1 /*
2 * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7
8 /*******************************************************************************
9 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
10 * plug-in component to the Secure Monitor, registered as a runtime service. The
11 * SPD is expected to be a functional extension of the Secure Payload (SP) that
12 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
13 * the Trusted OS/Applications range to the dispatcher. The SPD will either
14 * handle the request locally or delegate it to the Secure Payload. It is also
15 * responsible for initialising and maintaining communication with the SP.
16 ******************************************************************************/
17 #include <assert.h>
18 #include <errno.h>
19 #include <stddef.h>
20 #include <string.h>
21
22 #include <arch_helpers.h>
23 #include <bl31/bl31.h>
24 #include <bl31/ehf.h>
25 #include <bl32/tsp/tsp.h>
26 #include <common/bl_common.h>
27 #include <common/debug.h>
28 #include <common/runtime_svc.h>
29 #include <lib/el3_runtime/context_mgmt.h>
30 #include <plat/common/platform.h>
31 #include <tools_share/uuid.h>
32
33 #include "tspd_private.h"
34
35 /*******************************************************************************
36 * Address of the entrypoint vector table in the Secure Payload. It is
37 * initialised once on the primary core after a cold boot.
38 ******************************************************************************/
39 tsp_vectors_t *tsp_vectors;
40
41 /*******************************************************************************
42 * Array to keep track of per-cpu Secure Payload state
43 ******************************************************************************/
44 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
45
46
47 /* TSP UID */
48 DEFINE_SVC_UUID2(tsp_uuid,
49 0xa056305b, 0x9132, 0x7b42, 0x98, 0x11,
50 0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
51
52 int32_t tspd_init(void);
53
54 /*
55 * This helper function handles Secure EL1 preemption. The preemption could be
56 * due Non Secure interrupts or EL3 interrupts. In both the cases we context
57 * switch to the normal world and in case of EL3 interrupts, it will again be
58 * routed to EL3 which will get handled at the exception vectors.
59 */
tspd_handle_sp_preemption(void * handle)60 uint64_t tspd_handle_sp_preemption(void *handle)
61 {
62 cpu_context_t *ns_cpu_context;
63
64 assert(handle == cm_get_context(SECURE));
65 cm_el1_sysregs_context_save(SECURE);
66 /* Get a reference to the non-secure context */
67 ns_cpu_context = cm_get_context(NON_SECURE);
68 assert(ns_cpu_context);
69
70 /*
71 * To allow Secure EL1 interrupt handler to re-enter TSP while TSP
72 * is preempted, the secure system register context which will get
73 * overwritten must be additionally saved. This is currently done
74 * by the TSPD S-EL1 interrupt handler.
75 */
76
77 /*
78 * Restore non-secure state.
79 */
80 cm_el1_sysregs_context_restore(NON_SECURE);
81 cm_set_next_eret_context(NON_SECURE);
82
83 /*
84 * The TSP was preempted during execution of a Yielding SMC Call.
85 * Return back to the normal world with SMC_PREEMPTED as error
86 * code in x0.
87 */
88 SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
89 }
90
91 /*******************************************************************************
92 * This function is the handler registered for S-EL1 interrupts by the TSPD. It
93 * validates the interrupt and upon success arranges entry into the TSP at
94 * 'tsp_sel1_intr_entry()' for handling the interrupt.
95 * Typically, interrupts for a specific security state get handled in the same
96 * security execption level if the execution is in the same security state. For
97 * example, if a non-secure interrupt gets fired when CPU is executing in NS-EL2
98 * it gets handled in the non-secure world.
99 * However, interrupts belonging to the opposite security state typically demand
100 * a world(context) switch. This is inline with the security principle which
101 * states a secure interrupt has to be handled in the secure world.
102 * Hence, the TSPD in EL3 expects the context(handle) for a secure interrupt to
103 * be non-secure and vice versa.
104 * However, a race condition between non-secure and secure interrupts can lead to
105 * a scenario where the above assumptions do not hold true. This is demonstrated
106 * below through Note 1.
