
57 (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
58 (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
59
60 [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
61 (+) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for
62 PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32)
63 (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
64
65 ##### How to use RTC Driver #####
66 ===================================================================
67 [..]
68 (+) Enable the RTC domain access (see description in the section above).
69 (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
70 format using the HAL_RTC_Init() function.
71
72 *** Time and Date configuration ***
73 ===================================
74 [..]
75 (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
76 and HAL_RTC_SetDate() functions.
77 (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
78
79 *** Alarm configuration ***
80 ===========================
81 [..]
82 (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
83 You can also configure the RTC Alarm with interrupt mode using the
84 HAL_RTC_SetAlarm_IT() function.
85 (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
86
87 ##### RTC and low power modes #####
88 ==================================================================
89 [..] The MCU can be woken up from a low power mode by an RTC alternate
90 function.
91 [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
92 RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
93 These RTC alternate functions can wake up the system from the Stop and
94 Standby low power modes.
95 [..] The system can also wake up from low power modes without depending
96 on an external interrupt (Auto-wakeup mode), by using the RTC alarm
97 or the RTC wakeup events.
98 [..] The RTC provides a programmable time base for waking up from the
99 Stop or Standby mode at regular intervals.
100 Wakeup from STOP and STANDBY modes is possible only when the RTC clock source
101 is LSE or LSI.
102
103 *** Callback registration ***
104 =============================================
105
106 [..]
107 The compilation define USE_RTC_REGISTER_CALLBACKS when set to 1
108 allows the user to configure dynamically the driver callbacks.
109 Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
110
111 [..]
112 Function HAL_RTC_RegisterCallback() allows to register following callbacks:
113 (+) AlarmAEventCallback : RTC Alarm A Event callback.
114 (+) AlarmBEventCallback : RTC Alarm B Event callback.
115 (+) TimeStampEventCallback : RTC TimeStamp Event callback.
116 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
117 (+) Tamper1EventCallback : RTC Tamper1Event callback.
118 (+) Tamper2EventCallback : RTC Tamper2Event callback.
119 (+) Tamper3EventCallback : RTC Tamper3Event callback. (*)
120 (+) InternalTamper3EventCallback : RTC Internal Tamper 3 Event callback.
121 (+) InternalTamper4EventCallback : RTC Internal Tamper 4 Event callback.
122 (+) InternalTamper5EventCallback : RTC Internal Tamper 5 Event callback.
123 (+) InternalTamper6EventCallback : RTC Internal Tamper 6 Event callback.
124 (+) MspInitCallback : RTC MspInit.
125 (+) MspDeInitCallback : RTC MspDeInit.
126 This function takes as parameters the HAL peripheral handle, the Callback ID
127 and a pointer to the user callback function.
128
129 Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
130 weak function.
131 HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
132 and the Callback ID.
133 This function allows to reset following callbacks:
134 (+) AlarmAEventCallback : RTC Alarm A Event callback.
135 (+) AlarmBEventCallback : RTC Alarm B Event callback.
136 (+) TimeStampEventCallback : RTC TimeStamp Event callback.
137 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
138 (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
139 (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
140 (+) Tamper3EventCallback : RTC Tamper 3 Event callback.(*)
141 (+) InternalTamper3EventCallback : RTC Internal Tamper 3 Event callback.
142 (+) InternalTamper4EventCallback : RTC Internal Tamper 4 Event callback.
143 (+) InternalTamper5EventCallback : RTC Internal Tamper 5 Event callback.
144 (+) InternalTamper6EventCallback : RTC Internal Tamper 6 Event callback.
145 (+) MspInitCallback : RTC MspInit callback.
146 (+) MspDeInitCallback : RTC MspDeInit callback.
147
148 [..]
149 By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
150 all callbacks are set to the corresponding weak functions :
151 examples AlarmAEventCallback(), WakeUpTimerEventCallback().
152 Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
153 in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these callbacks are null
154 (not registered beforehand).
155 If not, MspInit or MspDeInit are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
156 keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
157
158 [..]
159 Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
160 Exception done MspInit/MspDeInit that can be registered/unregistered
161 in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
162 thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
163 In that case first register the MspInit/MspDeInit user callbacks
164 using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
165 or HAL_RTC_Init() function.
166
167 [..]
168 When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
169 not defined, the callback registration feature is not available and all callbacks
170 are set to the corresponding weak functions.
171
172 @endverbatim
173
174 ******************************************************************************
175 */
176
177 /* Includes ------------------------------------------------------------------*/
178 #include "stm32g0xx_hal.h"
179
180 /** @addtogroup STM32G0xx_HAL_Driver
181 * @{
182 */
183
184
185 /** @addtogroup RTC
186 * @brief RTC HAL module driver
187 * @{
188 */
189
190 #ifdef HAL_RTC_MODULE_ENABLED
191
192 /* Private typedef -----------------------------------------------------------*/
193 /* Private define ------------------------------------------------------------*/
194 /* Private macro -------------------------------------------------------------*/
195 /* Private variables ---------------------------------------------------------*/
196 /* Private function prototypes -----------------------------------------------*/
197 /* Exported functions --------------------------------------------------------*/
198
199 /** @addtogroup RTC_Exported_Functions
200 * @{
201 */
202
203 /** @addtogroup RTC_Exported_Functions_Group1
204 * @brief Initialization and Configuration functions
205 *
206 @verbatim
207 ===============================================================================
208 ##### Initialization and de-initialization functions #####
209 ===============================================================================
210 [..] This section provides functions allowing to initialize and configure the
211 RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
212 RTC registers Write protection, enter and exit the RTC initialization mode,
213 RTC registers synchronization check and reference clock detection enable.
214 (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
215 It is split into 2 programmable prescalers to minimize power consumption.
216 (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
217 (++) When both prescalers are used, it is recommended to configure the
218 asynchronous prescaler to a high value to minimize power consumption.
219 (#) All RTC registers are Write protected. Writing to the RTC registers
220 is enabled by writing a key into the Write Protection register, RTC_WPR.
221 (#) To configure the RTC Calendar, user application should enter
222 initialization mode. In this mode, the calendar counter is stopped
223 and its value can be updated. When the initialization sequence is
224 complete, the calendar restarts counting after 4 RTCCLK cycles.
225 (#) To read the calendar through the shadow registers after Calendar
226 initialization, calendar update or after wakeup from low power modes
227 the software must first clear the RSF flag. The software must then
228 wait until it is set again before reading the calendar, which means
229 that the calendar registers have been correctly copied into the
230 RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
231 implements the above software sequence (RSF clear and RSF check).
