1 /**
2   ******************************************************************************
3   * @file    stm32c0xx_ll_tim.h
4   * @author  MCD Application Team
5   * @brief   Header file of TIM LL module.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2022 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 
19 /* Define to prevent recursive inclusion -------------------------------------*/
20 #ifndef __STM32C0xx_LL_TIM_H
21 #define __STM32C0xx_LL_TIM_H
22 
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26 
27 /* Includes ------------------------------------------------------------------*/
28 #include "stm32c0xx.h"
29 
30 /** @addtogroup STM32C0xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM14) || defined (TIM16) || defined (TIM17)
35 
36 /** @defgroup TIM_LL TIM
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /** @defgroup TIM_LL_Private_Variables TIM Private Variables
43   * @{
44   */
45 static const uint8_t OFFSET_TAB_CCMRx[] =
46 {
47   0x00U,   /* 0: TIMx_CH1  */
48   0x00U,   /* 1: TIMx_CH1N */
49   0x00U,   /* 2: TIMx_CH2  */
50   0x00U,   /* 3: TIMx_CH2N */
51   0x04U,   /* 4: TIMx_CH3  */
52   0x04U,   /* 5: TIMx_CH3N */
53   0x04U,   /* 6: TIMx_CH4  */
54   0x3CU,   /* 7: TIMx_CH5  */
55   0x3CU    /* 8: TIMx_CH6  */
56 };
57 
58 static const uint8_t SHIFT_TAB_OCxx[] =
59 {
60   0U,            /* 0: OC1M, OC1FE, OC1PE */
61   0U,            /* 1: - NA */
62   8U,            /* 2: OC2M, OC2FE, OC2PE */
63   0U,            /* 3: - NA */
64   0U,            /* 4: OC3M, OC3FE, OC3PE */
65   0U,            /* 5: - NA */
66   8U,            /* 6: OC4M, OC4FE, OC4PE */
67   0U,            /* 7: OC5M, OC5FE, OC5PE */
68   8U             /* 8: OC6M, OC6FE, OC6PE */
69 };
70 
71 static const uint8_t SHIFT_TAB_ICxx[] =
72 {
73   0U,            /* 0: CC1S, IC1PSC, IC1F */
74   0U,            /* 1: - NA */
75   8U,            /* 2: CC2S, IC2PSC, IC2F */
76   0U,            /* 3: - NA */
77   0U,            /* 4: CC3S, IC3PSC, IC3F */
78   0U,            /* 5: - NA */
79   8U,            /* 6: CC4S, IC4PSC, IC4F */
80   0U,            /* 7: - NA */
81   0U             /* 8: - NA */
82 };
83 
84 static const uint8_t SHIFT_TAB_CCxP[] =
85 {
86   0U,            /* 0: CC1P */
87   2U,            /* 1: CC1NP */
88   4U,            /* 2: CC2P */
89   6U,            /* 3: CC2NP */
90   8U,            /* 4: CC3P */
91   10U,           /* 5: CC3NP */
92   12U,           /* 6: CC4P */
93   16U,           /* 7: CC5P */
94   20U            /* 8: CC6P */
95 };
96 
97 static const uint8_t SHIFT_TAB_OISx[] =
98 {
99   0U,            /* 0: OIS1 */
100   1U,            /* 1: OIS1N */
101   2U,            /* 2: OIS2 */
102   3U,            /* 3: OIS2N */
103   4U,            /* 4: OIS3 */
104   5U,            /* 5: OIS3N */
105   6U,            /* 6: OIS4 */
106   8U,            /* 7: OIS5 */
107   10U            /* 8: OIS6 */
108 };
109 /**
110   * @}
111   */
112 
113 /* Private constants ---------------------------------------------------------*/
114 /** @defgroup TIM_LL_Private_Constants TIM Private Constants
115   * @{
116   */
117 
118 /* Defines used for the bit position in the register and perform offsets */
119 #define TIM_POSITION_BRK_SOURCE            ((Source >> 1U) & 0x1FUL)
120 
121 /* Generic bit definitions for TIMx_AF1 register */
122 #define TIMx_AF1_BKINP     TIM_AF1_BKINP     /*!< BRK BKIN input polarity */
123 #define TIMx_AF1_ETRSEL    TIM_AF1_ETRSEL    /*!< TIMx ETR source selection */
124 
125 
126 /* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
127 #define DT_DELAY_1 ((uint8_t)0x7F)
128 #define DT_DELAY_2 ((uint8_t)0x3F)
129 #define DT_DELAY_3 ((uint8_t)0x1F)
130 #define DT_DELAY_4 ((uint8_t)0x1F)
131 
132 /* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
133 #define DT_RANGE_1 ((uint8_t)0x00)
134 #define DT_RANGE_2 ((uint8_t)0x80)
135 #define DT_RANGE_3 ((uint8_t)0xC0)
136 #define DT_RANGE_4 ((uint8_t)0xE0)
137 
138 /** Legacy definitions for compatibility purpose
139 @cond 0
140   */
141 /**
142 @endcond
143   */
144 
145 #define OCREF_CLEAR_SELECT_POS (16U)
146 #define OCREF_CLEAR_SELECT_MSK (0x1U << OCREF_CLEAR_SELECT_POS)                /*!< 0x00010000 */
147 /**
148   * @}
149   */
150 
151 /* Private macros ------------------------------------------------------------*/
152 /** @defgroup TIM_LL_Private_Macros TIM Private Macros
153   * @{
154   */
155 /** @brief  Convert channel id into channel index.
156   * @param  __CHANNEL__ This parameter can be one of the following values:
157   *         @arg @ref LL_TIM_CHANNEL_CH1
158   *         @arg @ref LL_TIM_CHANNEL_CH1N
159   *         @arg @ref LL_TIM_CHANNEL_CH2
160   *         @arg @ref LL_TIM_CHANNEL_CH2N
161   *         @arg @ref LL_TIM_CHANNEL_CH3
162   *         @arg @ref LL_TIM_CHANNEL_CH3N
163   *         @arg @ref LL_TIM_CHANNEL_CH4
164   *         @arg @ref LL_TIM_CHANNEL_CH5
165   *         @arg @ref LL_TIM_CHANNEL_CH6
166   * @retval none
167   */
168 #define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
169   (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
170    ((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
171    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
172    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
173    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
174    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U :\
175    ((__CHANNEL__) == LL_TIM_CHANNEL_CH4) ? 6U :\
176    ((__CHANNEL__) == LL_TIM_CHANNEL_CH5) ? 7U : 8U)
177 
178 /** @brief  Calculate the deadtime sampling period(in ps).
179   * @param  __TIMCLK__ timer input clock frequency (in Hz).
180   * @param  __CKD__ This parameter can be one of the following values:
181   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
182   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
183   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
184   * @retval none
185   */
186 #define TIM_CALC_DTS(__TIMCLK__, __CKD__)                                                        \
187   (((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__))         : \
188    ((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
189    ((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
190 /**
191   * @}
192   */
193 
194 
195 /* Exported types ------------------------------------------------------------*/
196 #if defined(USE_FULL_LL_DRIVER)
197 /** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
198   * @{
199   */
200 
201 /**
202   * @brief  TIM Time Base configuration structure definition.
203   */
204 typedef struct
205 {
206   uint16_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
207                                    This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
208 
209                                    This feature can be modified afterwards using unitary function
210                                    @ref LL_TIM_SetPrescaler().*/
211 
212   uint32_t CounterMode;       /*!< Specifies the counter mode.
213                                    This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
214 
215                                    This feature can be modified afterwards using unitary function
216                                    @ref LL_TIM_SetCounterMode().*/
217 
218   uint32_t Autoreload;        /*!< Specifies the auto reload value to be loaded into the active
219                                    Auto-Reload Register at the next update event.
220                                    This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
221                                    Some timer instances may support 32 bits counters. In that case this parameter must
222                                    be a number between 0x0000 and 0xFFFFFFFF.
223 
224                                    This feature can be modified afterwards using unitary function
225                                    @ref LL_TIM_SetAutoReload().*/
226 
227   uint32_t ClockDivision;     /*!< Specifies the clock division.
228                                    This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
229 
230                                    This feature can be modified afterwards using unitary function
231                                    @ref LL_TIM_SetClockDivision().*/
232 
233   uint32_t RepetitionCounter;  /*!< Specifies the repetition counter value. Each time the RCR downcounter
234                                    reaches zero, an update event is generated and counting restarts
235                                    from the RCR value (N).
236                                    This means in PWM mode that (N+1) corresponds to:
237                                       - the number of PWM periods in edge-aligned mode
238                                       - the number of half PWM period in center-aligned mode
239                                    GP timers: this parameter must be a number between Min_Data = 0x00 and
240                                    Max_Data = 0xFF.
241                                    Advanced timers: this parameter must be a number between Min_Data = 0x0000 and
242                                    Max_Data = 0xFFFF.
243 
244                                    This feature can be modified afterwards using unitary function
245                                    @ref LL_TIM_SetRepetitionCounter().*/
246 } LL_TIM_InitTypeDef;
247 
248 /**
249   * @brief  TIM Output Compare configuration structure definition.
250   */
251 typedef struct
252 {
253   uint32_t OCMode;        /*!< Specifies the output mode.
254                                This parameter can be a value of @ref TIM_LL_EC_OCMODE.
255 
256                                This feature can be modified afterwards using unitary function
257                                @ref LL_TIM_OC_SetMode().*/
258 
259   uint32_t OCState;       /*!< Specifies the TIM Output Compare state.
260                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
261 
262                                This feature can be modified afterwards using unitary functions
263                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
264 
265   uint32_t OCNState;      /*!< Specifies the TIM complementary Output Compare state.
266                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
267 
268                                This feature can be modified afterwards using unitary functions
269                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
270 
271   uint32_t CompareValue;  /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
272                                This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
273 
274                                This feature can be modified afterwards using unitary function
275                                LL_TIM_OC_SetCompareCHx (x=1..6).*/
276 
277   uint32_t OCPolarity;    /*!< Specifies the output polarity.
278                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
279 
280                                This feature can be modified afterwards using unitary function
281                                @ref LL_TIM_OC_SetPolarity().*/
282 
283   uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
284                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
285 
286                                This feature can be modified afterwards using unitary function
287                                @ref LL_TIM_OC_SetPolarity().*/
288 
289 
290   uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
291                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
292 
293                                This feature can be modified afterwards using unitary function
294                                @ref LL_TIM_OC_SetIdleState().*/
295 
296   uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
297                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
298 
299                                This feature can be modified afterwards using unitary function
300                                @ref LL_TIM_OC_SetIdleState().*/
301 } LL_TIM_OC_InitTypeDef;
302 
303 /**
304   * @brief  TIM Input Capture configuration structure definition.
305   */
306 
307 typedef struct
308 {
309 
310   uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
311                                This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
312 
313                                This feature can be modified afterwards using unitary function
314                                @ref LL_TIM_IC_SetPolarity().*/
315 
316   uint32_t ICActiveInput; /*!< Specifies the input.
317                                This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
318 
319                                This feature can be modified afterwards using unitary function
320                                @ref LL_TIM_IC_SetActiveInput().*/
321 
322   uint32_t ICPrescaler;   /*!< Specifies the Input Capture Prescaler.
323                                This parameter can be a value of @ref TIM_LL_EC_ICPSC.
324 
325                                This feature can be modified afterwards using unitary function
326                                @ref LL_TIM_IC_SetPrescaler().*/
327 
328   uint32_t ICFilter;      /*!< Specifies the input capture filter.
329                                This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
330 
331                                This feature can be modified afterwards using unitary function
332                                @ref LL_TIM_IC_SetFilter().*/
333 } LL_TIM_IC_InitTypeDef;
334 
335 
336 /**
337   * @brief  TIM Encoder interface configuration structure definition.
338   */
339 typedef struct
340 {
341   uint32_t EncoderMode;     /*!< Specifies the encoder resolution (x2 or x4).
342                                  This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
343 
344                                  This feature can be modified afterwards using unitary function
345                                  @ref LL_TIM_SetEncoderMode().*/
346 
347   uint32_t IC1Polarity;     /*!< Specifies the active edge of TI1 input.
348                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
349 
350                                  This feature can be modified afterwards using unitary function
351                                  @ref LL_TIM_IC_SetPolarity().*/
352 
353   uint32_t IC1ActiveInput;  /*!< Specifies the TI1 input source
354                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
355 
356                                  This feature can be modified afterwards using unitary function
357                                  @ref LL_TIM_IC_SetActiveInput().*/
358 
359   uint32_t IC1Prescaler;    /*!< Specifies the TI1 input prescaler value.
360                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
361 
362                                  This feature can be modified afterwards using unitary function
363                                  @ref LL_TIM_IC_SetPrescaler().*/
364 
365   uint32_t IC1Filter;       /*!< Specifies the TI1 input filter.
366                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
367 
368                                  This feature can be modified afterwards using unitary function
369                                  @ref LL_TIM_IC_SetFilter().*/
370 
371   uint32_t IC2Polarity;      /*!< Specifies the active edge of TI2 input.
372                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
373 
374                                  This feature can be modified afterwards using unitary function
375                                  @ref LL_TIM_IC_SetPolarity().*/
376 
377   uint32_t IC2ActiveInput;  /*!< Specifies the TI2 input source
378                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
379 
380                                  This feature can be modified afterwards using unitary function
381                                  @ref LL_TIM_IC_SetActiveInput().*/
382 
383   uint32_t IC2Prescaler;    /*!< Specifies the TI2 input prescaler value.
384                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
385 
386                                  This feature can be modified afterwards using unitary function
387                                  @ref LL_TIM_IC_SetPrescaler().*/
388 
389   uint32_t IC2Filter;       /*!< Specifies the TI2 input filter.
390                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
391 
392                                  This feature can be modified afterwards using unitary function
393                                  @ref LL_TIM_IC_SetFilter().*/
394 
395 } LL_TIM_ENCODER_InitTypeDef;
396 
397 /**
398   * @brief  TIM Hall sensor interface configuration structure definition.
399   */
400 typedef struct
401 {
402 
403   uint32_t IC1Polarity;        /*!< Specifies the active edge of TI1 input.
404                                     This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
405 
406                                     This feature can be modified afterwards using unitary function
407                                     @ref LL_TIM_IC_SetPolarity().*/
408 
409   uint32_t IC1Prescaler;       /*!< Specifies the TI1 input prescaler value.
410                                     Prescaler must be set to get a maximum counter period longer than the
411                                     time interval between 2 consecutive changes on the Hall inputs.
412                                     This parameter can be a value of @ref TIM_LL_EC_ICPSC.
413 
414                                     This feature can be modified afterwards using unitary function
415                                     @ref LL_TIM_IC_SetPrescaler().*/
416 
417   uint32_t IC1Filter;          /*!< Specifies the TI1 input filter.
418                                     This parameter can be a value of
419                                     @ref TIM_LL_EC_IC_FILTER.
420 
421                                     This feature can be modified afterwards using unitary function
422                                     @ref LL_TIM_IC_SetFilter().*/
423 
424   uint32_t CommutationDelay;   /*!< Specifies the compare value to be loaded into the Capture Compare Register.
425                                     A positive pulse (TRGO event) is generated with a programmable delay every time
426                                     a change occurs on the Hall inputs.
427                                     This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
428 
429                                     This feature can be modified afterwards using unitary function
430                                     @ref LL_TIM_OC_SetCompareCH2().*/
431 } LL_TIM_HALLSENSOR_InitTypeDef;
432 
433 /**
434   * @brief  BDTR (Break and Dead Time) structure definition
435   */
436 typedef struct
437 {
438   uint32_t OSSRState;            /*!< Specifies the Off-State selection used in Run mode.
439                                       This parameter can be a value of @ref TIM_LL_EC_OSSR
440 
441                                       This feature can be modified afterwards using unitary function
442                                       @ref LL_TIM_SetOffStates()
443 
444                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
445                                        programmed. */
446 
447   uint32_t OSSIState;            /*!< Specifies the Off-State used in Idle state.
448                                       This parameter can be a value of @ref TIM_LL_EC_OSSI
449 
450                                       This feature can be modified afterwards using unitary function
451                                       @ref LL_TIM_SetOffStates()
452 
453                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
454                                       programmed. */
455 
456   uint32_t LockLevel;            /*!< Specifies the LOCK level parameters.
457                                       This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
458 
459                                       @note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR
460                                       register has been written, their content is frozen until the next reset.*/
461 
462   uint8_t DeadTime;              /*!< Specifies the delay time between the switching-off and the
463                                       switching-on of the outputs.
464                                       This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
465 
466                                       This feature can be modified afterwards using unitary function
467                                       @ref LL_TIM_OC_SetDeadTime()
468 
469                                       @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been
470                                        programmed. */
471 
472   uint16_t BreakState;           /*!< Specifies whether the TIM Break input is enabled or not.
473                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
474 
475                                       This feature can be modified afterwards using unitary functions
476                                       @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
477 
478                                       @note This bit-field can not be modified as long as LOCK level 1 has been
479                                       programmed. */
480 
481   uint32_t BreakPolarity;        /*!< Specifies the TIM Break Input pin polarity.
482                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
483 
484                                       This feature can be modified afterwards using unitary function
485                                       @ref LL_TIM_ConfigBRK()
486 
487                                       @note This bit-field can not be modified as long as LOCK level 1 has been
488                                       programmed. */
489 
490   uint32_t BreakFilter;          /*!< Specifies the TIM Break Filter.
491                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_FILTER
492 
493                                       This feature can be modified afterwards using unitary function
494                                       @ref LL_TIM_ConfigBRK()
495 
496                                       @note This bit-field can not be modified as long as LOCK level 1 has been
497                                       programmed. */
498 
499   uint32_t BreakAFMode;           /*!< Specifies the alternate function mode of the break input.
500                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_AFMODE
501 
502                                       This feature can be modified afterwards using unitary functions
503                                       @ref LL_TIM_ConfigBRK()
504 
505                                       @note Bidirectional break input is only supported by advanced timers instances.
506 
507                                       @note This bit-field can not be modified as long as LOCK level 1 has been
508                                       programmed. */
509 
510   uint32_t Break2State;          /*!< Specifies whether the TIM Break2 input is enabled or not.
511                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_ENABLE
512 
513                                       This feature can be modified afterwards using unitary functions
514                                       @ref LL_TIM_EnableBRK2() or @ref LL_TIM_DisableBRK2()
515 
516                                       @note This bit-field can not be modified as long as LOCK level 1 has been
517                                       programmed. */
518 
519   uint32_t Break2Polarity;        /*!< Specifies the TIM Break2 Input pin polarity.
520                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_POLARITY
521 
522                                       This feature can be modified afterwards using unitary function
523                                       @ref LL_TIM_ConfigBRK2()
524 
525                                       @note This bit-field can not be modified as long as LOCK level 1 has been
526                                       programmed. */
527 
528   uint32_t Break2Filter;          /*!< Specifies the TIM Break2 Filter.
529                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_FILTER
530 
531                                       This feature can be modified afterwards using unitary function
532                                       @ref LL_TIM_ConfigBRK2()
533 
534                                       @note This bit-field can not be modified as long as LOCK level 1 has been
535                                       programmed. */
536 
537   uint32_t Break2AFMode;          /*!< Specifies the alternate function mode of the break2 input.
538                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_AFMODE
539 
540                                       This feature can be modified afterwards using unitary functions
541                                       @ref LL_TIM_ConfigBRK2()
542 
543                                       @note Bidirectional break input is only supported by advanced timers instances.
544 
545                                       @note This bit-field can not be modified as long as LOCK level 1 has been
546                                       programmed. */
547 
548   uint32_t AutomaticOutput;      /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
549                                       This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
550 
551                                       This feature can be modified afterwards using unitary functions
552                                       @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
553 
554                                       @note This bit-field can not be modified as long as LOCK level 1 has been
555                                       programmed. */
556 } LL_TIM_BDTR_InitTypeDef;
557 
558 /**
559   * @}
560   */
561 #endif /* USE_FULL_LL_DRIVER */
562 
563 /* Exported constants --------------------------------------------------------*/
564 /** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
565   * @{
566   */
567 
568 /** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
569   * @brief    Flags defines which can be used with LL_TIM_ReadReg function.
570   * @{
571   */
572 #define LL_TIM_SR_UIF                          TIM_SR_UIF           /*!< Update interrupt flag */
573 #define LL_TIM_SR_CC1IF                        TIM_SR_CC1IF         /*!< Capture/compare 1 interrupt flag */
574 #define LL_TIM_SR_CC2IF                        TIM_SR_CC2IF         /*!< Capture/compare 2 interrupt flag */
575 #define LL_TIM_SR_CC3IF                        TIM_SR_CC3IF         /*!< Capture/compare 3 interrupt flag */
576 #define LL_TIM_SR_CC4IF                        TIM_SR_CC4IF         /*!< Capture/compare 4 interrupt flag */
577 #define LL_TIM_SR_CC5IF                        TIM_SR_CC5IF         /*!< Capture/compare 5 interrupt flag */
578 #define LL_TIM_SR_CC6IF                        TIM_SR_CC6IF         /*!< Capture/compare 6 interrupt flag */
579 #define LL_TIM_SR_COMIF                        TIM_SR_COMIF         /*!< COM interrupt flag */
580 #define LL_TIM_SR_TIF                          TIM_SR_TIF           /*!< Trigger interrupt flag */
581 #define LL_TIM_SR_BIF                          TIM_SR_BIF           /*!< Break interrupt flag */
582 #define LL_TIM_SR_B2IF                         TIM_SR_B2IF          /*!< Second break interrupt flag */
583 #define LL_TIM_SR_CC1OF                        TIM_SR_CC1OF         /*!< Capture/Compare 1 overcapture flag */
584 #define LL_TIM_SR_CC2OF                        TIM_SR_CC2OF         /*!< Capture/Compare 2 overcapture flag */
585 #define LL_TIM_SR_CC3OF                        TIM_SR_CC3OF         /*!< Capture/Compare 3 overcapture flag */
586 #define LL_TIM_SR_CC4OF                        TIM_SR_CC4OF         /*!< Capture/Compare 4 overcapture flag */
587 #define LL_TIM_SR_SBIF                         TIM_SR_SBIF          /*!< System Break interrupt flag  */
588 /**
589   * @}
590   */
591 
592 #if defined(USE_FULL_LL_DRIVER)
593 /** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
594   * @{
595   */
596 #define LL_TIM_BREAK_DISABLE            0x00000000U             /*!< Break function disabled */
597 #define LL_TIM_BREAK_ENABLE             TIM_BDTR_BKE            /*!< Break function enabled */
598 /**
599   * @}
600   */
601 
602 /** @defgroup TIM_LL_EC_BREAK2_ENABLE Break2 Enable
603   * @{
604   */
605 #define LL_TIM_BREAK2_DISABLE            0x00000000U              /*!< Break2 function disabled */
606 #define LL_TIM_BREAK2_ENABLE             TIM_BDTR_BK2E            /*!< Break2 function enabled */
607 /**
608   * @}
609   */
610 
611 /** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
612   * @{
613   */
614 #define LL_TIM_AUTOMATICOUTPUT_DISABLE         0x00000000U             /*!< MOE can be set only by software */
615 #define LL_TIM_AUTOMATICOUTPUT_ENABLE          TIM_BDTR_AOE            /*!< MOE can be set by software or automatically at the next update event */
616 /**
617   * @}
618   */
619 #endif /* USE_FULL_LL_DRIVER */
620 
621 /** @defgroup TIM_LL_EC_IT IT Defines
622   * @brief    IT defines which can be used with LL_TIM_ReadReg and  LL_TIM_WriteReg functions.