107 ******************************************************************************/
tspd_sel1_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)108 static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
109 uint32_t flags,
110 void *handle,
111 void *cookie)
112 {
113 uint32_t linear_id;
114 tsp_context_t *tsp_ctx;
115
116 /* Get a reference to this cpu's TSP context */
117 linear_id = plat_my_core_pos();
118 tsp_ctx = &tspd_sp_context[linear_id];
119
120 #if TSP_NS_INTR_ASYNC_PREEMPT
121
122 /*
123 * Note 1:
124 * Under the current interrupt routing model, interrupts from other
125 * world are routed to EL3 when TSP_NS_INTR_ASYNC_PREEMPT is enabled.
126 * Consider the following scenario:
127 * 1/ A non-secure payload(like tftf) requests a secure service from
128 * TSP by invoking a yielding SMC call.
129 * 2/ Later, execution jumps to TSP in S-EL1 with the help of TSP
130 * Dispatcher in Secure Monitor(EL3).
131 * 3/ While CPU is executing TSP, a Non-secure interrupt gets fired.
132 * this demands a context switch to the non-secure world through
133 * secure monitor.
134 * 4/ Consequently, TSP in S-EL1 get asynchronously pre-empted and
135 * execution switches to secure monitor(EL3).
136 * 5/ EL3 tries to triage the (Non-secure) interrupt based on the
137 * highest pending interrupt.
138 * 6/ However, while the NS Interrupt was pending, secure timer gets
139 * fired which makes a S-EL1 interrupt to be pending.
140 * 7/ Hence, execution jumps to this companion handler of S-EL1
141 * interrupt (i.e., tspd_sel1_interrupt_handler) even though the TSP
142 * was pre-empted due to non-secure interrupt.
143 * 8/ The above sequence of events explain how TSP was pre-empted by
144 * S-EL1 interrupt indirectly in an asynchronous way.
145 * 9/ Hence, we track the TSP pre-emption by S-EL1 interrupt using a
146 * boolean variable per each core.
147 * 10/ This helps us to indicate that SMC call for TSP service was
148 * pre-empted when execution resumes in non-secure world.
149 */
150
151 /* Check the security state when the exception was generated */
152 if (get_interrupt_src_ss(flags) == NON_SECURE) {
153 /* Sanity check the pointer to this cpu's context */
154 assert(handle == cm_get_context(NON_SECURE));
155
156 /* Save the non-secure context before entering the TSP */
157 cm_el1_sysregs_context_save(NON_SECURE);
158 tsp_ctx->preempted_by_sel1_intr = false;
159 } else {
160 /* Sanity check the pointer to this cpu's context */
161 assert(handle == cm_get_context(SECURE));
162
163 /* Save the secure context before entering the TSP for S-EL1
164 * interrupt handling
165 */
166 cm_el1_sysregs_context_save(SECURE);
167 tsp_ctx->preempted_by_sel1_intr = true;
168 }
169 #else
170 /* Check the security state when the exception was generated */
171 assert(get_interrupt_src_ss(flags) == NON_SECURE);
172
173 /* Sanity check the pointer to this cpu's context */
174 assert(handle == cm_get_context(NON_SECURE));
175
176 /* Save the non-secure context before entering the TSP */
177 cm_el1_sysregs_context_save(NON_SECURE);
178 #endif
179
180 assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
181
182 /*
183 * Determine if the TSP was previously preempted. Its last known
184 * context has to be preserved in this case.
185 * The TSP should return control to the TSPD after handling this
186 * S-EL1 interrupt. Preserve essential EL3 context to allow entry into
187 * the TSP at the S-EL1 interrupt entry point using the 'cpu_context'
188 * structure. There is no need to save the secure system register
189 * context since the TSP is supposed to preserve it during S-EL1
190 * interrupt handling.
191 */
192 if (get_yield_smc_active_flag(tsp_ctx->state)) {
193 tsp_ctx->saved_spsr_el3 = (uint32_t)SMC_GET_EL3(&tsp_ctx->cpu_ctx,
194 CTX_SPSR_EL3);
195 tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
196 CTX_ELR_EL3);
197 #if TSP_NS_INTR_ASYNC_PREEMPT
198 memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE);
199 #endif
200 }
201
202 cm_el1_sysregs_context_restore(SECURE);
203 cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->sel1_intr_entry,
204 SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
205
206 cm_set_next_eret_context(SECURE);
207
208 /*
209 * Tell the TSP that it has to handle a S-EL1 interrupt synchronously.
