1 
2 /* @(#)er_lgamma.c 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  *
13  */
14 
15 /* lgamma_r(x)
16  * Reentrant version of the logarithm of the Gamma function
17  * with signgam for the sign of Gamma(x).
18  *
19  * Method:
20  *   1. Argument Reduction for 0 < x <= 8
21  * 	Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
22  * 	reduce x to a number in [1.5,2.5] by
23  * 		lgamma(1+s) = log(s) + lgamma(s)
24  *	for example,
25  *		lgamma(7.3) = log(6.3) + lgamma(6.3)
26  *			    = log(6.3*5.3) + lgamma(5.3)
27  *			    = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
28  *   2. Polynomial approximation of lgamma around its
29  *	minimun ymin=1.461632144968362245 to maintain monotonicity.
30  *	On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
31  *		Let z = x-ymin;
32  *		lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
33  *	where
34  *		poly(z) is a 14 degree polynomial.
35  *   2. Rational approximation in the primary interval [2,3]
36  *	We use the following approximation:
37  *		s = x-2.0;
38  *		lgamma(x) = 0.5*s + s*P(s)/Q(s)
39  *	with accuracy
40  *		|P/Q - (lgamma(x)-0.5s)| < 2**-61.71
41  *	Our algorithms are based on the following observation
42  *
43  *                             zeta(2)-1    2    zeta(3)-1    3
44  * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
45  *                                 2                 3
46  *
47  *	where Euler = 0.5771... is the Euler constant, which is very
48  *	close to 0.5.
49  *
50  *   3. For x>=8, we have
51  *	lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
52  *	(better formula:
53  *	   lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
54  *	Let z = 1/x, then we approximation
55  *		f(z) = lgamma(x) - (x-0.5)(log(x)-1)
56  *	by
57  *	  			    3       5             11
58  *		w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
59  *	where
60  *		|w - f(z)| < 2**-58.74
61  *
62  *   4. For negative x, since (G is gamma function)
63  *		-x*G(-x)*G(x) = pi/sin(pi*x),
64  * 	we have
65  * 		G(x) = pi/(sin(pi*x)*(-x)*G(-x))
66  *	since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
67  *	Hence, for x<0, signgam = sign(sin(pi*x)) and
68  *		lgamma(x) = log(|Gamma(x)|)
69  *			  = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
70  *	Note: one should avoid compute pi*(-x) directly in the
71  *	      computation of sin(pi*(-x)).
72  *
73  *   5. Special Cases
74  *		lgamma(2+s) ~ s*(1-Euler) for tiny s
75  *		lgamma(1)=lgamma(2)=0
76  *		lgamma(x) ~ -log(x) for tiny x
77  *		lgamma(0) = lgamma(inf) = inf
78  *	 	lgamma(-integer) = +-inf
79  *
80  */
81 
82 #define _ADD_UNDER_R_TO_FUNCS
83 
84 #include "fdlibm.h"
85 
86 #ifdef _NEED_FLOAT64
87 
88 static const __float64 two52 =
89                         4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
90     half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
91     one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
92     pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
93     a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
94     a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
95     a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
96     a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
97     a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
98     a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
99     a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
100     a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
101     a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
102     a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
103     a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
104     a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
105     tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
106     tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
107     /* tt = -(tail of tf) */
108     tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
109     t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
110     t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
111     t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
112     t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
113     t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
114     t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
115     t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
116     t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
117     t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
118     t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
119     t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
120     t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
121     t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
122     t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
123     t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
124     u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
125     u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
126     u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
127     u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
128     u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
129     u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
130     v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
131     v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
132     v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
133     v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
134     v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
135     s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
136     s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
137     s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
138     s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
139     s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
140     s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
141     s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
142     r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
143     r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
144     r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
145     r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
146     r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
147     r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
148     w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
149     w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
150     w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
151     w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
