1 /*
2  * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 
8 /*******************************************************************************
9  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
10  * plug-in component to the Secure Monitor, registered as a runtime service. The
11  * SPD is expected to be a functional extension of the Secure Payload (SP) that
12  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
13  * the Trusted OS/Applications range to the dispatcher. The SPD will either
14  * handle the request locally or delegate it to the Secure Payload. It is also
15  * responsible for initialising and maintaining communication with the SP.
16  ******************************************************************************/
17 #include <assert.h>
18 #include <errno.h>
19 #include <stddef.h>
20 #include <string.h>
21 
22 #include <arch_helpers.h>
23 #include <bl31/bl31.h>
24 #include <bl31/ehf.h>
25 #include <bl32/tsp/tsp.h>
26 #include <common/bl_common.h>
27 #include <common/debug.h>
28 #include <common/runtime_svc.h>
29 #include <lib/el3_runtime/context_mgmt.h>
30 #include <plat/common/platform.h>
31 #include <tools_share/uuid.h>
32 
33 #include "tspd_private.h"
34 
35 /*******************************************************************************
36  * Address of the entrypoint vector table in the Secure Payload. It is
37  * initialised once on the primary core after a cold boot.
38  ******************************************************************************/
39 tsp_vectors_t *tsp_vectors;
40 
41 /*******************************************************************************
42  * Array to keep track of per-cpu Secure Payload state
43  ******************************************************************************/
44 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
45 
46 
47 /* TSP UID */
48 DEFINE_SVC_UUID2(tsp_uuid,
49 	0xa056305b, 0x9132, 0x7b42, 0x98, 0x11,
50 	0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
51 
52 int32_t tspd_init(void);
53 
54 /*
55  * This helper function handles Secure EL1 preemption. The preemption could be
56  * due Non Secure interrupts or EL3 interrupts. In both the cases we context
57  * switch to the normal world and in case of EL3 interrupts, it will again be
58  * routed to EL3 which will get handled at the exception vectors.
59  */
tspd_handle_sp_preemption(void * handle)60 uint64_t tspd_handle_sp_preemption(void *handle)
61 {
62 	cpu_context_t *ns_cpu_context;
63 
64 	assert(handle == cm_get_context(SECURE));
65 	cm_el1_sysregs_context_save(SECURE);
66 	/* Get a reference to the non-secure context */
67 	ns_cpu_context = cm_get_context(NON_SECURE);
68 	assert(ns_cpu_context);
69 
70 	/*
71 	 * To allow Secure EL1 interrupt handler to re-enter TSP while TSP
72 	 * is preempted, the secure system register context which will get
73 	 * overwritten must be additionally saved. This is currently done
74 	 * by the TSPD S-EL1 interrupt handler.
75 	 */
76 
77 	/*
78 	 * Restore non-secure state.
79 	 */
80 	cm_el1_sysregs_context_restore(NON_SECURE);
81 	cm_set_next_eret_context(NON_SECURE);
82 
83 	/*
84 	 * The TSP was preempted during execution of a Yielding SMC Call.
85 	 * Return back to the normal world with SMC_PREEMPTED as error
86 	 * code in x0.
87 	 */
88 	SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
89 }
90 
91 /*******************************************************************************
92  * This function is the handler registered for S-EL1 interrupts by the TSPD. It
93  * validates the interrupt and upon success arranges entry into the TSP at
94  * 'tsp_sel1_intr_entry()' for handling the interrupt.
95  * Typically, interrupts for a specific security state get handled in the same
96  * security execption level if the execution is in the same security state. For
97  * example, if a non-secure interrupt gets fired when CPU is executing in NS-EL2
98  * it gets handled in the non-secure world.
99  * However, interrupts belonging to the opposite security state typically demand
100  * a world(context) switch. This is inline with the security principle which
101  * states a secure interrupt has to be handled in the secure world.