210 * Also the instruction in normal world where the interrupt was
211 * generated is passed for debugging purposes. It is safe to retrieve
212 * this address from ELR_EL3 as the secure context will not take effect
213 * until el3_exit().
214 */
215 SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_SEL1_INTR_AND_RETURN, read_elr_el3());
216 }
217
218 #if TSP_NS_INTR_ASYNC_PREEMPT
219 /*******************************************************************************
220 * This function is the handler registered for Non secure interrupts by the
221 * TSPD. It validates the interrupt and upon success arranges entry into the
222 * normal world for handling the interrupt.
223 ******************************************************************************/
tspd_ns_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)224 static uint64_t tspd_ns_interrupt_handler(uint32_t id,
225 uint32_t flags,
226 void *handle,
227 void *cookie)
228 {
229 /* Check the security state when the exception was generated */
230 assert(get_interrupt_src_ss(flags) == SECURE);
231
232 /*
233 * Disable the routing of NS interrupts from secure world to EL3 while
234 * interrupted on this core.
235 */
236 disable_intr_rm_local(INTR_TYPE_NS, SECURE);
237
238 return tspd_handle_sp_preemption(handle);
239 }
240 #endif
241
242 /*******************************************************************************
243 * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
244 * (aarch32/aarch64) if not already known and initialises the context for entry
245 * into the SP for its initialisation.
246 ******************************************************************************/
tspd_setup(void)247 static int32_t tspd_setup(void)
248 {
249 entry_point_info_t *tsp_ep_info;
250 uint32_t linear_id;
251
252 linear_id = plat_my_core_pos();
253
254 /*
255 * Get information about the Secure Payload (BL32) image. Its
256 * absence is a critical failure. TODO: Add support to
257 * conditionally include the SPD service
258 */
259 tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
260 if (!tsp_ep_info) {
261 WARN("No TSP provided by BL2 boot loader, Booting device"
262 " without TSP initialization. SMC`s destined for TSP"
263 " will return SMC_UNK\n");
264 return 1;
265 }
266
267 /*
268 * If there's no valid entry point for SP, we return a non-zero value
269 * signalling failure initializing the service. We bail out without
270 * registering any handlers
271 */
272 if (!tsp_ep_info->pc)
273 return 1;
274
275 /*
276 * We could inspect the SP image and determine its execution
277 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
278 * for the time being.
279 */
280 tspd_init_tsp_ep_state(tsp_ep_info,
281 TSP_AARCH64,
282 tsp_ep_info->pc,
283 &tspd_sp_context[linear_id]);
284
285 #if TSP_INIT_ASYNC
286 bl31_set_next_image_type(SECURE);
287 #else
288 /*
289 * All TSPD initialization done. Now register our init function with
290 * BL31 for deferred invocation
291 */
292 bl31_register_bl32_init(&tspd_init);
293 #endif
294 return 0;
295 }
296
297 /*******************************************************************************
298 * This function passes control to the Secure Payload image (BL32) for the first
299 * time on the primary cpu after a cold boot. It assumes that a valid secure
300 * context has already been created by tspd_setup() which can be directly used.
301 * It also assumes that a valid non-secure context has been initialised by PSCI
302 * so it does not need to save and restore any non-secure state. This function
303 * performs a synchronous entry into the Secure payload. The SP passes control
304 * back to this routine through a SMC.
305 ******************************************************************************/
tspd_init(void)306 int32_t tspd_init(void)
307 {
308 uint32_t linear_id = plat_my_core_pos();
309 tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
310 entry_point_info_t *tsp_entry_point;
311 uint64_t rc;
312
313 /*
314 * Get information about the Secure Payload (BL32) image. Its
315 * absence is a critical failure.