232
233 @endverbatim
234 * @{
235 */
236
237 /**
238 * @brief Initialize the RTC peripheral
239 * @param hrtc RTC handle
240 * @retval HAL status
241 */
HAL_RTC_Init(RTC_HandleTypeDef * hrtc)242 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
243 {
244 HAL_StatusTypeDef status = HAL_ERROR;
245
246 /* Check the RTC peripheral state */
247 if(hrtc != NULL)
248 {
249 /* Check the parameters */
250 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
251 assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
252 assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
253 assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
254 assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
255 assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
256 assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
257 assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
258 assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp));
259
260 if(hrtc->State == HAL_RTC_STATE_RESET)
261 {
262 /* Allocate lock resource and initialize it */
263 hrtc->Lock = HAL_UNLOCKED;
264
265 /* Process TAMP peripheral offset from RTC one */
266 hrtc->TampOffset = (TAMP_BASE - RTC_BASE);
267
268 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
269 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
270 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
271 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
272 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
273 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
274 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
275 #if defined(TAMP_CR1_TAMP3E)
276 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
277 #endif /* TAMP_CR1_TAMP3E */
278 hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback; /*!< Legacy weak InternalTamper3EventCallback */
279 hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback; /*!< Legacy weak InternalTamper4EventCallback */
280 hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback; /*!< Legacy weak InternalTamper5EventCallback */
281 hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback; /*!< Legacy weak InternalTamper6EventCallback */
282
283 if(hrtc->MspInitCallback == NULL)
284 {
285 hrtc->MspInitCallback = HAL_RTC_MspInit;
286 }
287
288 /* Init the low level hardware */
289 hrtc->MspInitCallback(hrtc);
290
291 if(hrtc->MspDeInitCallback == NULL)
292 {
293 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
294 }
295 #else
296 /* Initialize RTC MSP */
297 HAL_RTC_MspInit(hrtc);
298 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
299 }
300
301 /* Set RTC state */
302 hrtc->State = HAL_RTC_STATE_BUSY;
303
304 /* Check whether the calendar needs to be initialized */
305 if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U)
306 {
307 /* Disable the write protection for RTC registers */
308 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
309
310 /* Enter Initialization mode */
311 status = RTC_EnterInitMode(hrtc);
312
313 if(status == HAL_OK)
314 {
315 /* Clear RTC_CR FMT, OSEL and POL Bits */
316 hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE);
317 /* Set RTC_CR register */
318 hrtc->Instance->CR |= (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
319
320 /* Configure the RTC PRER */
321 hrtc->Instance->PRER = (hrtc->Init.SynchPrediv);
322 hrtc->Instance->PRER |= (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos);
323
324 /* Exit Initialization mode */
325 status = RTC_ExitInitMode(hrtc);
326 }
327
328 if (status == HAL_OK)
329 {
330 hrtc->Instance->CR &= ~(RTC_CR_TAMPALRM_PU |RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN);
331 hrtc->Instance->CR |= (hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
332 }
333
334 /* Enable the write protection for RTC registers */
335 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
336 }
337 else
338 {
339 /* The calendar is already initialized */
340 status = HAL_OK;
341 }
342
343 if (status == HAL_OK)
344 {
345 hrtc->State = HAL_RTC_STATE_READY;
346 }
347 }
348
349 return status;
350 }
351
352 /**
353 * @brief DeInitialize the RTC peripheral.
354 * @note This function does not reset the RTC Backup Data registers.
355 * @param hrtc RTC handle
356 * @retval HAL status
357 */
HAL_RTC_DeInit(RTC_HandleTypeDef * hrtc)358 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
359 {
360 HAL_StatusTypeDef status;
361 uint32_t tickstart;
362
363 /* Check the parameters */
364 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
365
366 /* Set RTC state */
367 hrtc->State = HAL_RTC_STATE_BUSY;
368
369 /* Disable the write protection for RTC registers */
370 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
371
372 /* Enter Initialization mode */
373 status = RTC_EnterInitMode(hrtc);
374 if(status == HAL_OK)
375 {
376 /* Reset TR, DR and CR registers */
377 hrtc->Instance->TR = 0x00000000U;
378 hrtc->Instance->DR = ((uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0));
379 /* Reset All CR bits except CR[2:0] */
380 hrtc->Instance->CR &= RTC_CR_WUCKSEL;
381
382 tickstart = HAL_GetTick();
383
384 /* Wait till WUTWF flag is set and if Time out is reached exit */
385 while(((hrtc->Instance->ICSR) & RTC_ICSR_WUTWF) == 0U)
386 {
387 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
388 {
389 /* Enable the write protection for RTC registers */
390 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
391
392 /* Set RTC state */
393 hrtc->State = HAL_RTC_STATE_TIMEOUT;
394
395 return HAL_TIMEOUT;
396 }
397 }
398
399 /* Reset all RTC CR register bits */
400 hrtc->Instance->CR &= 0x00000000U;
401 hrtc->Instance->WUTR = RTC_WUTR_WUT;
402 hrtc->Instance->PRER = ((uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU));
403 hrtc->Instance->ALRMAR = 0x00000000U;
404 hrtc->Instance->ALRMBR = 0x00000000U;
405 hrtc->Instance->SHIFTR = 0x00000000U;
406 hrtc->Instance->CALR = 0x00000000U;
407 hrtc->Instance->ALRMASSR = 0x00000000U;
408 hrtc->Instance->ALRMBSSR = 0x00000000U;
409
410 /* Exit initialization mode */
411 status = RTC_ExitInitMode(hrtc);
412 }
413
414 /* Enable the write protection for RTC registers */
415 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
416
417 if (status == HAL_OK)
418 {
419 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
420 if(hrtc->MspDeInitCallback == NULL)
421 {
422 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
423 }
424
425 /* DeInit the low level hardware: CLOCK, NVIC.*/
426 hrtc->MspDeInitCallback(hrtc);
427
428 #else
429 /* De-Initialize RTC MSP */
430 HAL_RTC_MspDeInit(hrtc);
431 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
432
433 hrtc->State = HAL_RTC_STATE_RESET;
434 }
435
436 /* Release Lock */
437 __HAL_UNLOCK(hrtc);
438
439 return status;
440 }
441
442 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
443 /**
444 * @brief Register a User RTC Callback
445 * To be used instead of the weak predefined callback
446 * @param hrtc RTC handle
447 * @param CallbackID ID of the callback to be registered
448 * This parameter can be one of the following values:
449 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
450 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
451 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID
452 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID
453 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
454 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