102  * Hence, the TSPD in EL3 expects the context(handle) for a secure interrupt to
103  * be non-secure and vice versa.
104  * However, a race condition between non-secure and secure interrupts can lead to
105  * a scenario where the above assumptions do not hold true. This is demonstrated
106  * below through Note 1.
107  ******************************************************************************/
tspd_sel1_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)108 static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
109 					    uint32_t flags,
110 					    void *handle,
111 					    void *cookie)
112 {
113 	uint32_t linear_id;
114 	tsp_context_t *tsp_ctx;
115 
116 	/* Get a reference to this cpu's TSP context */
117 	linear_id = plat_my_core_pos();
118 	tsp_ctx = &tspd_sp_context[linear_id];
119 
120 #if TSP_NS_INTR_ASYNC_PREEMPT
121 
122 	/*
123 	 * Note 1:
124 	 * Under the current interrupt routing model, interrupts from other
125 	 * world are routed to EL3 when TSP_NS_INTR_ASYNC_PREEMPT is enabled.
126 	 * Consider the following scenario:
127 	 * 1/ A non-secure payload(like tftf) requests a secure service from
128 	 *    TSP by invoking a yielding SMC call.
129 	 * 2/ Later, execution jumps to TSP in S-EL1 with the help of TSP
130 	 *    Dispatcher in Secure Monitor(EL3).
131 	 * 3/ While CPU is executing TSP, a Non-secure interrupt gets fired.
132 	 *    this demands a context switch to the non-secure world through
133 	 *    secure monitor.
134 	 * 4/ Consequently, TSP in S-EL1 get asynchronously pre-empted and
135 	 *    execution switches to secure monitor(EL3).
136 	 * 5/ EL3 tries to triage the (Non-secure) interrupt based on the
137 	 *    highest pending interrupt.
138 	 * 6/ However, while the NS Interrupt was pending, secure timer gets
139 	 *    fired which makes a S-EL1 interrupt to be pending.
140 	 * 7/ Hence, execution jumps to this companion handler of S-EL1
141 	 *    interrupt (i.e., tspd_sel1_interrupt_handler) even though the TSP
142 	 *    was pre-empted due to non-secure interrupt.
143 	 * 8/ The above sequence of events explain how TSP was pre-empted by
144 	 *    S-EL1 interrupt indirectly in an asynchronous way.
145 	 * 9/ Hence, we track the TSP pre-emption by S-EL1 interrupt using a
146 	 *    boolean variable per each core.
147 	 * 10/ This helps us to indicate that SMC call for TSP service was
148 	 *    pre-empted when execution resumes in non-secure world.
149 	 */
150 
151 	/* Check the security state when the exception was generated */
152 	if (get_interrupt_src_ss(flags) == NON_SECURE) {
153 		/* Sanity check the pointer to this cpu's context */
154 		assert(handle == cm_get_context(NON_SECURE));
155 
156 		/* Save the non-secure context before entering the TSP */
157 		cm_el1_sysregs_context_save(NON_SECURE);
158 		tsp_ctx->preempted_by_sel1_intr = false;
159 	} else {
160 		/* Sanity check the pointer to this cpu's context */
161 		assert(handle == cm_get_context(SECURE));
162 
163 		/* Save the secure context before entering the TSP for S-EL1
164 		 * interrupt handling
165 		 */
166 		cm_el1_sysregs_context_save(SECURE);
167 		tsp_ctx->preempted_by_sel1_intr = true;
168 	}
169 #else
170 	/* Check the security state when the exception was generated */
171 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
172 
173 	/* Sanity check the pointer to this cpu's context */
174 	assert(handle == cm_get_context(NON_SECURE));
175 
176 	/* Save the non-secure context before entering the TSP */
177 	cm_el1_sysregs_context_save(NON_SECURE);
178 #endif
179 
180 	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
181 
182 	/*
183 	 * Determine if the TSP was previously preempted. Its last known
184 	 * context has to be preserved in this case.