316 */
317 tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
318 assert(tsp_entry_point);
319
320 cm_init_my_context(tsp_entry_point);
321
322 /*
323 * Arrange for an entry into the test secure payload. It will be
324 * returned via TSP_ENTRY_DONE case
325 */
326 rc = tspd_synchronous_sp_entry(tsp_ctx);
327 assert(rc != 0);
328
329 return rc;
330 }
331
332
333 /*******************************************************************************
334 * This function is responsible for handling all SMCs in the Trusted OS/App
335 * range from the non-secure state as defined in the SMC Calling Convention
336 * Document. It is also responsible for communicating with the Secure payload
337 * to delegate work and return results back to the non-secure state. Lastly it
338 * will also return any information that the secure payload needs to do the
339 * work assigned to it.
340 ******************************************************************************/
tspd_smc_handler(uint32_t smc_fid,u_register_t x1,u_register_t x2,u_register_t x3,u_register_t x4,void * cookie,void * handle,u_register_t flags)341 static uintptr_t tspd_smc_handler(uint32_t smc_fid,
342 u_register_t x1,
343 u_register_t x2,
344 u_register_t x3,
345 u_register_t x4,
346 void *cookie,
347 void *handle,
348 u_register_t flags)
349 {
350 cpu_context_t *ns_cpu_context;
351 uint32_t linear_id = plat_my_core_pos(), ns;
352 tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
353 uint64_t rc;
354 #if TSP_INIT_ASYNC
355 entry_point_info_t *next_image_info;
356 #endif
357
358 /* Determine which security state this SMC originated from */
359 ns = is_caller_non_secure(flags);
360
361 switch (smc_fid) {
362
363 /*
364 * This function ID is used by TSP to indicate that it was
365 * preempted by a normal world IRQ.
366 *
367 */
368 case TSP_PREEMPTED:
369 if (ns)
370 SMC_RET1(handle, SMC_UNK);
371
372 return tspd_handle_sp_preemption(handle);
373
374 /*
375 * This function ID is used only by the TSP to indicate that it has
376 * finished handling a S-EL1 interrupt or was preempted by a higher
377 * priority pending EL3 interrupt. Execution should resume
378 * in the normal world.
379 */
380 case TSP_HANDLED_S_EL1_INTR:
381 if (ns)
382 SMC_RET1(handle, SMC_UNK);
383
384 assert(handle == cm_get_context(SECURE));
385
386 /*
387 * Restore the relevant EL3 state which saved to service
388 * this SMC.
389 */
390 if (get_yield_smc_active_flag(tsp_ctx->state)) {
391 SMC_SET_EL3(&tsp_ctx->cpu_ctx,
392 CTX_SPSR_EL3,
393 tsp_ctx->saved_spsr_el3);
394 SMC_SET_EL3(&tsp_ctx->cpu_ctx,
395 CTX_ELR_EL3,
396 tsp_ctx->saved_elr_el3);
397 #if TSP_NS_INTR_ASYNC_PREEMPT
398 /*
399 * Need to restore the previously interrupted
400 * secure context.
401 */
402 memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx,
403 TSPD_SP_CTX_SIZE);
404 #endif
405 }
406
407 /* Get a reference to the non-secure context */
408 ns_cpu_context = cm_get_context(NON_SECURE);
409 assert(ns_cpu_context);
410
411 /*
412 * Restore non-secure state. There is no need to save the
413 * secure system register context since the TSP was supposed
414 * to preserve it during S-EL1 interrupt handling.
415 */
416 cm_el1_sysregs_context_restore(NON_SECURE);
417 cm_set_next_eret_context(NON_SECURE);
418
419 /* Refer to Note 1 in function tspd_sel1_interrupt_handler()*/
420 #if TSP_NS_INTR_ASYNC_PREEMPT
421 if (tsp_ctx->preempted_by_sel1_intr) {
422 /* Reset the flag */
423 tsp_ctx->preempted_by_sel1_intr = false;
424
425 SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
426 } else {
427 SMC_RET0((uint64_t) ns_cpu_context);
428 }
429 #else
430 SMC_RET0((uint64_t) ns_cpu_context);
431 #endif
432
433
434 /*
435 * This function ID is used only by the SP to indicate it has
436 * finished initialising itself after a cold boot
437 */
438 case TSP_ENTRY_DONE:
439 if (ns)
440 SMC_RET1(handle, SMC_UNK);
441
442 /*
443 * Stash the SP entry points information. This is done
444 * only once on the primary cpu
445 */
446 assert(tsp_vectors == NULL);
447 tsp_vectors = (tsp_vectors_t *) x1;
448
449 if (tsp_vectors) {
450 set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
451
452 /*
453 * TSP has been successfully initialized. Register power
454 * management hooks with PSCI
455 */
456 psci_register_spd_pm_hook(&tspd_pm);
457
458 /*
459 * Register an interrupt handler for S-EL1 interrupts
460 * when generated during code executing in the
461 * non-secure state.