455 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID (*)
456 * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
457 * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID
458 * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
459 * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID
460 * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
461 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
462 * @param pCallback pointer to the Callback function
463 * @retval HAL status
464 */
HAL_RTC_RegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID,pRTC_CallbackTypeDef pCallback)465 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
466 {
467 HAL_StatusTypeDef status = HAL_OK;
468
469 if(pCallback == NULL)
470 {
471 return HAL_ERROR;
472 }
473
474 /* Process locked */
475 __HAL_LOCK(hrtc);
476
477 if(HAL_RTC_STATE_READY == hrtc->State)
478 {
479 switch (CallbackID)
480 {
481 case HAL_RTC_ALARM_A_EVENT_CB_ID :
482 hrtc->AlarmAEventCallback = pCallback;
483 break;
484
485 case HAL_RTC_ALARM_B_EVENT_CB_ID :
486 hrtc->AlarmBEventCallback = pCallback;
487 break;
488
489 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
490 hrtc->TimeStampEventCallback = pCallback;
491 break;
492
493 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
494 hrtc->WakeUpTimerEventCallback = pCallback;
495 break;
496
497 case HAL_RTC_TAMPER1_EVENT_CB_ID :
498 hrtc->Tamper1EventCallback = pCallback;
499 break;
500
501 case HAL_RTC_TAMPER2_EVENT_CB_ID :
502 hrtc->Tamper2EventCallback = pCallback;
503 break;
504
505 #if defined(TAMP_CR1_TAMP3E)
506 case HAL_RTC_TAMPER3_EVENT_CB_ID :
507 hrtc->Tamper3EventCallback = pCallback;
508 break;
509 #endif /* TAMP_CR1_TAMP3E */
510
511 case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
512 hrtc->InternalTamper3EventCallback = pCallback;
513 break;
514
515 case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID :
516 hrtc->InternalTamper4EventCallback = pCallback;
517 break;
518
519 case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
520 hrtc->InternalTamper5EventCallback = pCallback;
521 break;
522
523 case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
524 hrtc->InternalTamper6EventCallback = pCallback;
525 break;
526
527 case HAL_RTC_MSPINIT_CB_ID :
528 hrtc->MspInitCallback = pCallback;
529 break;
530
531 case HAL_RTC_MSPDEINIT_CB_ID :
532 hrtc->MspDeInitCallback = pCallback;
533 break;
534
535 default :
536 /* Return error status */
537 status = HAL_ERROR;
538 break;
539 }
540 }
541 else if(HAL_RTC_STATE_RESET == hrtc->State)
542 {
543 switch (CallbackID)
544 {
545 case HAL_RTC_MSPINIT_CB_ID :
546 hrtc->MspInitCallback = pCallback;
547 break;
548
549 case HAL_RTC_MSPDEINIT_CB_ID :
550 hrtc->MspDeInitCallback = pCallback;
551 break;
552
553 default :
554 /* Return error status */
555 status = HAL_ERROR;
556 break;
557 }
558 }
559 else
560 {
561 /* Return error status */
562 status = HAL_ERROR;
563 }
564
565 /* Release Lock */
566 __HAL_UNLOCK(hrtc);
567
568 return status;
569 }
570
571 /**
572 * @brief Unregister an RTC Callback
573 * RTC callback is redirected to the weak predefined callback
574 * @param hrtc RTC handle
575 * @param CallbackID ID of the callback to be unregistered
576 * This parameter can be one of the following values:
577 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
578 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
579 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID
580 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID
581 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
582 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
583 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID (*)
584 * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
585 * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID
586 * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
587 * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID
588 * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
589 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
590 * @retval HAL status
591 */
HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID)592 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
593 {
594 HAL_StatusTypeDef status = HAL_OK;
595
596 /* Process locked */
597 __HAL_LOCK(hrtc);
598
599 if(HAL_RTC_STATE_READY == hrtc->State)
600 {
601 switch (CallbackID)
602 {
603 case HAL_RTC_ALARM_A_EVENT_CB_ID :
604 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
605 break;
606
607 case HAL_RTC_ALARM_B_EVENT_CB_ID :
608 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
609 break;
610
611 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
612 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
613 break;
614
615 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
616 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
617 break;
618
619 case HAL_RTC_TAMPER1_EVENT_CB_ID :
620 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
621 break;
622
623 case HAL_RTC_TAMPER2_EVENT_CB_ID :
624 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
625 break;
626
627 #if defined(TAMP_CR1_TAMP3E)
628 case HAL_RTC_TAMPER3_EVENT_CB_ID :
629 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
630 break;
631 #endif /* TAMP_CR1_TAMP3E */
632
633 case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
634 hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback; /* Legacy weak InternalTamper3EventCallback */
635 break;
636
637 case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID :
638 hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback; /* Legacy weak InternalTamper4EventCallback */
639 break;
640
641 case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
642 hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback; /* Legacy weak InternalTamper5EventCallback */
643 break;
644
645 case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
646 hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback; /* Legacy weak InternalTamper6EventCallback */
647 break;
648
649
650 case HAL_RTC_MSPINIT_CB_ID :
651 hrtc->MspInitCallback = HAL_RTC_MspInit;
652 break;
653
654 case HAL_RTC_MSPDEINIT_CB_ID :
655 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
656 break;
657
658 default :
659 /* Return error status */
660 status = HAL_ERROR;
661 break;
662 }
663 }
664 else if(HAL_RTC_STATE_RESET == hrtc->State)
665 {
666 switch (CallbackID)
667 {
668 case HAL_RTC_MSPINIT_CB_ID :
669 hrtc->MspInitCallback = HAL_RTC_MspInit;
670 break;
671
672 case HAL_RTC_MSPDEINIT_CB_ID :
673 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
674 break;
675
676 default :
677 /* Return error status */
678 status = HAL_ERROR;
679 break;
680 }
681 }
682 else
683 {
684 /* Return error status */
685 status = HAL_ERROR;
686 }
687
688 /* Release Lock */
689 __HAL_UNLOCK(hrtc);
690
691 return status;
692 }
693 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
694
695 /**
696 * @brief Initialize the RTC MSP.
697 * @param hrtc RTC handle
698 * @retval None
699 */
HAL_RTC_MspInit(RTC_HandleTypeDef * hrtc)700 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef* hrtc)
701 {
702 /* Prevent unused argument(s) compilation warning */
703 UNUSED(hrtc);
704
705 /* NOTE : This function should not be modified, when the callback is needed,
706 the HAL_RTC_MspInit could be implemented in the user file
707 */
708 }
709
710 /**
711 * @brief DeInitialize the RTC MSP.