152     w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
153     w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
154     w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
155 
156 static const __float64 zero = 0.00000000000000000000e+00;
157 
158 static __float64
sin_pi(__float64 x)159 sin_pi(__float64 x)
160 {
161     __float64 y, z;
162     __int32_t n, ix;
163 
164     GET_HIGH_WORD(ix, x);
165     ix &= 0x7fffffff;
166 
167     if (ix < 0x3fd00000)
168         return __kernel_sin(pi * x, zero, 0);
169     y = -x; /* x is assume negative */
170 
171     /*
172      * argument reduction, make sure inexact flag not raised if input
173      * is an integer
174      */
175     z = floor(y);
176     if (z != y) { /* inexact anyway */
177         y *= 0.5;
178         y = 2.0 * (y - floor(y)); /* y = |x| mod 2.0 */
179         n = (__int32_t)(y * 4.0);
180     } else {
181         if (ix >= 0x43400000) {
182             y = zero;
183             n = 0; /* y must be even */
184         } else {
185             if (ix < 0x43300000)
186                 z = y + two52; /* exact */
187             GET_LOW_WORD(n, z);
188             n &= 1;
189             y = n;
190             n <<= 2;
191         }
192     }
193     switch (n) {
194     case 0:
195         y = __kernel_sin(pi * y, zero, 0);
196         break;
197     case 1:
198     case 2:
199         y = __kernel_cos(pi * (0.5 - y), zero);
200         break;
201     case 3:
202     case 4:
203         y = __kernel_sin(pi * (one - y), zero, 0);
204         break;
205     case 5:
206     case 6:
207         y = -__kernel_cos(pi * (y - 1.5), zero);
208         break;
209     default:
210         y = __kernel_sin(pi * (y - 2.0), zero, 0);
211         break;
212     }
213     return -y;
214 }
215 
216 __float64
__math_lgamma_r(__float64 x,int * signgamp,int * divzero)217 __math_lgamma_r(__float64 x, int *signgamp, int *divzero)
218 {
219     __float64 t, y, z, nadj = 0.0, p, p1, p2, p3, q, r, w;
220     __int32_t i, hx, lx, ix;
221 
222     EXTRACT_WORDS(hx, lx, x);
223 
224     /* purge off +-inf, NaN, +-0, and negative arguments */
225     *signgamp = 1;
226     ix = hx & 0x7fffffff;
227     if (ix >= 0x7ff00000)
228         return fabs64(x+x);
229     if ((ix | lx) == 0) {
230         if (hx < 0)
231             *signgamp = -1;
232         *divzero = 1;
233         return __math_divzero(0);
234     }
235     if (ix < 0x3b900000) { /* |x|<2**-70, return -log(|x|) */
236         if (hx < 0) {
237             *signgamp = -1;
238             return -log(-x);
239         } else
240             return -log(x);
241     }
242     if (hx < 0) {
243         if (ix >= 0x43300000) { /* |x|>=2**52, must be -integer */
244             *divzero = 1;
245             return __math_divzero(0);
246         }
247         t = sin_pi(x);
248         if (t == zero) {
249             *divzero = 1;
250             return __math_divzero(0);
251         }
252         nadj = log(pi / fabs64(t * x));
253         if (t < zero)
254             *signgamp = -1;
255         x = -x;
256     }
257 
258     /* purge off 1 and 2 */
259     if ((((ix - 0x3ff00000) | lx) == 0) || (((ix - 0x40000000) | lx) == 0))
260         r = 0;
261     /* for x < 2.0 */
262     else if (ix < 0x40000000) {
263         if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
264             r = -log(x);
265             if (ix >= 0x3FE76944) {
266                 y = one - x;
267                 i = 0;
268             } else if (ix >= 0x3FCDA661) {
269                 y = x - (tc - one);
270                 i = 1;
271             } else {
272                 y = x;
273                 i = 2;
274             }
275         } else {
276             r = zero;
277             if (ix >= 0x3FFBB4C3) {
278                 y = 2.0 - x;
279                 i = 0;
280             } /* [1.7316,2] */
281             else if (ix >= 0x3FF3B4C4) {
282                 y = x - tc;
283                 i = 1;
284             } /* [1.23,1.73] */
285             else {
286                 y = x - one;
287                 i = 2;
288             }
289         }
290         switch (i) {
291         case 0:
292             z = y * y;
293             p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10))));
294             p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11)))));
295             p = y * p1 + p2;
296             r += (p - 0.5 * y);
297             break;
298         case 1:
299             z = y * y;
300             w = z * y;
301             p1 = t0 +
302                  w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */
303             p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13)));
304             p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14)));
305             p = z * p1 - (tt - w * (p2 + y * p3));
306             r += (tf + p);
307             break;
308         case 2:
309             p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5)))));
310             p2 = one + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5))));
311             r += (-0.5 * y + p1 / p2);
312         }
313     } else if (ix < 0x40200000) { /* x < 8.0 */
314         i = (__int32_t)x;
315         t = zero;
316         y = x - (__float64)i;
317         p = y * (s0 +
318                  y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
319         q = one + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6)))));
320         r = half * y + p / q;
321         z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
322         switch (i) {
323         case 7:
324             z *= (y + 6.0); /* FALLTHRU */
325         case 6:
326             z *= (y + 5.0); /* FALLTHRU */
327         case 5:
328             z *= (y + 4.0); /* FALLTHRU */
329         case 4:
330             z *= (y + 3.0); /* FALLTHRU */
331         case 3:
332             z *= (y + 2.0); /* FALLTHRU */
333             r += log(z);
334             break;
335         }
336         /* 8.0 <= x < 2**58 */
337     } else if (ix < 0x43900000) {
338         t = log(x);
339         z = one / x;
340         y = z * z;
341         w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6)))));
342         r = (x - half) * (t - one) + w;
343     } else
344         /* 2**58 <= x <= inf */
345         r = x * (log(x) - one);
346     if (hx < 0)
347         r = nadj - r;
348     return check_oflow(r);
349 }
350 
351 __float64
lgamma64_r(__float64 x,int * signgamp)352 lgamma64_r(__float64 x, int *signgamp)
353 {
354     int divzero = 0;
355     return __math_lgamma_r(x, signgamp, &divzero);
356 }
357 
358 _MATH_ALIAS_d_dI(lgamma)
359 
360 #endif /* _NEED_FLOAT64 */
361