462 */
463 flags = 0;
464 set_interrupt_rm_flag(flags, NON_SECURE);
465 rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
466 tspd_sel1_interrupt_handler,
467 flags);
468 if (rc)
469 panic();
470
471 #if TSP_NS_INTR_ASYNC_PREEMPT
472 /*
473 * Register an interrupt handler for NS interrupts when
474 * generated during code executing in secure state are
475 * routed to EL3.
476 */
477 flags = 0;
478 set_interrupt_rm_flag(flags, SECURE);
479
480 rc = register_interrupt_type_handler(INTR_TYPE_NS,
481 tspd_ns_interrupt_handler,
482 flags);
483 if (rc)
484 panic();
485
486 /*
487 * Disable the NS interrupt locally.
488 */
489 disable_intr_rm_local(INTR_TYPE_NS, SECURE);
490 #endif
491 }
492
493
494 #if TSP_INIT_ASYNC
495 /* Save the Secure EL1 system register context */
496 assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx);
497 cm_el1_sysregs_context_save(SECURE);
498
499 /* Program EL3 registers to enable entry into the next EL */
500 next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
501 assert(next_image_info);
502 assert(NON_SECURE ==
503 GET_SECURITY_STATE(next_image_info->h.attr));
504
505 cm_init_my_context(next_image_info);
506 cm_prepare_el3_exit(NON_SECURE);
507 SMC_RET0(cm_get_context(NON_SECURE));
508 #else
509 /*
510 * SP reports completion. The SPD must have initiated
511 * the original request through a synchronous entry
512 * into the SP. Jump back to the original C runtime
513 * context.
514 */
515 tspd_synchronous_sp_exit(tsp_ctx, x1);
516 break;
517 #endif
518 /*
519 * This function ID is used only by the SP to indicate it has finished
520 * aborting a preempted Yielding SMC Call.
521 */
522 case TSP_ABORT_DONE:
523
524 /*
525 * These function IDs are used only by the SP to indicate it has
526 * finished:
527 * 1. turning itself on in response to an earlier psci
528 * cpu_on request
529 * 2. resuming itself after an earlier psci cpu_suspend
530 * request.
531 */
532 case TSP_ON_DONE:
533 case TSP_RESUME_DONE:
534
535 /*
536 * These function IDs are used only by the SP to indicate it has
537 * finished:
538 * 1. suspending itself after an earlier psci cpu_suspend
539 * request.
540 * 2. turning itself off in response to an earlier psci
541 * cpu_off request.
542 */
543 case TSP_OFF_DONE:
544 case TSP_SUSPEND_DONE:
545 case TSP_SYSTEM_OFF_DONE:
546 case TSP_SYSTEM_RESET_DONE:
547 if (ns)
548 SMC_RET1(handle, SMC_UNK);
549
550 /*
551 * SP reports completion. The SPD must have initiated the
552 * original request through a synchronous entry into the SP.
553 * Jump back to the original C runtime context, and pass x1 as
554 * return value to the caller
555 */
556 tspd_synchronous_sp_exit(tsp_ctx, x1);
557 break;
558
559 /*
560 * Request from non-secure client to perform an
561 * arithmetic operation or response from secure
562 * payload to an earlier request.
563 */
564 case TSP_FAST_FID(TSP_ADD):
565 case TSP_FAST_FID(TSP_SUB):
566 case TSP_FAST_FID(TSP_MUL):
567 case TSP_FAST_FID(TSP_DIV):
568
569 case TSP_YIELD_FID(TSP_ADD):
570 case TSP_YIELD_FID(TSP_SUB):
571 case TSP_YIELD_FID(TSP_MUL):
572 case TSP_YIELD_FID(TSP_DIV):
573 /*
574 * Request from non-secure client to perform a check
575 * of the DIT PSTATE bit.