712 * @param hrtc RTC handle
713 * @retval None
714 */
HAL_RTC_MspDeInit(RTC_HandleTypeDef * hrtc)715 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef* hrtc)
716 {
717 /* Prevent unused argument(s) compilation warning */
718 UNUSED(hrtc);
719
720 /* NOTE : This function should not be modified, when the callback is needed,
721 the HAL_RTC_MspDeInit could be implemented in the user file
722 */
723 }
724
725 /**
726 * @}
727 */
728
729 /** @addtogroup RTC_Exported_Functions_Group2
730 * @brief RTC Time and Date functions
731 *
732 @verbatim
733 ===============================================================================
734 ##### RTC Time and Date functions #####
735 ===============================================================================
736
737 [..] This section provides functions allowing to configure Time and Date features
738
739 @endverbatim
740 * @{
741 */
742
743 /**
744 * @brief Set RTC current time.
745 * @param hrtc RTC handle
746 * @param sTime Pointer to Time structure
747 * @param Format Specifies the format of the entered parameters.
748 * This parameter can be one of the following values:
749 * @arg RTC_FORMAT_BIN: Binary data format
750 * @arg RTC_FORMAT_BCD: BCD data format
751 * @retval HAL status
752 */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)753 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
754 {
755 uint32_t tmpreg;
756 HAL_StatusTypeDef status;
757
758 /* Check the parameters */
759 assert_param(IS_RTC_FORMAT(Format));
760 assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
761 assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
762
763 /* Process Locked */
764 __HAL_LOCK(hrtc);
765
766 hrtc->State = HAL_RTC_STATE_BUSY;
767
768 /* Disable the write protection for RTC registers */
769 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
770
771 /* Enter Initialization mode */
772 status = RTC_EnterInitMode(hrtc);
773 if(status == HAL_OK)
774 {
775 if(Format == RTC_FORMAT_BIN)
776 {
777 if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
778 {
779 assert_param(IS_RTC_HOUR12(sTime->Hours));
780 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
781 }
782 else
783 {
784 sTime->TimeFormat = 0x00U;
785 assert_param(IS_RTC_HOUR24(sTime->Hours));
786 }
787 assert_param(IS_RTC_MINUTES(sTime->Minutes));
788 assert_param(IS_RTC_SECONDS(sTime->Seconds));
789
790 tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
791 ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
792 ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
793 (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
794 }
795 else
796 {
797 if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
798 {
799 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
800 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
801 }
802 else
803 {
804 sTime->TimeFormat = 0x00U;
805 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
806 }
807 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
808 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
809 tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
810 ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
811 ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
812 ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
813 }
814
815 /* Set the RTC_TR register */
816 hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
817
818 /* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
819 hrtc->Instance->CR &= ((uint32_t)~RTC_CR_BKP);
820
821 /* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
822 hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
823
824 /* Exit Initialization mode */
825 status = RTC_ExitInitMode(hrtc);
826 }
827
828 /* Enable the write protection for RTC registers */
829 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
830
831 if (status == HAL_OK)
832 {
833 hrtc->State = HAL_RTC_STATE_READY;
834 }
835
836 /* Process Unlocked */
837 __HAL_UNLOCK(hrtc);
838
839 return status;
840 }
841
842 /**
843 * @brief Get RTC current time.
844 * @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
845 * value in second fraction ratio with time unit following generic formula:
846 * Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
847 * This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
848 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
849 * in the higher-order calendar shadow registers to ensure consistency between the time and date values.
850 * Reading RTC current time locks the values in calendar shadow registers until Current date is read
851 * to ensure consistency between the time and date values.
852 * @param hrtc RTC handle
853 * @param sTime Pointer to Time structure with Hours, Minutes and Seconds fields returned
854 * with input format (BIN or BCD), also SubSeconds field returning the
855 * RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
856 * factor to be used for second fraction ratio computation.
857 * @param Format Specifies the format of the entered parameters.
858 * This parameter can be one of the following values:
859 * @arg RTC_FORMAT_BIN: Binary data format
860 * @arg RTC_FORMAT_BCD: BCD data format
861 * @retval HAL status
862 */
HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)863 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
864 {
865 uint32_t tmpreg;
866
867 /* Check the parameters */
868 assert_param(IS_RTC_FORMAT(Format));
869
870 /* Get subseconds structure field from the corresponding register*/
871 sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
872
873 /* Get SecondFraction structure field from the corresponding register field*/
874 sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);
875
876 /* Get the TR register */
877 tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
878
879 /* Fill the structure fields with the read parameters */
880 sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
881 sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
882 sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
883 sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
884
885 /* Check the input parameters format */
886 if(Format == RTC_FORMAT_BIN)
887 {
888 /* Convert the time structure parameters to Binary format */
889 sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
890 sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
891 sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
892 }
893
894 return HAL_OK;
895 }
896
897 /**
898 * @brief Set RTC current date.
899 * @param hrtc RTC handle
900 * @param sDate Pointer to date structure
901 * @param Format specifies the format of the entered parameters.
902 * This parameter can be one of the following values:
903 * @arg RTC_FORMAT_BIN: Binary data format
904 * @arg RTC_FORMAT_BCD: BCD data format
905 * @retval HAL status
906 */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)907 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
908 {
909 uint32_t datetmpreg;
910 HAL_StatusTypeDef status;
911
912 /* Check the parameters */
913 assert_param(IS_RTC_FORMAT(Format));
914
915 /* Process Locked */
916 __HAL_LOCK(hrtc);
917
918 hrtc->State = HAL_RTC_STATE_BUSY;
919
920 if((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
921 {
922 sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
923 }
924
925 assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
926
927 if(Format == RTC_FORMAT_BIN)
928 {
929 assert_param(IS_RTC_YEAR(sDate->Year));
930 assert_param(IS_RTC_MONTH(sDate->Month));
931 assert_param(IS_RTC_DATE(sDate->Date));
932
933 datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
934 ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
935 ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
936 ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
937 }
938 else
939 {
940 assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
941 assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
942 assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
943
944 datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
945 (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
946 (((uint32_t)sDate->Date) << RTC_DR_DU_Pos)| \
947 (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
948 }
949
950 /* Disable the write protection for RTC registers */
951 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
952
953 /* Enter Initialization mode */
954 status = RTC_EnterInitMode(hrtc);
955 if(status == HAL_OK)
956 {
957 /* Set the RTC_DR register */
958 hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
959
960 /* Exit Initialization mode */
961 status = RTC_ExitInitMode(hrtc);
962 }
963
964 /* Enable the write protection for RTC registers */
965 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
966
967 if (status == HAL_OK)
968 {
969 hrtc->State = HAL_RTC_STATE_READY;
970 }
971
972 /* Process Unlocked */
973 __HAL_UNLOCK(hrtc);
974
975 return status;
976 }
977
978 /**
979 * @brief Get RTC current date.