185 	 * The TSP should return control to the TSPD after handling this
186 	 * S-EL1 interrupt. Preserve essential EL3 context to allow entry into
187 	 * the TSP at the S-EL1 interrupt entry point using the 'cpu_context'
188 	 * structure. There is no need to save the secure system register
189 	 * context since the TSP is supposed to preserve it during S-EL1
190 	 * interrupt handling.
191 	 */
192 	if (get_yield_smc_active_flag(tsp_ctx->state)) {
193 		tsp_ctx->saved_spsr_el3 = (uint32_t)SMC_GET_EL3(&tsp_ctx->cpu_ctx,
194 						      CTX_SPSR_EL3);
195 		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
196 						     CTX_ELR_EL3);
197 #if TSP_NS_INTR_ASYNC_PREEMPT
198 		memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE);
199 #endif
200 	}
201 
202 	cm_el1_sysregs_context_restore(SECURE);
203 	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->sel1_intr_entry,
204 		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
205 
206 	cm_set_next_eret_context(SECURE);
207 
208 	/*
209 	 * Tell the TSP that it has to handle a S-EL1 interrupt synchronously.
210 	 * Also the instruction in normal world where the interrupt was
211 	 * generated is passed for debugging purposes. It is safe to retrieve
212 	 * this address from ELR_EL3 as the secure context will not take effect
213 	 * until el3_exit().
214 	 */
215 	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_SEL1_INTR_AND_RETURN, read_elr_el3());
216 }
217 
218 #if TSP_NS_INTR_ASYNC_PREEMPT
219 /*******************************************************************************
220  * This function is the handler registered for Non secure interrupts by the
221  * TSPD. It validates the interrupt and upon success arranges entry into the
222  * normal world for handling the interrupt.
223  ******************************************************************************/
tspd_ns_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)224 static uint64_t tspd_ns_interrupt_handler(uint32_t id,
225 					    uint32_t flags,
226 					    void *handle,
227 					    void *cookie)
228 {
229 	/* Check the security state when the exception was generated */
230 	assert(get_interrupt_src_ss(flags) == SECURE);
231 
232 	/*
233 	 * Disable the routing of NS interrupts from secure world to EL3 while
234 	 * interrupted on this core.
235 	 */
236 	disable_intr_rm_local(INTR_TYPE_NS, SECURE);
237 
238 	return tspd_handle_sp_preemption(handle);
239 }
240 #endif
241 
242 /*******************************************************************************
243  * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
244  * (aarch32/aarch64) if not already known and initialises the context for entry
245  * into the SP for its initialisation.
246  ******************************************************************************/
tspd_setup(void)247 static int32_t tspd_setup(void)
248 {
249 	entry_point_info_t *tsp_ep_info;
250 	uint32_t linear_id;
251 
252 	linear_id = plat_my_core_pos();
253 
254 	/*
255 	 * Get information about the Secure Payload (BL32) image. Its
256 	 * absence is a critical failure.  TODO: Add support to
257 	 * conditionally include the SPD service
258 	 */
259 	tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
260 	if (!tsp_ep_info) {
261 		WARN("No TSP provided by BL2 boot loader, Booting device"
262 			" without TSP initialization. SMC`s destined for TSP"
263 			" will return SMC_UNK\n");
264 		return 1;
265 	}
266 
267 	/*
268 	 * If there's no valid entry point for SP, we return a non-zero value
269 	 * signalling failure initializing the service. We bail out without
270 	 * registering any handlers
271 	 */
272 	if (!tsp_ep_info->pc)
273 		return 1;
274 
275 	/*
276 	 * We could inspect the SP image and determine its execution
277 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
278 	 * for the time being.