623   * @{
624   */
625 #define LL_TIM_DIER_UIE                        TIM_DIER_UIE         /*!< Update interrupt enable */
626 #define LL_TIM_DIER_CC1IE                      TIM_DIER_CC1IE       /*!< Capture/compare 1 interrupt enable */
627 #define LL_TIM_DIER_CC2IE                      TIM_DIER_CC2IE       /*!< Capture/compare 2 interrupt enable */
628 #define LL_TIM_DIER_CC3IE                      TIM_DIER_CC3IE       /*!< Capture/compare 3 interrupt enable */
629 #define LL_TIM_DIER_CC4IE                      TIM_DIER_CC4IE       /*!< Capture/compare 4 interrupt enable */
630 #define LL_TIM_DIER_COMIE                      TIM_DIER_COMIE       /*!< COM interrupt enable */
631 #define LL_TIM_DIER_TIE                        TIM_DIER_TIE         /*!< Trigger interrupt enable */
632 #define LL_TIM_DIER_BIE                        TIM_DIER_BIE         /*!< Break interrupt enable */
633 /**
634   * @}
635   */
636 
637 /** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
638   * @{
639   */
640 #define LL_TIM_UPDATESOURCE_REGULAR            0x00000000U          /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
641 #define LL_TIM_UPDATESOURCE_COUNTER            TIM_CR1_URS          /*!< Only counter overflow/underflow generates an update request */
642 /**
643   * @}
644   */
645 
646 /** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
647   * @{
648   */
649 #define LL_TIM_ONEPULSEMODE_SINGLE             TIM_CR1_OPM          /*!< Counter stops counting at the next update event */
650 #define LL_TIM_ONEPULSEMODE_REPETITIVE         0x00000000U          /*!< Counter is not stopped at update event */
651 /**
652   * @}
653   */
654 
655 /** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
656   * @{
657   */
658 #define LL_TIM_COUNTERMODE_UP                  0x00000000U          /*!< Counter used as upcounter */
659 #define LL_TIM_COUNTERMODE_DOWN                TIM_CR1_DIR          /*!< Counter used as downcounter */
660 #define LL_TIM_COUNTERMODE_CENTER_DOWN         TIM_CR1_CMS_0        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting down. */
661 #define LL_TIM_COUNTERMODE_CENTER_UP           TIM_CR1_CMS_1        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up */
662 #define LL_TIM_COUNTERMODE_CENTER_UP_DOWN      TIM_CR1_CMS          /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up or down. */
663 /**
664   * @}
665   */
666 
667 /** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
668   * @{
669   */
670 #define LL_TIM_CLOCKDIVISION_DIV1              0x00000000U          /*!< tDTS=tCK_INT */
671 #define LL_TIM_CLOCKDIVISION_DIV2              TIM_CR1_CKD_0        /*!< tDTS=2*tCK_INT */
672 #define LL_TIM_CLOCKDIVISION_DIV4              TIM_CR1_CKD_1        /*!< tDTS=4*tCK_INT */
673 /**
674   * @}
675   */
676 
677 /** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
678   * @{
679   */
680 #define LL_TIM_COUNTERDIRECTION_UP             0x00000000U          /*!< Timer counter counts up */
681 #define LL_TIM_COUNTERDIRECTION_DOWN           TIM_CR1_DIR          /*!< Timer counter counts down */
682 /**
683   * @}
684   */
685 
686 /** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare  Update Source
687   * @{
688   */
689 #define LL_TIM_CCUPDATESOURCE_COMG_ONLY        0x00000000U          /*!< Capture/compare control bits are updated by setting the COMG bit only */
690 #define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI    TIM_CR2_CCUS         /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
691 /**
692   * @}
693   */
694 
695 /** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
696   * @{
697   */
698 #define LL_TIM_CCDMAREQUEST_CC                 0x00000000U          /*!< CCx DMA request sent when CCx event occurs */
699 #define LL_TIM_CCDMAREQUEST_UPDATE             TIM_CR2_CCDS         /*!< CCx DMA requests sent when update event occurs */
700 /**
701   * @}
702   */
703 
704 /** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
705   * @{
706   */
707 #define LL_TIM_LOCKLEVEL_OFF                   0x00000000U          /*!< LOCK OFF - No bit is write protected */
708 #define LL_TIM_LOCKLEVEL_1                     TIM_BDTR_LOCK_0      /*!< LOCK Level 1 */
709 #define LL_TIM_LOCKLEVEL_2                     TIM_BDTR_LOCK_1      /*!< LOCK Level 2 */
710 #define LL_TIM_LOCKLEVEL_3                     TIM_BDTR_LOCK        /*!< LOCK Level 3 */
711 /**
712   * @}
713   */
714 
715 /** @defgroup TIM_LL_EC_CHANNEL Channel
716   * @{
717   */
718 #define LL_TIM_CHANNEL_CH1                     TIM_CCER_CC1E     /*!< Timer input/output channel 1 */
719 #define LL_TIM_CHANNEL_CH1N                    TIM_CCER_CC1NE    /*!< Timer complementary output channel 1 */
720 #define LL_TIM_CHANNEL_CH2                     TIM_CCER_CC2E     /*!< Timer input/output channel 2 */
721 #define LL_TIM_CHANNEL_CH2N                    TIM_CCER_CC2NE    /*!< Timer complementary output channel 2 */
722 #define LL_TIM_CHANNEL_CH3                     TIM_CCER_CC3E     /*!< Timer input/output channel 3 */
723 #define LL_TIM_CHANNEL_CH3N                    TIM_CCER_CC3NE    /*!< Timer complementary output channel 3 */
724 #define LL_TIM_CHANNEL_CH4                     TIM_CCER_CC4E     /*!< Timer input/output channel 4 */
725 #define LL_TIM_CHANNEL_CH5                     TIM_CCER_CC5E     /*!< Timer output channel 5 */
726 #define LL_TIM_CHANNEL_CH6                     TIM_CCER_CC6E     /*!< Timer output channel 6 */
727 /**
728   * @}
729   */
730 
731 #if defined(USE_FULL_LL_DRIVER)
732 /** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
733   * @{
734   */
735 #define LL_TIM_OCSTATE_DISABLE                 0x00000000U             /*!< OCx is not active */
736 #define LL_TIM_OCSTATE_ENABLE                  TIM_CCER_CC1E           /*!< OCx signal is output on the corresponding output pin */
737 /**
738   * @}
739   */
740 #endif /* USE_FULL_LL_DRIVER */
741 
742 /** Legacy definitions for compatibility purpose
743 @cond 0
744   */
745 #define LL_TIM_OCMODE_ASSYMETRIC_PWM1 LL_TIM_OCMODE_ASYMMETRIC_PWM1
746 #define LL_TIM_OCMODE_ASSYMETRIC_PWM2 LL_TIM_OCMODE_ASYMMETRIC_PWM2
747 /**
748 @endcond
749   */
750 
751 /** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
752   * @{
753   */
754 #define LL_TIM_OCMODE_FROZEN                   0x00000000U                                              /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
755 #define LL_TIM_OCMODE_ACTIVE                   TIM_CCMR1_OC1M_0                                         /*!<OCyREF is forced high on compare match*/
756 #define LL_TIM_OCMODE_INACTIVE                 TIM_CCMR1_OC1M_1                                         /*!<OCyREF is forced low on compare match*/
757 #define LL_TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF toggles on compare match*/
758 #define LL_TIM_OCMODE_FORCED_INACTIVE          TIM_CCMR1_OC1M_2                                         /*!<OCyREF is forced low*/
759 #define LL_TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF is forced high*/
760 #define LL_TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1)                    /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive.  In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
761 #define LL_TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active.  In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
762 #define LL_TIM_OCMODE_RETRIG_OPM1              TIM_CCMR1_OC1M_3                                         /*!<Retrigerrable OPM mode 1*/
763 #define LL_TIM_OCMODE_RETRIG_OPM2              (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0)                    /*!<Retrigerrable OPM mode 2*/
764 #define LL_TIM_OCMODE_COMBINED_PWM1            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_2)                    /*!<Combined PWM mode 1*/
765 #define LL_TIM_OCMODE_COMBINED_PWM2            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 2*/
766 #define LL_TIM_OCMODE_ASYMMETRIC_PWM1          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!<Asymmetric PWM mode 1*/
767 #define LL_TIM_OCMODE_ASYMMETRIC_PWM2          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M)                      /*!<Asymmetric PWM mode 2*/
768 /**
769   * @}
770   */
771 
772 /** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
773   * @{
774   */
775 #define LL_TIM_OCPOLARITY_HIGH                 0x00000000U                 /*!< OCxactive high*/
776 #define LL_TIM_OCPOLARITY_LOW                  TIM_CCER_CC1P               /*!< OCxactive low*/
777 /**
778   * @}
779   */
780 
781 /** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
782   * @{
783   */
784 #define LL_TIM_OCIDLESTATE_LOW                 0x00000000U             /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
785 #define LL_TIM_OCIDLESTATE_HIGH                TIM_CR2_OIS1            /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
786 /**
787   * @}
788   */
789 
790 /** @defgroup TIM_LL_EC_GROUPCH5 GROUPCH5
791   * @{
792   */
793 #define LL_TIM_GROUPCH5_NONE                   0x00000000U           /*!< No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC */
794 #define LL_TIM_GROUPCH5_OC1REFC                TIM_CCR5_GC5C1        /*!< OC1REFC is the logical AND of OC1REFC and OC5REF */
795 #define LL_TIM_GROUPCH5_OC2REFC                TIM_CCR5_GC5C2        /*!< OC2REFC is the logical AND of OC2REFC and OC5REF */
796 #define LL_TIM_GROUPCH5_OC3REFC                TIM_CCR5_GC5C3        /*!< OC3REFC is the logical AND of OC3REFC and OC5REF */
797 /**
798   * @}
799   */
800 
801 /** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
802   * @{
803   */
804 #define LL_TIM_ACTIVEINPUT_DIRECTTI            (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
805 #define LL_TIM_ACTIVEINPUT_INDIRECTTI          (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
806 #define LL_TIM_ACTIVEINPUT_TRC                 (TIM_CCMR1_CC1S << 16U)   /*!< ICx is mapped on TRC */
807 /**
808   * @}
809   */
810 
811 /** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
812   * @{
813   */
814 #define LL_TIM_ICPSC_DIV1                      0x00000000U                    /*!< No prescaler, capture is done each time an edge is detected on the capture input */
815 #define LL_TIM_ICPSC_DIV2                      (TIM_CCMR1_IC1PSC_0 << 16U)    /*!< Capture is done once every 2 events */
816 #define LL_TIM_ICPSC_DIV4                      (TIM_CCMR1_IC1PSC_1 << 16U)    /*!< Capture is done once every 4 events */
817 #define LL_TIM_ICPSC_DIV8                      (TIM_CCMR1_IC1PSC << 16U)      /*!< Capture is done once every 8 events */
818 /**
819   * @}
820   */
821 
822 /** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
823   * @{
824   */
825 #define LL_TIM_IC_FILTER_FDIV1                 0x00000000U                                                        /*!< No filter, sampling is done at fDTS */
826 #define LL_TIM_IC_FILTER_FDIV1_N2              (TIM_CCMR1_IC1F_0 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=2 */
827 #define LL_TIM_IC_FILTER_FDIV1_N4              (TIM_CCMR1_IC1F_1 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=4 */
828 #define LL_TIM_IC_FILTER_FDIV1_N8              ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fCK_INT, N=8 */
829 #define LL_TIM_IC_FILTER_FDIV2_N6              (TIM_CCMR1_IC1F_2 << 16U)                                          /*!< fSAMPLING=fDTS/2, N=6 */
830 #define LL_TIM_IC_FILTER_FDIV2_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/2, N=8 */
831 #define LL_TIM_IC_FILTER_FDIV4_N6              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/4, N=6 */
832 #define LL_TIM_IC_FILTER_FDIV4_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/4, N=8 */
833 #define LL_TIM_IC_FILTER_FDIV8_N6              (TIM_CCMR1_IC1F_3 << 16U)                                          /*!< fSAMPLING=fDTS/8, N=6 */
834 #define LL_TIM_IC_FILTER_FDIV8_N8              ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/8, N=8 */
835 #define LL_TIM_IC_FILTER_FDIV16_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/16, N=5 */
836 #define LL_TIM_IC_FILTER_FDIV16_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/16, N=6 */
837 #define LL_TIM_IC_FILTER_FDIV16_N8             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U)                     /*!< fSAMPLING=fDTS/16, N=8 */
838 #define LL_TIM_IC_FILTER_FDIV32_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/32, N=5 */
839 #define LL_TIM_IC_FILTER_FDIV32_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)  /*!< fSAMPLING=fDTS/32, N=6 */
840 #define LL_TIM_IC_FILTER_FDIV32_N8             (TIM_CCMR1_IC1F << 16U)                                            /*!< fSAMPLING=fDTS/32, N=8 */
841 /**
842   * @}
843   */
844 
845 /** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
846   * @{
847   */
848 #define LL_TIM_IC_POLARITY_RISING              0x00000000U                      /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
849 #define LL_TIM_IC_POLARITY_FALLING             TIM_CCER_CC1P                    /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
850 #define LL_TIM_IC_POLARITY_BOTHEDGE            (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
851 /**
852   * @}
853   */
854 
855 /** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
856   * @{
857   */
858 #define LL_TIM_CLOCKSOURCE_INTERNAL            0x00000000U                                          /*!< The timer is clocked by the internal clock provided from the RCC */
859 #define LL_TIM_CLOCKSOURCE_EXT_MODE1           (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)   /*!< Counter counts at each rising or falling edge on a selected input*/
860 #define LL_TIM_CLOCKSOURCE_EXT_MODE2           TIM_SMCR_ECE                                         /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
861 /**
862   * @}
863   */
864 
865 /** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
866   * @{
867   */
868 #define LL_TIM_ENCODERMODE_X2_TI1                     TIM_SMCR_SMS_0                                                     /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
869 #define LL_TIM_ENCODERMODE_X2_TI2                     TIM_SMCR_SMS_1                                                     /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
870 #define LL_TIM_ENCODERMODE_X4_TI12                   (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)                                   /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
871 /**
872   * @}
873   */
874 
875 /** @defgroup TIM_LL_EC_TRGO Trigger Output
876   * @{
877   */
878 #define LL_TIM_TRGO_RESET                      0x00000000U                                     /*!< UG bit from the TIMx_EGR register is used as trigger output */
879 #define LL_TIM_TRGO_ENABLE                     TIM_CR2_MMS_0                                   /*!< Counter Enable signal (CNT_EN) is used as trigger output */
880 #define LL_TIM_TRGO_UPDATE                     TIM_CR2_MMS_1                                   /*!< Update event is used as trigger output */
881 #define LL_TIM_TRGO_CC1IF                      (TIM_CR2_MMS_1 | TIM_CR2_MMS_0)                 /*!< CC1 capture or a compare match is used as trigger output */
882 #define LL_TIM_TRGO_OC1REF                     TIM_CR2_MMS_2                                   /*!< OC1REF signal is used as trigger output */
883 #define LL_TIM_TRGO_OC2REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_0)                 /*!< OC2REF signal is used as trigger output */
884 #define LL_TIM_TRGO_OC3REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1)                 /*!< OC3REF signal is used as trigger output */
885 #define LL_TIM_TRGO_OC4REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
886 /**
887   * @}
888   */
889 
890 /** @defgroup TIM_LL_EC_TRGO2 Trigger Output 2
891   * @{
892   */
893 #define LL_TIM_TRGO2_RESET                     0x00000000U                                                         /*!< UG bit from the TIMx_EGR register is used as trigger output 2 */
894 #define LL_TIM_TRGO2_ENABLE                    TIM_CR2_MMS2_0                                                      /*!< Counter Enable signal (CNT_EN) is used as trigger output 2 */
895 #define LL_TIM_TRGO2_UPDATE                    TIM_CR2_MMS2_1                                                      /*!< Update event is used as trigger output 2 */
896 #define LL_TIM_TRGO2_CC1F                      (TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                                   /*!< CC1 capture or a compare match is used as trigger output 2 */
897 #define LL_TIM_TRGO2_OC1                       TIM_CR2_MMS2_2                                                      /*!< OC1REF signal is used as trigger output 2 */
898 #define LL_TIM_TRGO2_OC2                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                                   /*!< OC2REF signal is used as trigger output 2 */
899 #define LL_TIM_TRGO2_OC3                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1)                                   /*!< OC3REF signal is used as trigger output 2 */
900 #define LL_TIM_TRGO2_OC4                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC4REF signal is used as trigger output 2 */
901 #define LL_TIM_TRGO2_OC5                       TIM_CR2_MMS2_3                                                      /*!< OC5REF signal is used as trigger output 2 */
902 #define LL_TIM_TRGO2_OC6                       (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_0)                                   /*!< OC6REF signal is used as trigger output 2 */
903 #define LL_TIM_TRGO2_OC4_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1)                                   /*!< OC4REF rising or falling edges are used as trigger output 2 */
904 #define LL_TIM_TRGO2_OC6_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC6REF rising or falling edges are used as trigger output 2 */
905 #define LL_TIM_TRGO2_OC4_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2)                                   /*!< OC4REF or OC6REF rising edges are used as trigger output 2 */
906 #define LL_TIM_TRGO2_OC4_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                  /*!< OC4REF rising or OC6REF falling edges are used as trigger output 2 */
907 #define LL_TIM_TRGO2_OC5_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 |TIM_CR2_MMS2_1)                   /*!< OC5REF or OC6REF rising edges are used as trigger output 2 */
908 #define LL_TIM_TRGO2_OC5_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC5REF rising or OC6REF falling edges are used as trigger output 2 */
909 /**
910   * @}
911   */
912 
913 /** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
914   * @{
915   */
916 #define LL_TIM_SLAVEMODE_DISABLED              0x00000000U                         /*!< Slave mode disabled */
917 #define LL_TIM_SLAVEMODE_RESET                 TIM_SMCR_SMS_2                      /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
918 #define LL_TIM_SLAVEMODE_GATED                 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)   /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
919 #define LL_TIM_SLAVEMODE_TRIGGER               (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)   /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
920 #define LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER TIM_SMCR_SMS_3                      /*!< Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI)  reinitializes the counter, generates an update of the registers and starts the counter */
921 /**
922   * @}
923   */
924 
925 /** @defgroup TIM_LL_EC_TS Trigger Selection
926   * @{
927   */
928 #define LL_TIM_TS_ITR0                         0x00000000U                                                     /*!< Internal Trigger 0 (ITR0) is used as trigger input */
929 #define LL_TIM_TS_ITR1                         TIM_SMCR_TS_0                                                   /*!< Internal Trigger 1 (ITR1) is used as trigger input */
930 #define LL_TIM_TS_ITR2                         TIM_SMCR_TS_1                                                   /*!< Internal Trigger 2 (ITR2) is used as trigger input */
931 #define LL_TIM_TS_ITR3                         (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)                                 /*!< Internal Trigger 3 (ITR3) is used as trigger input */
932 #define LL_TIM_TS_TI1F_ED                      TIM_SMCR_TS_2                                                   /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
933 #define LL_TIM_TS_TI1FP1                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_0)                                 /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
934 #define LL_TIM_TS_TI2FP2                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_1)                                 /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
935 #define LL_TIM_TS_ETRF                         (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Filtered external Trigger (ETRF) is used as trigger input */
936 /**
937   * @}
938   */
939 
940 /** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
941   * @{
942   */
943 #define LL_TIM_ETR_POLARITY_NONINVERTED        0x00000000U             /*!< ETR is non-inverted, active at high level or rising edge */
944 #define LL_TIM_ETR_POLARITY_INVERTED           TIM_SMCR_ETP            /*!< ETR is inverted, active at low level or falling edge */
945 /**
946   * @}
947   */
948 
949 /** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
950   * @{
951   */
952 #define LL_TIM_ETR_PRESCALER_DIV1              0x00000000U             /*!< ETR prescaler OFF */
953 #define LL_TIM_ETR_PRESCALER_DIV2              TIM_SMCR_ETPS_0         /*!< ETR frequency is divided by 2 */
954 #define LL_TIM_ETR_PRESCALER_DIV4              TIM_SMCR_ETPS_1         /*!< ETR frequency is divided by 4 */
955 #define LL_TIM_ETR_PRESCALER_DIV8              TIM_SMCR_ETPS           /*!< ETR frequency is divided by 8 */
956 /**
957   * @}
958   */
959 
960 /** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
961   * @{
962   */
963 #define LL_TIM_ETR_FILTER_FDIV1                0x00000000U                                          /*!< No filter, sampling is done at fDTS */
964 #define LL_TIM_ETR_FILTER_FDIV1_N2             TIM_SMCR_ETF_0                                       /*!< fSAMPLING=fCK_INT, N=2 */
965 #define LL_TIM_ETR_FILTER_FDIV1_N4             TIM_SMCR_ETF_1                                       /*!< fSAMPLING=fCK_INT, N=4 */
966 #define LL_TIM_ETR_FILTER_FDIV1_N8             (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fCK_INT, N=8 */
967 #define LL_TIM_ETR_FILTER_FDIV2_N6             TIM_SMCR_ETF_2                                       /*!< fSAMPLING=fDTS/2, N=6 */
968 #define LL_TIM_ETR_FILTER_FDIV2_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/2, N=8 */
969 #define LL_TIM_ETR_FILTER_FDIV4_N6             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/4, N=6 */
970 #define LL_TIM_ETR_FILTER_FDIV4_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/4, N=8 */
971 #define LL_TIM_ETR_FILTER_FDIV8_N6             TIM_SMCR_ETF_3                                       /*!< fSAMPLING=fDTS/8, N=6 */
972 #define LL_TIM_ETR_FILTER_FDIV8_N8             (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/16, N=8 */
973 #define LL_TIM_ETR_FILTER_FDIV16_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/16, N=5 */
974 #define LL_TIM_ETR_FILTER_FDIV16_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/16, N=6 */
975 #define LL_TIM_ETR_FILTER_FDIV16_N8            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2)                    /*!< fSAMPLING=fDTS/16, N=8 */
976 #define LL_TIM_ETR_FILTER_FDIV32_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/32, N=5 */
977 #define LL_TIM_ETR_FILTER_FDIV32_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)   /*!< fSAMPLING=fDTS/32, N=6 */
978 #define LL_TIM_ETR_FILTER_FDIV32_N8            TIM_SMCR_ETF                                         /*!< fSAMPLING=fDTS/32, N=8 */
979 /**
980   * @}
981   */
982 
983 /** @defgroup TIM_LL_EC_ETRSOURCE External Trigger Source
984   * @{
985   */
986 #define LL_TIM_ETRSOURCE_GPIO                  0x00000000U                             /*!< ETR input is connected to GPIO */
987 #define LL_TIM_ETRSOURCE_ADC1_AWD1             (TIM_AF1_ETRSEL_1 | TIM_AF1_ETRSEL_0)   /*!< ETR input is connected to ADC1 analog watchdog 1 */
988 #define LL_TIM_ETRSOURCE_ADC1_AWD2             TIM_AF1_ETRSEL_2                        /*!< ETR input is connected to ADC1 analog watchdog 2 */
989 #define LL_TIM_ETRSOURCE_ADC1_AWD3             (TIM_AF1_ETRSEL_2 | TIM_AF1_ETRSEL_0)   /*!< ETR input is connected to ADC1 analog watchdog 3 */
990 #if defined(TIM2)
991 #define LL_TIM_ETRSOURCE_LSE                   (TIM_AF1_ETRSEL_1 | TIM_AF1_ETRSEL_0)   /*!< ETR input is connected to LSE */
992 #define LL_TIM_ETRSOURCE_MCO                   TIM_AF1_ETRSEL_2                        /*!< ETR input is connected to MCO */
993 #define LL_TIM_ETRSOURCE_MCO2                  (TIM_AF1_ETRSEL_2 | TIM_AF1_ETRSEL_0)   /*!< ETR input is connected to MCO2 */
994 #endif /* TIM2 */
995 /**
996   * @}
997   */
998 
999 /** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
1000   * @{
1001   */
1002 #define LL_TIM_BREAK_POLARITY_LOW              0x00000000U               /*!< Break input BRK is active low */
1003 #define LL_TIM_BREAK_POLARITY_HIGH             TIM_BDTR_BKP              /*!< Break input BRK is active high */
1004 /**
1005   * @}
1006   */
1007 
1008 /** @defgroup TIM_LL_EC_BREAK_FILTER break filter
1009   * @{
1010   */
1011 #define LL_TIM_BREAK_FILTER_FDIV1              0x00000000U   /*!< No filter, BRK acts asynchronously */
1012 #define LL_TIM_BREAK_FILTER_FDIV1_N2           0x00010000U   /*!< fSAMPLING=fCK_INT, N=2 */
1013 #define LL_TIM_BREAK_FILTER_FDIV1_N4           0x00020000U   /*!< fSAMPLING=fCK_INT, N=4 */
1014 #define LL_TIM_BREAK_FILTER_FDIV1_N8           0x00030000U   /*!< fSAMPLING=fCK_INT, N=8 */
1015 #define LL_TIM_BREAK_FILTER_FDIV2_N6           0x00040000U   /*!< fSAMPLING=fDTS/2, N=6 */
1016 #define LL_TIM_BREAK_FILTER_FDIV2_N8           0x00050000U   /*!< fSAMPLING=fDTS/2, N=8 */
1017 #define LL_TIM_BREAK_FILTER_FDIV4_N6           0x00060000U   /*!< fSAMPLING=fDTS/4, N=6 */
1018 #define LL_TIM_BREAK_FILTER_FDIV4_N8           0x00070000U   /*!< fSAMPLING=fDTS/4, N=8 */
1019 #define LL_TIM_BREAK_FILTER_FDIV8_N6           0x00080000U   /*!< fSAMPLING=fDTS/8, N=6 */
1020 #define LL_TIM_BREAK_FILTER_FDIV8_N8           0x00090000U   /*!< fSAMPLING=fDTS/8, N=8 */
1021 #define LL_TIM_BREAK_FILTER_FDIV16_N5          0x000A0000U   /*!< fSAMPLING=fDTS/16, N=5 */
1022 #define LL_TIM_BREAK_FILTER_FDIV16_N6          0x000B0000U   /*!< fSAMPLING=fDTS/16, N=6 */
1023 #define LL_TIM_BREAK_FILTER_FDIV16_N8          0x000C0000U   /*!< fSAMPLING=fDTS/16, N=8 */
1024 #define LL_TIM_BREAK_FILTER_FDIV32_N5          0x000D0000U   /*!< fSAMPLING=fDTS/32, N=5 */
1025 #define LL_TIM_BREAK_FILTER_FDIV32_N6          0x000E0000U   /*!< fSAMPLING=fDTS/32, N=6 */
1026 #define LL_TIM_BREAK_FILTER_FDIV32_N8          0x000F0000U   /*!< fSAMPLING=fDTS/32, N=8 */
1027 /**
1028   * @}
1029   */
1030 
1031 /** @defgroup TIM_LL_EC_BREAK2_POLARITY BREAK2 POLARITY
1032   * @{
1033   */
1034 #define LL_TIM_BREAK2_POLARITY_LOW             0x00000000U             /*!< Break input BRK2 is active low */
1035 #define LL_TIM_BREAK2_POLARITY_HIGH            TIM_BDTR_BK2P           /*!< Break input BRK2 is active high */
1036 /**
1037   * @}
1038   */
1039 
1040 /** @defgroup TIM_LL_EC_BREAK2_FILTER BREAK2 FILTER
1041   * @{
1042   */
1043 #define LL_TIM_BREAK2_FILTER_FDIV1             0x00000000U   /*!< No filter, BRK acts asynchronously */
1044 #define LL_TIM_BREAK2_FILTER_FDIV1_N2          0x00100000U   /*!< fSAMPLING=fCK_INT, N=2 */
1045 #define LL_TIM_BREAK2_FILTER_FDIV1_N4          0x00200000U   /*!< fSAMPLING=fCK_INT, N=4 */
1046 #define LL_TIM_BREAK2_FILTER_FDIV1_N8          0x00300000U   /*!< fSAMPLING=fCK_INT, N=8 */
1047 #define LL_TIM_BREAK2_FILTER_FDIV2_N6          0x00400000U   /*!< fSAMPLING=fDTS/2, N=6 */
1048 #define LL_TIM_BREAK2_FILTER_FDIV2_N8          0x00500000U   /*!< fSAMPLING=fDTS/2, N=8 */
1049 #define LL_TIM_BREAK2_FILTER_FDIV4_N6          0x00600000U   /*!< fSAMPLING=fDTS/4, N=6 */
1050 #define LL_TIM_BREAK2_FILTER_FDIV4_N8          0x00700000U   /*!< fSAMPLING=fDTS/4, N=8 */
1051 #define LL_TIM_BREAK2_FILTER_FDIV8_N6          0x00800000U   /*!< fSAMPLING=fDTS/8, N=6 */
1052 #define LL_TIM_BREAK2_FILTER_FDIV8_N8          0x00900000U   /*!< fSAMPLING=fDTS/8, N=8 */
1053 #define LL_TIM_BREAK2_FILTER_FDIV16_N5         0x00A00000U   /*!< fSAMPLING=fDTS/16, N=5 */
1054 #define LL_TIM_BREAK2_FILTER_FDIV16_N6         0x00B00000U   /*!< fSAMPLING=fDTS/16, N=6 */
1055 #define LL_TIM_BREAK2_FILTER_FDIV16_N8         0x00C00000U   /*!< fSAMPLING=fDTS/16, N=8 */
1056 #define LL_TIM_BREAK2_FILTER_FDIV32_N5         0x00D00000U   /*!< fSAMPLING=fDTS/32, N=5 */
1057 #define LL_TIM_BREAK2_FILTER_FDIV32_N6         0x00E00000U   /*!< fSAMPLING=fDTS/32, N=6 */
1058 #define LL_TIM_BREAK2_FILTER_FDIV32_N8         0x00F00000U   /*!< fSAMPLING=fDTS/32, N=8 */
1059 /**
1060   * @}
1061   */
1062 
1063 /** @defgroup TIM_LL_EC_OSSI OSSI
1064   * @{
1065   */
1066 #define LL_TIM_OSSI_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1067 #define LL_TIM_OSSI_ENABLE                     TIM_BDTR_OSSI           /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
1068 /**
1069   * @}
1070   */
1071 
1072 /** @defgroup TIM_LL_EC_OSSR OSSR
1073   * @{
1074   */
1075 #define LL_TIM_OSSR_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1076 #define LL_TIM_OSSR_ENABLE                     TIM_BDTR_OSSR           /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
1077 /**
1078   * @}
1079   */
1080 
1081 /** @defgroup TIM_LL_EC_BREAK_INPUT BREAK INPUT
1082   * @{
1083   */
1084 #define LL_TIM_BREAK_INPUT_BKIN                0x00000000U  /*!< TIMx_BKIN input */