980 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
981 * in the higher-order calendar shadow registers to ensure consistency between the time and date values.
982 * Reading RTC current time locks the values in calendar shadow registers until Current date is read.
983 * @param hrtc RTC handle
984 * @param sDate Pointer to Date structure
985 * @param Format Specifies the format of the entered parameters.
986 * This parameter can be one of the following values:
987 * @arg RTC_FORMAT_BIN: Binary data format
988 * @arg RTC_FORMAT_BCD: BCD data format
989 * @retval HAL status
990 */
HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)991 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
992 {
993 uint32_t datetmpreg;
994
995 /* Check the parameters */
996 assert_param(IS_RTC_FORMAT(Format));
997
998 /* Get the DR register */
999 datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
1000
1001 /* Fill the structure fields with the read parameters */
1002 sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
1003 sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
1004 sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
1005 sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
1006
1007 /* Check the input parameters format */
1008 if(Format == RTC_FORMAT_BIN)
1009 {
1010 /* Convert the date structure parameters to Binary format */
1011 sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
1012 sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
1013 sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
1014 }
1015 return HAL_OK;
1016 }
1017
1018 /**
1019 * @}
1020 */
1021
1022 /** @addtogroup RTC_Exported_Functions_Group3
1023 * @brief RTC Alarm functions
1024 *
1025 @verbatim
1026 ===============================================================================
1027 ##### RTC Alarm functions #####
1028 ===============================================================================
1029
1030 [..] This section provides functions allowing to configure Alarm feature
1031
1032 @endverbatim
1033 * @{
1034 */
1035 /**
1036 * @brief Set the specified RTC Alarm.
1037 * @param hrtc RTC handle
1038 * @param sAlarm Pointer to Alarm structure
1039 * @param Format Specifies the format of the entered parameters.
1040 * This parameter can be one of the following values:
1041 * @arg RTC_FORMAT_BIN: Binary data format
1042 * @arg RTC_FORMAT_BCD: BCD data format
1043 * @retval HAL status
1044 */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1045 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1046 {
1047 uint32_t tickstart;
1048 uint32_t tmpreg;
1049 uint32_t subsecondtmpreg;
1050
1051 /* Check the parameters */
1052 assert_param(IS_RTC_FORMAT(Format));
1053 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1054 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1055 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1056 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1057 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1058
1059 /* Process Locked */
1060 __HAL_LOCK(hrtc);
1061
1062 hrtc->State = HAL_RTC_STATE_BUSY;
1063
1064 if(Format == RTC_FORMAT_BIN)
1065 {
1066 if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1067 {
1068 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1069 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1070 }
1071 else
1072 {
1073 sAlarm->AlarmTime.TimeFormat = 0x00U;
1074 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1075 }
1076 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1077 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1078
1079 if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1080 {
1081 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1082 }
1083 else
1084 {
1085 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1086 }
1087
1088 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1089 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1090 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1091 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1092 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1093 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1094 ((uint32_t)sAlarm->AlarmMask));
1095 }
1096 else
1097 {
1098 if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1099 {
1100 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1101 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1102 }
1103 else
1104 {
1105 sAlarm->AlarmTime.TimeFormat = 0x00U;
1106 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1107 }
1108
1109 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1110 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1111
1112 if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1113 {
1114 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1115 }
1116 else
1117 {
1118 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1119 }
1120
1121 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1122 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1123 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1124 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1125 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1126 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1127 ((uint32_t)sAlarm->AlarmMask));
1128 }
1129
1130 /* Configure the Alarm A or Alarm B Sub Second registers */
1131 subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
1132
1133 /* Disable the write protection for RTC registers */
1134 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1135
1136 /* Configure the Alarm register */
1137 if(sAlarm->Alarm == RTC_ALARM_A)
1138 {
1139 /* Disable the Alarm A interrupt */
1140 __HAL_RTC_ALARMA_DISABLE(hrtc);
1141
1142 /* In case of interrupt mode is used, the interrupt source must disabled */
1143 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1144
1145 tickstart = HAL_GetTick();
1146 /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
1147 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1148 {
1149 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1150 {
1151 /* Enable the write protection for RTC registers */
1152 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1153
1154 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1155
1156 /* Process Unlocked */
1157 __HAL_UNLOCK(hrtc);
1158
1159 return HAL_TIMEOUT;
1160 }
1161 }
1162
1163 hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1164 /* Configure the Alarm A Sub Second register */
1165 hrtc->Instance->ALRMASSR = subsecondtmpreg;
1166 /* Configure the Alarm state: Enable Alarm */
1167 __HAL_RTC_ALARMA_ENABLE(hrtc);
1168 }
1169 else
1170 {
1171 /* Disable the Alarm B interrupt */
1172 __HAL_RTC_ALARMB_DISABLE(hrtc);
1173
1174 /* In case of interrupt mode is used, the interrupt source must disabled */
1175 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
1176
1177 tickstart = HAL_GetTick();
1178 /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
1179 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1180 {
1181 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1182 {
1183 /* Enable the write protection for RTC registers */
1184 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1185
1186 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1187
1188 /* Process Unlocked */
1189 __HAL_UNLOCK(hrtc);
1190
1191 return HAL_TIMEOUT;
1192 }
1193 }
1194
1195 hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1196 /* Configure the Alarm B Sub Second register */
1197 hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1198 /* Configure the Alarm state: Enable Alarm */
1199 __HAL_RTC_ALARMB_ENABLE(hrtc);
1200 }
1201
1202 /* Enable the write protection for RTC registers */
1203 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1204
1205 /* Change RTC state */
1206 hrtc->State = HAL_RTC_STATE_READY;
1207
1208 /* Process Unlocked */
1209 __HAL_UNLOCK(hrtc);
1210
1211 return HAL_OK;
1212 }
1213
1214 /**
1215 * @brief Set the specified RTC Alarm with Interrupt.
1216 * @note The Alarm register can only be written when the corresponding Alarm
1217 * is disabled (Use the HAL_RTC_DeactivateAlarm()).
1218 * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1219 * @param hrtc RTC handle
1220 * @param sAlarm Pointer to Alarm structure
1221 * @param Format Specifies the format of the entered parameters.
