1 /*
2 * MD4 hash implementation
3 * Copyright (c) 2006, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10
11 #include "common.h"
12 #include "crypto.h"
13
14 #define MD4_BLOCK_LENGTH 64
15 #define MD4_DIGEST_LENGTH 16
16
17 typedef struct MD4Context {
18 u32 state[4]; /* state */
19 u64 count; /* number of bits, mod 2^64 */
20 u8 buffer[MD4_BLOCK_LENGTH]; /* input buffer */
21 } MD4_CTX;
22
23
24 static void MD4Init(MD4_CTX *ctx);
25 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len);
26 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx);
27
28
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)29 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
30 {
31 MD4_CTX ctx;
32 size_t i;
33
34 if (TEST_FAIL())
35 return -1;
36
37 MD4Init(&ctx);
38 for (i = 0; i < num_elem; i++)
39 MD4Update(&ctx, addr[i], len[i]);
40 MD4Final(mac, &ctx);
41 return 0;
42 }
43
44
45 /* ===== start - public domain MD4 implementation ===== */
46 /* $OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $ */
47
48 /*
49 * This code implements the MD4 message-digest algorithm.
50 * The algorithm is due to Ron Rivest. This code was
51 * written by Colin Plumb in 1993, no copyright is claimed.
52 * This code is in the public domain; do with it what you wish.
53 * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186.
54 *
55 * Equivalent code is available from RSA Data Security, Inc.
56 * This code has been tested against that, and is equivalent,
57 * except that you don't need to include two pages of legalese
58 * with every copy.
59 *
60 * To compute the message digest of a chunk of bytes, declare an
61 * MD4Context structure, pass it to MD4Init, call MD4Update as
62 * needed on buffers full of bytes, and then call MD4Final, which
63 * will fill a supplied 16-byte array with the digest.
64 */
65
66 #define MD4_DIGEST_STRING_LENGTH (MD4_DIGEST_LENGTH * 2 + 1)
67
68
69 static void
70 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]);
71
72 #define PUT_64BIT_LE(cp, value) do { \
73 (cp)[7] = (value) >> 56; \
74 (cp)[6] = (value) >> 48; \
75 (cp)[5] = (value) >> 40; \
76 (cp)[4] = (value) >> 32; \
77 (cp)[3] = (value) >> 24; \
78 (cp)[2] = (value) >> 16; \
79 (cp)[1] = (value) >> 8; \
80 (cp)[0] = (value); } while (0)
81
82 #define PUT_32BIT_LE(cp, value) do { \
83 (cp)[3] = (value) >> 24; \
84 (cp)[2] = (value) >> 16; \
85 (cp)[1] = (value) >> 8; \
86 (cp)[0] = (value); } while (0)
87
88 static const u8 PADDING[MD4_BLOCK_LENGTH] = {
89 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
90 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
91 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
92 };
93
94 /*
95 * Start MD4 accumulation.
96 * Set bit count to 0 and buffer to mysterious initialization constants.
97 */
MD4Init(MD4_CTX * ctx)98 static void MD4Init(MD4_CTX *ctx)
99 {
100 ctx->count = 0;
101 ctx->state[0] = 0x67452301;
102 ctx->state[1] = 0xefcdab89;
103 ctx->state[2] = 0x98badcfe;
104 ctx->state[3] = 0x10325476;
105 }
106
107 /*
108 * Update context to reflect the concatenation of another buffer full
109 * of bytes.
110 */
MD4Update(MD4_CTX * ctx,const unsigned char * input,size_t len)111 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len)
112 {
113 size_t have, need;
114
115 /* Check how many bytes we already have and how many more we need. */
116 have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
117 need = MD4_BLOCK_LENGTH - have;
118
119 /* Update bitcount */
120 ctx->count += (u64)len << 3;
121
122 if (len >= need) {
123 if (have != 0) {
124 os_memcpy(ctx->buffer + have, input, need);
125 MD4Transform(ctx->state, ctx->buffer);
126 input += need;
127 len -= need;
128 have = 0;
129 }
130
131 /* Process data in MD4_BLOCK_LENGTH-byte chunks. */
132 while (len >= MD4_BLOCK_LENGTH) {
133 MD4Transform(ctx->state, input);
134 input += MD4_BLOCK_LENGTH;
135 len -= MD4_BLOCK_LENGTH;
136 }
137 }
138
139 /* Handle any remaining bytes of data. */
140 if (len != 0)
141 os_memcpy(ctx->buffer + have, input, len);
142 }
143
144 /*
145 * Pad pad to 64-byte boundary with the bit pattern
146 * 1 0* (64-bit count of bits processed, MSB-first)
147 */
MD4Pad(MD4_CTX * ctx)148 static void MD4Pad(MD4_CTX *ctx)
149 {
150 u8 count[8];
151 size_t padlen;
152
153 /* Convert count to 8 bytes in little endian order. */
154 PUT_64BIT_LE(count, ctx->count);
155
156 /* Pad out to 56 mod 64. */
157 padlen = MD4_BLOCK_LENGTH -
158 ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
159 if (padlen < 1 + 8)
160 padlen += MD4_BLOCK_LENGTH;
161 MD4Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
162 MD4Update(ctx, count, 8);
163 }
164
165 /*
166 * Final wrapup--call MD4Pad, fill in digest and zero out ctx.