1085 #define LL_TIM_BREAK_INPUT_BKIN2               0x00000004U  /*!< TIMx_BKIN2 input */
1086 /**
1087   * @}
1088   */
1089 
1090 /** @defgroup TIM_LL_EC_BKIN_SOURCE BKIN SOURCE
1091   * @{
1092   */
1093 #define LL_TIM_BKIN_SOURCE_BKIN                TIM_AF1_BKINE      /*!< BKIN input from AF controller */
1094 /**
1095   * @}
1096   */
1097 
1098 /** @defgroup TIM_LL_EC_BKIN_POLARITY BKIN POLARITY
1099   * @{
1100   */
1101 #define LL_TIM_BKIN_POLARITY_LOW               TIM_AF1_BKINP           /*!< BRK BKIN input is active low */
1102 #define LL_TIM_BKIN_POLARITY_HIGH              0x00000000U              /*!< BRK BKIN input is active high */
1103 /**
1104   * @}
1105   */
1106 
1107 /** @defgroup TIM_LL_EC_BREAK_AFMODE BREAK AF MODE
1108   * @{
1109   */
1110 #define LL_TIM_BREAK_AFMODE_INPUT              0x00000000U              /*!< Break input BRK in input mode */
1111 #define LL_TIM_BREAK_AFMODE_BIDIRECTIONAL      TIM_BDTR_BKBID           /*!< Break input BRK in bidirectional mode */
1112 /**
1113   * @}
1114   */
1115 
1116 /** @defgroup TIM_LL_EC_BREAK2_AFMODE BREAK2 AF MODE
1117   * @{
1118   */
1119 #define LL_TIM_BREAK2_AFMODE_INPUT             0x00000000U             /*!< Break2 input BRK2 in input mode */
1120 #define LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL     TIM_BDTR_BK2BID         /*!< Break2 input BRK2 in bidirectional mode */
1121 /**
1122   * @}
1123   */
1124 
1125 /** Legacy definitions for compatibility purpose
1126 @cond 0
1127   */
1128 #define LL_TIM_ReArmBRK(_PARAM_)
1129 #define LL_TIM_ReArmBRK2(_PARAM_)
1130 /**
1131 @endcond
1132   */
1133 
1134 /** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
1135   * @{
1136   */
1137 #define LL_TIM_DMABURST_BASEADDR_CR1           0x00000000U                                                      /*!< TIMx_CR1 register is the DMA base address for DMA burst */
1138 #define LL_TIM_DMABURST_BASEADDR_CR2           TIM_DCR_DBA_0                                                    /*!< TIMx_CR2 register is the DMA base address for DMA burst */
1139 #define LL_TIM_DMABURST_BASEADDR_SMCR          TIM_DCR_DBA_1                                                    /*!< TIMx_SMCR register is the DMA base address for DMA burst */
1140 #define LL_TIM_DMABURST_BASEADDR_DIER          (TIM_DCR_DBA_1 |  TIM_DCR_DBA_0)                                 /*!< TIMx_DIER register is the DMA base address for DMA burst */
1141 #define LL_TIM_DMABURST_BASEADDR_SR            TIM_DCR_DBA_2                                                    /*!< TIMx_SR register is the DMA base address for DMA burst */
1142 #define LL_TIM_DMABURST_BASEADDR_EGR           (TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                                  /*!< TIMx_EGR register is the DMA base address for DMA burst */
1143 #define LL_TIM_DMABURST_BASEADDR_CCMR1         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
1144 #define LL_TIM_DMABURST_BASEADDR_CCMR2         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
1145 #define LL_TIM_DMABURST_BASEADDR_CCER          TIM_DCR_DBA_3                                                    /*!< TIMx_CCER register is the DMA base address for DMA burst */
1146 #define LL_TIM_DMABURST_BASEADDR_CNT           (TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                                  /*!< TIMx_CNT register is the DMA base address for DMA burst */
1147 #define LL_TIM_DMABURST_BASEADDR_PSC           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                                  /*!< TIMx_PSC register is the DMA base address for DMA burst */
1148 #define LL_TIM_DMABURST_BASEADDR_ARR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_ARR register is the DMA base address for DMA burst */
1149 #define LL_TIM_DMABURST_BASEADDR_RCR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_2)                                  /*!< TIMx_RCR register is the DMA base address for DMA burst */
1150 #define LL_TIM_DMABURST_BASEADDR_CCR1          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
1151 #define LL_TIM_DMABURST_BASEADDR_CCR2          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
1152 #define LL_TIM_DMABURST_BASEADDR_CCR3          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
1153 #define LL_TIM_DMABURST_BASEADDR_CCR4          TIM_DCR_DBA_4                                                    /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
1154 #define LL_TIM_DMABURST_BASEADDR_BDTR          (TIM_DCR_DBA_4 | TIM_DCR_DBA_0)                                  /*!< TIMx_BDTR register is the DMA base address for DMA burst */
1155 #define LL_TIM_DMABURST_BASEADDR_CCMR3         (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR3 register is the DMA base address for DMA burst */
1156 #define LL_TIM_DMABURST_BASEADDR_CCR5          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR5 register is the DMA base address for DMA burst */
1157 #define LL_TIM_DMABURST_BASEADDR_CCR6          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR6 register is the DMA base address for DMA burst */
1158 #define LL_TIM_DMABURST_BASEADDR_AF1           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3)                                  /*!< TIMx_AF1 register is the DMA base address for DMA burst */
1159 #define LL_TIM_DMABURST_BASEADDR_AF2           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                  /*!< TIMx_AF2 register is the DMA base address for DMA burst */
1160 #define LL_TIM_DMABURST_BASEADDR_TISEL         (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                  /*!< TIMx_TISEL register is the DMA base address for DMA burst */
1161 /**
1162   * @}
1163   */
1164 
1165 /** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
1166   * @{
1167   */
1168 #define LL_TIM_DMABURST_LENGTH_1TRANSFER       0x00000000U                                                     /*!< Transfer is done to 1 register starting from the DMA burst base address */
1169 #define LL_TIM_DMABURST_LENGTH_2TRANSFERS      TIM_DCR_DBL_0                                                   /*!< Transfer is done to 2 registers starting from the DMA burst base address */
1170 #define LL_TIM_DMABURST_LENGTH_3TRANSFERS      TIM_DCR_DBL_1                                                   /*!< Transfer is done to 3 registers starting from the DMA burst base address */
1171 #define LL_TIM_DMABURST_LENGTH_4TRANSFERS      (TIM_DCR_DBL_1 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 4 registers starting from the DMA burst base address */
1172 #define LL_TIM_DMABURST_LENGTH_5TRANSFERS      TIM_DCR_DBL_2                                                   /*!< Transfer is done to 5 registers starting from the DMA burst base address */
1173 #define LL_TIM_DMABURST_LENGTH_6TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 6 registers starting from the DMA burst base address */
1174 #define LL_TIM_DMABURST_LENGTH_7TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 7 registers starting from the DMA burst base address */
1175 #define LL_TIM_DMABURST_LENGTH_8TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 1 registers starting from the DMA burst base address */
1176 #define LL_TIM_DMABURST_LENGTH_9TRANSFERS      TIM_DCR_DBL_3                                                   /*!< Transfer is done to 9 registers starting from the DMA burst base address */
1177 #define LL_TIM_DMABURST_LENGTH_10TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 10 registers starting from the DMA burst base address */
1178 #define LL_TIM_DMABURST_LENGTH_11TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 11 registers starting from the DMA burst base address */
1179 #define LL_TIM_DMABURST_LENGTH_12TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 12 registers starting from the DMA burst base address */
1180 #define LL_TIM_DMABURST_LENGTH_13TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 13 registers starting from the DMA burst base address */
1181 #define LL_TIM_DMABURST_LENGTH_14TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 14 registers starting from the DMA burst base address */
1182 #define LL_TIM_DMABURST_LENGTH_15TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 15 registers starting from the DMA burst base address */
1183 #define LL_TIM_DMABURST_LENGTH_16TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
1184 #define LL_TIM_DMABURST_LENGTH_17TRANSFERS     TIM_DCR_DBL_4                                                   /*!< Transfer is done to 17 registers starting from the DMA burst base address */
1185 #define LL_TIM_DMABURST_LENGTH_18TRANSFERS     (TIM_DCR_DBL_4 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 18 registers starting from the DMA burst base address */
1186 /**
1187   * @}
1188   */
1189 
1190 /** @defgroup TIM_LL_EC_TIM14_TI1_RMP  TIM14 Timer Input Ch1 Remap
1191   * @{
1192   */
1193 #define LL_TIM_TIM14_TI1_RMP_GPIO     0x00000000U                                    /*!< TIM14 input 1 is connected to GPIO */
1194 #define LL_TIM_TIM14_TI1_RMP_RTC_CLK  TIM_TISEL_TI1SEL_0                             /*!< TIM14 input 1 is connected to RTC clock */
1195 #define LL_TIM_TIM14_TI1_RMP_HSE_32   TIM_TISEL_TI1SEL_1                             /*!< TIM14 input 1 is connected to HSE/32 clock */
1196 #define LL_TIM_TIM14_TI1_RMP_MCO     (TIM_TISEL_TI1SEL_0  | TIM_TISEL_TI1SEL_1)      /*!< TIM14 input 1 is connected to MCO */
1197 #define LL_TIM_TIM14_TI1_RMP_MCO2    TIM_TISEL_TI1SEL_2                              /*!< TIM14 input 1 is connected to MCO2 */
1198 /**
1199   * @}
1200   */
1201 
1202 /** @defgroup TIM_LL_EC_TIM16_TI1_RMP  TIM16 Timer Input Ch1 Remap
1203   * @{
1204   */
1205 #define LL_TIM_TIM16_TI1_RMP_GPIO    0x00000000U                                     /*!< TIM16 input 1 is connected to GPIO */
1206 #define LL_TIM_TIM16_TI1_RMP_LSI     TIM_TISEL_TI1SEL_0                              /*!< TIM16 input 1 is connected to LSI */
1207 #define LL_TIM_TIM16_TI1_RMP_LSE     TIM_TISEL_TI1SEL_1                              /*!< TIM16 input 1 is connected to LSE */
1208 #define LL_TIM_TIM16_TI1_RMP_MCO2    TIM_TISEL_TI1SEL_2                              /*!< TIM16 input 1 is connected to MCO2 */
1209 /**
1210   * @}
1211   */
1212 
1213 /** @defgroup TIM_LL_EC_TIM17_TI1_RMP  TIM17 Timer Input Ch1 Remap
1214   * @{
1215   */
1216 #define LL_TIM_TIM17_TI1_RMP_GPIO    0x00000000U                                     /*!< TIM17 input 1 is connected to GPIO */
1217 #define LL_TIM_TIM17_TI1_RMP_HSE_32  TIM_TISEL_TI1SEL_1                              /*!< TIM17 input 1 is connected to HSE/32 clock */
1218 #define LL_TIM_TIM17_TI1_RMP_MCO    (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1)        /*!< TIM17 input 1 is connected to MCO */
1219 #define LL_TIM_TIM17_TI1_RMP_MCO2    TIM_TISEL_TI1SEL_2                              /*!< TIM17 input 1 is connected to MCO2 */
1220 /**
1221   * @}
1222   */
1223 
1224 /** @defgroup TIM_LL_EC_OCREF_CLR_INT OCREF clear input selection
1225   * @{
1226   */
1227 #define LL_TIM_OCREF_CLR_INT_ETR         OCREF_CLEAR_SELECT_MSK       /*!< OCREF_CLR_INT is connected to ETRF */
1228 /**
1229   * @}
1230   */
1231 
1232 /** Legacy definitions for compatibility purpose
1233 @cond 0
1234   */
1235 #define LL_TIM_BKIN_SOURCE_DFBK  LL_TIM_BKIN_SOURCE_DF1BK
1236 /**
1237 @endcond
1238   */
1239 
1240 /**
1241   * @}
1242   */
1243 
1244 /* Exported macro ------------------------------------------------------------*/
1245 /** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
1246   * @{
1247   */
1248 
1249 /** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
1250   * @{
1251   */
1252 /**
1253   * @brief  Write a value in TIM register.
1254   * @param  __INSTANCE__ TIM Instance
1255   * @param  __REG__ Register to be written
1256   * @param  __VALUE__ Value to be written in the register
1257   * @retval None
1258   */
1259 #define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
1260 
1261 /**
1262   * @brief  Read a value in TIM register.
1263   * @param  __INSTANCE__ TIM Instance
1264   * @param  __REG__ Register to be read
1265   * @retval Register value
1266   */
1267 #define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
1268 /**
1269   * @}
1270   */
1271 
1272 /**
1273   * @brief  HELPER macro retrieving the UIFCPY flag from the counter value.
1274   * @note ex: @ref __LL_TIM_GETFLAG_UIFCPY (@ref LL_TIM_GetCounter ());
1275   * @note  Relevant only if UIF flag remapping has been enabled  (UIF status bit is copied
1276   *        to TIMx_CNT register bit 31)
1277   * @param  __CNT__ Counter value
1278   * @retval UIF status bit
1279   */
1280 #define __LL_TIM_GETFLAG_UIFCPY(__CNT__)  \
1281   (READ_BIT((__CNT__), TIM_CNT_UIFCPY) >> TIM_CNT_UIFCPY_Pos)
1282 
1283 /**
1284   * @brief  HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
1285   * @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
1286   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1287   * @param  __CKD__ This parameter can be one of the following values:
1288   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1289   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1290   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1291   * @param  __DT__ deadtime duration (in ns)
1292   * @retval DTG[0:7]
1293   */
1294 #define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__)  \
1295   ( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))    ?  \
1296     (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__)))  & DT_DELAY_1) :      \
1297     (((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1298     (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),   \
1299                                                  (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
1300     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1301     (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1302                                                  (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
1303     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ?  \
1304     (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1305                                                  (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
1306     0U)
1307 
1308 /**
1309   * @brief  HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
1310   * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
1311   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1312   * @param  __CNTCLK__ counter clock frequency (in Hz)
1313   * @retval Prescaler value  (between Min_Data=0 and Max_Data=65535)
1314   */
1315 #define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__)   \
1316   (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((((__TIMCLK__) + (__CNTCLK__)/2U)/(__CNTCLK__)) - 1U) : 0U)
1317 
1318 /**
1319   * @brief  HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
1320   * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
1321   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1322   * @param  __PSC__ prescaler
1323   * @param  __FREQ__ output signal frequency (in Hz)
1324   * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1325   */
1326 #define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
1327   ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
1328 
1329 /**
1330   * @brief  HELPER macro calculating the compare value required to achieve the required timer output compare
1331   *         active/inactive delay.
1332   * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
1333   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1334   * @param  __PSC__ prescaler
1335   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1336   * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
1337   */
1338 #define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__)  \
1339   ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
1340               / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
1341 
1342 /**
1343   * @brief  HELPER macro calculating the auto-reload value to achieve the required pulse duration
1344   *         (when the timer operates in one pulse mode).
1345   * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
1346   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1347   * @param  __PSC__ prescaler
1348   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1349   * @param  __PULSE__ pulse duration (in us)
1350   * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1351   */
1352 #define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
1353   ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
1354               + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
1355 
1356 /**
1357   * @brief  HELPER macro retrieving the ratio of the input capture prescaler
1358   * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
1359   * @param  __ICPSC__ This parameter can be one of the following values:
1360   *         @arg @ref LL_TIM_ICPSC_DIV1
1361   *         @arg @ref LL_TIM_ICPSC_DIV2
1362   *         @arg @ref LL_TIM_ICPSC_DIV4
1363   *         @arg @ref LL_TIM_ICPSC_DIV8
1364   * @retval Input capture prescaler ratio (1, 2, 4 or 8)
1365   */
1366 #define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__)  \
1367   ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
1368 
1369 
1370 /**
1371   * @}
1372   */
1373 
1374 /* Exported functions --------------------------------------------------------*/
1375 /** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
1376   * @{
1377   */
1378 
1379 /** @defgroup TIM_LL_EF_Time_Base Time Base configuration
1380   * @{
1381   */
1382 /**
1383   * @brief  Enable timer counter.
1384   * @rmtoll CR1          CEN           LL_TIM_EnableCounter
1385   * @param  TIMx Timer instance
1386   * @retval None
1387   */
LL_TIM_EnableCounter(TIM_TypeDef * TIMx)1388 __STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
1389 {
1390   SET_BIT(TIMx->CR1, TIM_CR1_CEN);
1391 }
1392 
1393 /**
1394   * @brief  Disable timer counter.
1395   * @rmtoll CR1          CEN           LL_TIM_DisableCounter
1396   * @param  TIMx Timer instance
1397   * @retval None
1398   */
LL_TIM_DisableCounter(TIM_TypeDef * TIMx)1399 __STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
1400 {
1401   CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
1402 }
1403 
1404 /**
1405   * @brief  Indicates whether the timer counter is enabled.
1406   * @rmtoll CR1          CEN           LL_TIM_IsEnabledCounter
1407   * @param  TIMx Timer instance
1408   * @retval State of bit (1 or 0).
1409   */
LL_TIM_IsEnabledCounter(const TIM_TypeDef * TIMx)1410 __STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(const TIM_TypeDef *TIMx)
1411 {
1412   return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
1413 }
1414 
1415 /**
1416   * @brief  Enable update event generation.
1417   * @rmtoll CR1          UDIS          LL_TIM_EnableUpdateEvent
1418   * @param  TIMx Timer instance
1419   * @retval None
1420   */
LL_TIM_EnableUpdateEvent(TIM_TypeDef * TIMx)1421 __STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
1422 {
1423   CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
1424 }
1425 
1426 /**
1427   * @brief  Disable update event generation.
1428   * @rmtoll CR1          UDIS          LL_TIM_DisableUpdateEvent
1429   * @param  TIMx Timer instance
1430   * @retval None
1431   */
LL_TIM_DisableUpdateEvent(TIM_TypeDef * TIMx)1432 __STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
1433 {
1434   SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
1435 }
1436 
1437 /**
1438   * @brief  Indicates whether update event generation is enabled.
1439   * @rmtoll CR1          UDIS          LL_TIM_IsEnabledUpdateEvent
1440   * @param  TIMx Timer instance
1441   * @retval Inverted state of bit (0 or 1).
1442   */
LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef * TIMx)1443 __STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef *TIMx)
1444 {
1445   return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
1446 }
1447 
1448 /**
1449   * @brief  Set update event source
1450   * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
1451   *       generate an update interrupt or DMA request if enabled:
1452   *        - Counter overflow/underflow
1453   *        - Setting the UG bit
1454   *        - Update generation through the slave mode controller
1455   * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
1456   *       overflow/underflow generates an update interrupt or DMA request if enabled.
1457   * @rmtoll CR1          URS           LL_TIM_SetUpdateSource
1458   * @param  TIMx Timer instance
1459   * @param  UpdateSource This parameter can be one of the following values:
1460   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1461   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1462   * @retval None
1463   */
LL_TIM_SetUpdateSource(TIM_TypeDef * TIMx,uint32_t UpdateSource)1464 __STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
1465 {
1466   MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
1467 }
1468 
1469 /**
1470   * @brief  Get actual event update source
1471   * @rmtoll CR1          URS           LL_TIM_GetUpdateSource
1472   * @param  TIMx Timer instance
1473   * @retval Returned value can be one of the following values:
1474   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1475   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1476   */
LL_TIM_GetUpdateSource(const TIM_TypeDef * TIMx)1477 __STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(const TIM_TypeDef *TIMx)
1478 {
1479   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
1480 }
1481 
1482 /**
1483   * @brief  Set one pulse mode (one shot v.s. repetitive).
1484   * @rmtoll CR1          OPM           LL_TIM_SetOnePulseMode
1485   * @param  TIMx Timer instance
1486   * @param  OnePulseMode This parameter can be one of the following values:
1487   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1488   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1489   * @retval None
1490   */
LL_TIM_SetOnePulseMode(TIM_TypeDef * TIMx,uint32_t OnePulseMode)1491 __STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
1492 {
1493   MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
1494 }
1495 
1496 /**
1497   * @brief  Get actual one pulse mode.
1498   * @rmtoll CR1          OPM           LL_TIM_GetOnePulseMode
1499   * @param  TIMx Timer instance
1500   * @retval Returned value can be one of the following values:
1501   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1502   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1503   */
LL_TIM_GetOnePulseMode(const TIM_TypeDef * TIMx)1504 __STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(const TIM_TypeDef *TIMx)
1505 {
1506   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
1507 }
1508 
1509 /**
1510   * @brief  Set the timer counter counting mode.
1511   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1512   *       check whether or not the counter mode selection feature is supported
1513   *       by a timer instance.
1514   * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1515   *       requires a timer reset to avoid unexpected direction
1516   *       due to DIR bit readonly in center aligned mode.
1517   * @rmtoll CR1          DIR           LL_TIM_SetCounterMode\n
1518   *         CR1          CMS           LL_TIM_SetCounterMode
1519   * @param  TIMx Timer instance
1520   * @param  CounterMode This parameter can be one of the following values:
1521   *         @arg @ref LL_TIM_COUNTERMODE_UP
1522   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1523   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1524   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1525   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1526   * @retval None
1527   */
LL_TIM_SetCounterMode(TIM_TypeDef * TIMx,uint32_t CounterMode)1528 __STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
1529 {
1530   MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
1531 }
1532 
1533 /**
1534   * @brief  Get actual counter mode.
1535   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1536   *       check whether or not the counter mode selection feature is supported
1537   *       by a timer instance.
1538   * @rmtoll CR1          DIR           LL_TIM_GetCounterMode\n
1539   *         CR1          CMS           LL_TIM_GetCounterMode
1540   * @param  TIMx Timer instance
1541   * @retval Returned value can be one of the following values:
1542   *         @arg @ref LL_TIM_COUNTERMODE_UP
1543   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1544   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1545   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1546   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1547   */
LL_TIM_GetCounterMode(const TIM_TypeDef * TIMx)1548 __STATIC_INLINE uint32_t LL_TIM_GetCounterMode(const TIM_TypeDef *TIMx)
1549 {
1550   uint32_t counter_mode;
1551 
1552   counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CMS));
1553 
1554   if (counter_mode == 0U)
1555   {
1556     counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1557   }
1558 
1559   return counter_mode;
1560 }
1561 
1562 /**
1563   * @brief  Enable auto-reload (ARR) preload.
1564   * @rmtoll CR1          ARPE          LL_TIM_EnableARRPreload
1565   * @param  TIMx Timer instance
1566   * @retval None
1567   */
LL_TIM_EnableARRPreload(TIM_TypeDef * TIMx)1568 __STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
1569 {
1570   SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
1571 }
1572 
1573 /**
1574   * @brief  Disable auto-reload (ARR) preload.
1575   * @rmtoll CR1          ARPE          LL_TIM_DisableARRPreload
1576   * @param  TIMx Timer instance
1577   * @retval None
1578   */
LL_TIM_DisableARRPreload(TIM_TypeDef * TIMx)1579 __STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
1580 {
1581   CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
1582 }
1583 
1584 /**
1585   * @brief  Indicates whether auto-reload (ARR) preload is enabled.
1586   * @rmtoll CR1          ARPE          LL_TIM_IsEnabledARRPreload
1587   * @param  TIMx Timer instance
1588   * @retval State of bit (1 or 0).
1589   */
LL_TIM_IsEnabledARRPreload(const TIM_TypeDef * TIMx)1590 __STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(const TIM_TypeDef *TIMx)
1591 {
1592   return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
1593 }
1594 
1595 /**
1596   * @brief  Set the division ratio between the timer clock  and the sampling clock used by the dead-time generators
1597   *         (when supported) and the digital filters.
1598   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1599   *       whether or not the clock division feature is supported by the timer
1600   *       instance.
1601   * @rmtoll CR1          CKD           LL_TIM_SetClockDivision
1602   * @param  TIMx Timer instance
1603   * @param  ClockDivision This parameter can be one of the following values:
1604   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1605   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1606   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1607   * @retval None
1608   */
LL_TIM_SetClockDivision(TIM_TypeDef * TIMx,uint32_t ClockDivision)1609 __STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
1610 {
1611   MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
1612 }
1613 
1614 /**
1615   * @brief  Get the actual division ratio between the timer clock  and the sampling clock used by the dead-time
1616   *         generators (when supported) and the digital filters.
1617   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1618   *       whether or not the clock division feature is supported by the timer
1619   *       instance.
1620   * @rmtoll CR1          CKD           LL_TIM_GetClockDivision
1621   * @param  TIMx Timer instance
1622   * @retval Returned value can be one of the following values:
1623   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1624   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1625   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1626   */
LL_TIM_GetClockDivision(const TIM_TypeDef * TIMx)1627 __STATIC_INLINE uint32_t LL_TIM_GetClockDivision(const TIM_TypeDef *TIMx)
1628 {
1629   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
1630 }
1631 
1632 /**
1633   * @brief  Set the counter value.
1634   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1635   *       whether or not a timer instance supports a 32 bits counter.
1636   * @rmtoll CNT          CNT           LL_TIM_SetCounter
1637   * @param  TIMx Timer instance
1638   * @param  Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1639   * @retval None
1640   */
LL_TIM_SetCounter(TIM_TypeDef * TIMx,uint32_t Counter)1641 __STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
1642 {
1643   WRITE_REG(TIMx->CNT, Counter);
1644 }
1645 
1646 /**
1647   * @brief  Get the counter value.
1648   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1649   *       whether or not a timer instance supports a 32 bits counter.
1650   * @rmtoll CNT          CNT           LL_TIM_GetCounter
1651   * @param  TIMx Timer instance
1652   * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1653   */
LL_TIM_GetCounter(const TIM_TypeDef * TIMx)1654 __STATIC_INLINE uint32_t LL_TIM_GetCounter(const TIM_TypeDef *TIMx)
1655 {
1656   return (uint32_t)(READ_REG(TIMx->CNT));
1657 }
1658 
1659 /**
1660   * @brief  Get the current direction of the counter
1661   * @rmtoll CR1          DIR           LL_TIM_GetDirection
1662   * @param  TIMx Timer instance
1663   * @retval Returned value can be one of the following values:
1664   *         @arg @ref LL_TIM_COUNTERDIRECTION_UP
1665   *         @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
1666   */
LL_TIM_GetDirection(const TIM_TypeDef * TIMx)1667 __STATIC_INLINE uint32_t LL_TIM_GetDirection(const TIM_TypeDef *TIMx)
1668 {
1669   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1670 }
1671 
1672 /**
1673   * @brief  Set the prescaler value.