1222 * This parameter can be one of the following values:
1223 * @arg RTC_FORMAT_BIN: Binary data format
1224 * @arg RTC_FORMAT_BCD: BCD data format
1225 * @retval HAL status
1226 */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1227 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1228 {
1229 uint32_t tickstart;
1230 uint32_t tmpreg;
1231 uint32_t subsecondtmpreg;
1232
1233 /* Check the parameters */
1234 assert_param(IS_RTC_FORMAT(Format));
1235 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1236 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1237 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1238 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1239 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1240
1241 /* Process Locked */
1242 __HAL_LOCK(hrtc);
1243
1244 hrtc->State = HAL_RTC_STATE_BUSY;
1245
1246 if(Format == RTC_FORMAT_BIN)
1247 {
1248 if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1249 {
1250 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1251 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1252 }
1253 else
1254 {
1255 sAlarm->AlarmTime.TimeFormat = 0x00U;
1256 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1257 }
1258 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1259 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1260
1261 if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1262 {
1263 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1264 }
1265 else
1266 {
1267 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1268 }
1269 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1270 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1271 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1272 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1273 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1274 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1275 ((uint32_t)sAlarm->AlarmMask));
1276 }
1277 else
1278 {
1279 if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1280 {
1281 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1282 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1283 }
1284 else
1285 {
1286 sAlarm->AlarmTime.TimeFormat = 0x00U;
1287 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1288 }
1289
1290 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1291 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1292
1293 if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1294 {
1295 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1296 }
1297 else
1298 {
1299 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1300 }
1301 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1302 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1303 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1304 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1305 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1306 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1307 ((uint32_t)sAlarm->AlarmMask));
1308 }
1309 /* Configure the Alarm A or Alarm B Sub Second registers */
1310 subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
1311
1312 /* Disable the write protection for RTC registers */
1313 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1314
1315 /* Configure the Alarm register */
1316 if(sAlarm->Alarm == RTC_ALARM_A)
1317 {
1318 /* Disable the Alarm A interrupt */
1319 __HAL_RTC_ALARMA_DISABLE(hrtc);
1320
1321 /* Clear flag alarm A */
1322 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1323
1324 tickstart = HAL_GetTick();
1325 /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
1326 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1327 {
1328 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1329 {
1330 /* Enable the write protection for RTC registers */
1331 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1332
1333 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1334
1335 /* Process Unlocked */
1336 __HAL_UNLOCK(hrtc);
1337
1338 return HAL_TIMEOUT;
1339 }
1340 }
1341
1342 hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1343 /* Configure the Alarm A Sub Second register */
1344 hrtc->Instance->ALRMASSR = subsecondtmpreg;
1345 /* Configure the Alarm state: Enable Alarm */
1346 __HAL_RTC_ALARMA_ENABLE(hrtc);
1347 /* Configure the Alarm interrupt */
1348 __HAL_RTC_ALARM_ENABLE_IT(hrtc,RTC_IT_ALRA);
1349 }
1350 else
1351 {
1352 /* Disable the Alarm B interrupt */
1353 __HAL_RTC_ALARMB_DISABLE(hrtc);
1354
1355 /* Clear flag alarm B */
1356 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_CLEAR_ALRBF);
1357
1358 tickstart = HAL_GetTick();
1359 /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
1360 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1361 {
1362 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1363 {
1364 /* Enable the write protection for RTC registers */
1365 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1366
1367 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1368
1369 /* Process Unlocked */
1370 __HAL_UNLOCK(hrtc);
1371
1372 return HAL_TIMEOUT;
1373 }
1374 }
1375
1376 hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1377 /* Configure the Alarm B Sub Second register */
1378 hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1379 /* Configure the Alarm state: Enable Alarm */
1380 __HAL_RTC_ALARMB_ENABLE(hrtc);
1381 /* Configure the Alarm interrupt */
1382 __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
1383 }
1384
1385 /* RTC Alarm Interrupt Configuration: EXTI configuration */
1386 __HAL_RTC_ALARM_EXTI_ENABLE_IT();
1387
1388 /* Enable the write protection for RTC registers */
1389 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1390
1391 hrtc->State = HAL_RTC_STATE_READY;
1392
1393 /* Process Unlocked */
1394 __HAL_UNLOCK(hrtc);
1395
1396 return HAL_OK;
1397 }
1398
1399 /**
1400 * @brief Deactivate the specified RTC Alarm.
1401 * @param hrtc RTC handle
1402 * @param Alarm Specifies the Alarm.
1403 * This parameter can be one of the following values:
1404 * @arg RTC_ALARM_A: AlarmA
1405 * @arg RTC_ALARM_B: AlarmB
1406 * @retval HAL status
1407 */
HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef * hrtc,uint32_t Alarm)1408 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
1409 {
1410 uint32_t tickstart;
1411
1412 /* Check the parameters */
1413 assert_param(IS_RTC_ALARM(Alarm));
1414
1415 /* Process Locked */
1416 __HAL_LOCK(hrtc);
1417
1418 hrtc->State = HAL_RTC_STATE_BUSY;
1419
1420 /* Disable the write protection for RTC registers */
1421 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1422
1423 if(Alarm == RTC_ALARM_A)
1424 {
1425 /* AlarmA */
1426 __HAL_RTC_ALARMA_DISABLE(hrtc);
1427
1428 /* In case of interrupt mode is used, the interrupt source must disabled */
1429 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1430
1431 tickstart = HAL_GetTick();
1432
1433 /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
1434 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1435 {
1436 if( (HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1437 {
1438 /* Enable the write protection for RTC registers */
1439 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1440
1441 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1442
1443 /* Process Unlocked */
1444 __HAL_UNLOCK(hrtc);
1445
1446 return HAL_TIMEOUT;
1447 }
1448 }
1449 }
1450 else
1451 {
1452 /* AlarmB */
1453 __HAL_RTC_ALARMB_DISABLE(hrtc);
1454
1455 /* In case of interrupt mode is used, the interrupt source must disabled */
1456 __HAL_RTC_ALARM_DISABLE_IT(hrtc,RTC_IT_ALRB);
1457
1458 tickstart = HAL_GetTick();
1459
1460 /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
1461 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1462 {
1463 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1464 {
1465 /* Enable the write protection for RTC registers */
1466 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1467
1468 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1469
1470 /* Process Unlocked */
1471 __HAL_UNLOCK(hrtc);
1472
1473 return HAL_TIMEOUT;
1474 }
1475 }
1476 }
1477 /* Enable the write protection for RTC registers */
1478 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1479
1480 hrtc->State = HAL_RTC_STATE_READY;
1481
1482 /* Process Unlocked */
1483 __HAL_UNLOCK(hrtc);
1484
1485 return HAL_OK;
1486 }
1487
1488 /**
1489 * @brief Get the RTC Alarm value and masks.