279 	 */
280 	tspd_init_tsp_ep_state(tsp_ep_info,
281 				TSP_AARCH64,
282 				tsp_ep_info->pc,
283 				&tspd_sp_context[linear_id]);
284 
285 #if TSP_INIT_ASYNC
286 	bl31_set_next_image_type(SECURE);
287 #else
288 	/*
289 	 * All TSPD initialization done. Now register our init function with
290 	 * BL31 for deferred invocation
291 	 */
292 	bl31_register_bl32_init(&tspd_init);
293 #endif
294 	return 0;
295 }
296 
297 /*******************************************************************************
298  * This function passes control to the Secure Payload image (BL32) for the first
299  * time on the primary cpu after a cold boot. It assumes that a valid secure
300  * context has already been created by tspd_setup() which can be directly used.
301  * It also assumes that a valid non-secure context has been initialised by PSCI
302  * so it does not need to save and restore any non-secure state. This function
303  * performs a synchronous entry into the Secure payload. The SP passes control
304  * back to this routine through a SMC.
305  ******************************************************************************/
tspd_init(void)306 int32_t tspd_init(void)
307 {
308 	uint32_t linear_id = plat_my_core_pos();
309 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
310 	entry_point_info_t *tsp_entry_point;
311 	uint64_t rc;
312 
313 	/*
314 	 * Get information about the Secure Payload (BL32) image. Its
315 	 * absence is a critical failure.
316 	 */
317 	tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
318 	assert(tsp_entry_point);
319 
320 	cm_init_my_context(tsp_entry_point);
321 
322 	/*
323 	 * Arrange for an entry into the test secure payload. It will be
324 	 * returned via TSP_ENTRY_DONE case
325 	 */
326 	rc = tspd_synchronous_sp_entry(tsp_ctx);
327 	assert(rc != 0);
328 
329 	return rc;
330 }
331 
332 
333 /*******************************************************************************
334  * This function is responsible for handling all SMCs in the Trusted OS/App
335  * range from the non-secure state as defined in the SMC Calling Convention
336  * Document. It is also responsible for communicating with the Secure payload
337  * to delegate work and return results back to the non-secure state. Lastly it
338  * will also return any information that the secure payload needs to do the
339  * work assigned to it.
340  ******************************************************************************/
tspd_smc_handler(uint32_t smc_fid,u_register_t x1,u_register_t x2,u_register_t x3,u_register_t x4,void * cookie,void * handle,u_register_t flags)341 static uintptr_t tspd_smc_handler(uint32_t smc_fid,
342 			 u_register_t x1,
343 			 u_register_t x2,
344 			 u_register_t x3,
345 			 u_register_t x4,
346 			 void *cookie,
347 			 void *handle,
348 			 u_register_t flags)
349 {
350 	cpu_context_t *ns_cpu_context;
351 	uint32_t linear_id = plat_my_core_pos(), ns;
352 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
353 	uint64_t rc;
354 #if TSP_INIT_ASYNC
355 	entry_point_info_t *next_image_info;
356 #endif
357 
358 	/* Determine which security state this SMC originated from */
359 	ns = is_caller_non_secure(flags);
360 
361 	switch (smc_fid) {
362 
363 	/*
364 	 * This function ID is used by TSP to indicate that it was
365 	 * preempted by a normal world IRQ.
366 	 *
367 	 */
368 	case TSP_PREEMPTED:
369 		if (ns)
370 			SMC_RET1(handle, SMC_UNK);
371 
372 		return tspd_handle_sp_preemption(handle);
373 
374 	/*
375 	 * This function ID is used only by the TSP to indicate that it has
376 	 * finished handling a S-EL1 interrupt or was preempted by a higher
377 	 * priority pending EL3 interrupt. Execution should resume
378 	 * in the normal world.
379 	 */
380 	case TSP_HANDLED_S_EL1_INTR:
381 		if (ns)
382 			SMC_RET1(handle, SMC_UNK);
383 
384 		assert(handle == cm_get_context(SECURE));
385 
386 		/*
387 		 * Restore the relevant EL3 state which saved to service
388 		 * this SMC.