1674   * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
1675   * @note The prescaler can be changed on the fly as this control register is buffered. The new
1676   *       prescaler ratio is taken into account at the next update event.
1677   * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
1678   * @rmtoll PSC          PSC           LL_TIM_SetPrescaler
1679   * @param  TIMx Timer instance
1680   * @param  Prescaler between Min_Data=0 and Max_Data=65535
1681   * @retval None
1682   */
LL_TIM_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Prescaler)1683 __STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
1684 {
1685   WRITE_REG(TIMx->PSC, Prescaler);
1686 }
1687 
1688 /**
1689   * @brief  Get the prescaler value.
1690   * @rmtoll PSC          PSC           LL_TIM_GetPrescaler
1691   * @param  TIMx Timer instance
1692   * @retval  Prescaler value between Min_Data=0 and Max_Data=65535
1693   */
LL_TIM_GetPrescaler(const TIM_TypeDef * TIMx)1694 __STATIC_INLINE uint32_t LL_TIM_GetPrescaler(const TIM_TypeDef *TIMx)
1695 {
1696   return (uint32_t)(READ_REG(TIMx->PSC));
1697 }
1698 
1699 /**
1700   * @brief  Set the auto-reload value.
1701   * @note The counter is blocked while the auto-reload value is null.
1702   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1703   *       whether or not a timer instance supports a 32 bits counter.
1704   * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
1705   * @rmtoll ARR          ARR           LL_TIM_SetAutoReload
1706   * @param  TIMx Timer instance
1707   * @param  AutoReload between Min_Data=0 and Max_Data=65535
1708   * @retval None
1709   */
LL_TIM_SetAutoReload(TIM_TypeDef * TIMx,uint32_t AutoReload)1710 __STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
1711 {
1712   WRITE_REG(TIMx->ARR, AutoReload);
1713 }
1714 
1715 /**
1716   * @brief  Get the auto-reload value.
1717   * @rmtoll ARR          ARR           LL_TIM_GetAutoReload
1718   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1719   *       whether or not a timer instance supports a 32 bits counter.
1720   * @param  TIMx Timer instance
1721   * @retval Auto-reload value
1722   */
LL_TIM_GetAutoReload(const TIM_TypeDef * TIMx)1723 __STATIC_INLINE uint32_t LL_TIM_GetAutoReload(const TIM_TypeDef *TIMx)
1724 {
1725   return (uint32_t)(READ_REG(TIMx->ARR));
1726 }
1727 
1728 /**
1729   * @brief  Set the repetition counter value.
1730   * @note For advanced timer instances RepetitionCounter can be up to 65535.
1731   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1732   *       whether or not a timer instance supports a repetition counter.
1733   * @rmtoll RCR          REP           LL_TIM_SetRepetitionCounter
1734   * @param  TIMx Timer instance
1735   * @param  RepetitionCounter between Min_Data=0 and Max_Data=255 or 65535 for advanced timer.
1736   * @retval None
1737   */
LL_TIM_SetRepetitionCounter(TIM_TypeDef * TIMx,uint32_t RepetitionCounter)1738 __STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
1739 {
1740   WRITE_REG(TIMx->RCR, RepetitionCounter);
1741 }
1742 
1743 /**
1744   * @brief  Get the repetition counter value.
1745   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1746   *       whether or not a timer instance supports a repetition counter.
1747   * @rmtoll RCR          REP           LL_TIM_GetRepetitionCounter
1748   * @param  TIMx Timer instance
1749   * @retval Repetition counter value
1750   */
LL_TIM_GetRepetitionCounter(const TIM_TypeDef * TIMx)1751 __STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(const TIM_TypeDef *TIMx)
1752 {
1753   return (uint32_t)(READ_REG(TIMx->RCR));
1754 }
1755 
1756 /**
1757   * @brief  Force a continuous copy of the update interrupt flag (UIF) into the timer counter register (bit 31).
1758   * @note This allows both the counter value and a potential roll-over condition signalled by the UIFCPY flag to be read
1759   *       in an atomic way.
1760   * @rmtoll CR1          UIFREMAP      LL_TIM_EnableUIFRemap
1761   * @param  TIMx Timer instance
1762   * @retval None
1763   */
LL_TIM_EnableUIFRemap(TIM_TypeDef * TIMx)1764 __STATIC_INLINE void LL_TIM_EnableUIFRemap(TIM_TypeDef *TIMx)
1765 {
1766   SET_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1767 }
1768 
1769 /**
1770   * @brief  Disable update interrupt flag (UIF) remapping.
1771   * @rmtoll CR1          UIFREMAP      LL_TIM_DisableUIFRemap
1772   * @param  TIMx Timer instance
1773   * @retval None
1774   */
LL_TIM_DisableUIFRemap(TIM_TypeDef * TIMx)1775 __STATIC_INLINE void LL_TIM_DisableUIFRemap(TIM_TypeDef *TIMx)
1776 {
1777   CLEAR_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1778 }
1779 
1780 /**
1781   * @brief  Indicate whether update interrupt flag (UIF) copy is set.
1782   * @param  Counter Counter value
1783   * @retval State of bit (1 or 0).
1784   */
LL_TIM_IsActiveUIFCPY(const uint32_t Counter)1785 __STATIC_INLINE uint32_t LL_TIM_IsActiveUIFCPY(const uint32_t Counter)
1786 {
1787   return (((Counter & TIM_CNT_UIFCPY) == (TIM_CNT_UIFCPY)) ? 1UL : 0UL);
1788 }
1789 
1790 /**
1791   * @}
1792   */
1793 
1794 /** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
1795   * @{
1796   */
1797 /**
1798   * @brief  Enable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1799   * @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
1800   *       they are updated only when a commutation event (COM) occurs.
1801   * @note Only on channels that have a complementary output.
1802   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1803   *       whether or not a timer instance is able to generate a commutation event.
1804   * @rmtoll CR2          CCPC          LL_TIM_CC_EnablePreload
1805   * @param  TIMx Timer instance
1806   * @retval None
1807   */
LL_TIM_CC_EnablePreload(TIM_TypeDef * TIMx)1808 __STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
1809 {
1810   SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
1811 }
1812 
1813 /**
1814   * @brief  Disable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1815   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1816   *       whether or not a timer instance is able to generate a commutation event.
1817   * @rmtoll CR2          CCPC          LL_TIM_CC_DisablePreload
1818   * @param  TIMx Timer instance
1819   * @retval None
1820   */
LL_TIM_CC_DisablePreload(TIM_TypeDef * TIMx)1821 __STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
1822 {
1823   CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
1824 }
1825 
1826 /**
1827   * @brief  Indicates whether the capture/compare control bits (CCxE, CCxNE and OCxM) preload is enabled.
1828   * @rmtoll CR2          CCPC          LL_TIM_CC_IsEnabledPreload
1829   * @param  TIMx Timer instance
1830   * @retval State of bit (1 or 0).
1831   */
LL_TIM_CC_IsEnabledPreload(const TIM_TypeDef * TIMx)1832 __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledPreload(const TIM_TypeDef *TIMx)
1833 {
1834   return ((READ_BIT(TIMx->CR2, TIM_CR2_CCPC) == (TIM_CR2_CCPC)) ? 1UL : 0UL);
1835 }
1836 
1837 /**
1838   * @brief  Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
1839   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1840   *       whether or not a timer instance is able to generate a commutation event.
1841   * @rmtoll CR2          CCUS          LL_TIM_CC_SetUpdate
1842   * @param  TIMx Timer instance
1843   * @param  CCUpdateSource This parameter can be one of the following values:
1844   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
1845   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
1846   * @retval None
1847   */
LL_TIM_CC_SetUpdate(TIM_TypeDef * TIMx,uint32_t CCUpdateSource)1848 __STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
1849 {
1850   MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
1851 }
1852 
1853 /**
1854   * @brief  Set the trigger of the capture/compare DMA request.
1855   * @rmtoll CR2          CCDS          LL_TIM_CC_SetDMAReqTrigger
1856   * @param  TIMx Timer instance
1857   * @param  DMAReqTrigger This parameter can be one of the following values:
1858   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1859   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1860   * @retval None
1861   */
LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef * TIMx,uint32_t DMAReqTrigger)1862 __STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
1863 {
1864   MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
1865 }
1866 
1867 /**
1868   * @brief  Get actual trigger of the capture/compare DMA request.
1869   * @rmtoll CR2          CCDS          LL_TIM_CC_GetDMAReqTrigger
1870   * @param  TIMx Timer instance
1871   * @retval Returned value can be one of the following values:
1872   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1873   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1874   */
LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef * TIMx)1875 __STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef *TIMx)
1876 {
1877   return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
1878 }
1879 
1880 /**
1881   * @brief  Set the lock level to freeze the
1882   *         configuration of several capture/compare parameters.
1883   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
1884   *       the lock mechanism is supported by a timer instance.
1885   * @rmtoll BDTR         LOCK          LL_TIM_CC_SetLockLevel
1886   * @param  TIMx Timer instance
1887   * @param  LockLevel This parameter can be one of the following values:
1888   *         @arg @ref LL_TIM_LOCKLEVEL_OFF
1889   *         @arg @ref LL_TIM_LOCKLEVEL_1
1890   *         @arg @ref LL_TIM_LOCKLEVEL_2
1891   *         @arg @ref LL_TIM_LOCKLEVEL_3
1892   * @retval None
1893   */
LL_TIM_CC_SetLockLevel(TIM_TypeDef * TIMx,uint32_t LockLevel)1894 __STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
1895 {
1896   MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
1897 }
1898 
1899 /**
1900   * @brief  Enable capture/compare channels.
1901   * @rmtoll CCER         CC1E          LL_TIM_CC_EnableChannel\n
1902   *         CCER         CC1NE         LL_TIM_CC_EnableChannel\n
1903   *         CCER         CC2E          LL_TIM_CC_EnableChannel\n
1904   *         CCER         CC2NE         LL_TIM_CC_EnableChannel\n
1905   *         CCER         CC3E          LL_TIM_CC_EnableChannel\n
1906   *         CCER         CC3NE         LL_TIM_CC_EnableChannel\n
1907   *         CCER         CC4E          LL_TIM_CC_EnableChannel\n
1908   *         CCER         CC5E          LL_TIM_CC_EnableChannel\n
1909   *         CCER         CC6E          LL_TIM_CC_EnableChannel
1910   * @param  TIMx Timer instance
1911   * @param  Channels This parameter can be a combination of the following values:
1912   *         @arg @ref LL_TIM_CHANNEL_CH1
1913   *         @arg @ref LL_TIM_CHANNEL_CH1N
1914   *         @arg @ref LL_TIM_CHANNEL_CH2
1915   *         @arg @ref LL_TIM_CHANNEL_CH2N
1916   *         @arg @ref LL_TIM_CHANNEL_CH3
1917   *         @arg @ref LL_TIM_CHANNEL_CH3N
1918   *         @arg @ref LL_TIM_CHANNEL_CH4
1919   *         @arg @ref LL_TIM_CHANNEL_CH5
1920   *         @arg @ref LL_TIM_CHANNEL_CH6
1921   * @retval None
1922   */
LL_TIM_CC_EnableChannel(TIM_TypeDef * TIMx,uint32_t Channels)1923 __STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1924 {
1925   SET_BIT(TIMx->CCER, Channels);
1926 }
1927 
1928 /**
1929   * @brief  Disable capture/compare channels.
1930   * @rmtoll CCER         CC1E          LL_TIM_CC_DisableChannel\n
1931   *         CCER         CC1NE         LL_TIM_CC_DisableChannel\n
1932   *         CCER         CC2E          LL_TIM_CC_DisableChannel\n
1933   *         CCER         CC2NE         LL_TIM_CC_DisableChannel\n
1934   *         CCER         CC3E          LL_TIM_CC_DisableChannel\n
1935   *         CCER         CC3NE         LL_TIM_CC_DisableChannel\n
1936   *         CCER         CC4E          LL_TIM_CC_DisableChannel\n
1937   *         CCER         CC5E          LL_TIM_CC_DisableChannel\n
1938   *         CCER         CC6E          LL_TIM_CC_DisableChannel
1939   * @param  TIMx Timer instance
1940   * @param  Channels This parameter can be a combination of the following values:
1941   *         @arg @ref LL_TIM_CHANNEL_CH1
1942   *         @arg @ref LL_TIM_CHANNEL_CH1N
1943   *         @arg @ref LL_TIM_CHANNEL_CH2
1944   *         @arg @ref LL_TIM_CHANNEL_CH2N
1945   *         @arg @ref LL_TIM_CHANNEL_CH3
1946   *         @arg @ref LL_TIM_CHANNEL_CH3N
1947   *         @arg @ref LL_TIM_CHANNEL_CH4
1948   *         @arg @ref LL_TIM_CHANNEL_CH5
1949   *         @arg @ref LL_TIM_CHANNEL_CH6
1950   * @retval None
1951   */
LL_TIM_CC_DisableChannel(TIM_TypeDef * TIMx,uint32_t Channels)1952 __STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1953 {
1954   CLEAR_BIT(TIMx->CCER, Channels);
1955 }
1956 
1957 /**
1958   * @brief  Indicate whether channel(s) is(are) enabled.
1959   * @rmtoll CCER         CC1E          LL_TIM_CC_IsEnabledChannel\n
1960   *         CCER         CC1NE         LL_TIM_CC_IsEnabledChannel\n
1961   *         CCER         CC2E          LL_TIM_CC_IsEnabledChannel\n
1962   *         CCER         CC2NE         LL_TIM_CC_IsEnabledChannel\n
1963   *         CCER         CC3E          LL_TIM_CC_IsEnabledChannel\n
1964   *         CCER         CC3NE         LL_TIM_CC_IsEnabledChannel\n
1965   *         CCER         CC4E          LL_TIM_CC_IsEnabledChannel\n
1966   *         CCER         CC5E          LL_TIM_CC_IsEnabledChannel\n
1967   *         CCER         CC6E          LL_TIM_CC_IsEnabledChannel
1968   * @param  TIMx Timer instance
1969   * @param  Channels This parameter can be a combination of the following values:
1970   *         @arg @ref LL_TIM_CHANNEL_CH1
1971   *         @arg @ref LL_TIM_CHANNEL_CH1N
1972   *         @arg @ref LL_TIM_CHANNEL_CH2
1973   *         @arg @ref LL_TIM_CHANNEL_CH2N
1974   *         @arg @ref LL_TIM_CHANNEL_CH3
1975   *         @arg @ref LL_TIM_CHANNEL_CH3N
1976   *         @arg @ref LL_TIM_CHANNEL_CH4
1977   *         @arg @ref LL_TIM_CHANNEL_CH5
1978   *         @arg @ref LL_TIM_CHANNEL_CH6
1979   * @retval State of bit (1 or 0).
1980   */
LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef * TIMx,uint32_t Channels)1981 __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef *TIMx, uint32_t Channels)
1982 {
1983   return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
1984 }
1985 
1986 /**
1987   * @}
1988   */
1989 
1990 /** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
1991   * @{
1992   */
1993 /**
1994   * @brief  Configure an output channel.
1995   * @rmtoll CCMR1        CC1S          LL_TIM_OC_ConfigOutput\n
1996   *         CCMR1        CC2S          LL_TIM_OC_ConfigOutput\n
1997   *         CCMR2        CC3S          LL_TIM_OC_ConfigOutput\n
1998   *         CCMR2        CC4S          LL_TIM_OC_ConfigOutput\n
1999   *         CCMR3        CC5S          LL_TIM_OC_ConfigOutput\n
2000   *         CCMR3        CC6S          LL_TIM_OC_ConfigOutput\n
2001   *         CCER         CC1P          LL_TIM_OC_ConfigOutput\n
2002   *         CCER         CC2P          LL_TIM_OC_ConfigOutput\n
2003   *         CCER         CC3P          LL_TIM_OC_ConfigOutput\n
2004   *         CCER         CC4P          LL_TIM_OC_ConfigOutput\n
2005   *         CCER         CC5P          LL_TIM_OC_ConfigOutput\n
2006   *         CCER         CC6P          LL_TIM_OC_ConfigOutput\n
2007   *         CR2          OIS1          LL_TIM_OC_ConfigOutput\n
2008   *         CR2          OIS2          LL_TIM_OC_ConfigOutput\n
2009   *         CR2          OIS3          LL_TIM_OC_ConfigOutput\n
2010   *         CR2          OIS4          LL_TIM_OC_ConfigOutput\n
2011   *         CR2          OIS5          LL_TIM_OC_ConfigOutput\n
2012   *         CR2          OIS6          LL_TIM_OC_ConfigOutput
2013   * @param  TIMx Timer instance
2014   * @param  Channel This parameter can be one of the following values:
2015   *         @arg @ref LL_TIM_CHANNEL_CH1
2016   *         @arg @ref LL_TIM_CHANNEL_CH2
2017   *         @arg @ref LL_TIM_CHANNEL_CH3
2018   *         @arg @ref LL_TIM_CHANNEL_CH4
2019   *         @arg @ref LL_TIM_CHANNEL_CH5
2020   *         @arg @ref LL_TIM_CHANNEL_CH6
2021   * @param  Configuration This parameter must be a combination of all the following values:
2022   *         @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
2023   *         @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
2024   * @retval None
2025   */
LL_TIM_OC_ConfigOutput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2026 __STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2027 {
2028   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2029   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2030   CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
2031   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
2032              (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
2033   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
2034              (Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
2035 }
2036 
2037 /**
2038   * @brief  Define the behavior of the output reference signal OCxREF from which
2039   *         OCx and OCxN (when relevant) are derived.
2040   * @rmtoll CCMR1        OC1M          LL_TIM_OC_SetMode\n
2041   *         CCMR1        OC2M          LL_TIM_OC_SetMode\n
2042   *         CCMR2        OC3M          LL_TIM_OC_SetMode\n
2043   *         CCMR2        OC4M          LL_TIM_OC_SetMode\n
2044   *         CCMR3        OC5M          LL_TIM_OC_SetMode\n
2045   *         CCMR3        OC6M          LL_TIM_OC_SetMode
2046   * @param  TIMx Timer instance
2047   * @param  Channel This parameter can be one of the following values:
2048   *         @arg @ref LL_TIM_CHANNEL_CH1
2049   *         @arg @ref LL_TIM_CHANNEL_CH2
2050   *         @arg @ref LL_TIM_CHANNEL_CH3
2051   *         @arg @ref LL_TIM_CHANNEL_CH4
2052   *         @arg @ref LL_TIM_CHANNEL_CH5
2053   *         @arg @ref LL_TIM_CHANNEL_CH6
2054   * @param  Mode This parameter can be one of the following values:
2055   *         @arg @ref LL_TIM_OCMODE_FROZEN
2056   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2057   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2058   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2059   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2060   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2061   *         @arg @ref LL_TIM_OCMODE_PWM1
2062   *         @arg @ref LL_TIM_OCMODE_PWM2
2063   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2064   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2065   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2066   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2067   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM1
2068   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM2
2069   * @retval None
2070   */
LL_TIM_OC_SetMode(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Mode)2071 __STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
2072 {
2073   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2074   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2075   MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]);
2076 }
2077 
2078 /**
2079   * @brief  Get the output compare mode of an output channel.
2080   * @rmtoll CCMR1        OC1M          LL_TIM_OC_GetMode\n
2081   *         CCMR1        OC2M          LL_TIM_OC_GetMode\n
2082   *         CCMR2        OC3M          LL_TIM_OC_GetMode\n
2083   *         CCMR2        OC4M          LL_TIM_OC_GetMode\n
2084   *         CCMR3        OC5M          LL_TIM_OC_GetMode\n
2085   *         CCMR3        OC6M          LL_TIM_OC_GetMode
2086   * @param  TIMx Timer instance
2087   * @param  Channel This parameter can be one of the following values:
2088   *         @arg @ref LL_TIM_CHANNEL_CH1
2089   *         @arg @ref LL_TIM_CHANNEL_CH2
2090   *         @arg @ref LL_TIM_CHANNEL_CH3
2091   *         @arg @ref LL_TIM_CHANNEL_CH4
2092   *         @arg @ref LL_TIM_CHANNEL_CH5
2093   *         @arg @ref LL_TIM_CHANNEL_CH6
2094   * @retval Returned value can be one of the following values:
2095   *         @arg @ref LL_TIM_OCMODE_FROZEN
2096   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2097   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2098   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2099   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2100   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2101   *         @arg @ref LL_TIM_OCMODE_PWM1
2102   *         @arg @ref LL_TIM_OCMODE_PWM2
2103   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2104   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2105   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2106   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2107   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM1
2108   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM2
2109   */
LL_TIM_OC_GetMode(const TIM_TypeDef * TIMx,uint32_t Channel)2110 __STATIC_INLINE uint32_t LL_TIM_OC_GetMode(const TIM_TypeDef *TIMx, uint32_t Channel)
2111 {
2112   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2113   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2114   return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
2115 }
2116 
2117 /**
2118   * @brief  Set the polarity of an output channel.
2119   * @rmtoll CCER         CC1P          LL_TIM_OC_SetPolarity\n
2120   *         CCER         CC1NP         LL_TIM_OC_SetPolarity\n
2121   *         CCER         CC2P          LL_TIM_OC_SetPolarity\n
2122   *         CCER         CC2NP         LL_TIM_OC_SetPolarity\n
2123   *         CCER         CC3P          LL_TIM_OC_SetPolarity\n
2124   *         CCER         CC3NP         LL_TIM_OC_SetPolarity\n
2125   *         CCER         CC4P          LL_TIM_OC_SetPolarity\n
2126   *         CCER         CC5P          LL_TIM_OC_SetPolarity\n
2127   *         CCER         CC6P          LL_TIM_OC_SetPolarity
2128   * @param  TIMx Timer instance
2129   * @param  Channel This parameter can be one of the following values:
2130   *         @arg @ref LL_TIM_CHANNEL_CH1
2131   *         @arg @ref LL_TIM_CHANNEL_CH1N
2132   *         @arg @ref LL_TIM_CHANNEL_CH2
2133   *         @arg @ref LL_TIM_CHANNEL_CH2N
2134   *         @arg @ref LL_TIM_CHANNEL_CH3
2135   *         @arg @ref LL_TIM_CHANNEL_CH3N
2136   *         @arg @ref LL_TIM_CHANNEL_CH4
2137   *         @arg @ref LL_TIM_CHANNEL_CH5
2138   *         @arg @ref LL_TIM_CHANNEL_CH6
2139   * @param  Polarity This parameter can be one of the following values:
2140   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2141   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2142   * @retval None
2143   */
LL_TIM_OC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Polarity)2144 __STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
2145 {
2146   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2147   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),  Polarity << SHIFT_TAB_CCxP[iChannel]);
2148 }
2149 
2150 /**
2151   * @brief  Get the polarity of an output channel.
2152   * @rmtoll CCER         CC1P          LL_TIM_OC_GetPolarity\n
2153   *         CCER         CC1NP         LL_TIM_OC_GetPolarity\n
2154   *         CCER         CC2P          LL_TIM_OC_GetPolarity\n
2155   *         CCER         CC2NP         LL_TIM_OC_GetPolarity\n
2156   *         CCER         CC3P          LL_TIM_OC_GetPolarity\n
2157   *         CCER         CC3NP         LL_TIM_OC_GetPolarity\n
2158   *         CCER         CC4P          LL_TIM_OC_GetPolarity\n
2159   *         CCER         CC5P          LL_TIM_OC_GetPolarity\n
2160   *         CCER         CC6P          LL_TIM_OC_GetPolarity
2161   * @param  TIMx Timer instance
2162   * @param  Channel This parameter can be one of the following values:
2163   *         @arg @ref LL_TIM_CHANNEL_CH1
2164   *         @arg @ref LL_TIM_CHANNEL_CH1N
2165   *         @arg @ref LL_TIM_CHANNEL_CH2
2166   *         @arg @ref LL_TIM_CHANNEL_CH2N
2167   *         @arg @ref LL_TIM_CHANNEL_CH3
2168   *         @arg @ref LL_TIM_CHANNEL_CH3N
2169   *         @arg @ref LL_TIM_CHANNEL_CH4
2170   *         @arg @ref LL_TIM_CHANNEL_CH5
2171   *         @arg @ref LL_TIM_CHANNEL_CH6
2172   * @retval Returned value can be one of the following values:
2173   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2174   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2175   */
LL_TIM_OC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)2176 __STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
2177 {
2178   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2179   return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
2180 }
2181 
2182 /**
2183   * @brief  Set the IDLE state of an output channel
2184   * @note This function is significant only for the timer instances
2185   *       supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx)
2186   *       can be used to check whether or not a timer instance provides
2187   *       a break input.
2188   * @rmtoll CR2         OIS1          LL_TIM_OC_SetIdleState\n
2189   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2190   *         CR2         OIS2          LL_TIM_OC_SetIdleState\n
2191   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2192   *         CR2         OIS3          LL_TIM_OC_SetIdleState\n
2193   *         CR2         OIS3N         LL_TIM_OC_SetIdleState\n
2194   *         CR2         OIS4          LL_TIM_OC_SetIdleState\n
2195   *         CR2         OIS5          LL_TIM_OC_SetIdleState\n
2196   *         CR2         OIS6          LL_TIM_OC_SetIdleState
2197   * @param  TIMx Timer instance
2198   * @param  Channel This parameter can be one of the following values:
2199   *         @arg @ref LL_TIM_CHANNEL_CH1
2200   *         @arg @ref LL_TIM_CHANNEL_CH1N
2201   *         @arg @ref LL_TIM_CHANNEL_CH2
2202   *         @arg @ref LL_TIM_CHANNEL_CH2N
2203   *         @arg @ref LL_TIM_CHANNEL_CH3
2204   *         @arg @ref LL_TIM_CHANNEL_CH3N
2205   *         @arg @ref LL_TIM_CHANNEL_CH4
2206   *         @arg @ref LL_TIM_CHANNEL_CH5
2207   *         @arg @ref LL_TIM_CHANNEL_CH6
2208   * @param  IdleState This parameter can be one of the following values:
2209   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2210   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2211   * @retval None
2212   */
LL_TIM_OC_SetIdleState(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t IdleState)2213 __STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
2214 {
2215   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2216   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),  IdleState << SHIFT_TAB_OISx[iChannel]);
2217 }
2218 
2219 /**
2220   * @brief  Get the IDLE state of an output channel
2221   * @rmtoll CR2         OIS1          LL_TIM_OC_GetIdleState\n
2222   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2223   *         CR2         OIS2          LL_TIM_OC_GetIdleState\n
2224   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2225   *         CR2         OIS3          LL_TIM_OC_GetIdleState\n
2226   *         CR2         OIS3N         LL_TIM_OC_GetIdleState\n
2227   *         CR2         OIS4          LL_TIM_OC_GetIdleState\n
2228   *         CR2         OIS5          LL_TIM_OC_GetIdleState\n
2229   *         CR2         OIS6          LL_TIM_OC_GetIdleState
2230   * @param  TIMx Timer instance
2231   * @param  Channel This parameter can be one of the following values:
2232   *         @arg @ref LL_TIM_CHANNEL_CH1
2233   *         @arg @ref LL_TIM_CHANNEL_CH1N
2234   *         @arg @ref LL_TIM_CHANNEL_CH2
2235   *         @arg @ref LL_TIM_CHANNEL_CH2N
2236   *         @arg @ref LL_TIM_CHANNEL_CH3
2237   *         @arg @ref LL_TIM_CHANNEL_CH3N
2238   *         @arg @ref LL_TIM_CHANNEL_CH4
2239   *         @arg @ref LL_TIM_CHANNEL_CH5
2240   *         @arg @ref LL_TIM_CHANNEL_CH6
2241   * @retval Returned value can be one of the following values:
2242   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2243   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2244   */
LL_TIM_OC_GetIdleState(const TIM_TypeDef * TIMx,uint32_t Channel)2245 __STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(const TIM_TypeDef *TIMx, uint32_t Channel)
2246 {
2247   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2248   return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
2249 }
2250 
2251 /**
2252   * @brief  Enable fast mode for the output channel.