167 */
MD4Final(unsigned char digest[MD4_DIGEST_LENGTH],MD4_CTX * ctx)168 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx)
169 {
170 int i;
171
172 MD4Pad(ctx);
173 if (digest != NULL) {
174 for (i = 0; i < 4; i++)
175 PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
176 os_memset(ctx, 0, sizeof(*ctx));
177 }
178 }
179
180
181 /* The three core functions - F1 is optimized somewhat */
182
183 /* #define F1(x, y, z) (x & y | ~x & z) */
184 #define F1(x, y, z) (z ^ (x & (y ^ z)))
185 #define F2(x, y, z) ((x & y) | (x & z) | (y & z))
186 #define F3(x, y, z) (x ^ y ^ z)
187
188 /* This is the central step in the MD4 algorithm. */
189 #define MD4STEP(f, w, x, y, z, data, s) \
190 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s) )
191
192 /*
193 * The core of the MD4 algorithm, this alters an existing MD4 hash to
194 * reflect the addition of 16 longwords of new data. MD4Update blocks
195 * the data and converts bytes into longwords for this routine.
196 */
197 static void
MD4Transform(u32 state[4],const u8 block[MD4_BLOCK_LENGTH])198 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH])
199 {
200 u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4];
201
202 #if BYTE_ORDER == LITTLE_ENDIAN
203 os_memcpy(in, block, sizeof(in));
204 #else
205 for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) {
206 in[a] = (u32)(
207 (u32)(block[a * 4 + 0]) |
208 (u32)(block[a * 4 + 1]) << 8 |
209 (u32)(block[a * 4 + 2]) << 16 |
210 (u32)(block[a * 4 + 3]) << 24);
211 }
212 #endif
213
214 a = state[0];
215 b = state[1];
216 c = state[2];
217 d = state[3];
218
219 MD4STEP(F1, a, b, c, d, in[ 0], 3);
220 MD4STEP(F1, d, a, b, c, in[ 1], 7);
221 MD4STEP(F1, c, d, a, b, in[ 2], 11);
222 MD4STEP(F1, b, c, d, a, in[ 3], 19);
223 MD4STEP(F1, a, b, c, d, in[ 4], 3);
224 MD4STEP(F1, d, a, b, c, in[ 5], 7);
225 MD4STEP(F1, c, d, a, b, in[ 6], 11);
226 MD4STEP(F1, b, c, d, a, in[ 7], 19);
227 MD4STEP(F1, a, b, c, d, in[ 8], 3);
228 MD4STEP(F1, d, a, b, c, in[ 9], 7);
229 MD4STEP(F1, c, d, a, b, in[10], 11);
230 MD4STEP(F1, b, c, d, a, in[11], 19);
231 MD4STEP(F1, a, b, c, d, in[12], 3);
232 MD4STEP(F1, d, a, b, c, in[13], 7);
233 MD4STEP(F1, c, d, a, b, in[14], 11);
234 MD4STEP(F1, b, c, d, a, in[15], 19);
235
236 MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3);
237 MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5);
238 MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9);
239 MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13);
240 MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3);
241 MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5);
242 MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9);
243 MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13);
244 MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3);
245 MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5);
246 MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9);
247 MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13);
248 MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3);
249 MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5);
250 MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9);
251 MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13);
252
253 MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3);
254 MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9);
255 MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11);
256 MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15);
257 MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3);
258 MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9);
259 MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11);
260 MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15);
261 MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3);
262 MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9);
263 MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11);
264 MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15);
265 MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3);
266 MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9);
267 MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11);
268 MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15);
269
270 state[0] += a;
271 state[1] += b;
272 state[2] += c;
273 state[3] += d;
274 }
275 /* ===== end - public domain MD4 implementation ===== */
276