389 		 */
390 		if (get_yield_smc_active_flag(tsp_ctx->state)) {
391 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
392 				    CTX_SPSR_EL3,
393 				    tsp_ctx->saved_spsr_el3);
394 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
395 				    CTX_ELR_EL3,
396 				    tsp_ctx->saved_elr_el3);
397 #if TSP_NS_INTR_ASYNC_PREEMPT
398 			/*
399 			 * Need to restore the previously interrupted
400 			 * secure context.
401 			 */
402 			memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx,
403 				TSPD_SP_CTX_SIZE);
404 #endif
405 		}
406 
407 		/* Get a reference to the non-secure context */
408 		ns_cpu_context = cm_get_context(NON_SECURE);
409 		assert(ns_cpu_context);
410 
411 		/*
412 		 * Restore non-secure state. There is no need to save the
413 		 * secure system register context since the TSP was supposed
414 		 * to preserve it during S-EL1 interrupt handling.
415 		 */
416 		cm_el1_sysregs_context_restore(NON_SECURE);
417 		cm_set_next_eret_context(NON_SECURE);
418 
419 		/* Refer to Note 1 in function tspd_sel1_interrupt_handler()*/
420 #if TSP_NS_INTR_ASYNC_PREEMPT
421 		if (tsp_ctx->preempted_by_sel1_intr) {
422 			/* Reset the flag */
423 			tsp_ctx->preempted_by_sel1_intr = false;
424 
425 			SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
426 		} else {
427 			SMC_RET0((uint64_t) ns_cpu_context);
428 		}
429 #else
430 		SMC_RET0((uint64_t) ns_cpu_context);
431 #endif
432 
433 
434 	/*
435 	 * This function ID is used only by the SP to indicate it has
436 	 * finished initialising itself after a cold boot
437 	 */
438 	case TSP_ENTRY_DONE:
439 		if (ns)
440 			SMC_RET1(handle, SMC_UNK);
441 
442 		/*
443 		 * Stash the SP entry points information. This is done
444 		 * only once on the primary cpu
445 		 */
446 		assert(tsp_vectors == NULL);
447 		tsp_vectors = (tsp_vectors_t *) x1;
448 
449 		if (tsp_vectors) {
450 			set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
451 
452 			/*
453 			 * TSP has been successfully initialized. Register power
454 			 * management hooks with PSCI
455 			 */
456 			psci_register_spd_pm_hook(&tspd_pm);
457 
458 			/*
459 			 * Register an interrupt handler for S-EL1 interrupts
460 			 * when generated during code executing in the
461 			 * non-secure state.
462 			 */
463 			flags = 0;
464 			set_interrupt_rm_flag(flags, NON_SECURE);
465 			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
466 						tspd_sel1_interrupt_handler,
467 						flags);
468 			if (rc)
469 				panic();
470 
471 #if TSP_NS_INTR_ASYNC_PREEMPT
472 			/*
473 			 * Register an interrupt handler for NS interrupts when
474 			 * generated during code executing in secure state are
475 			 * routed to EL3.
476 			 */
477 			flags = 0;
478 			set_interrupt_rm_flag(flags, SECURE);
479 
480 			rc = register_interrupt_type_handler(INTR_TYPE_NS,
481 						tspd_ns_interrupt_handler,
482 						flags);
483 			if (rc)
484 				panic();
485 
486 			/*
487 			 * Disable the NS interrupt locally.
488 			 */
489 			disable_intr_rm_local(INTR_TYPE_NS, SECURE);
490 #endif
491 		}
492 
493 
494 #if TSP_INIT_ASYNC
495 		/* Save the Secure EL1 system register context */
496 		assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx);
497 		cm_el1_sysregs_context_save(SECURE);
498 
499 		/* Program EL3 registers to enable entry into the next EL */
500 		next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
501 		assert(next_image_info);
502 		assert(NON_SECURE ==
503 				GET_SECURITY_STATE(next_image_info->h.attr));
504 
505 		cm_init_my_context(next_image_info);
506 		cm_prepare_el3_exit(NON_SECURE);
507 		SMC_RET0(cm_get_context(NON_SECURE));
508 #else
509 		/*
510 		 * SP reports completion. The SPD must have initiated
511 		 * the original request through a synchronous entry
512 		 * into the SP. Jump back to the original C runtime
513 		 * context.