2253   * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
2254   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_EnableFast\n
2255   *         CCMR1        OC2FE          LL_TIM_OC_EnableFast\n
2256   *         CCMR2        OC3FE          LL_TIM_OC_EnableFast\n
2257   *         CCMR2        OC4FE          LL_TIM_OC_EnableFast\n
2258   *         CCMR3        OC5FE          LL_TIM_OC_EnableFast\n
2259   *         CCMR3        OC6FE          LL_TIM_OC_EnableFast
2260   * @param  TIMx Timer instance
2261   * @param  Channel This parameter can be one of the following values:
2262   *         @arg @ref LL_TIM_CHANNEL_CH1
2263   *         @arg @ref LL_TIM_CHANNEL_CH2
2264   *         @arg @ref LL_TIM_CHANNEL_CH3
2265   *         @arg @ref LL_TIM_CHANNEL_CH4
2266   *         @arg @ref LL_TIM_CHANNEL_CH5
2267   *         @arg @ref LL_TIM_CHANNEL_CH6
2268   * @retval None
2269   */
LL_TIM_OC_EnableFast(TIM_TypeDef * TIMx,uint32_t Channel)2270 __STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2271 {
2272   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2273   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2274   SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2275 
2276 }
2277 
2278 /**
2279   * @brief  Disable fast mode for the output channel.
2280   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_DisableFast\n
2281   *         CCMR1        OC2FE          LL_TIM_OC_DisableFast\n
2282   *         CCMR2        OC3FE          LL_TIM_OC_DisableFast\n
2283   *         CCMR2        OC4FE          LL_TIM_OC_DisableFast\n
2284   *         CCMR3        OC5FE          LL_TIM_OC_DisableFast\n
2285   *         CCMR3        OC6FE          LL_TIM_OC_DisableFast
2286   * @param  TIMx Timer instance
2287   * @param  Channel This parameter can be one of the following values:
2288   *         @arg @ref LL_TIM_CHANNEL_CH1
2289   *         @arg @ref LL_TIM_CHANNEL_CH2
2290   *         @arg @ref LL_TIM_CHANNEL_CH3
2291   *         @arg @ref LL_TIM_CHANNEL_CH4
2292   *         @arg @ref LL_TIM_CHANNEL_CH5
2293   *         @arg @ref LL_TIM_CHANNEL_CH6
2294   * @retval None
2295   */
LL_TIM_OC_DisableFast(TIM_TypeDef * TIMx,uint32_t Channel)2296 __STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2297 {
2298   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2299   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2300   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2301 
2302 }
2303 
2304 /**
2305   * @brief  Indicates whether fast mode is enabled for the output channel.
2306   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_IsEnabledFast\n
2307   *         CCMR1        OC2FE          LL_TIM_OC_IsEnabledFast\n
2308   *         CCMR2        OC3FE          LL_TIM_OC_IsEnabledFast\n
2309   *         CCMR2        OC4FE          LL_TIM_OC_IsEnabledFast\n
2310   *         CCMR3        OC5FE          LL_TIM_OC_IsEnabledFast\n
2311   *         CCMR3        OC6FE          LL_TIM_OC_IsEnabledFast
2312   * @param  TIMx Timer instance
2313   * @param  Channel This parameter can be one of the following values:
2314   *         @arg @ref LL_TIM_CHANNEL_CH1
2315   *         @arg @ref LL_TIM_CHANNEL_CH2
2316   *         @arg @ref LL_TIM_CHANNEL_CH3
2317   *         @arg @ref LL_TIM_CHANNEL_CH4
2318   *         @arg @ref LL_TIM_CHANNEL_CH5
2319   *         @arg @ref LL_TIM_CHANNEL_CH6
2320   * @retval State of bit (1 or 0).
2321   */
LL_TIM_OC_IsEnabledFast(const TIM_TypeDef * TIMx,uint32_t Channel)2322 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(const TIM_TypeDef *TIMx, uint32_t Channel)
2323 {
2324   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2325   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2326   uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
2327   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2328 }
2329 
2330 /**
2331   * @brief  Enable compare register (TIMx_CCRx) preload for the output channel.
2332   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_EnablePreload\n
2333   *         CCMR1        OC2PE          LL_TIM_OC_EnablePreload\n
2334   *         CCMR2        OC3PE          LL_TIM_OC_EnablePreload\n
2335   *         CCMR2        OC4PE          LL_TIM_OC_EnablePreload\n
2336   *         CCMR3        OC5PE          LL_TIM_OC_EnablePreload\n
2337   *         CCMR3        OC6PE          LL_TIM_OC_EnablePreload
2338   * @param  TIMx Timer instance
2339   * @param  Channel This parameter can be one of the following values:
2340   *         @arg @ref LL_TIM_CHANNEL_CH1
2341   *         @arg @ref LL_TIM_CHANNEL_CH2
2342   *         @arg @ref LL_TIM_CHANNEL_CH3
2343   *         @arg @ref LL_TIM_CHANNEL_CH4
2344   *         @arg @ref LL_TIM_CHANNEL_CH5
2345   *         @arg @ref LL_TIM_CHANNEL_CH6
2346   * @retval None
2347   */
LL_TIM_OC_EnablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2348 __STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2349 {
2350   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2351   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2352   SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2353 }
2354 
2355 /**
2356   * @brief  Disable compare register (TIMx_CCRx) preload for the output channel.
2357   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_DisablePreload\n
2358   *         CCMR1        OC2PE          LL_TIM_OC_DisablePreload\n
2359   *         CCMR2        OC3PE          LL_TIM_OC_DisablePreload\n
2360   *         CCMR2        OC4PE          LL_TIM_OC_DisablePreload\n
2361   *         CCMR3        OC5PE          LL_TIM_OC_DisablePreload\n
2362   *         CCMR3        OC6PE          LL_TIM_OC_DisablePreload
2363   * @param  TIMx Timer instance
2364   * @param  Channel This parameter can be one of the following values:
2365   *         @arg @ref LL_TIM_CHANNEL_CH1
2366   *         @arg @ref LL_TIM_CHANNEL_CH2
2367   *         @arg @ref LL_TIM_CHANNEL_CH3
2368   *         @arg @ref LL_TIM_CHANNEL_CH4
2369   *         @arg @ref LL_TIM_CHANNEL_CH5
2370   *         @arg @ref LL_TIM_CHANNEL_CH6
2371   * @retval None
2372   */
LL_TIM_OC_DisablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2373 __STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2374 {
2375   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2376   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2377   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2378 }
2379 
2380 /**
2381   * @brief  Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
2382   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_IsEnabledPreload\n
2383   *         CCMR1        OC2PE          LL_TIM_OC_IsEnabledPreload\n
2384   *         CCMR2        OC3PE          LL_TIM_OC_IsEnabledPreload\n
2385   *         CCMR2        OC4PE          LL_TIM_OC_IsEnabledPreload\n
2386   *         CCMR3        OC5PE          LL_TIM_OC_IsEnabledPreload\n
2387   *         CCMR3        OC6PE          LL_TIM_OC_IsEnabledPreload
2388   * @param  TIMx Timer instance
2389   * @param  Channel This parameter can be one of the following values:
2390   *         @arg @ref LL_TIM_CHANNEL_CH1
2391   *         @arg @ref LL_TIM_CHANNEL_CH2
2392   *         @arg @ref LL_TIM_CHANNEL_CH3
2393   *         @arg @ref LL_TIM_CHANNEL_CH4
2394   *         @arg @ref LL_TIM_CHANNEL_CH5
2395   *         @arg @ref LL_TIM_CHANNEL_CH6
2396   * @retval State of bit (1 or 0).
2397   */
LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef * TIMx,uint32_t Channel)2398 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef *TIMx, uint32_t Channel)
2399 {
2400   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2401   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2402   uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
2403   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2404 }
2405 
2406 /**
2407   * @brief  Enable clearing the output channel on an external event.
2408   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2409   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2410   *       or not a timer instance can clear the OCxREF signal on an external event.
2411   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_EnableClear\n
2412   *         CCMR1        OC2CE          LL_TIM_OC_EnableClear\n
2413   *         CCMR2        OC3CE          LL_TIM_OC_EnableClear\n
2414   *         CCMR2        OC4CE          LL_TIM_OC_EnableClear\n
2415   *         CCMR3        OC5CE          LL_TIM_OC_EnableClear\n
2416   *         CCMR3        OC6CE          LL_TIM_OC_EnableClear
2417   * @param  TIMx Timer instance
2418   * @param  Channel This parameter can be one of the following values:
2419   *         @arg @ref LL_TIM_CHANNEL_CH1
2420   *         @arg @ref LL_TIM_CHANNEL_CH2
2421   *         @arg @ref LL_TIM_CHANNEL_CH3
2422   *         @arg @ref LL_TIM_CHANNEL_CH4
2423   *         @arg @ref LL_TIM_CHANNEL_CH5
2424   *         @arg @ref LL_TIM_CHANNEL_CH6
2425   * @retval None
2426   */
LL_TIM_OC_EnableClear(TIM_TypeDef * TIMx,uint32_t Channel)2427 __STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2428 {
2429   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2430   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2431   SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2432 }
2433 
2434 /**
2435   * @brief  Disable clearing the output channel on an external event.
2436   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2437   *       or not a timer instance can clear the OCxREF signal on an external event.
2438   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_DisableClear\n
2439   *         CCMR1        OC2CE          LL_TIM_OC_DisableClear\n
2440   *         CCMR2        OC3CE          LL_TIM_OC_DisableClear\n
2441   *         CCMR2        OC4CE          LL_TIM_OC_DisableClear\n
2442   *         CCMR3        OC5CE          LL_TIM_OC_DisableClear\n
2443   *         CCMR3        OC6CE          LL_TIM_OC_DisableClear
2444   * @param  TIMx Timer instance
2445   * @param  Channel This parameter can be one of the following values:
2446   *         @arg @ref LL_TIM_CHANNEL_CH1
2447   *         @arg @ref LL_TIM_CHANNEL_CH2
2448   *         @arg @ref LL_TIM_CHANNEL_CH3
2449   *         @arg @ref LL_TIM_CHANNEL_CH4
2450   *         @arg @ref LL_TIM_CHANNEL_CH5
2451   *         @arg @ref LL_TIM_CHANNEL_CH6
2452   * @retval None
2453   */
LL_TIM_OC_DisableClear(TIM_TypeDef * TIMx,uint32_t Channel)2454 __STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2455 {
2456   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2457   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2458   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2459 }
2460 
2461 /**
2462   * @brief  Indicates clearing the output channel on an external event is enabled for the output channel.
2463   * @note This function enables clearing the output channel on an external event.
2464   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2465   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2466   *       or not a timer instance can clear the OCxREF signal on an external event.
2467   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_IsEnabledClear\n
2468   *         CCMR1        OC2CE          LL_TIM_OC_IsEnabledClear\n
2469   *         CCMR2        OC3CE          LL_TIM_OC_IsEnabledClear\n
2470   *         CCMR2        OC4CE          LL_TIM_OC_IsEnabledClear\n
2471   *         CCMR3        OC5CE          LL_TIM_OC_IsEnabledClear\n
2472   *         CCMR3        OC6CE          LL_TIM_OC_IsEnabledClear
2473   * @param  TIMx Timer instance
2474   * @param  Channel This parameter can be one of the following values:
2475   *         @arg @ref LL_TIM_CHANNEL_CH1
2476   *         @arg @ref LL_TIM_CHANNEL_CH2
2477   *         @arg @ref LL_TIM_CHANNEL_CH3
2478   *         @arg @ref LL_TIM_CHANNEL_CH4
2479   *         @arg @ref LL_TIM_CHANNEL_CH5
2480   *         @arg @ref LL_TIM_CHANNEL_CH6
2481   * @retval State of bit (1 or 0).
2482   */
LL_TIM_OC_IsEnabledClear(const TIM_TypeDef * TIMx,uint32_t Channel)2483 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(const TIM_TypeDef *TIMx, uint32_t Channel)
2484 {
2485   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2486   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2487   uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
2488   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2489 }
2490 
2491 /**
2492   * @brief  Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of
2493   *         the Ocx and OCxN signals).
2494   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2495   *       dead-time insertion feature is supported by a timer instance.
2496   * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
2497   * @rmtoll BDTR         DTG           LL_TIM_OC_SetDeadTime
2498   * @param  TIMx Timer instance
2499   * @param  DeadTime between Min_Data=0 and Max_Data=255
2500   * @retval None
2501   */
LL_TIM_OC_SetDeadTime(TIM_TypeDef * TIMx,uint32_t DeadTime)2502 __STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
2503 {
2504   MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
2505 }
2506 
2507 /**
2508   * @brief  Set compare value for output channel 1 (TIMx_CCR1).
2509   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2510   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2511   *       whether or not a timer instance supports a 32 bits counter.
2512   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2513   *       output channel 1 is supported by a timer instance.
2514   * @rmtoll CCR1         CCR1          LL_TIM_OC_SetCompareCH1
2515   * @param  TIMx Timer instance
2516   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2517   * @retval None
2518   */
LL_TIM_OC_SetCompareCH1(TIM_TypeDef * TIMx,uint32_t CompareValue)2519 __STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
2520 {
2521   WRITE_REG(TIMx->CCR1, CompareValue);
2522 }
2523 
2524 /**
2525   * @brief  Set compare value for output channel 2 (TIMx_CCR2).
2526   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2527   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2528   *       whether or not a timer instance supports a 32 bits counter.
2529   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2530   *       output channel 2 is supported by a timer instance.
2531   * @rmtoll CCR2         CCR2          LL_TIM_OC_SetCompareCH2
2532   * @param  TIMx Timer instance
2533   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2534   * @retval None
2535   */
LL_TIM_OC_SetCompareCH2(TIM_TypeDef * TIMx,uint32_t CompareValue)2536 __STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
2537 {
2538   WRITE_REG(TIMx->CCR2, CompareValue);
2539 }
2540 
2541 /**
2542   * @brief  Set compare value for output channel 3 (TIMx_CCR3).
2543   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2544   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2545   *       whether or not a timer instance supports a 32 bits counter.
2546   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2547   *       output channel is supported by a timer instance.
2548   * @rmtoll CCR3         CCR3          LL_TIM_OC_SetCompareCH3
2549   * @param  TIMx Timer instance
2550   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2551   * @retval None
2552   */
LL_TIM_OC_SetCompareCH3(TIM_TypeDef * TIMx,uint32_t CompareValue)2553 __STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
2554 {
2555   WRITE_REG(TIMx->CCR3, CompareValue);
2556 }
2557 
2558 /**
2559   * @brief  Set compare value for output channel 4 (TIMx_CCR4).
2560   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2561   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2562   *       whether or not a timer instance supports a 32 bits counter.
2563   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2564   *       output channel 4 is supported by a timer instance.
2565   * @rmtoll CCR4         CCR4          LL_TIM_OC_SetCompareCH4
2566   * @param  TIMx Timer instance
2567   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2568   * @retval None
2569   */
LL_TIM_OC_SetCompareCH4(TIM_TypeDef * TIMx,uint32_t CompareValue)2570 __STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
2571 {
2572   WRITE_REG(TIMx->CCR4, CompareValue);
2573 }
2574 
2575 /**
2576   * @brief  Set compare value for output channel 5 (TIMx_CCR5).
2577   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2578   *       output channel 5 is supported by a timer instance.
2579   * @rmtoll CCR5         CCR5          LL_TIM_OC_SetCompareCH5
2580   * @param  TIMx Timer instance
2581   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2582   * @retval None
2583   */
LL_TIM_OC_SetCompareCH5(TIM_TypeDef * TIMx,uint32_t CompareValue)2584 __STATIC_INLINE void LL_TIM_OC_SetCompareCH5(TIM_TypeDef *TIMx, uint32_t CompareValue)
2585 {
2586   MODIFY_REG(TIMx->CCR5, TIM_CCR5_CCR5, CompareValue);
2587 }
2588 
2589 /**
2590   * @brief  Set compare value for output channel 6 (TIMx_CCR6).
2591   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2592   *       output channel 6 is supported by a timer instance.
2593   * @rmtoll CCR6         CCR6          LL_TIM_OC_SetCompareCH6
2594   * @param  TIMx Timer instance
2595   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2596   * @retval None
2597   */
LL_TIM_OC_SetCompareCH6(TIM_TypeDef * TIMx,uint32_t CompareValue)2598 __STATIC_INLINE void LL_TIM_OC_SetCompareCH6(TIM_TypeDef *TIMx, uint32_t CompareValue)
2599 {
2600   WRITE_REG(TIMx->CCR6, CompareValue);
2601 }
2602 
2603 /**
2604   * @brief  Get compare value (TIMx_CCR1) set for  output channel 1.
2605   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2606   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2607   *       whether or not a timer instance supports a 32 bits counter.
2608   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2609   *       output channel 1 is supported by a timer instance.
2610   * @rmtoll CCR1         CCR1          LL_TIM_OC_GetCompareCH1
2611   * @param  TIMx Timer instance
2612   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2613   */
LL_TIM_OC_GetCompareCH1(const TIM_TypeDef * TIMx)2614 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(const TIM_TypeDef *TIMx)
2615 {
2616   return (uint32_t)(READ_REG(TIMx->CCR1));
2617 }
2618 
2619 /**
2620   * @brief  Get compare value (TIMx_CCR2) set for  output channel 2.
2621   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2622   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2623   *       whether or not a timer instance supports a 32 bits counter.
2624   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2625   *       output channel 2 is supported by a timer instance.
2626   * @rmtoll CCR2         CCR2          LL_TIM_OC_GetCompareCH2
2627   * @param  TIMx Timer instance
2628   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2629   */
LL_TIM_OC_GetCompareCH2(const TIM_TypeDef * TIMx)2630 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(const TIM_TypeDef *TIMx)
2631 {
2632   return (uint32_t)(READ_REG(TIMx->CCR2));
2633 }
2634 
2635 /**
2636   * @brief  Get compare value (TIMx_CCR3) set for  output channel 3.
2637   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2638   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2639   *       whether or not a timer instance supports a 32 bits counter.
2640   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2641   *       output channel 3 is supported by a timer instance.
2642   * @rmtoll CCR3         CCR3          LL_TIM_OC_GetCompareCH3
2643   * @param  TIMx Timer instance
2644   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2645   */
LL_TIM_OC_GetCompareCH3(const TIM_TypeDef * TIMx)2646 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(const TIM_TypeDef *TIMx)
2647 {
2648   return (uint32_t)(READ_REG(TIMx->CCR3));
2649 }
2650 
2651 /**
2652   * @brief  Get compare value (TIMx_CCR4) set for  output channel 4.
2653   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2654   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2655   *       whether or not a timer instance supports a 32 bits counter.
2656   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2657   *       output channel 4 is supported by a timer instance.
2658   * @rmtoll CCR4         CCR4          LL_TIM_OC_GetCompareCH4
2659   * @param  TIMx Timer instance
2660   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2661   */
LL_TIM_OC_GetCompareCH4(const TIM_TypeDef * TIMx)2662 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(const TIM_TypeDef *TIMx)
2663 {
2664   return (uint32_t)(READ_REG(TIMx->CCR4));
2665 }
2666 
2667 /**
2668   * @brief  Get compare value (TIMx_CCR5) set for  output channel 5.
2669   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2670   *       output channel 5 is supported by a timer instance.
2671   * @rmtoll CCR5         CCR5          LL_TIM_OC_GetCompareCH5
2672   * @param  TIMx Timer instance
2673   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2674   */
LL_TIM_OC_GetCompareCH5(const TIM_TypeDef * TIMx)2675 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH5(const TIM_TypeDef *TIMx)
2676 {
2677   return (uint32_t)(READ_BIT(TIMx->CCR5, TIM_CCR5_CCR5));
2678 }
2679 
2680 /**
2681   * @brief  Get compare value (TIMx_CCR6) set for  output channel 6.
2682   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2683   *       output channel 6 is supported by a timer instance.
2684   * @rmtoll CCR6         CCR6          LL_TIM_OC_GetCompareCH6
2685   * @param  TIMx Timer instance
2686   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2687   */
LL_TIM_OC_GetCompareCH6(const TIM_TypeDef * TIMx)2688 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH6(const TIM_TypeDef *TIMx)
2689 {
2690   return (uint32_t)(READ_REG(TIMx->CCR6));
2691 }
2692 
2693 /**
2694   * @brief  Select on which reference signal the OC5REF is combined to.
2695   * @note Macro IS_TIM_COMBINED3PHASEPWM_INSTANCE(TIMx) can be used to check
2696   *       whether or not a timer instance supports the combined 3-phase PWM mode.
2697   * @rmtoll CCR5         GC5C3          LL_TIM_SetCH5CombinedChannels\n
2698   *         CCR5         GC5C2          LL_TIM_SetCH5CombinedChannels\n
2699   *         CCR5         GC5C1          LL_TIM_SetCH5CombinedChannels
2700   * @param  TIMx Timer instance
2701   * @param  GroupCH5 This parameter can be a combination of the following values:
2702   *         @arg @ref LL_TIM_GROUPCH5_NONE
2703   *         @arg @ref LL_TIM_GROUPCH5_OC1REFC
2704   *         @arg @ref LL_TIM_GROUPCH5_OC2REFC
2705   *         @arg @ref LL_TIM_GROUPCH5_OC3REFC
2706   * @retval None
2707   */
LL_TIM_SetCH5CombinedChannels(TIM_TypeDef * TIMx,uint32_t GroupCH5)2708 __STATIC_INLINE void LL_TIM_SetCH5CombinedChannels(TIM_TypeDef *TIMx, uint32_t GroupCH5)
2709 {
2710   MODIFY_REG(TIMx->CCR5, (TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1), GroupCH5);
2711 }
2712 
2713 /**
2714   * @}
2715   */
2716 
2717 /** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
2718   * @{
2719   */
2720 /**
2721   * @brief  Configure input channel.
2722   * @rmtoll CCMR1        CC1S          LL_TIM_IC_Config\n
2723   *         CCMR1        IC1PSC        LL_TIM_IC_Config\n
2724   *         CCMR1        IC1F          LL_TIM_IC_Config\n
2725   *         CCMR1        CC2S          LL_TIM_IC_Config\n
2726   *         CCMR1        IC2PSC        LL_TIM_IC_Config\n
2727   *         CCMR1        IC2F          LL_TIM_IC_Config\n
2728   *         CCMR2        CC3S          LL_TIM_IC_Config\n
2729   *         CCMR2        IC3PSC        LL_TIM_IC_Config\n
2730   *         CCMR2        IC3F          LL_TIM_IC_Config\n
2731   *         CCMR2        CC4S          LL_TIM_IC_Config\n
2732   *         CCMR2        IC4PSC        LL_TIM_IC_Config\n
2733   *         CCMR2        IC4F          LL_TIM_IC_Config\n
2734   *         CCER         CC1P          LL_TIM_IC_Config\n
2735   *         CCER         CC1NP         LL_TIM_IC_Config\n
2736   *         CCER         CC2P          LL_TIM_IC_Config\n
2737   *         CCER         CC2NP         LL_TIM_IC_Config\n
2738   *         CCER         CC3P          LL_TIM_IC_Config\n
2739   *         CCER         CC3NP         LL_TIM_IC_Config\n
2740   *         CCER         CC4P          LL_TIM_IC_Config\n
2741   *         CCER         CC4NP         LL_TIM_IC_Config
2742   * @param  TIMx Timer instance
2743   * @param  Channel This parameter can be one of the following values:
2744   *         @arg @ref LL_TIM_CHANNEL_CH1
2745   *         @arg @ref LL_TIM_CHANNEL_CH2
2746   *         @arg @ref LL_TIM_CHANNEL_CH3
2747   *         @arg @ref LL_TIM_CHANNEL_CH4
2748   * @param  Configuration This parameter must be a combination of all the following values:
2749   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
2750   *         @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
2751   *         @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
2752   *         @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
2753   * @retval None
2754   */
LL_TIM_IC_Config(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2755 __STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2756 {
2757   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2758   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2759   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
2760              ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S))                \
2761              << SHIFT_TAB_ICxx[iChannel]);
2762   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2763              (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
2764 }
2765 
2766 /**
2767   * @brief  Set the active input.
2768   * @rmtoll CCMR1        CC1S          LL_TIM_IC_SetActiveInput\n
2769   *         CCMR1        CC2S          LL_TIM_IC_SetActiveInput\n
2770   *         CCMR2        CC3S          LL_TIM_IC_SetActiveInput\n
2771   *         CCMR2        CC4S          LL_TIM_IC_SetActiveInput
2772   * @param  TIMx Timer instance
2773   * @param  Channel This parameter can be one of the following values:
2774   *         @arg @ref LL_TIM_CHANNEL_CH1
2775   *         @arg @ref LL_TIM_CHANNEL_CH2
2776   *         @arg @ref LL_TIM_CHANNEL_CH3
2777   *         @arg @ref LL_TIM_CHANNEL_CH4
2778   * @param  ICActiveInput This parameter can be one of the following values:
2779   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2780   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2781   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2782   * @retval None
2783   */
LL_TIM_IC_SetActiveInput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICActiveInput)2784 __STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
2785 {
2786   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2787   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2788   MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2789 }
2790 
2791 /**
2792   * @brief  Get the current active input.
2793   * @rmtoll CCMR1        CC1S          LL_TIM_IC_GetActiveInput\n
2794   *         CCMR1        CC2S          LL_TIM_IC_GetActiveInput\n
2795   *         CCMR2        CC3S          LL_TIM_IC_GetActiveInput\n
2796   *         CCMR2        CC4S          LL_TIM_IC_GetActiveInput
2797   * @param  TIMx Timer instance
2798   * @param  Channel This parameter can be one of the following values:
2799   *         @arg @ref LL_TIM_CHANNEL_CH1
2800   *         @arg @ref LL_TIM_CHANNEL_CH2
2801   *         @arg @ref LL_TIM_CHANNEL_CH3
2802   *         @arg @ref LL_TIM_CHANNEL_CH4
2803   * @retval Returned value can be one of the following values:
2804   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2805   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2806   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2807   */
LL_TIM_IC_GetActiveInput(const TIM_TypeDef * TIMx,uint32_t Channel)2808 __STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(const TIM_TypeDef *TIMx, uint32_t Channel)
2809 {
2810   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2811   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2812   return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2813 }
2814 
2815 /**
2816   * @brief  Set the prescaler of input channel.