1490 * @param hrtc RTC handle
1491 * @param sAlarm Pointer to Date structure
1492 * @param Alarm Specifies the Alarm.
1493 * This parameter can be one of the following values:
1494 * @arg RTC_ALARM_A: AlarmA
1495 * @arg RTC_ALARM_B: AlarmB
1496 * @param Format Specifies the format of the entered parameters.
1497 * This parameter can be one of the following values:
1498 * @arg RTC_FORMAT_BIN: Binary data format
1499 * @arg RTC_FORMAT_BCD: BCD data format
1500 * @retval HAL status
1501 */
HAL_RTC_GetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Alarm,uint32_t Format)1502 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
1503 {
1504 uint32_t tmpreg;
1505 uint32_t subsecondtmpreg;
1506
1507 /* Check the parameters */
1508 assert_param(IS_RTC_FORMAT(Format));
1509 assert_param(IS_RTC_ALARM(Alarm));
1510
1511 if(Alarm == RTC_ALARM_A)
1512 {
1513 /* AlarmA */
1514 sAlarm->Alarm = RTC_ALARM_A;
1515
1516 tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
1517 subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR ) & RTC_ALRMASSR_SS);
1518
1519 /* Fill the structure with the read parameters */
1520 sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
1521 sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
1522 sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos);
1523 sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos);
1524 sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1525 sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
1526 sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
1527 sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
1528 }
1529 else
1530 {
1531 sAlarm->Alarm = RTC_ALARM_B;
1532
1533 tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
1534 subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
1535
1536 /* Fill the structure with the read parameters */
1537 sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos);
1538 sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos);
1539 sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos);
1540 sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos);
1541 sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1542 sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos);
1543 sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL);
1544 sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
1545 }
1546
1547 if(Format == RTC_FORMAT_BIN)
1548 {
1549 sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
1550 sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
1551 sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
1552 sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
1553 }
1554
1555 return HAL_OK;
1556 }
1557
1558 /**
1559 * @brief Handle Alarm interrupt request.
1560 * @param hrtc RTC handle
1561 * @retval None
1562 */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1563 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef* hrtc)
1564 {
1565 /* Get the AlarmA interrupt source enable status */
1566 if(__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U)
1567 {
1568 /* Get the pending status of the AlarmA Interrupt */
1569 if(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U)
1570 {
1571 /* Clear the AlarmA interrupt pending bit */
1572 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1573
1574 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1575 /* Call Compare Match registered Callback */
1576 hrtc->AlarmAEventCallback(hrtc);
1577 #else
1578 /* AlarmA callback */
1579 HAL_RTC_AlarmAEventCallback(hrtc);
1580 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1581 }
1582 }
1583
1584 /* Get the AlarmB interrupt source enable status */
1585 if(__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U)
1586 {
1587 /* Get the pending status of the AlarmB Interrupt */
1588 if(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U)
1589 {
1590 /* Clear the AlarmB interrupt pending bit */
1591 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_CLEAR_ALRBF);
1592
1593 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1594 /* Call Compare Match registered Callback */
1595 hrtc->AlarmBEventCallback(hrtc);
1596 #else
1597 /* AlarmB callback */
1598 HAL_RTCEx_AlarmBEventCallback(hrtc);
1599 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1600 }
1601 }
1602
1603 /* Change RTC state */
1604 hrtc->State = HAL_RTC_STATE_READY;
1605 }
1606
1607 /**
1608 * @brief Alarm A callback.
1609 * @param hrtc RTC handle
1610 * @retval None
1611 */
HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef * hrtc)1612 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
1613 {
1614 /* Prevent unused argument(s) compilation warning */
1615 UNUSED(hrtc);
1616
1617 /* NOTE : This function should not be modified, when the callback is needed,
1618 the HAL_RTC_AlarmAEventCallback could be implemented in the user file
1619 */
1620 }
1621
1622 /**
1623 * @brief Handle AlarmA Polling request.
1624 * @param hrtc RTC handle
1625 * @param Timeout Timeout duration
1626 * @retval HAL status
1627 */
HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef * hrtc,uint32_t Timeout)1628 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
1629 {
1630
1631 uint32_t tickstart = HAL_GetTick();
1632
1633 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U)
1634 {
1635 if(Timeout != HAL_MAX_DELAY)
1636 {
1637 if(((HAL_GetTick() - tickstart ) > Timeout)||(Timeout == 0U))
1638 {
1639 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1640 return HAL_TIMEOUT;
1641 }
1642 }
1643 }
1644
1645 /* Clear the Alarm interrupt pending bit */
1646 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1647
1648 /* Change RTC state */
1649 hrtc->State = HAL_RTC_STATE_READY;
1650
1651 return HAL_OK;
1652 }
1653
1654 /**
1655 * @}
1656 */
1657
1658 /** @addtogroup RTC_Exported_Functions_Group4
1659 * @brief Peripheral Control functions
1660 *
1661 @verbatim
1662 ===============================================================================
1663 ##### Peripheral Control functions #####
1664 ===============================================================================
1665 [..]
1666 This subsection provides functions allowing to
1667 (+) Wait for RTC Time and Date Synchronization
1668
1669 @endverbatim
1670 * @{
1671 */
1672
1673 /**
1674 * @brief Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
1675 * synchronized with RTC APB clock.
1676 * @note The RTC Resynchronization mode is write protected, use the
1677 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1678 * @note To read the calendar through the shadow registers after Calendar
1679 * initialization, calendar update or after wakeup from low power modes
1680 * the software must first clear the RSF flag.
1681 * The software must then wait until it is set again before reading
1682 * the calendar, which means that the calendar registers have been
1683 * correctly copied into the RTC_TR and RTC_DR shadow registers.
1684 * @param hrtc RTC handle
1685 * @retval HAL status
1686 */
HAL_RTC_WaitForSynchro(RTC_HandleTypeDef * hrtc)1687 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef* hrtc)
1688 {
1689 uint32_t tickstart;
1690
1691 /* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */
1692 hrtc->Instance->ICSR = ((uint32_t)(RTC_RSF_MASK & RTC_ICSR_RESERVED_MASK));
1693
1694 tickstart = HAL_GetTick();
1695
1696 /* Wait the registers to be synchronised */
1697 while((hrtc->Instance->ICSR & RTC_ICSR_RSF) == 0U)
1698 {
1699 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1700 {
1701 return HAL_TIMEOUT;
1702 }
1703 }
1704
1705 return HAL_OK;
1706 }
1707
1708 /**
1709 * @}
1710 */
1711
1712 /** @addtogroup RTC_Exported_Functions_Group5
1713 * @brief Peripheral State functions
1714 *
1715 @verbatim
1716 ===============================================================================
1717 ##### Peripheral State functions #####
1718 ===============================================================================
1719 [..]
