1 /* ef_jn.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include "fdlibm.h"
17 
18 static const float two = 2.0000000000e+00, /* 0x40000000 */
19     one = 1.0000000000e+00; /* 0x3F800000 */
20 
21 static const float zero = 0.0000000000e+00;
22 
23 float
jnf(int n,float x)24 jnf(int n, float x)
25 {
26     __int32_t i, hx, ix, sgn;
27     float a, b, temp, di;
28     float z, w;
29 
30     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
31      * Thus, J(-n,x) = J(n,-x)
32      */
33     GET_FLOAT_WORD(hx, x);
34     ix = 0x7fffffff & hx;
35     /* if J(n,NaN) is NaN */
36     if (FLT_UWORD_IS_NAN(ix))
37         return x + x;
38     if (n < 0) {
39         n = -n;
40         x = -x;
41         hx ^= 0x80000000;
42     }
43     if (n == 0)
44         return (j0f(x));
45     if (n == 1)
46         return (j1f(x));
47     sgn = (n & 1) & (hx >> 31); /* even n -- 0, odd n -- sign(x) */
48     x = fabsf(x);
49     if (FLT_UWORD_IS_ZERO(ix) || FLT_UWORD_IS_INFINITE(ix))
50         b = zero;
51     else if ((float)n <= x) {
52         /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
53         a = j0f(x);
54         b = j1f(x);
55         for (i = 1; i < n; i++) {
56             temp = b;
57             b = b * ((float)(i + i) / x) - a; /* avoid underflow */
58             a = temp;
59         }
60     } else {
61         if (ix < 0x30800000) { /* x < 2**-29 */
62             /* x is tiny, return the first Taylor expansion of J(n,x)
63      * J(n,x) = 1/n!*(x/2)^n  - ...
64      */
65             if (n > 33) /* underflow */
66                 b = zero;
67             else {
68                 temp = x * (float)0.5;
69                 b = temp;
70                 for (a = one, i = 2; i <= n; i++) {
71                     a *= (float)i; /* a = n! */
72                     b *= temp; /* b = (x/2)^n */
73                 }
74                 b = b / a;
75             }
76         } else {
77             /* use backward recurrence */
78             /* 			x      x^2      x^2
79 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
80 		 *			2n  - 2(n+1) - 2(n+2)
81 		 *
82 		 * 			1      1        1
83 		 *  (for large x)   =  ----  ------   ------   .....
84 		 *			2n   2(n+1)   2(n+2)
85 		 *			-- - ------ - ------ -
86 		 *			 x     x         x
87 		 *
88 		 * Let w = 2n/x and h=2/x, then the above quotient
89 		 * is equal to the continued fraction:
90 		 *		    1
91 		 *	= -----------------------
92 		 *		       1
93 		 *	   w - -----------------
94 		 *			  1
95 		 * 	        w+h - ---------
96 		 *		       w+2h - ...
97 		 *
98 		 * To determine how many terms needed, let
99 		 * Q(0) = w, Q(1) = w(w+h) - 1,
100 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
101 		 * When Q(k) > 1e4	good for single
102 		 * When Q(k) > 1e9	good for double
103 		 * When Q(k) > 1e17	good for quadruple
104 		 */
105             /* determine k */
106             float t, v;
107             float q0, q1, h, tmp;
108             __int32_t k, m;
109             w = (n + n) / (float)x;
110             h = (float)2.0 / (float)x;
111             q0 = w;
112             z = w + h;
113             q1 = w * z - (float)1.0;
114             k = 1;
115             while (q1 < (float)1.0e9) {
116                 k += 1;
117                 z += h;
118                 tmp = z * q1 - q0;
119                 q0 = q1;
120                 q1 = tmp;
121             }
122             m = n + n;
123             for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
124                 t = one / (i / x - t);
125             a = t;
126             b = one;
127             /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
128 		 *  Hence, if n*(log(2n/x)) > ...
129 		 *  single 8.8722839355e+01
130 		 *  double 7.09782712893383973096e+02
131 		 *  long double 1.1356523406294143949491931077970765006170e+04
132 		 *  then recurrent value may overflow and the result is
133 		 *  likely underflow to zero
134 		 */
135             tmp = n;
136             v = two / x;
137             tmp = tmp * logf(fabsf(v * tmp));
138             if (tmp < (float)8.8721679688e+01) {
139                 for (i = n - 1, di = (float)(i + i); i > 0; i--) {
140                     temp = b;
141                     b *= di;
142                     b = b / x - a;
143                     a = temp;
144                     di -= two;
145                 }
146             } else {
147                 for (i = n - 1, di = (float)(i + i); i > 0; i--) {
148                     temp = b;
149                     b *= di;
150                     b = b / x - a;
151                     a = temp;
152                     di -= two;
153                     /* scale b to avoid spurious overflow */
154                     if (b > (float)1e10) {
155                         a /= b;
156                         t /= b;
157                         b = one;
158                     }
159                 }
160             }
161             b = (t * j0f(x) / b);
162         }
163     }
164     if (sgn == 1)
165         return -b;
166     else
167         return b;
168 }
169 
170 float
ynf(int n,float x)171 ynf(int n, float x)
172 {
173     __int32_t i, hx, ix, ib;
174     __int32_t sign;
175     float a, b, temp;
176 
177     GET_FLOAT_WORD(hx, x);
178     ix = 0x7fffffff & hx;
179 
180     if (ix == 0)
181         return __math_divzerof(1);
182 
183     if (ix > 0x7f800000)
184         return x+x;
185 
186     if (hx < 0)
187         return __math_invalidf(x);
188 
189     if (ix == 0x7f800000)
190         return zero;
191 
192     sign = 1;
193     if (n < 0) {
194         n = -n;
195         sign = 1 - ((n & 1) << 1);
196     }
197     if (n == 0)
198         return (y0f(x));
199     if (n == 1)
200         return (sign * y1f(x));
201 
202     a = y0f(x);
203     b = y1f(x);
204     /* quit if b is -inf */
205     GET_FLOAT_WORD(ib, b);
206     for (i = 1; i < n && ib != (__int32_t)0xff800000; i++) {
207         temp = b;
208         b = ((float)(i + i) / x) * b - a;
209         GET_FLOAT_WORD(ib, b);
210         a = temp;
211     }
212     if (sign > 0)
213         return b;
214     else
215         return -b;
216 }
217 
218 _MATH_ALIAS_f_if(jn)
219 
220 _MATH_ALIAS_f_if(yn)
221