2817   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_SetPrescaler\n
2818   *         CCMR1        IC2PSC        LL_TIM_IC_SetPrescaler\n
2819   *         CCMR2        IC3PSC        LL_TIM_IC_SetPrescaler\n
2820   *         CCMR2        IC4PSC        LL_TIM_IC_SetPrescaler
2821   * @param  TIMx Timer instance
2822   * @param  Channel This parameter can be one of the following values:
2823   *         @arg @ref LL_TIM_CHANNEL_CH1
2824   *         @arg @ref LL_TIM_CHANNEL_CH2
2825   *         @arg @ref LL_TIM_CHANNEL_CH3
2826   *         @arg @ref LL_TIM_CHANNEL_CH4
2827   * @param  ICPrescaler This parameter can be one of the following values:
2828   *         @arg @ref LL_TIM_ICPSC_DIV1
2829   *         @arg @ref LL_TIM_ICPSC_DIV2
2830   *         @arg @ref LL_TIM_ICPSC_DIV4
2831   *         @arg @ref LL_TIM_ICPSC_DIV8
2832   * @retval None
2833   */
LL_TIM_IC_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPrescaler)2834 __STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
2835 {
2836   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2837   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2838   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2839 }
2840 
2841 /**
2842   * @brief  Get the current prescaler value acting on an  input channel.
2843   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_GetPrescaler\n
2844   *         CCMR1        IC2PSC        LL_TIM_IC_GetPrescaler\n
2845   *         CCMR2        IC3PSC        LL_TIM_IC_GetPrescaler\n
2846   *         CCMR2        IC4PSC        LL_TIM_IC_GetPrescaler
2847   * @param  TIMx Timer instance
2848   * @param  Channel This parameter can be one of the following values:
2849   *         @arg @ref LL_TIM_CHANNEL_CH1
2850   *         @arg @ref LL_TIM_CHANNEL_CH2
2851   *         @arg @ref LL_TIM_CHANNEL_CH3
2852   *         @arg @ref LL_TIM_CHANNEL_CH4
2853   * @retval Returned value can be one of the following values:
2854   *         @arg @ref LL_TIM_ICPSC_DIV1
2855   *         @arg @ref LL_TIM_ICPSC_DIV2
2856   *         @arg @ref LL_TIM_ICPSC_DIV4
2857   *         @arg @ref LL_TIM_ICPSC_DIV8
2858   */
LL_TIM_IC_GetPrescaler(const TIM_TypeDef * TIMx,uint32_t Channel)2859 __STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(const TIM_TypeDef *TIMx, uint32_t Channel)
2860 {
2861   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2862   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2863   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2864 }
2865 
2866 /**
2867   * @brief  Set the input filter duration.
2868   * @rmtoll CCMR1        IC1F          LL_TIM_IC_SetFilter\n
2869   *         CCMR1        IC2F          LL_TIM_IC_SetFilter\n
2870   *         CCMR2        IC3F          LL_TIM_IC_SetFilter\n
2871   *         CCMR2        IC4F          LL_TIM_IC_SetFilter
2872   * @param  TIMx Timer instance
2873   * @param  Channel This parameter can be one of the following values:
2874   *         @arg @ref LL_TIM_CHANNEL_CH1
2875   *         @arg @ref LL_TIM_CHANNEL_CH2
2876   *         @arg @ref LL_TIM_CHANNEL_CH3
2877   *         @arg @ref LL_TIM_CHANNEL_CH4
2878   * @param  ICFilter This parameter can be one of the following values:
2879   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2880   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2881   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2882   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2883   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2884   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2885   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2886   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2887   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2888   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2889   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2890   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2891   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2892   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2893   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2894   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2895   * @retval None
2896   */
LL_TIM_IC_SetFilter(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICFilter)2897 __STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
2898 {
2899   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2900   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2901   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2902 }
2903 
2904 /**
2905   * @brief  Get the input filter duration.
2906   * @rmtoll CCMR1        IC1F          LL_TIM_IC_GetFilter\n
2907   *         CCMR1        IC2F          LL_TIM_IC_GetFilter\n
2908   *         CCMR2        IC3F          LL_TIM_IC_GetFilter\n
2909   *         CCMR2        IC4F          LL_TIM_IC_GetFilter
2910   * @param  TIMx Timer instance
2911   * @param  Channel This parameter can be one of the following values:
2912   *         @arg @ref LL_TIM_CHANNEL_CH1
2913   *         @arg @ref LL_TIM_CHANNEL_CH2
2914   *         @arg @ref LL_TIM_CHANNEL_CH3
2915   *         @arg @ref LL_TIM_CHANNEL_CH4
2916   * @retval Returned value can be one of the following values:
2917   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2918   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2919   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2920   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2921   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2922   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2923   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2924   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2925   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2926   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2927   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2928   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2929   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2930   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2931   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2932   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2933   */
LL_TIM_IC_GetFilter(const TIM_TypeDef * TIMx,uint32_t Channel)2934 __STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(const TIM_TypeDef *TIMx, uint32_t Channel)
2935 {
2936   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2937   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2938   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2939 }
2940 
2941 /**
2942   * @brief  Set the input channel polarity.
2943   * @rmtoll CCER         CC1P          LL_TIM_IC_SetPolarity\n
2944   *         CCER         CC1NP         LL_TIM_IC_SetPolarity\n
2945   *         CCER         CC2P          LL_TIM_IC_SetPolarity\n
2946   *         CCER         CC2NP         LL_TIM_IC_SetPolarity\n
2947   *         CCER         CC3P          LL_TIM_IC_SetPolarity\n
2948   *         CCER         CC3NP         LL_TIM_IC_SetPolarity\n
2949   *         CCER         CC4P          LL_TIM_IC_SetPolarity\n
2950   *         CCER         CC4NP         LL_TIM_IC_SetPolarity
2951   * @param  TIMx Timer instance
2952   * @param  Channel This parameter can be one of the following values:
2953   *         @arg @ref LL_TIM_CHANNEL_CH1
2954   *         @arg @ref LL_TIM_CHANNEL_CH2
2955   *         @arg @ref LL_TIM_CHANNEL_CH3
2956   *         @arg @ref LL_TIM_CHANNEL_CH4
2957   * @param  ICPolarity This parameter can be one of the following values:
2958   *         @arg @ref LL_TIM_IC_POLARITY_RISING
2959   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2960   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2961   * @retval None
2962   */
LL_TIM_IC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPolarity)2963 __STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
2964 {
2965   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2966   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2967              ICPolarity << SHIFT_TAB_CCxP[iChannel]);
2968 }
2969 
2970 /**
2971   * @brief  Get the current input channel polarity.
2972   * @rmtoll CCER         CC1P          LL_TIM_IC_GetPolarity\n
2973   *         CCER         CC1NP         LL_TIM_IC_GetPolarity\n
2974   *         CCER         CC2P          LL_TIM_IC_GetPolarity\n
2975   *         CCER         CC2NP         LL_TIM_IC_GetPolarity\n
2976   *         CCER         CC3P          LL_TIM_IC_GetPolarity\n
2977   *         CCER         CC3NP         LL_TIM_IC_GetPolarity\n
2978   *         CCER         CC4P          LL_TIM_IC_GetPolarity\n
2979   *         CCER         CC4NP         LL_TIM_IC_GetPolarity
2980   * @param  TIMx Timer instance
2981   * @param  Channel This parameter can be one of the following values:
2982   *         @arg @ref LL_TIM_CHANNEL_CH1
2983   *         @arg @ref LL_TIM_CHANNEL_CH2
2984   *         @arg @ref LL_TIM_CHANNEL_CH3
2985   *         @arg @ref LL_TIM_CHANNEL_CH4
2986   * @retval Returned value can be one of the following values:
2987   *         @arg @ref LL_TIM_IC_POLARITY_RISING
2988   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2989   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2990   */
LL_TIM_IC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)2991 __STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
2992 {
2993   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2994   return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
2995           SHIFT_TAB_CCxP[iChannel]);
2996 }
2997 
2998 /**
2999   * @brief  Connect the TIMx_CH1, CH2 and CH3 pins  to the TI1 input (XOR combination).
3000   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3001   *       a timer instance provides an XOR input.
3002   * @rmtoll CR2          TI1S          LL_TIM_IC_EnableXORCombination
3003   * @param  TIMx Timer instance
3004   * @retval None
3005   */
LL_TIM_IC_EnableXORCombination(TIM_TypeDef * TIMx)3006 __STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
3007 {
3008   SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
3009 }
3010 
3011 /**
3012   * @brief  Disconnect the TIMx_CH1, CH2 and CH3 pins  from the TI1 input.
3013   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3014   *       a timer instance provides an XOR input.
3015   * @rmtoll CR2          TI1S          LL_TIM_IC_DisableXORCombination
3016   * @param  TIMx Timer instance
3017   * @retval None
3018   */
LL_TIM_IC_DisableXORCombination(TIM_TypeDef * TIMx)3019 __STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
3020 {
3021   CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
3022 }
3023 
3024 /**
3025   * @brief  Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
3026   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3027   * a timer instance provides an XOR input.
3028   * @rmtoll CR2          TI1S          LL_TIM_IC_IsEnabledXORCombination
3029   * @param  TIMx Timer instance
3030   * @retval State of bit (1 or 0).
3031   */
LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef * TIMx)3032 __STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef *TIMx)
3033 {
3034   return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
3035 }
3036 
3037 /**
3038   * @brief  Get captured value for input channel 1.
3039   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3040   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3041   *       whether or not a timer instance supports a 32 bits counter.
3042   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
3043   *       input channel 1 is supported by a timer instance.
3044   * @rmtoll CCR1         CCR1          LL_TIM_IC_GetCaptureCH1
3045   * @param  TIMx Timer instance
3046   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3047   */
LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef * TIMx)3048 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef *TIMx)
3049 {
3050   return (uint32_t)(READ_REG(TIMx->CCR1));
3051 }
3052 
3053 /**
3054   * @brief  Get captured value for input channel 2.
3055   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3056   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3057   *       whether or not a timer instance supports a 32 bits counter.
3058   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
3059   *       input channel 2 is supported by a timer instance.
3060   * @rmtoll CCR2         CCR2          LL_TIM_IC_GetCaptureCH2
3061   * @param  TIMx Timer instance
3062   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3063   */
LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef * TIMx)3064 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef *TIMx)
3065 {
3066   return (uint32_t)(READ_REG(TIMx->CCR2));
3067 }
3068 
3069 /**
3070   * @brief  Get captured value for input channel 3.
3071   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3072   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3073   *       whether or not a timer instance supports a 32 bits counter.
3074   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
3075   *       input channel 3 is supported by a timer instance.
3076   * @rmtoll CCR3         CCR3          LL_TIM_IC_GetCaptureCH3
3077   * @param  TIMx Timer instance
3078   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3079   */
LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef * TIMx)3080 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef *TIMx)
3081 {
3082   return (uint32_t)(READ_REG(TIMx->CCR3));
3083 }
3084 
3085 /**
3086   * @brief  Get captured value for input channel 4.
3087   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3088   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3089   *       whether or not a timer instance supports a 32 bits counter.
3090   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
3091   *       input channel 4 is supported by a timer instance.
3092   * @rmtoll CCR4         CCR4          LL_TIM_IC_GetCaptureCH4
3093   * @param  TIMx Timer instance
3094   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3095   */
LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef * TIMx)3096 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef *TIMx)
3097 {
3098   return (uint32_t)(READ_REG(TIMx->CCR4));
3099 }
3100 
3101 /**
3102   * @}
3103   */
3104 
3105 /** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
3106   * @{
3107   */
3108 /**
3109   * @brief  Enable external clock mode 2.
3110   * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
3111   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3112   *       whether or not a timer instance supports external clock mode2.
3113   * @rmtoll SMCR         ECE           LL_TIM_EnableExternalClock
3114   * @param  TIMx Timer instance
3115   * @retval None
3116   */
LL_TIM_EnableExternalClock(TIM_TypeDef * TIMx)3117 __STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
3118 {
3119   SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3120 }
3121 
3122 /**
3123   * @brief  Disable external clock mode 2.
3124   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3125   *       whether or not a timer instance supports external clock mode2.
3126   * @rmtoll SMCR         ECE           LL_TIM_DisableExternalClock
3127   * @param  TIMx Timer instance
3128   * @retval None
3129   */
LL_TIM_DisableExternalClock(TIM_TypeDef * TIMx)3130 __STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
3131 {
3132   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3133 }
3134 
3135 /**
3136   * @brief  Indicate whether external clock mode 2 is enabled.
3137   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3138   *       whether or not a timer instance supports external clock mode2.
3139   * @rmtoll SMCR         ECE           LL_TIM_IsEnabledExternalClock
3140   * @param  TIMx Timer instance
3141   * @retval State of bit (1 or 0).
3142   */
LL_TIM_IsEnabledExternalClock(const TIM_TypeDef * TIMx)3143 __STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(const TIM_TypeDef *TIMx)
3144 {
3145   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
3146 }
3147 
3148 /**
3149   * @brief  Set the clock source of the counter clock.
3150   * @note when selected clock source is external clock mode 1, the timer input
3151   *       the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
3152   *       function. This timer input must be configured by calling
3153   *       the @ref LL_TIM_IC_Config() function.
3154   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
3155   *       whether or not a timer instance supports external clock mode1.
3156   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3157   *       whether or not a timer instance supports external clock mode2.
3158   * @rmtoll SMCR         SMS           LL_TIM_SetClockSource\n
3159   *         SMCR         ECE           LL_TIM_SetClockSource
3160   * @param  TIMx Timer instance
3161   * @param  ClockSource This parameter can be one of the following values:
3162   *         @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
3163   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
3164   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
3165   * @retval None
3166   */
LL_TIM_SetClockSource(TIM_TypeDef * TIMx,uint32_t ClockSource)3167 __STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
3168 {
3169   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
3170 }
3171 
3172 /**
3173   * @brief  Set the encoder interface mode.
3174   * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
3175   *       whether or not a timer instance supports the encoder mode.
3176   * @rmtoll SMCR         SMS           LL_TIM_SetEncoderMode
3177   * @param  TIMx Timer instance
3178   * @param  EncoderMode This parameter can be one of the following values:
3179   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI1
3180   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI2
3181   *         @arg @ref LL_TIM_ENCODERMODE_X4_TI12
3182   * @retval None
3183   */
LL_TIM_SetEncoderMode(TIM_TypeDef * TIMx,uint32_t EncoderMode)3184 __STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
3185 {
3186   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
3187 }
3188 
3189 /**
3190   * @}
3191   */
3192 
3193 /** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
3194   * @{
3195   */
3196 /**
3197   * @brief  Set the trigger output (TRGO) used for timer synchronization .
3198   * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
3199   *       whether or not a timer instance can operate as a master timer.
3200   * @rmtoll CR2          MMS           LL_TIM_SetTriggerOutput
3201   * @param  TIMx Timer instance
3202   * @param  TimerSynchronization This parameter can be one of the following values:
3203   *         @arg @ref LL_TIM_TRGO_RESET
3204   *         @arg @ref LL_TIM_TRGO_ENABLE
3205   *         @arg @ref LL_TIM_TRGO_UPDATE
3206   *         @arg @ref LL_TIM_TRGO_CC1IF
3207   *         @arg @ref LL_TIM_TRGO_OC1REF
3208   *         @arg @ref LL_TIM_TRGO_OC2REF
3209   *         @arg @ref LL_TIM_TRGO_OC3REF
3210   *         @arg @ref LL_TIM_TRGO_OC4REF
3211   * @retval None
3212   */
LL_TIM_SetTriggerOutput(TIM_TypeDef * TIMx,uint32_t TimerSynchronization)3213 __STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
3214 {
3215   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
3216 }
3217 
3218 /**
3219   * @brief  Set the trigger output 2 (TRGO2) used for ADC synchronization .
3220   * @note Macro IS_TIM_TRGO2_INSTANCE(TIMx) can be used to check
3221   *       whether or not a timer instance can be used for ADC synchronization.
3222   * @rmtoll CR2          MMS2          LL_TIM_SetTriggerOutput2
3223   * @param  TIMx Timer Instance
3224   * @param  ADCSynchronization This parameter can be one of the following values:
3225   *         @arg @ref LL_TIM_TRGO2_RESET
3226   *         @arg @ref LL_TIM_TRGO2_ENABLE
3227   *         @arg @ref LL_TIM_TRGO2_UPDATE
3228   *         @arg @ref LL_TIM_TRGO2_CC1F
3229   *         @arg @ref LL_TIM_TRGO2_OC1
3230   *         @arg @ref LL_TIM_TRGO2_OC2
3231   *         @arg @ref LL_TIM_TRGO2_OC3
3232   *         @arg @ref LL_TIM_TRGO2_OC4
3233   *         @arg @ref LL_TIM_TRGO2_OC5
3234   *         @arg @ref LL_TIM_TRGO2_OC6
3235   *         @arg @ref LL_TIM_TRGO2_OC4_RISINGFALLING
3236   *         @arg @ref LL_TIM_TRGO2_OC6_RISINGFALLING
3237   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_RISING
3238   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_FALLING
3239   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_RISING
3240   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_FALLING
3241   * @retval None
3242   */
LL_TIM_SetTriggerOutput2(TIM_TypeDef * TIMx,uint32_t ADCSynchronization)3243 __STATIC_INLINE void LL_TIM_SetTriggerOutput2(TIM_TypeDef *TIMx, uint32_t ADCSynchronization)
3244 {
3245   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS2, ADCSynchronization);
3246 }
3247 
3248 /**
3249   * @brief  Set the synchronization mode of a slave timer.
3250   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3251   *       a timer instance can operate as a slave timer.
3252   * @rmtoll SMCR         SMS           LL_TIM_SetSlaveMode
3253   * @param  TIMx Timer instance
3254   * @param  SlaveMode This parameter can be one of the following values:
3255   *         @arg @ref LL_TIM_SLAVEMODE_DISABLED
3256   *         @arg @ref LL_TIM_SLAVEMODE_RESET
3257   *         @arg @ref LL_TIM_SLAVEMODE_GATED
3258   *         @arg @ref LL_TIM_SLAVEMODE_TRIGGER
3259   *         @arg @ref LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER
3260   * @retval None
3261   */
LL_TIM_SetSlaveMode(TIM_TypeDef * TIMx,uint32_t SlaveMode)3262 __STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
3263 {
3264   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
3265 }
3266 
3267 /**
3268   * @brief  Set the selects the trigger input to be used to synchronize the counter.
3269   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3270   *       a timer instance can operate as a slave timer.
3271   * @rmtoll SMCR         TS            LL_TIM_SetTriggerInput
3272   * @param  TIMx Timer instance
3273   * @param  TriggerInput This parameter can be one of the following values:
3274   *         @arg @ref LL_TIM_TS_ITR0
3275   *         @arg @ref LL_TIM_TS_ITR1
3276   *         @arg @ref LL_TIM_TS_ITR2
3277   *         @arg @ref LL_TIM_TS_ITR3
3278   *         @arg @ref LL_TIM_TS_ITR7 (*)
3279   *         @arg @ref LL_TIM_TS_TI1F_ED
3280   *         @arg @ref LL_TIM_TS_TI1FP1
3281   *         @arg @ref LL_TIM_TS_TI2FP2
3282   *         @arg @ref LL_TIM_TS_ETRF
3283   *
3284   *      (*)  Value not defined in all devices.
3285   * @retval None
3286   */
LL_TIM_SetTriggerInput(TIM_TypeDef * TIMx,uint32_t TriggerInput)3287 __STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
3288 {
3289   MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
3290 }
3291 
3292 /**
3293   * @brief  Enable the Master/Slave mode.
3294   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3295   *       a timer instance can operate as a slave timer.
3296   * @rmtoll SMCR         MSM           LL_TIM_EnableMasterSlaveMode
3297   * @param  TIMx Timer instance
3298   * @retval None
3299   */
LL_TIM_EnableMasterSlaveMode(TIM_TypeDef * TIMx)3300 __STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
3301 {
3302   SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3303 }
3304 
3305 /**
3306   * @brief  Disable the Master/Slave mode.
3307   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3308   *       a timer instance can operate as a slave timer.
3309   * @rmtoll SMCR         MSM           LL_TIM_DisableMasterSlaveMode
3310   * @param  TIMx Timer instance
3311   * @retval None
3312   */
LL_TIM_DisableMasterSlaveMode(TIM_TypeDef * TIMx)3313 __STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
3314 {
3315   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3316 }
3317 
3318 /**
3319   * @brief Indicates whether the Master/Slave mode is enabled.
3320   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3321   * a timer instance can operate as a slave timer.
3322   * @rmtoll SMCR         MSM           LL_TIM_IsEnabledMasterSlaveMode
3323   * @param  TIMx Timer instance
3324   * @retval State of bit (1 or 0).
3325   */
LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef * TIMx)3326 __STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef *TIMx)
3327 {
3328   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
3329 }
3330 
3331 /**
3332   * @brief  Configure the external trigger (ETR) input.
3333   * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
3334   *       a timer instance provides an external trigger input.
3335   * @rmtoll SMCR         ETP           LL_TIM_ConfigETR\n
3336   *         SMCR         ETPS          LL_TIM_ConfigETR\n
3337   *         SMCR         ETF           LL_TIM_ConfigETR
3338   * @param  TIMx Timer instance
3339   * @param  ETRPolarity This parameter can be one of the following values:
3340   *         @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
3341   *         @arg @ref LL_TIM_ETR_POLARITY_INVERTED
3342   * @param  ETRPrescaler This parameter can be one of the following values:
3343   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV1
3344   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV2
3345   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV4
3346   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV8
3347   * @param  ETRFilter This parameter can be one of the following values:
3348   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1
3349   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
3350   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
3351   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
3352   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
3353   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
3354   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
3355   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
3356   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
3357   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
3358   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
3359   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
3360   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
3361   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
3362   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
3363   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
3364   * @retval None
3365   */
LL_TIM_ConfigETR(TIM_TypeDef * TIMx,uint32_t ETRPolarity,uint32_t ETRPrescaler,uint32_t ETRFilter)3366 __STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
3367                                       uint32_t ETRFilter)
3368 {
3369   MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
3370 }
3371 
3372 /**
3373   * @brief  Select the external trigger (ETR) input source.
3374   * @note Macro IS_TIM_ETRSEL_INSTANCE(TIMx) can be used to check whether or
3375   *       not a timer instance supports ETR source selection.
3376   * @rmtoll AF1          ETRSEL        LL_TIM_SetETRSource
3377   * @param  TIMx Timer instance
3378   * @param  ETRSource This parameter can be one of the following values:
3379   *         TIM1
3380   *
3381   *         @arg @ref LL_TIM_ETRSOURCE_GPIO
3382   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD1
3383   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD2
3384   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD3
3385   *
3386   *         TIM2 (*)
3387   *
3388   *         @arg @ref LL_TIM_ETRSOURCE_GPIO
3389   *         @arg @ref LL_TIM_ETRSOURCE_LSE
3390   *         @arg @ref LL_TIM_ETRSOURCE_MCO
3391   *         @arg @ref LL_TIM_ETRSOURCE_MCO2
3392   *
3393   *  (*) Timer instance not available on all devices \n
3394   * @retval None
3395   */
LL_TIM_SetETRSource(TIM_TypeDef * TIMx,uint32_t ETRSource)3396 __STATIC_INLINE void LL_TIM_SetETRSource(TIM_TypeDef *TIMx, uint32_t ETRSource)
3397 {
3398   MODIFY_REG(TIMx->AF1, TIMx_AF1_ETRSEL, ETRSource);
3399 }
3400 
3401 /**
3402   * @}
3403   */
3404 
3405 /** @defgroup TIM_LL_EF_Break_Function Break function configuration
3406   * @{
3407   */
3408 /**
3409   * @brief  Enable the break function.
3410   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3411   *       a timer instance provides a break input.
3412   * @rmtoll BDTR         BKE           LL_TIM_EnableBRK
3413   * @param  TIMx Timer instance
3414   * @retval None
3415   */
LL_TIM_EnableBRK(TIM_TypeDef * TIMx)3416 __STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
3417 {
3418   SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3419 }
3420 
3421 /**
3422   * @brief  Disable the break function.
3423   * @rmtoll BDTR         BKE           LL_TIM_DisableBRK
3424   * @param  TIMx Timer instance
3425   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3426   *       a timer instance provides a break input.
3427   * @retval None
3428   */
LL_TIM_DisableBRK(TIM_TypeDef * TIMx)3429 __STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
3430 {
3431   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3432 }
3433 
3434 /**
3435   * @brief  Configure the break input.
3436   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3437   *       a timer instance provides a break input.
3438   * @note Bidirectional mode is only supported by advanced timer instances.
3439   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
3440   *       a timer instance is an advanced-control timer.
3441   * @note In bidirectional mode (BKBID bit set), the Break input is configured both
3442   *        in input mode and in open drain output mode. Any active Break event will
3443   *        assert a low logic level on the Break input to indicate an internal break
3444   *        event to external devices.
3445   * @note When bidirectional mode isn't supported, BreakAFMode must be set to
3446   *       LL_TIM_BREAK_AFMODE_INPUT.
3447   * @rmtoll BDTR         BKP           LL_TIM_ConfigBRK\n
3448   *         BDTR         BKF           LL_TIM_ConfigBRK\n
3449   *         BDTR         BKBID         LL_TIM_ConfigBRK
3450   * @param  TIMx Timer instance
3451   * @param  BreakPolarity This parameter can be one of the following values:
3452   *         @arg @ref LL_TIM_BREAK_POLARITY_LOW
3453   *         @arg @ref LL_TIM_BREAK_POLARITY_HIGH
3454   * @param  BreakFilter This parameter can be one of the following values:
3455   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1
3456   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N2
3457   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N4
3458   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N8
3459   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N6
3460   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N8
3461   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N6
3462   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N8
3463   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N6
3464   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N8
3465   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N5
3466   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N6
3467   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N8
3468   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N5
3469   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N6
3470   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N8
3471   * @param  BreakAFMode This parameter can be one of the following values:
3472   *         @arg @ref LL_TIM_BREAK_AFMODE_INPUT
3473   *         @arg @ref LL_TIM_BREAK_AFMODE_BIDIRECTIONAL
3474   * @retval None
3475   */
LL_TIM_ConfigBRK(TIM_TypeDef * TIMx,uint32_t BreakPolarity,uint32_t BreakFilter,uint32_t BreakAFMode)3476 __STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity, uint32_t BreakFilter,
3477                                       uint32_t BreakAFMode)
3478 {
3479   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP | TIM_BDTR_BKF | TIM_BDTR_BKBID, BreakPolarity | BreakFilter | BreakAFMode);
3480 }
3481 
3482 /**
3483   * @brief  Disarm the break input (when it operates in bidirectional mode).