514 		 */
515 		tspd_synchronous_sp_exit(tsp_ctx, x1);
516 		break;
517 #endif
518 	/*
519 	 * This function ID is used only by the SP to indicate it has finished
520 	 * aborting a preempted Yielding SMC Call.
521 	 */
522 	case TSP_ABORT_DONE:
523 
524 	/*
525 	 * These function IDs are used only by the SP to indicate it has
526 	 * finished:
527 	 * 1. turning itself on in response to an earlier psci
528 	 *    cpu_on request
529 	 * 2. resuming itself after an earlier psci cpu_suspend
530 	 *    request.
531 	 */
532 	case TSP_ON_DONE:
533 	case TSP_RESUME_DONE:
534 
535 	/*
536 	 * These function IDs are used only by the SP to indicate it has
537 	 * finished:
538 	 * 1. suspending itself after an earlier psci cpu_suspend
539 	 *    request.
540 	 * 2. turning itself off in response to an earlier psci
541 	 *    cpu_off request.
542 	 */
543 	case TSP_OFF_DONE:
544 	case TSP_SUSPEND_DONE:
545 	case TSP_SYSTEM_OFF_DONE:
546 	case TSP_SYSTEM_RESET_DONE:
547 		if (ns)
548 			SMC_RET1(handle, SMC_UNK);
549 
550 		/*
551 		 * SP reports completion. The SPD must have initiated the
552 		 * original request through a synchronous entry into the SP.
553 		 * Jump back to the original C runtime context, and pass x1 as
554 		 * return value to the caller
555 		 */
556 		tspd_synchronous_sp_exit(tsp_ctx, x1);
557 		break;
558 
559 		/*
560 		 * Request from non-secure client to perform an
561 		 * arithmetic operation or response from secure
562 		 * payload to an earlier request.
563 		 */
564 	case TSP_FAST_FID(TSP_ADD):
565 	case TSP_FAST_FID(TSP_SUB):
566 	case TSP_FAST_FID(TSP_MUL):
567 	case TSP_FAST_FID(TSP_DIV):
568 
569 	case TSP_YIELD_FID(TSP_ADD):
570 	case TSP_YIELD_FID(TSP_SUB):
571 	case TSP_YIELD_FID(TSP_MUL):
572 	case TSP_YIELD_FID(TSP_DIV):
573 		/*
574 		 * Request from non-secure client to perform a check
575 		 * of the DIT PSTATE bit.
576 		 */
577 	case TSP_YIELD_FID(TSP_CHECK_DIT):
578 		if (ns) {
579 			/*
580 			 * This is a fresh request from the non-secure client.
581 			 * The parameters are in x1 and x2. Figure out which
582 			 * registers need to be preserved, save the non-secure
583 			 * state and send the request to the secure payload.
584 			 */
585 			assert(handle == cm_get_context(NON_SECURE));
586 
587 			/* Check if we are already preempted */
588 			if (get_yield_smc_active_flag(tsp_ctx->state))
589 				SMC_RET1(handle, SMC_UNK);
590 
591 			cm_el1_sysregs_context_save(NON_SECURE);
592 
593 			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
594 			store_tsp_args(tsp_ctx, x1, x2);
595 
596 			/*
597 			 * We are done stashing the non-secure context. Ask the
598 			 * secure payload to do the work now.
599 			 */
600 
601 			/*
602 			 * Verify if there is a valid context to use, copy the
603 			 * operation type and parameters to the secure context
604 			 * and jump to the fast smc entry point in the secure
605 			 * payload. Entry into S-EL1 will take place upon exit
606 			 * from this function.