576 */
577 case TSP_YIELD_FID(TSP_CHECK_DIT):
578 if (ns) {
579 /*
580 * This is a fresh request from the non-secure client.
581 * The parameters are in x1 and x2. Figure out which
582 * registers need to be preserved, save the non-secure
583 * state and send the request to the secure payload.
584 */
585 assert(handle == cm_get_context(NON_SECURE));
586
587 /* Check if we are already preempted */
588 if (get_yield_smc_active_flag(tsp_ctx->state))
589 SMC_RET1(handle, SMC_UNK);
590
591 cm_el1_sysregs_context_save(NON_SECURE);
592
593 /* Save x1 and x2 for use by TSP_GET_ARGS call below */
594 store_tsp_args(tsp_ctx, x1, x2);
595
596 /*
597 * We are done stashing the non-secure context. Ask the
598 * secure payload to do the work now.
599 */
600
601 /*
602 * Verify if there is a valid context to use, copy the
603 * operation type and parameters to the secure context
604 * and jump to the fast smc entry point in the secure
605 * payload. Entry into S-EL1 will take place upon exit
606 * from this function.
607 */
608 assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
609
610 /* Set appropriate entry for SMC.
611 * We expect the TSP to manage the PSTATE.I and PSTATE.F
612 * flags as appropriate.
613 */
614 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
615 cm_set_elr_el3(SECURE, (uint64_t)
616 &tsp_vectors->fast_smc_entry);
617 } else {
618 set_yield_smc_active_flag(tsp_ctx->state);
619 cm_set_elr_el3(SECURE, (uint64_t)
620 &tsp_vectors->yield_smc_entry);
621 #if TSP_NS_INTR_ASYNC_PREEMPT
622 /*
623 * Enable the routing of NS interrupts to EL3
624 * during processing of a Yielding SMC Call on
625 * this core.
626 */
627 enable_intr_rm_local(INTR_TYPE_NS, SECURE);
628 #endif
629
630 #if EL3_EXCEPTION_HANDLING
631 /*
632 * With EL3 exception handling, while an SMC is
633 * being processed, Non-secure interrupts can't
634 * preempt Secure execution. However, for
635 * yielding SMCs, we want preemption to happen;
636 * so explicitly allow NS preemption in this
637 * case, and supply the preemption return code
638 * for TSP.
639 */
640 ehf_allow_ns_preemption(TSP_PREEMPTED);
641 #endif
642 }
643
644 cm_el1_sysregs_context_restore(SECURE);
645 cm_set_next_eret_context(SECURE);
646 SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
647 } else {
648 /*
649 * This is the result from the secure client of an
650 * earlier request. The results are in x1-x3. Copy it
651 * into the non-secure context, save the secure state
652 * and return to the non-secure state.
653 */
654 assert(handle == cm_get_context(SECURE));
655 cm_el1_sysregs_context_save(SECURE);
656
657 /* Get a reference to the non-secure context */
658 ns_cpu_context = cm_get_context(NON_SECURE);
659 assert(ns_cpu_context);
660
661 /* Restore non-secure state */
662 cm_el1_sysregs_context_restore(NON_SECURE);
663 cm_set_next_eret_context(NON_SECURE);
664 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_YIELD) {
665 clr_yield_smc_active_flag(tsp_ctx->state);
666 #if TSP_NS_INTR_ASYNC_PREEMPT
667 /*
668 * Disable the routing of NS interrupts to EL3
669 * after processing of a Yielding SMC Call on
670 * this core is finished.
671 */
672 disable_intr_rm_local(INTR_TYPE_NS, SECURE);
673 #endif
674 }
675
676 SMC_RET3(ns_cpu_context, x1, x2, x3);
677 }
678 assert(0); /* Unreachable */
679
680 /*
681 * Request from the non-secure world to abort a preempted Yielding SMC
682 * Call.