3484   * @note  The break input can be disarmed only when it is configured in
3485   *        bidirectional mode and when when MOE is reset.
3486   * @note  Purpose is to be able to have the input voltage back to high-state,
3487   *        whatever the time constant on the output .
3488   * @rmtoll BDTR         BKDSRM        LL_TIM_DisarmBRK
3489   * @param  TIMx Timer instance
3490   * @retval None
3491   */
LL_TIM_DisarmBRK(TIM_TypeDef * TIMx)3492 __STATIC_INLINE void LL_TIM_DisarmBRK(TIM_TypeDef *TIMx)
3493 {
3494   SET_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
3495 }
3496 
3497 /**
3498   * @brief  Enable the break 2 function.
3499   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3500   *       a timer instance provides a second break input.
3501   * @rmtoll BDTR         BK2E          LL_TIM_EnableBRK2
3502   * @param  TIMx Timer instance
3503   * @retval None
3504   */
LL_TIM_EnableBRK2(TIM_TypeDef * TIMx)3505 __STATIC_INLINE void LL_TIM_EnableBRK2(TIM_TypeDef *TIMx)
3506 {
3507   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3508 }
3509 
3510 /**
3511   * @brief  Disable the break  2 function.
3512   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3513   *       a timer instance provides a second break input.
3514   * @rmtoll BDTR         BK2E          LL_TIM_DisableBRK2
3515   * @param  TIMx Timer instance
3516   * @retval None
3517   */
LL_TIM_DisableBRK2(TIM_TypeDef * TIMx)3518 __STATIC_INLINE void LL_TIM_DisableBRK2(TIM_TypeDef *TIMx)
3519 {
3520   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3521 }
3522 
3523 /**
3524   * @brief  Configure the break 2 input.
3525   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3526   *       a timer instance provides a second break input.
3527   * @note Bidirectional mode is only supported by advanced timer instances.
3528   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
3529   *       a timer instance is an advanced-control timer.
3530   * @note In bidirectional mode (BK2BID bit set), the Break 2 input is configured both
3531   *        in input mode and in open drain output mode. Any active Break event will
3532   *        assert a low logic level on the Break 2 input to indicate an internal break
3533   *        event to external devices.
3534   * @note When bidirectional mode isn't supported, Break2AFMode must be set to
3535   *       LL_TIM_BREAK2_AFMODE_INPUT.
3536   * @rmtoll BDTR         BK2P          LL_TIM_ConfigBRK2\n
3537   *         BDTR         BK2F          LL_TIM_ConfigBRK2\n
3538   *         BDTR         BK2BID        LL_TIM_ConfigBRK2
3539   * @param  TIMx Timer instance
3540   * @param  Break2Polarity This parameter can be one of the following values:
3541   *         @arg @ref LL_TIM_BREAK2_POLARITY_LOW
3542   *         @arg @ref LL_TIM_BREAK2_POLARITY_HIGH
3543   * @param  Break2Filter This parameter can be one of the following values:
3544   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1
3545   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N2
3546   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N4
3547   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N8
3548   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N6
3549   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N8
3550   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N6
3551   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N8
3552   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N6
3553   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N8
3554   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N5
3555   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N6
3556   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N8
3557   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N5
3558   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N6
3559   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N8
3560   * @param  Break2AFMode This parameter can be one of the following values:
3561   *         @arg @ref LL_TIM_BREAK2_AFMODE_INPUT
3562   *         @arg @ref LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL
3563   * @retval None
3564   */
LL_TIM_ConfigBRK2(TIM_TypeDef * TIMx,uint32_t Break2Polarity,uint32_t Break2Filter,uint32_t Break2AFMode)3565 __STATIC_INLINE void LL_TIM_ConfigBRK2(TIM_TypeDef *TIMx, uint32_t Break2Polarity, uint32_t Break2Filter,
3566                                        uint32_t Break2AFMode)
3567 {
3568   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BK2P | TIM_BDTR_BK2F | TIM_BDTR_BK2BID, Break2Polarity | Break2Filter | Break2AFMode);
3569 }
3570 
3571 /**
3572   * @brief  Disarm the break 2 input (when it operates in bidirectional mode).
3573   * @note  The break 2 input can be disarmed only when it is configured in
3574   *        bidirectional mode and when when MOE is reset.
3575   * @note  Purpose is to be able to have the input voltage back to high-state,
3576   *        whatever the time constant on the output.
3577   * @rmtoll BDTR         BK2DSRM       LL_TIM_DisarmBRK2
3578   * @param  TIMx Timer instance
3579   * @retval None
3580   */
LL_TIM_DisarmBRK2(TIM_TypeDef * TIMx)3581 __STATIC_INLINE void LL_TIM_DisarmBRK2(TIM_TypeDef *TIMx)
3582 {
3583   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
3584 }
3585 
3586 /**
3587   * @brief  Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
3588   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3589   *       a timer instance provides a break input.
3590   * @rmtoll BDTR         OSSI          LL_TIM_SetOffStates\n
3591   *         BDTR         OSSR          LL_TIM_SetOffStates
3592   * @param  TIMx Timer instance
3593   * @param  OffStateIdle This parameter can be one of the following values:
3594   *         @arg @ref LL_TIM_OSSI_DISABLE
3595   *         @arg @ref LL_TIM_OSSI_ENABLE
3596   * @param  OffStateRun This parameter can be one of the following values:
3597   *         @arg @ref LL_TIM_OSSR_DISABLE
3598   *         @arg @ref LL_TIM_OSSR_ENABLE
3599   * @retval None
3600   */
LL_TIM_SetOffStates(TIM_TypeDef * TIMx,uint32_t OffStateIdle,uint32_t OffStateRun)3601 __STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
3602 {
3603   MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
3604 }
3605 
3606 /**
3607   * @brief  Enable automatic output (MOE can be set by software or automatically when a break input is active).
3608   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3609   *       a timer instance provides a break input.
3610   * @rmtoll BDTR         AOE           LL_TIM_EnableAutomaticOutput
3611   * @param  TIMx Timer instance
3612   * @retval None
3613   */
LL_TIM_EnableAutomaticOutput(TIM_TypeDef * TIMx)3614 __STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
3615 {
3616   SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3617 }
3618 
3619 /**
3620   * @brief  Disable automatic output (MOE can be set only by software).
3621   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3622   *       a timer instance provides a break input.
3623   * @rmtoll BDTR         AOE           LL_TIM_DisableAutomaticOutput
3624   * @param  TIMx Timer instance
3625   * @retval None
3626   */
LL_TIM_DisableAutomaticOutput(TIM_TypeDef * TIMx)3627 __STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
3628 {
3629   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3630 }
3631 
3632 /**
3633   * @brief  Indicate whether automatic output is enabled.
3634   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3635   *       a timer instance provides a break input.
3636   * @rmtoll BDTR         AOE           LL_TIM_IsEnabledAutomaticOutput
3637   * @param  TIMx Timer instance
3638   * @retval State of bit (1 or 0).
3639   */
LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef * TIMx)3640 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef *TIMx)
3641 {
3642   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
3643 }
3644 
3645 /**
3646   * @brief  Enable the outputs (set the MOE bit in TIMx_BDTR register).
3647   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3648   *       software and is reset in case of break or break2 event
3649   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3650   *       a timer instance provides a break input.
3651   * @rmtoll BDTR         MOE           LL_TIM_EnableAllOutputs
3652   * @param  TIMx Timer instance
3653   * @retval None
3654   */
LL_TIM_EnableAllOutputs(TIM_TypeDef * TIMx)3655 __STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
3656 {
3657   SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3658 }
3659 
3660 /**
3661   * @brief  Disable the outputs (reset the MOE bit in TIMx_BDTR register).
3662   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3663   *       software and is reset in case of break or break2 event.
3664   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3665   *       a timer instance provides a break input.
3666   * @rmtoll BDTR         MOE           LL_TIM_DisableAllOutputs
3667   * @param  TIMx Timer instance
3668   * @retval None
3669   */
LL_TIM_DisableAllOutputs(TIM_TypeDef * TIMx)3670 __STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
3671 {
3672   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3673 }
3674 
3675 /**
3676   * @brief  Indicates whether outputs are enabled.
3677   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3678   *       a timer instance provides a break input.
3679   * @rmtoll BDTR         MOE           LL_TIM_IsEnabledAllOutputs
3680   * @param  TIMx Timer instance
3681   * @retval State of bit (1 or 0).
3682   */
LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef * TIMx)3683 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef *TIMx)
3684 {
3685   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
3686 }
3687 
3688 /**
3689   * @brief  Enable the signals connected to the designated timer break input.
3690   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3691   *       or not a timer instance allows for break input selection.
3692   * @rmtoll AF1          BKINE         LL_TIM_EnableBreakInputSource\n
3693   *         AF2          BK2INE        LL_TIM_EnableBreakInputSource\n
3694   * @param  TIMx Timer instance
3695   * @param  BreakInput This parameter can be one of the following values:
3696   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3697   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3698   * @param  Source This parameter can be one of the following values:
3699   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3700   *
3701   * @retval None
3702   */
LL_TIM_EnableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3703 __STATIC_INLINE void LL_TIM_EnableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3704 {
3705   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
3706   SET_BIT(*pReg, Source);
3707 }
3708 
3709 /**
3710   * @brief  Disable the signals connected to the designated timer break input.
3711   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3712   *       or not a timer instance allows for break input selection.
3713   * @rmtoll AF1          BKINE         LL_TIM_DisableBreakInputSource\n
3714   *         AF2          BK2INE        LL_TIM_DisableBreakInputSource\n
3715   * @param  TIMx Timer instance
3716   * @param  BreakInput This parameter can be one of the following values:
3717   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3718   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3719   * @param  Source This parameter can be one of the following values:
3720   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3721   *
3722   * @retval None
3723   */
LL_TIM_DisableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3724 __STATIC_INLINE void LL_TIM_DisableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3725 {
3726   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
3727   CLEAR_BIT(*pReg, Source);
3728 }
3729 
3730 /**
3731   * @brief  Set the polarity of the break signal for the timer break input.
3732   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3733   *       or not a timer instance allows for break input selection.
3734   * @rmtoll AF1          BKINP         LL_TIM_SetBreakInputSourcePolarity\n
3735   *         AF2          BK2INP        LL_TIM_SetBreakInputSourcePolarity\n
3736   * @param  TIMx Timer instance
3737   * @param  BreakInput This parameter can be one of the following values:
3738   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3739   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3740   * @param  Source This parameter can be one of the following values:
3741   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3742   * @param  Polarity This parameter can be one of the following values:
3743   *         @arg @ref LL_TIM_BKIN_POLARITY_LOW
3744   *         @arg @ref LL_TIM_BKIN_POLARITY_HIGH
3745   * @retval None
3746   */
LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source,uint32_t Polarity)3747 __STATIC_INLINE void LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source,
3748                                                         uint32_t Polarity)
3749 {
3750   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
3751   MODIFY_REG(*pReg, (TIMx_AF1_BKINP << TIM_POSITION_BRK_SOURCE), (Polarity << TIM_POSITION_BRK_SOURCE));
3752 }
3753 /**
3754   * @}
3755   */
3756 
3757 /** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
3758   * @{
3759   */
3760 /**
3761   * @brief  Configures the timer DMA burst feature.
3762   * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
3763   *       not a timer instance supports the DMA burst mode.
3764   * @rmtoll DCR          DBL           LL_TIM_ConfigDMABurst\n
3765   *         DCR          DBA           LL_TIM_ConfigDMABurst
3766   * @param  TIMx Timer instance
3767   * @param  DMABurstBaseAddress This parameter can be one of the following values:
3768   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
3769   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
3770   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
3771   *         @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
3772   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SR
3773   *         @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
3774   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
3775   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
3776   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
3777   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
3778   *         @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
3779   *         @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
3780   *         @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
3781   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
3782   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
3783   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
3784   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
3785   *         @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
3786   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR3
3787   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR5
3788   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR6
3789   *         @arg @ref LL_TIM_DMABURST_BASEADDR_AF1
3790   *         @arg @ref LL_TIM_DMABURST_BASEADDR_AF2
3791   *         @arg @ref LL_TIM_DMABURST_BASEADDR_TISEL
3792   * @param  DMABurstLength This parameter can be one of the following values:
3793   *         @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
3794   *         @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
3795   *         @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
3796   *         @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
3797   *         @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
3798   *         @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
3799   *         @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
3800   *         @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
3801   *         @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
3802   *         @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
3803   *         @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
3804   *         @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
3805   *         @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
3806   *         @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
3807   *         @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
3808   *         @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
3809   *         @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
3810   *         @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
3811   * @retval None
3812   */
LL_TIM_ConfigDMABurst(TIM_TypeDef * TIMx,uint32_t DMABurstBaseAddress,uint32_t DMABurstLength)3813 __STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
3814 {
3815   MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
3816 }
3817 
3818 /**
3819   * @}
3820   */
3821 
3822 /** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
3823   * @{
3824   */
3825 /**
3826   * @brief  Remap TIM inputs (input channel, internal/external triggers).
3827   * @note Macro IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
3828   *       a some timer inputs can be remapped.
3829   * @rmtoll TIM1_TISEL    TI1SEL      LL_TIM_SetRemap\n
3830   *         TIM1_TISEL    TI2SEL      LL_TIM_SetRemap\n
3831   *         TIM1_TISEL    TI3SEL      LL_TIM_SetRemap\n
3832   *         TIM1_TISEL    TI4SEL      LL_TIM_SetRemap\n
3833   *         TIM2_TISEL    TI1SEL      LL_TIM_SetRemap\n
3834   *         TIM2_TISEL    TI2SEL      LL_TIM_SetRemap\n
3835   *         TIM2_TISEL    TI3SEL      LL_TIM_SetRemap\n
3836   *         TIM2_TISEL    TI4SEL      LL_TIM_SetRemap\n
3837   *         TIM3_TISEL    TI1SEL      LL_TIM_SetRemap\n
3838   *         TIM3_TISEL    TI2SEL      LL_TIM_SetRemap\n
3839   *         TIM3_TISEL    TI3SEL      LL_TIM_SetRemap\n
3840   *         TIM3_TISEL    TI4SEL      LL_TIM_SetRemap\n
3841   *         TIM14_TISEL   TI1SEL      LL_TIM_SetRemap\n
3842   *         TIM16_TISEL   TI1SEL      LL_TIM_SetRemap\n
3843   *         TIM17_TISEL   TI1SEL      LL_TIM_SetRemap
3844   * @param  TIMx Timer instance
3845   * @param  Remap Remap param depends on the TIMx. Description available only
3846   *         in CHM version of the User Manual (not in .pdf).
3847   *         Otherwise see Reference Manual description of TISEL registers.
3848   *
3849   *         Below description summarizes "Timer Instance" and "Remap" param combinations:
3850   *
3851   *         TIM14: one of the following values
3852   *
3853   *            @arg @ref LL_TIM_TIM14_TI1_RMP_GPIO
3854   *            @arg @ref LL_TIM_TIM14_TI1_RMP_RTC_CLK
3855   *            @arg @ref LL_TIM_TIM14_TI1_RMP_HSE_32
3856   *            @arg @ref LL_TIM_TIM14_TI1_RMP_MCO
3857   *            @arg @ref LL_TIM_TIM14_TI1_RMP_MCO2
3858   *
3859   *         TIM16: one of the following values
3860   *
3861   *            @arg @ref LL_TIM_TIM16_TI1_RMP_GPIO
3862   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSI
3863   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSE
3864   *            @arg @ref LL_TIM_TIM16_TI1_RMP_MCO2
3865   *
3866   *         TIM17: one of the following values
3867   *
3868   *            @arg @ref LL_TIM_TIM17_TI1_RMP_GPIO
3869   *            @arg @ref LL_TIM_TIM17_TI1_RMP_HSE_32
3870   *            @arg @ref LL_TIM_TIM17_TI1_RMP_MCO
3871   *            @arg @ref LL_TIM_TIM17_TI1_RMP_MCO2
3872   * @retval None
3873   */
LL_TIM_SetRemap(TIM_TypeDef * TIMx,uint32_t Remap)3874 __STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
3875 {
3876   MODIFY_REG(TIMx->TISEL, (TIM_TISEL_TI1SEL | TIM_TISEL_TI2SEL | TIM_TISEL_TI3SEL | TIM_TISEL_TI4SEL), Remap);
3877 }
3878 
3879 /**
3880   * @}
3881   */
3882 
3883 /** @defgroup TIM_LL_EF_OCREF_Clear OCREF_Clear_Management
3884   * @{
3885   */
3886 /**
3887   * @brief  Set the OCREF clear input source
3888   * @note The OCxREF signal of a given channel can be cleared when a high level is applied on the OCREF_CLR_INPUT
3889   * @note This function can only be used in Output compare and PWM modes.
3890   * @rmtoll SMCR          OCCS                LL_TIM_SetOCRefClearInputSource
3891   * @param  TIMx Timer instance
3892   * @param  OCRefClearInputSource This parameter can be one of the following values:
3893   *         @arg @ref LL_TIM_OCREF_CLR_INT_ETR
3894   * @retval None
3895   */
LL_TIM_SetOCRefClearInputSource(TIM_TypeDef * TIMx,uint32_t OCRefClearInputSource)3896 __STATIC_INLINE void LL_TIM_SetOCRefClearInputSource(TIM_TypeDef *TIMx, uint32_t OCRefClearInputSource)
3897 {
3898   MODIFY_REG(TIMx->SMCR, TIM_SMCR_OCCS,
3899              ((OCRefClearInputSource & OCREF_CLEAR_SELECT_MSK) >> OCREF_CLEAR_SELECT_POS) << TIM_SMCR_OCCS_Pos);
3900 }
3901 /**
3902   * @}
3903   */
3904 
3905 /** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
3906   * @{
3907   */
3908 /**
3909   * @brief  Clear the update interrupt flag (UIF).
3910   * @rmtoll SR           UIF           LL_TIM_ClearFlag_UPDATE
3911   * @param  TIMx Timer instance
3912   * @retval None
3913   */
LL_TIM_ClearFlag_UPDATE(TIM_TypeDef * TIMx)3914 __STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
3915 {
3916   WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
3917 }
3918 
3919 /**
3920   * @brief  Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
3921   * @rmtoll SR           UIF           LL_TIM_IsActiveFlag_UPDATE
3922   * @param  TIMx Timer instance
3923   * @retval State of bit (1 or 0).
3924   */
LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef * TIMx)3925 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef *TIMx)
3926 {
3927   return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
3928 }
3929 
3930 /**
3931   * @brief  Clear the Capture/Compare 1 interrupt flag (CC1F).
3932   * @rmtoll SR           CC1IF         LL_TIM_ClearFlag_CC1
3933   * @param  TIMx Timer instance
3934   * @retval None
3935   */
LL_TIM_ClearFlag_CC1(TIM_TypeDef * TIMx)3936 __STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
3937 {
3938   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
3939 }
3940 
3941 /**
3942   * @brief  Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
3943   * @rmtoll SR           CC1IF         LL_TIM_IsActiveFlag_CC1
3944   * @param  TIMx Timer instance
3945   * @retval State of bit (1 or 0).
3946   */
LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef * TIMx)3947 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef *TIMx)
3948 {
3949   return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
3950 }
3951 
3952 /**
3953   * @brief  Clear the Capture/Compare 2 interrupt flag (CC2F).
3954   * @rmtoll SR           CC2IF         LL_TIM_ClearFlag_CC2
3955   * @param  TIMx Timer instance
3956   * @retval None
3957   */
LL_TIM_ClearFlag_CC2(TIM_TypeDef * TIMx)3958 __STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
3959 {
3960   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
3961 }
3962 
3963 /**
3964   * @brief  Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
3965   * @rmtoll SR           CC2IF         LL_TIM_IsActiveFlag_CC2
3966   * @param  TIMx Timer instance
3967   * @retval State of bit (1 or 0).
3968   */
LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef * TIMx)3969 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef *TIMx)
3970 {
3971   return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
3972 }
3973 
3974 /**
3975   * @brief  Clear the Capture/Compare 3 interrupt flag (CC3F).
3976   * @rmtoll SR           CC3IF         LL_TIM_ClearFlag_CC3
3977   * @param  TIMx Timer instance
3978   * @retval None
3979   */
LL_TIM_ClearFlag_CC3(TIM_TypeDef * TIMx)3980 __STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
3981 {
3982   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
3983 }
3984 
3985 /**
3986   * @brief  Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
3987   * @rmtoll SR           CC3IF         LL_TIM_IsActiveFlag_CC3
3988   * @param  TIMx Timer instance
3989   * @retval State of bit (1 or 0).
3990   */
LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef * TIMx)3991 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef *TIMx)
3992 {
3993   return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
3994 }
3995 
3996 /**
3997   * @brief  Clear the Capture/Compare 4 interrupt flag (CC4F).
3998   * @rmtoll SR           CC4IF         LL_TIM_ClearFlag_CC4
3999   * @param  TIMx Timer instance
4000   * @retval None
4001   */
LL_TIM_ClearFlag_CC4(TIM_TypeDef * TIMx)4002 __STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
4003 {
4004   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
4005 }
4006 
4007 /**
4008   * @brief  Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
4009   * @rmtoll SR           CC4IF         LL_TIM_IsActiveFlag_CC4
4010   * @param  TIMx Timer instance
4011   * @retval State of bit (1 or 0).
4012   */
LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef * TIMx)4013 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef *TIMx)
4014 {
4015   return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
4016 }
4017 
4018 /**
4019   * @brief  Clear the Capture/Compare 5 interrupt flag (CC5F).
4020   * @rmtoll SR           CC5IF         LL_TIM_ClearFlag_CC5
4021   * @param  TIMx Timer instance
4022   * @retval None
4023   */
LL_TIM_ClearFlag_CC5(TIM_TypeDef * TIMx)4024 __STATIC_INLINE void LL_TIM_ClearFlag_CC5(TIM_TypeDef *TIMx)
4025 {
4026   WRITE_REG(TIMx->SR, ~(TIM_SR_CC5IF));
4027 }
4028 
4029 /**
4030   * @brief  Indicate whether Capture/Compare 5 interrupt flag (CC5F) is set (Capture/Compare 5 interrupt is pending).
4031   * @rmtoll SR           CC5IF         LL_TIM_IsActiveFlag_CC5
4032   * @param  TIMx Timer instance
4033   * @retval State of bit (1 or 0).
4034   */
LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef * TIMx)4035 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef *TIMx)
4036 {
4037   return ((READ_BIT(TIMx->SR, TIM_SR_CC5IF) == (TIM_SR_CC5IF)) ? 1UL : 0UL);
4038 }
4039 
4040 /**
4041   * @brief  Clear the Capture/Compare 6 interrupt flag (CC6F).
4042   * @rmtoll SR           CC6IF         LL_TIM_ClearFlag_CC6
4043   * @param  TIMx Timer instance
4044   * @retval None
4045   */
LL_TIM_ClearFlag_CC6(TIM_TypeDef * TIMx)4046 __STATIC_INLINE void LL_TIM_ClearFlag_CC6(TIM_TypeDef *TIMx)
4047 {
4048   WRITE_REG(TIMx->SR, ~(TIM_SR_CC6IF));
4049 }
4050 
4051 /**
4052   * @brief  Indicate whether Capture/Compare 6 interrupt flag (CC6F) is set (Capture/Compare 6 interrupt is pending).
4053   * @rmtoll SR           CC6IF         LL_TIM_IsActiveFlag_CC6
4054   * @param  TIMx Timer instance
4055   * @retval State of bit (1 or 0).
4056   */
LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef * TIMx)4057 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef *TIMx)
4058 {
4059   return ((READ_BIT(TIMx->SR, TIM_SR_CC6IF) == (TIM_SR_CC6IF)) ? 1UL : 0UL);
4060 }
4061 
4062 /**
4063   * @brief  Clear the commutation interrupt flag (COMIF).
4064   * @rmtoll SR           COMIF         LL_TIM_ClearFlag_COM
4065   * @param  TIMx Timer instance
4066   * @retval None
4067   */
LL_TIM_ClearFlag_COM(TIM_TypeDef * TIMx)4068 __STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
4069 {
4070   WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
4071 }
4072 
4073 /**
4074   * @brief  Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
4075   * @rmtoll SR           COMIF         LL_TIM_IsActiveFlag_COM
4076   * @param  TIMx Timer instance
4077   * @retval State of bit (1 or 0).
4078   */
LL_TIM_IsActiveFlag_COM(const TIM_TypeDef * TIMx)4079 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(const TIM_TypeDef *TIMx)
4080 {
4081   return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
4082 }
4083 
4084 /**
4085   * @brief  Clear the trigger interrupt flag (TIF).
4086   * @rmtoll SR           TIF           LL_TIM_ClearFlag_TRIG
4087   * @param  TIMx Timer instance
4088   * @retval None
4089   */
LL_TIM_ClearFlag_TRIG(TIM_TypeDef * TIMx)4090 __STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
4091 {
4092   WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
4093 }
4094 
4095 /**
4096   * @brief  Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
4097   * @rmtoll SR           TIF           LL_TIM_IsActiveFlag_TRIG
4098   * @param  TIMx Timer instance
4099   * @retval State of bit (1 or 0).
4100   */
LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef * TIMx)4101 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef *TIMx)
4102 {
4103   return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
4104 }
4105 
4106 /**
4107   * @brief  Clear the break interrupt flag (BIF).
4108   * @rmtoll SR           BIF           LL_TIM_ClearFlag_BRK
4109   * @param  TIMx Timer instance
4110   * @retval None
4111   */
LL_TIM_ClearFlag_BRK(TIM_TypeDef * TIMx)4112 __STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
4113 {
4114   WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
4115 }
4116 
4117 /**
4118   * @brief  Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
4119   * @rmtoll SR           BIF           LL_TIM_IsActiveFlag_BRK
4120   * @param  TIMx Timer instance
4121   * @retval State of bit (1 or 0).
4122   */
LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef * TIMx)4123 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef *TIMx)
4124 {
4125   return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
4126 }
4127 
4128 /**
4129   * @brief  Clear the break 2 interrupt flag (B2IF).
4130   * @rmtoll SR           B2IF          LL_TIM_ClearFlag_BRK2
4131   * @param  TIMx Timer instance
4132   * @retval None
4133   */
LL_TIM_ClearFlag_BRK2(TIM_TypeDef * TIMx)4134 __STATIC_INLINE void LL_TIM_ClearFlag_BRK2(TIM_TypeDef *TIMx)
4135 {
4136   WRITE_REG(TIMx->SR, ~(TIM_SR_B2IF));
4137 }
4138 
4139 /**
4140   * @brief  Indicate whether break 2 interrupt flag (B2IF) is set (break 2 interrupt is pending).