1720 This subsection provides functions allowing to
1721 (+) Get RTC state
1722
1723 @endverbatim
1724 * @{
1725 */
1726 /**
1727 * @brief Return the RTC handle state.
1728 * @param hrtc RTC handle
1729 * @retval HAL state
1730 */
HAL_RTC_GetState(RTC_HandleTypeDef * hrtc)1731 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef* hrtc)
1732 {
1733 /* Return RTC handle state */
1734 return hrtc->State;
1735 }
1736
1737 /**
1738 * @}
1739 */
1740 /**
1741 * @}
1742 */
1743
1744 /** @addtogroup RTC_Private_Functions
1745 * @{
1746 */
1747 /**
1748 * @brief Enter the RTC Initialization mode.
1749 * @note The RTC Initialization mode is write protected, use the
1750 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1751 * @param hrtc RTC handle
1752 * @retval HAL status
1753 */
RTC_EnterInitMode(RTC_HandleTypeDef * hrtc)1754 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef* hrtc)
1755 {
1756 uint32_t tickstart;
1757 HAL_StatusTypeDef status = HAL_OK;
1758
1759 /* Check if the Initialization mode is set */
1760 if((hrtc->Instance->ICSR & RTC_ICSR_INITF) == 0U)
1761 {
1762 /* Set the Initialization mode */
1763 SET_BIT(hrtc->Instance->ICSR, RTC_ICSR_INIT);
1764
1765 tickstart = HAL_GetTick();
1766 /* Wait till RTC is in INIT state and if Time out is reached exit */
1767 while(((hrtc->Instance->ICSR & RTC_ICSR_INITF) == 0U) && (status != HAL_TIMEOUT))
1768 {
1769 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1770 {
1771 status = HAL_TIMEOUT;
1772 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1773 }
1774 }
1775 }
1776
1777 return status;
1778 }
1779
1780 /**
1781 * @brief Exit the RTC Initialization mode.
1782 * @param hrtc RTC handle
1783 * @retval HAL status
1784 */
RTC_ExitInitMode(RTC_HandleTypeDef * hrtc)1785 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
1786 {
1787 HAL_StatusTypeDef status = HAL_OK;
1788
1789 /* Exit Initialization mode */
1790 CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
1791
1792 /* If CR_BYPSHAD bit = 0, wait for synchro */
1793 if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
1794 {
1795 if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
1796 {
1797 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1798 status = HAL_TIMEOUT;
1799 }
1800 }
1801 else /* WA 2.7.1 Calendar initialization may fail in case of consecutive INIT mode entry.
1802 Please look at STM32G0 Errata sheet on the internet for details. */
1803 {
1804 /* Clear BYPSHAD bit */
1805 CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD);
1806 if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
1807 {
1808 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1809 status = HAL_TIMEOUT;
1810 }
1811 /* Restore BYPSHAD bit */
1812 SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
1813 }
1814
1815 return status;
1816 }
1817 /**
1818 * @brief Convert a 2 digit decimal to BCD format.
1819 * @param Value Byte to be converted
1820 * @retval Converted byte
1821 */
RTC_ByteToBcd2(uint8_t Value)1822 uint8_t RTC_ByteToBcd2(uint8_t Value)
1823 {
1824 uint32_t bcdhigh = 0U;
1825 uint8_t Param = Value;
1826
1827 while(Param >= 10U)
1828 {
1829 bcdhigh++;
1830 Param -= 10U;
1831 }
1832
1833 return ((uint8_t)(bcdhigh << 4U) | Param);
1834 }
1835
1836 /**
1837 * @brief Convert from 2 digit BCD to Binary.
1838 * @param Value BCD value to be converted
1839 * @retval Converted word
1840 */
RTC_Bcd2ToByte(uint8_t Value)1841 uint8_t RTC_Bcd2ToByte(uint8_t Value)
1842 {
1843 uint32_t tmp;
1844 tmp = (((uint32_t)Value & 0xF0U) >> 4U) * 10U;
1845 return (uint8_t)(tmp + ((uint32_t)Value & 0x0FU));
1846 }
1847
1848 /**
1849 * @brief Daylight Saving Time, Add one hour to the calendar in one single operation
1850 * without going through the initialization procedure.
1851 * @param hrtc RTC handle
1852 * @retval None
1853 */
HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef * hrtc)1854 void HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef *hrtc)
1855 {
1856 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1857 SET_BIT(hrtc->Instance->CR, RTC_CR_ADD1H);
1858 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1859 }
1860
1861 /**
1862 * @brief Daylight Saving Time, Subtract one hour from the calendar in one
1863 * single operation without going through the initialization procedure.
1864 * @param hrtc RTC handle
1865 * @retval None
1866 */
HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef * hrtc)1867 void HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef *hrtc)
1868 {
1869 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1870 SET_BIT(hrtc->Instance->CR, RTC_CR_SUB1H);
1871 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1872 }
1873
1874 /**
1875 * @brief Daylight Saving Time, Set the store operation bit.
1876 * @note It can be used by the software in order to memorize the DST status.
1877 * @param hrtc RTC handle
1878 * @retval None
1879 */
HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef * hrtc)1880 void HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef *hrtc)
1881 {
1882 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1883 SET_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1884 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1885 }
1886
1887 /**
1888 * @brief Daylight Saving Time, Clear the store operation bit.
1889 * @param hrtc RTC handle
1890 * @retval None
1891 */
HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef * hrtc)1892 void HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef *hrtc)
1893 {
1894 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1895 CLEAR_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1896 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1897 }
1898
1899 /**
1900 * @brief Daylight Saving Time, Read the store operation bit.
1901 * @param hrtc RTC handle
1902 * @retval operation see RTC_StoreOperation_Definitions
1903 */
HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef * hrtc)1904 uint32_t HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef *hrtc)
1905 {
1906 return READ_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1907 }
1908
1909 /**
1910 * @}
1911 */
1912
1913 #endif /* HAL_RTC_MODULE_ENABLED */
1914 /**
1915 * @}
1916 */
1917
1918 /**
1919 * @}
1920 */
1921
1922