607 			 */
608 			assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
609 
610 			/* Set appropriate entry for SMC.
611 			 * We expect the TSP to manage the PSTATE.I and PSTATE.F
612 			 * flags as appropriate.
613 			 */
614 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
615 				cm_set_elr_el3(SECURE, (uint64_t)
616 						&tsp_vectors->fast_smc_entry);
617 			} else {
618 				set_yield_smc_active_flag(tsp_ctx->state);
619 				cm_set_elr_el3(SECURE, (uint64_t)
620 						&tsp_vectors->yield_smc_entry);
621 #if TSP_NS_INTR_ASYNC_PREEMPT
622 				/*
623 				 * Enable the routing of NS interrupts to EL3
624 				 * during processing of a Yielding SMC Call on
625 				 * this core.
626 				 */
627 				enable_intr_rm_local(INTR_TYPE_NS, SECURE);
628 #endif
629 
630 #if EL3_EXCEPTION_HANDLING
631 				/*
632 				 * With EL3 exception handling, while an SMC is
633 				 * being processed, Non-secure interrupts can't
634 				 * preempt Secure execution. However, for
635 				 * yielding SMCs, we want preemption to happen;
636 				 * so explicitly allow NS preemption in this
637 				 * case, and supply the preemption return code
638 				 * for TSP.
639 				 */
640 				ehf_allow_ns_preemption(TSP_PREEMPTED);
641 #endif
642 			}
643 
644 			cm_el1_sysregs_context_restore(SECURE);
645 			cm_set_next_eret_context(SECURE);
646 			SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
647 		} else {
648 			/*
649 			 * This is the result from the secure client of an
650 			 * earlier request. The results are in x1-x3. Copy it
651 			 * into the non-secure context, save the secure state
652 			 * and return to the non-secure state.
653 			 */
654 			assert(handle == cm_get_context(SECURE));
655 			cm_el1_sysregs_context_save(SECURE);
656 
657 			/* Get a reference to the non-secure context */
658 			ns_cpu_context = cm_get_context(NON_SECURE);
659 			assert(ns_cpu_context);
660 
661 			/* Restore non-secure state */
662 			cm_el1_sysregs_context_restore(NON_SECURE);
663 			cm_set_next_eret_context(NON_SECURE);
664 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_YIELD) {
665 				clr_yield_smc_active_flag(tsp_ctx->state);
666 #if TSP_NS_INTR_ASYNC_PREEMPT
667 				/*
668 				 * Disable the routing of NS interrupts to EL3
669 				 * after processing of a Yielding SMC Call on
670 				 * this core is finished.
671 				 */
672 				disable_intr_rm_local(INTR_TYPE_NS, SECURE);
673 #endif
674 			}
675 
676 			SMC_RET3(ns_cpu_context, x1, x2, x3);
677 		}
678 		assert(0); /* Unreachable */
679 
680 	/*
681 	 * Request from the non-secure world to abort a preempted Yielding SMC
682 	 * Call.
683 	 */
684 	case TSP_FID_ABORT:
685 		/* ABORT should only be invoked by normal world */
686 		if (!ns) {
687 			assert(0);
688 			break;
689 		}
690 
691 		assert(handle == cm_get_context(NON_SECURE));
692 		cm_el1_sysregs_context_save(NON_SECURE);
693 
694 		/* Abort the preempted SMC request */
695 		if (!tspd_abort_preempted_smc(tsp_ctx)) {
696 			/*
697 			 * If there was no preempted SMC to abort, return
698 			 * SMC_UNK.
699 			 *
700 			 * Restoring the NON_SECURE context is not necessary as
701 			 * the synchronous entry did not take place if the
702 			 * return code of tspd_abort_preempted_smc is zero.