4141   * @rmtoll SR           B2IF          LL_TIM_IsActiveFlag_BRK2
4142   * @param  TIMx Timer instance
4143   * @retval State of bit (1 or 0).
4144   */
LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef * TIMx)4145 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef *TIMx)
4146 {
4147   return ((READ_BIT(TIMx->SR, TIM_SR_B2IF) == (TIM_SR_B2IF)) ? 1UL : 0UL);
4148 }
4149 
4150 /**
4151   * @brief  Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
4152   * @rmtoll SR           CC1OF         LL_TIM_ClearFlag_CC1OVR
4153   * @param  TIMx Timer instance
4154   * @retval None
4155   */
LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef * TIMx)4156 __STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
4157 {
4158   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
4159 }
4160 
4161 /**
4162   * @brief  Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set
4163   *         (Capture/Compare 1 interrupt is pending).
4164   * @rmtoll SR           CC1OF         LL_TIM_IsActiveFlag_CC1OVR
4165   * @param  TIMx Timer instance
4166   * @retval State of bit (1 or 0).
4167   */
LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef * TIMx)4168 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef *TIMx)
4169 {
4170   return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
4171 }
4172 
4173 /**
4174   * @brief  Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
4175   * @rmtoll SR           CC2OF         LL_TIM_ClearFlag_CC2OVR
4176   * @param  TIMx Timer instance
4177   * @retval None
4178   */
LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef * TIMx)4179 __STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
4180 {
4181   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
4182 }
4183 
4184 /**
4185   * @brief  Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set
4186   *         (Capture/Compare 2 over-capture interrupt is pending).
4187   * @rmtoll SR           CC2OF         LL_TIM_IsActiveFlag_CC2OVR
4188   * @param  TIMx Timer instance
4189   * @retval State of bit (1 or 0).
4190   */
LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef * TIMx)4191 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef *TIMx)
4192 {
4193   return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
4194 }
4195 
4196 /**
4197   * @brief  Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
4198   * @rmtoll SR           CC3OF         LL_TIM_ClearFlag_CC3OVR
4199   * @param  TIMx Timer instance
4200   * @retval None
4201   */
LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef * TIMx)4202 __STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
4203 {
4204   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
4205 }
4206 
4207 /**
4208   * @brief  Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set
4209   *         (Capture/Compare 3 over-capture interrupt is pending).
4210   * @rmtoll SR           CC3OF         LL_TIM_IsActiveFlag_CC3OVR
4211   * @param  TIMx Timer instance
4212   * @retval State of bit (1 or 0).
4213   */
LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef * TIMx)4214 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef *TIMx)
4215 {
4216   return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
4217 }
4218 
4219 /**
4220   * @brief  Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
4221   * @rmtoll SR           CC4OF         LL_TIM_ClearFlag_CC4OVR
4222   * @param  TIMx Timer instance
4223   * @retval None
4224   */
LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef * TIMx)4225 __STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
4226 {
4227   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
4228 }
4229 
4230 /**
4231   * @brief  Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set
4232   *         (Capture/Compare 4 over-capture interrupt is pending).
4233   * @rmtoll SR           CC4OF         LL_TIM_IsActiveFlag_CC4OVR
4234   * @param  TIMx Timer instance
4235   * @retval State of bit (1 or 0).
4236   */
LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef * TIMx)4237 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef *TIMx)
4238 {
4239   return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
4240 }
4241 
4242 /**
4243   * @brief  Clear the system break interrupt flag (SBIF).
4244   * @rmtoll SR           SBIF          LL_TIM_ClearFlag_SYSBRK
4245   * @param  TIMx Timer instance
4246   * @retval None
4247   */
LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef * TIMx)4248 __STATIC_INLINE void LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef *TIMx)
4249 {
4250   WRITE_REG(TIMx->SR, ~(TIM_SR_SBIF));
4251 }
4252 
4253 /**
4254   * @brief  Indicate whether system break interrupt flag (SBIF) is set (system break interrupt is pending).
4255   * @rmtoll SR           SBIF          LL_TIM_IsActiveFlag_SYSBRK
4256   * @param  TIMx Timer instance
4257   * @retval State of bit (1 or 0).
4258   */
LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef * TIMx)4259 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef *TIMx)
4260 {
4261   return ((READ_BIT(TIMx->SR, TIM_SR_SBIF) == (TIM_SR_SBIF)) ? 1UL : 0UL);
4262 }
4263 
4264 /**
4265   * @}
4266   */
4267 
4268 /** @defgroup TIM_LL_EF_IT_Management IT-Management
4269   * @{
4270   */
4271 /**
4272   * @brief  Enable update interrupt (UIE).
4273   * @rmtoll DIER         UIE           LL_TIM_EnableIT_UPDATE
4274   * @param  TIMx Timer instance
4275   * @retval None
4276   */
LL_TIM_EnableIT_UPDATE(TIM_TypeDef * TIMx)4277 __STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
4278 {
4279   SET_BIT(TIMx->DIER, TIM_DIER_UIE);
4280 }
4281 
4282 /**
4283   * @brief  Disable update interrupt (UIE).
4284   * @rmtoll DIER         UIE           LL_TIM_DisableIT_UPDATE
4285   * @param  TIMx Timer instance
4286   * @retval None
4287   */
LL_TIM_DisableIT_UPDATE(TIM_TypeDef * TIMx)4288 __STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
4289 {
4290   CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
4291 }
4292 
4293 /**
4294   * @brief  Indicates whether the update interrupt (UIE) is enabled.
4295   * @rmtoll DIER         UIE           LL_TIM_IsEnabledIT_UPDATE
4296   * @param  TIMx Timer instance
4297   * @retval State of bit (1 or 0).
4298   */
LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef * TIMx)4299 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef *TIMx)
4300 {
4301   return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
4302 }
4303 
4304 /**
4305   * @brief  Enable capture/compare 1 interrupt (CC1IE).
4306   * @rmtoll DIER         CC1IE         LL_TIM_EnableIT_CC1
4307   * @param  TIMx Timer instance
4308   * @retval None
4309   */
LL_TIM_EnableIT_CC1(TIM_TypeDef * TIMx)4310 __STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
4311 {
4312   SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4313 }
4314 
4315 /**
4316   * @brief  Disable capture/compare 1  interrupt (CC1IE).
4317   * @rmtoll DIER         CC1IE         LL_TIM_DisableIT_CC1
4318   * @param  TIMx Timer instance
4319   * @retval None
4320   */
LL_TIM_DisableIT_CC1(TIM_TypeDef * TIMx)4321 __STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
4322 {
4323   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4324 }
4325 
4326 /**
4327   * @brief  Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
4328   * @rmtoll DIER         CC1IE         LL_TIM_IsEnabledIT_CC1
4329   * @param  TIMx Timer instance
4330   * @retval State of bit (1 or 0).
4331   */
LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef * TIMx)4332 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef *TIMx)
4333 {
4334   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
4335 }
4336 
4337 /**
4338   * @brief  Enable capture/compare 2 interrupt (CC2IE).
4339   * @rmtoll DIER         CC2IE         LL_TIM_EnableIT_CC2
4340   * @param  TIMx Timer instance
4341   * @retval None
4342   */
LL_TIM_EnableIT_CC2(TIM_TypeDef * TIMx)4343 __STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
4344 {
4345   SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4346 }
4347 
4348 /**
4349   * @brief  Disable capture/compare 2  interrupt (CC2IE).
4350   * @rmtoll DIER         CC2IE         LL_TIM_DisableIT_CC2
4351   * @param  TIMx Timer instance
4352   * @retval None
4353   */
LL_TIM_DisableIT_CC2(TIM_TypeDef * TIMx)4354 __STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
4355 {
4356   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4357 }
4358 
4359 /**
4360   * @brief  Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
4361   * @rmtoll DIER         CC2IE         LL_TIM_IsEnabledIT_CC2
4362   * @param  TIMx Timer instance
4363   * @retval State of bit (1 or 0).
4364   */
LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef * TIMx)4365 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef *TIMx)
4366 {
4367   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
4368 }
4369 
4370 /**
4371   * @brief  Enable capture/compare 3 interrupt (CC3IE).
4372   * @rmtoll DIER         CC3IE         LL_TIM_EnableIT_CC3
4373   * @param  TIMx Timer instance
4374   * @retval None
4375   */
LL_TIM_EnableIT_CC3(TIM_TypeDef * TIMx)4376 __STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
4377 {
4378   SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4379 }
4380 
4381 /**
4382   * @brief  Disable capture/compare 3  interrupt (CC3IE).
4383   * @rmtoll DIER         CC3IE         LL_TIM_DisableIT_CC3
4384   * @param  TIMx Timer instance
4385   * @retval None
4386   */
LL_TIM_DisableIT_CC3(TIM_TypeDef * TIMx)4387 __STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
4388 {
4389   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4390 }
4391 
4392 /**
4393   * @brief  Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
4394   * @rmtoll DIER         CC3IE         LL_TIM_IsEnabledIT_CC3
4395   * @param  TIMx Timer instance
4396   * @retval State of bit (1 or 0).
4397   */
LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef * TIMx)4398 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef *TIMx)
4399 {
4400   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
4401 }
4402 
4403 /**
4404   * @brief  Enable capture/compare 4 interrupt (CC4IE).
4405   * @rmtoll DIER         CC4IE         LL_TIM_EnableIT_CC4
4406   * @param  TIMx Timer instance
4407   * @retval None
4408   */
LL_TIM_EnableIT_CC4(TIM_TypeDef * TIMx)4409 __STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
4410 {
4411   SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4412 }
4413 
4414 /**
4415   * @brief  Disable capture/compare 4  interrupt (CC4IE).
4416   * @rmtoll DIER         CC4IE         LL_TIM_DisableIT_CC4
4417   * @param  TIMx Timer instance
4418   * @retval None
4419   */
LL_TIM_DisableIT_CC4(TIM_TypeDef * TIMx)4420 __STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
4421 {
4422   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4423 }
4424 
4425 /**
4426   * @brief  Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
4427   * @rmtoll DIER         CC4IE         LL_TIM_IsEnabledIT_CC4
4428   * @param  TIMx Timer instance
4429   * @retval State of bit (1 or 0).
4430   */
LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef * TIMx)4431 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef *TIMx)
4432 {
4433   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
4434 }
4435 
4436 /**
4437   * @brief  Enable commutation interrupt (COMIE).
4438   * @rmtoll DIER         COMIE         LL_TIM_EnableIT_COM
4439   * @param  TIMx Timer instance
4440   * @retval None
4441   */
LL_TIM_EnableIT_COM(TIM_TypeDef * TIMx)4442 __STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
4443 {
4444   SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
4445 }
4446 
4447 /**
4448   * @brief  Disable commutation interrupt (COMIE).
4449   * @rmtoll DIER         COMIE         LL_TIM_DisableIT_COM
4450   * @param  TIMx Timer instance
4451   * @retval None
4452   */
LL_TIM_DisableIT_COM(TIM_TypeDef * TIMx)4453 __STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
4454 {
4455   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
4456 }
4457 
4458 /**
4459   * @brief  Indicates whether the commutation interrupt (COMIE) is enabled.
4460   * @rmtoll DIER         COMIE         LL_TIM_IsEnabledIT_COM
4461   * @param  TIMx Timer instance
4462   * @retval State of bit (1 or 0).
4463   */
LL_TIM_IsEnabledIT_COM(const TIM_TypeDef * TIMx)4464 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(const TIM_TypeDef *TIMx)
4465 {
4466   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
4467 }
4468 
4469 /**
4470   * @brief  Enable trigger interrupt (TIE).
4471   * @rmtoll DIER         TIE           LL_TIM_EnableIT_TRIG
4472   * @param  TIMx Timer instance
4473   * @retval None
4474   */
LL_TIM_EnableIT_TRIG(TIM_TypeDef * TIMx)4475 __STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
4476 {
4477   SET_BIT(TIMx->DIER, TIM_DIER_TIE);
4478 }
4479 
4480 /**
4481   * @brief  Disable trigger interrupt (TIE).
4482   * @rmtoll DIER         TIE           LL_TIM_DisableIT_TRIG
4483   * @param  TIMx Timer instance
4484   * @retval None
4485   */
LL_TIM_DisableIT_TRIG(TIM_TypeDef * TIMx)4486 __STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
4487 {
4488   CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
4489 }
4490 
4491 /**
4492   * @brief  Indicates whether the trigger interrupt (TIE) is enabled.
4493   * @rmtoll DIER         TIE           LL_TIM_IsEnabledIT_TRIG
4494   * @param  TIMx Timer instance
4495   * @retval State of bit (1 or 0).
4496   */
LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef * TIMx)4497 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef *TIMx)
4498 {
4499   return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
4500 }
4501 
4502 /**
4503   * @brief  Enable break interrupt (BIE).
4504   * @rmtoll DIER         BIE           LL_TIM_EnableIT_BRK
4505   * @param  TIMx Timer instance
4506   * @retval None
4507   */
LL_TIM_EnableIT_BRK(TIM_TypeDef * TIMx)4508 __STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
4509 {
4510   SET_BIT(TIMx->DIER, TIM_DIER_BIE);
4511 }
4512 
4513 /**
4514   * @brief  Disable break interrupt (BIE).
4515   * @rmtoll DIER         BIE           LL_TIM_DisableIT_BRK
4516   * @param  TIMx Timer instance
4517   * @retval None
4518   */
LL_TIM_DisableIT_BRK(TIM_TypeDef * TIMx)4519 __STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
4520 {
4521   CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
4522 }
4523 
4524 /**
4525   * @brief  Indicates whether the break interrupt (BIE) is enabled.
4526   * @rmtoll DIER         BIE           LL_TIM_IsEnabledIT_BRK
4527   * @param  TIMx Timer instance
4528   * @retval State of bit (1 or 0).
4529   */
LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef * TIMx)4530 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef *TIMx)
4531 {
4532   return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
4533 }
4534 
4535 /**
4536   * @}
4537   */
4538 
4539 /** @defgroup TIM_LL_EF_DMA_Management DMA Management
4540   * @{
4541   */
4542 /**
4543   * @brief  Enable update DMA request (UDE).
4544   * @rmtoll DIER         UDE           LL_TIM_EnableDMAReq_UPDATE
4545   * @param  TIMx Timer instance
4546   * @retval None
4547   */
LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef * TIMx)4548 __STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4549 {
4550   SET_BIT(TIMx->DIER, TIM_DIER_UDE);
4551 }
4552 
4553 /**
4554   * @brief  Disable update DMA request (UDE).
4555   * @rmtoll DIER         UDE           LL_TIM_DisableDMAReq_UPDATE
4556   * @param  TIMx Timer instance
4557   * @retval None
4558   */
LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef * TIMx)4559 __STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4560 {
4561   CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
4562 }
4563 
4564 /**
4565   * @brief  Indicates whether the update DMA request  (UDE) is enabled.
4566   * @rmtoll DIER         UDE           LL_TIM_IsEnabledDMAReq_UPDATE
4567   * @param  TIMx Timer instance
4568   * @retval State of bit (1 or 0).
4569   */
LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef * TIMx)4570 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef *TIMx)
4571 {
4572   return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
4573 }
4574 
4575 /**
4576   * @brief  Enable capture/compare 1 DMA request (CC1DE).
4577   * @rmtoll DIER         CC1DE         LL_TIM_EnableDMAReq_CC1
4578   * @param  TIMx Timer instance
4579   * @retval None
4580   */
LL_TIM_EnableDMAReq_CC1(TIM_TypeDef * TIMx)4581 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
4582 {
4583   SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4584 }
4585 
4586 /**
4587   * @brief  Disable capture/compare 1  DMA request (CC1DE).
4588   * @rmtoll DIER         CC1DE         LL_TIM_DisableDMAReq_CC1
4589   * @param  TIMx Timer instance
4590   * @retval None
4591   */
LL_TIM_DisableDMAReq_CC1(TIM_TypeDef * TIMx)4592 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
4593 {
4594   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4595 }
4596 
4597 /**
4598   * @brief  Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
4599   * @rmtoll DIER         CC1DE         LL_TIM_IsEnabledDMAReq_CC1
4600   * @param  TIMx Timer instance
4601   * @retval State of bit (1 or 0).
4602   */
LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef * TIMx)4603 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef *TIMx)
4604 {
4605   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
4606 }
4607 
4608 /**
4609   * @brief  Enable capture/compare 2 DMA request (CC2DE).
4610   * @rmtoll DIER         CC2DE         LL_TIM_EnableDMAReq_CC2
4611   * @param  TIMx Timer instance
4612   * @retval None
4613   */
LL_TIM_EnableDMAReq_CC2(TIM_TypeDef * TIMx)4614 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
4615 {
4616   SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4617 }
4618 
4619 /**
4620   * @brief  Disable capture/compare 2  DMA request (CC2DE).
4621   * @rmtoll DIER         CC2DE         LL_TIM_DisableDMAReq_CC2
4622   * @param  TIMx Timer instance
4623   * @retval None
4624   */
LL_TIM_DisableDMAReq_CC2(TIM_TypeDef * TIMx)4625 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
4626 {
4627   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4628 }
4629 
4630 /**
4631   * @brief  Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
4632   * @rmtoll DIER         CC2DE         LL_TIM_IsEnabledDMAReq_CC2
4633   * @param  TIMx Timer instance
4634   * @retval State of bit (1 or 0).
4635   */
LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef * TIMx)4636 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef *TIMx)
4637 {
4638   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
4639 }
4640 
4641 /**
4642   * @brief  Enable capture/compare 3 DMA request (CC3DE).
4643   * @rmtoll DIER         CC3DE         LL_TIM_EnableDMAReq_CC3
4644   * @param  TIMx Timer instance
4645   * @retval None
4646   */
LL_TIM_EnableDMAReq_CC3(TIM_TypeDef * TIMx)4647 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
4648 {
4649   SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
4650 }
4651 
4652 /**
4653   * @brief  Disable capture/compare 3  DMA request (CC3DE).
4654   * @rmtoll DIER         CC3DE         LL_TIM_DisableDMAReq_CC3
4655   * @param  TIMx Timer instance
4656   * @retval None
4657   */
LL_TIM_DisableDMAReq_CC3(TIM_TypeDef * TIMx)4658 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
4659 {
4660   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
4661 }
4662 
4663 /**
4664   * @brief  Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
4665   * @rmtoll DIER         CC3DE         LL_TIM_IsEnabledDMAReq_CC3
4666   * @param  TIMx Timer instance
4667   * @retval State of bit (1 or 0).
4668   */
LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef * TIMx)4669 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef *TIMx)
4670 {
4671   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
4672 }
4673 
4674 /**
4675   * @brief  Enable capture/compare 4 DMA request (CC4DE).
4676   * @rmtoll DIER         CC4DE         LL_TIM_EnableDMAReq_CC4
4677   * @param  TIMx Timer instance
4678   * @retval None
4679   */
LL_TIM_EnableDMAReq_CC4(TIM_TypeDef * TIMx)4680 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
4681 {
4682   SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
4683 }
4684 
4685 /**
4686   * @brief  Disable capture/compare 4  DMA request (CC4DE).
4687   * @rmtoll DIER         CC4DE         LL_TIM_DisableDMAReq_CC4
4688   * @param  TIMx Timer instance
4689   * @retval None
4690   */
LL_TIM_DisableDMAReq_CC4(TIM_TypeDef * TIMx)4691 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
4692 {
4693   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
4694 }
4695 
4696 /**
4697   * @brief  Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
4698   * @rmtoll DIER         CC4DE         LL_TIM_IsEnabledDMAReq_CC4
4699   * @param  TIMx Timer instance
4700   * @retval State of bit (1 or 0).
4701   */
LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef * TIMx)4702 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef *TIMx)
4703 {
4704   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
4705 }
4706 
4707 /**
4708   * @brief  Enable commutation DMA request (COMDE).
4709   * @rmtoll DIER         COMDE         LL_TIM_EnableDMAReq_COM
4710   * @param  TIMx Timer instance
4711   * @retval None
4712   */
LL_TIM_EnableDMAReq_COM(TIM_TypeDef * TIMx)4713 __STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
4714 {
4715   SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
4716 }
4717 
4718 /**
4719   * @brief  Disable commutation DMA request (COMDE).
4720   * @rmtoll DIER         COMDE         LL_TIM_DisableDMAReq_COM
4721   * @param  TIMx Timer instance
4722   * @retval None
4723   */
LL_TIM_DisableDMAReq_COM(TIM_TypeDef * TIMx)4724 __STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
4725 {
4726   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
4727 }
4728 
4729 /**
4730   * @brief  Indicates whether the commutation DMA request (COMDE) is enabled.
4731   * @rmtoll DIER         COMDE         LL_TIM_IsEnabledDMAReq_COM
4732   * @param  TIMx Timer instance
4733   * @retval State of bit (1 or 0).
4734   */
LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef * TIMx)4735 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef *TIMx)
4736 {
4737   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
4738 }
4739 
4740 /**
4741   * @brief  Enable trigger interrupt (TDE).
4742   * @rmtoll DIER         TDE           LL_TIM_EnableDMAReq_TRIG
4743   * @param  TIMx Timer instance
4744   * @retval None
4745   */
LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef * TIMx)4746 __STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
4747 {
4748   SET_BIT(TIMx->DIER, TIM_DIER_TDE);
4749 }
4750 
4751 /**
4752   * @brief  Disable trigger interrupt (TDE).
4753   * @rmtoll DIER         TDE           LL_TIM_DisableDMAReq_TRIG
4754   * @param  TIMx Timer instance
4755   * @retval None
4756   */
LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef * TIMx)4757 __STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
4758 {
4759   CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
4760 }
4761 
4762 /**
4763   * @brief  Indicates whether the trigger interrupt (TDE) is enabled.
4764   * @rmtoll DIER         TDE           LL_TIM_IsEnabledDMAReq_TRIG
4765   * @param  TIMx Timer instance
4766   * @retval State of bit (1 or 0).
4767   */
LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef * TIMx)4768 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef *TIMx)
4769 {
4770   return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
4771 }
4772 
4773 /**
4774   * @}
4775   */
4776 
4777 /** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
4778   * @{
4779   */
4780 /**
4781   * @brief  Generate an update event.
4782   * @rmtoll EGR          UG            LL_TIM_GenerateEvent_UPDATE
4783   * @param  TIMx Timer instance
4784   * @retval None
4785   */
LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef * TIMx)4786 __STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
4787 {
4788   SET_BIT(TIMx->EGR, TIM_EGR_UG);
4789 }
4790 
4791 /**
4792   * @brief  Generate Capture/Compare 1 event.
4793   * @rmtoll EGR          CC1G          LL_TIM_GenerateEvent_CC1
4794   * @param  TIMx Timer instance
4795   * @retval None
4796   */
LL_TIM_GenerateEvent_CC1(TIM_TypeDef * TIMx)4797 __STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
4798 {
4799   SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
4800 }
4801 
4802 /**
4803   * @brief  Generate Capture/Compare 2 event.
4804   * @rmtoll EGR          CC2G          LL_TIM_GenerateEvent_CC2
4805   * @param  TIMx Timer instance
4806   * @retval None
4807   */
LL_TIM_GenerateEvent_CC2(TIM_TypeDef * TIMx)4808 __STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
4809 {
4810   SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
4811 }
4812 
4813 /**
4814   * @brief  Generate Capture/Compare 3 event.
4815   * @rmtoll EGR          CC3G          LL_TIM_GenerateEvent_CC3
4816   * @param  TIMx Timer instance
4817   * @retval None
4818   */
LL_TIM_GenerateEvent_CC3(TIM_TypeDef * TIMx)4819 __STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
4820 {
4821   SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
4822 }
4823 
4824 /**
4825   * @brief  Generate Capture/Compare 4 event.
4826   * @rmtoll EGR          CC4G          LL_TIM_GenerateEvent_CC4
4827   * @param  TIMx Timer instance
4828   * @retval None
4829   */
LL_TIM_GenerateEvent_CC4(TIM_TypeDef * TIMx)4830 __STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
4831 {
4832   SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
4833 }
4834 
4835 /**
4836   * @brief  Generate commutation event.
4837   * @rmtoll EGR          COMG          LL_TIM_GenerateEvent_COM
4838   * @param  TIMx Timer instance
4839   * @retval None
4840   */
LL_TIM_GenerateEvent_COM(TIM_TypeDef * TIMx)4841 __STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
4842 {
4843   SET_BIT(TIMx->EGR, TIM_EGR_COMG);
4844 }
4845 
4846 /**
4847   * @brief  Generate trigger event.
4848   * @rmtoll EGR          TG            LL_TIM_GenerateEvent_TRIG
4849   * @param  TIMx Timer instance
4850   * @retval None
4851   */
LL_TIM_GenerateEvent_TRIG(TIM_TypeDef * TIMx)4852 __STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
4853 {
4854   SET_BIT(TIMx->EGR, TIM_EGR_TG);
4855 }
4856 
4857 /**
4858   * @brief  Generate break event.
4859   * @rmtoll EGR          BG            LL_TIM_GenerateEvent_BRK
4860   * @param  TIMx Timer instance
4861   * @retval None
4862   */
LL_TIM_GenerateEvent_BRK(TIM_TypeDef * TIMx)4863 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
4864 {
4865   SET_BIT(TIMx->EGR, TIM_EGR_BG);
4866 }
4867 
4868 /**
4869   * @brief  Generate break 2 event.
4870   * @rmtoll EGR          B2G           LL_TIM_GenerateEvent_BRK2
4871   * @param  TIMx Timer instance
4872   * @retval None
4873   */
LL_TIM_GenerateEvent_BRK2(TIM_TypeDef * TIMx)4874 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK2(TIM_TypeDef *TIMx)
4875 {
4876   SET_BIT(TIMx->EGR, TIM_EGR_B2G);
4877 }
4878 
4879 /**
4880   * @}
4881   */
4882 
4883 #if defined(USE_FULL_LL_DRIVER)
4884 /** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
4885   * @{
4886   */
4887 
4888 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx);
4889 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
4890 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct);
4891 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
4892 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
4893 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
4894 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
4895 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
4896 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
4897 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
4898 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
4899 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
4900 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
4901 /**
4902   * @}
4903   */
4904 #endif /* USE_FULL_LL_DRIVER */
4905 
4906 /**
4907   * @}
4908   */
4909 
4910 /**
4911   * @}
4912   */
4913 
4914 #endif /* TIM1 || TIM2 || TIM3 || TIM14 || TIM16 || TIM17 */
4915 
4916 /**
4917   * @}
4918   */
4919 
4920 #ifdef __cplusplus
4921 }
4922 #endif
4923 
4924 #endif /* __STM32C0xx_LL_TIM_H */
4925