683 */
684 case TSP_FID_ABORT:
685 /* ABORT should only be invoked by normal world */
686 if (!ns) {
687 assert(0);
688 break;
689 }
690
691 assert(handle == cm_get_context(NON_SECURE));
692 cm_el1_sysregs_context_save(NON_SECURE);
693
694 /* Abort the preempted SMC request */
695 if (!tspd_abort_preempted_smc(tsp_ctx)) {
696 /*
697 * If there was no preempted SMC to abort, return
698 * SMC_UNK.
699 *
700 * Restoring the NON_SECURE context is not necessary as
701 * the synchronous entry did not take place if the
702 * return code of tspd_abort_preempted_smc is zero.
703 */
704 cm_set_next_eret_context(NON_SECURE);
705 break;
706 }
707
708 cm_el1_sysregs_context_restore(NON_SECURE);
709 cm_set_next_eret_context(NON_SECURE);
710 SMC_RET1(handle, SMC_OK);
711
712 /*
713 * Request from non secure world to resume the preempted
714 * Yielding SMC Call.
715 */
716 case TSP_FID_RESUME:
717 /* RESUME should be invoked only by normal world */
718 if (!ns) {
719 assert(0);
720 break;
721 }
722
723 /*
724 * This is a resume request from the non-secure client.
725 * save the non-secure state and send the request to
726 * the secure payload.
727 */
728 assert(handle == cm_get_context(NON_SECURE));
729
730 /* Check if we are already preempted before resume */
731 if (!get_yield_smc_active_flag(tsp_ctx->state))
732 SMC_RET1(handle, SMC_UNK);
733
734 cm_el1_sysregs_context_save(NON_SECURE);
735
736 /*
737 * We are done stashing the non-secure context. Ask the
738 * secure payload to do the work now.
739 */
740 #if TSP_NS_INTR_ASYNC_PREEMPT
741 /*
742 * Enable the routing of NS interrupts to EL3 during resumption
743 * of a Yielding SMC Call on this core.
744 */
745 enable_intr_rm_local(INTR_TYPE_NS, SECURE);
746 #endif
747
748 #if EL3_EXCEPTION_HANDLING
749 /*
750 * Allow the resumed yielding SMC processing to be preempted by
751 * Non-secure interrupts. Also, supply the preemption return
752 * code for TSP.
753 */
754 ehf_allow_ns_preemption(TSP_PREEMPTED);
755 #endif
756
757 /* We just need to return to the preempted point in
758 * TSP and the execution will resume as normal.
759 */
760 cm_el1_sysregs_context_restore(SECURE);
761 cm_set_next_eret_context(SECURE);
762 SMC_RET0(&tsp_ctx->cpu_ctx);
763
764 /*
765 * This is a request from the secure payload for more arguments
766 * for an ongoing arithmetic operation requested by the
767 * non-secure world. Simply return the arguments from the non-
768 * secure client in the original call.
769 */
770 case TSP_GET_ARGS:
771 if (ns)
772 SMC_RET1(handle, SMC_UNK);
773
774 get_tsp_args(tsp_ctx, x1, x2);
775 SMC_RET2(handle, x1, x2);
776
777 case TOS_CALL_COUNT:
778 /*
779 * Return the number of service function IDs implemented to
780 * provide service to non-secure
781 */
782 SMC_RET1(handle, TSP_NUM_FID);
783
784 case TOS_UID:
785 /* Return TSP UID to the caller */
786 SMC_UUID_RET(handle, tsp_uuid);
787
788 case TOS_CALL_VERSION:
789 /* Return the version of current implementation */
790 SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
791
792 default:
793 break;
794 }
795
796 SMC_RET1(handle, SMC_UNK);
797 }
798
799 /* Define a SPD runtime service descriptor for fast SMC calls */
800 DECLARE_RT_SVC(
801 tspd_fast,
802
803 OEN_TOS_START,
804 OEN_TOS_END,
805 SMC_TYPE_FAST,
806 tspd_setup,
807 tspd_smc_handler
808 );
809
810 /* Define a SPD runtime service descriptor for Yielding SMC Calls */
811 DECLARE_RT_SVC(
812 tspd_std,
813
814 OEN_TOS_START,
815 OEN_TOS_END,
816 SMC_TYPE_YIELD,
817 NULL,
818 tspd_smc_handler
819 );
820