703 			 */
704 			cm_set_next_eret_context(NON_SECURE);
705 			break;
706 		}
707 
708 		cm_el1_sysregs_context_restore(NON_SECURE);
709 		cm_set_next_eret_context(NON_SECURE);
710 		SMC_RET1(handle, SMC_OK);
711 
712 		/*
713 		 * Request from non secure world to resume the preempted
714 		 * Yielding SMC Call.
715 		 */
716 	case TSP_FID_RESUME:
717 		/* RESUME should be invoked only by normal world */
718 		if (!ns) {
719 			assert(0);
720 			break;
721 		}
722 
723 		/*
724 		 * This is a resume request from the non-secure client.
725 		 * save the non-secure state and send the request to
726 		 * the secure payload.
727 		 */
728 		assert(handle == cm_get_context(NON_SECURE));
729 
730 		/* Check if we are already preempted before resume */
731 		if (!get_yield_smc_active_flag(tsp_ctx->state))
732 			SMC_RET1(handle, SMC_UNK);
733 
734 		cm_el1_sysregs_context_save(NON_SECURE);
735 
736 		/*
737 		 * We are done stashing the non-secure context. Ask the
738 		 * secure payload to do the work now.
739 		 */
740 #if TSP_NS_INTR_ASYNC_PREEMPT
741 		/*
742 		 * Enable the routing of NS interrupts to EL3 during resumption
743 		 * of a Yielding SMC Call on this core.
744 		 */
745 		enable_intr_rm_local(INTR_TYPE_NS, SECURE);
746 #endif
747 
748 #if EL3_EXCEPTION_HANDLING
749 		/*
750 		 * Allow the resumed yielding SMC processing to be preempted by
751 		 * Non-secure interrupts. Also, supply the preemption return
752 		 * code for TSP.
753 		 */
754 		ehf_allow_ns_preemption(TSP_PREEMPTED);
755 #endif
756 
757 		/* We just need to return to the preempted point in
758 		 * TSP and the execution will resume as normal.
759 		 */
760 		cm_el1_sysregs_context_restore(SECURE);
761 		cm_set_next_eret_context(SECURE);
762 		SMC_RET0(&tsp_ctx->cpu_ctx);
763 
764 		/*
765 		 * This is a request from the secure payload for more arguments
766 		 * for an ongoing arithmetic operation requested by the
767 		 * non-secure world. Simply return the arguments from the non-
768 		 * secure client in the original call.
769 		 */
770 	case TSP_GET_ARGS:
771 		if (ns)
772 			SMC_RET1(handle, SMC_UNK);
773 
774 		get_tsp_args(tsp_ctx, x1, x2);
775 		SMC_RET2(handle, x1, x2);
776 
777 	case TOS_CALL_COUNT:
778 		/*
779 		 * Return the number of service function IDs implemented to
780 		 * provide service to non-secure
781 		 */
782 		SMC_RET1(handle, TSP_NUM_FID);
783 
784 	case TOS_UID:
785 		/* Return TSP UID to the caller */
786 		SMC_UUID_RET(handle, tsp_uuid);
787 
788 	case TOS_CALL_VERSION:
789 		/* Return the version of current implementation */
790 		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
791 
792 	default:
793 		break;
794 	}
795 
796 	SMC_RET1(handle, SMC_UNK);
797 }
798 
799 /* Define a SPD runtime service descriptor for fast SMC calls */
800 DECLARE_RT_SVC(
801 	tspd_fast,
802 
803 	OEN_TOS_START,
804 	OEN_TOS_END,
805 	SMC_TYPE_FAST,
806 	tspd_setup,
807 	tspd_smc_handler
808 );
809 
810 /* Define a SPD runtime service descriptor for Yielding SMC Calls */
811 DECLARE_RT_SVC(
812 	tspd_std,
813 
814 	OEN_TOS_START,
815 	OEN_TOS_END,
816 	SMC_TYPE_YIELD,
817 	NULL,
818 	tspd_smc_handler
819 );
820