1 /* ef_j0.c -- float version of e_j0.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include "fdlibm.h"
17 
18 static float pzerof(float), qzerof(float);
19 
20 static const float huge = 1e30, one = 1.0,
21                    invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
22     tpi = 6.3661974669e-01, /* 0x3f22f983 */
23     /* R0/S0 on [0, 2.00] */
24     R02 = 1.5625000000e-02, /* 0x3c800000 */
25     R03 = -1.8997929874e-04, /* 0xb947352e */
26     R04 = 1.8295404516e-06, /* 0x35f58e88 */
27     R05 = -4.6183270541e-09, /* 0xb19eaf3c */
28     S01 = 1.5619102865e-02, /* 0x3c7fe744 */
29     S02 = 1.1692678527e-04, /* 0x38f53697 */
30     S03 = 5.1354652442e-07, /* 0x3509daa6 */
31     S04 = 1.1661400734e-09; /* 0x30a045e8 */
32 
33 static const float zero = 0.0;
34 
35 float
j0f(float x)36 j0f(float x)
37 {
38     float z, s, c, ss, cc, r, u, v;
39     __int32_t hx, ix;
40 
41     if (isnan(x))
42         return x + x;
43 
44     if (isinf(x))
45         return zero;
46 
47     GET_FLOAT_WORD(hx, x);
48     ix = hx & 0x7fffffff;
49     x = fabsf(x);
50     if (ix >= 0x40000000) { /* |x| >= 2.0 */
51         s = sinf(x);
52         c = cosf(x);
53         ss = s - c;
54         cc = s + c;
55         if (ix <= FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */
56             z = -cosf(x + x);
57             if ((s * c) < zero)
58                 cc = z / ss;
59             else
60                 ss = z / cc;
61         }
62         /*
63 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
64 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
65 	 */
66         if (ix > 0x5c000000)
67             z = (invsqrtpi * cc) / sqrtf(x);
68         else {
69             u = pzerof(x);
70             v = qzerof(x);
71             z = invsqrtpi * (u * cc - v * ss) / sqrtf(x);
72         }
73         return z;
74     }
75     if (ix < 0x39000000) { /* |x| < 2**-13 */
76         if (huge + x > one) { /* raise inexact if x != 0 */
77             if (ix < 0x32000000)
78                 return one; /* |x|<2**-27 */
79             else
80                 return one - (float)0.25 * x * x;
81         }
82     }
83     z = x * x;
84     r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
85     s = one + z * (S01 + z * (S02 + z * (S03 + z * S04)));
86     if (ix < 0x3F800000) { /* |x| < 1.00 */
87         return one + z * ((float)-0.25 + (r / s));
88     } else {
89         u = (float)0.5 * x;
90         return ((one + u) * (one - u) + z * (r / s));
91     }
92 }
93 
94 static const float u00 = -7.3804296553e-02, /* 0xbd9726b5 */
95     u01 = 1.7666645348e-01, /* 0x3e34e80d */
96     u02 = -1.3818567619e-02, /* 0xbc626746 */
97     u03 = 3.4745343146e-04, /* 0x39b62a69 */
98     u04 = -3.8140706238e-06, /* 0xb67ff53c */
99     u05 = 1.9559013964e-08, /* 0x32a802ba */
100     u06 = -3.9820518410e-11, /* 0xae2f21eb */
101     v01 = 1.2730483897e-02, /* 0x3c509385 */
102     v02 = 7.6006865129e-05, /* 0x389f65e0 */
103     v03 = 2.5915085189e-07, /* 0x348b216c */
104     v04 = 4.4111031494e-10; /* 0x2ff280c2 */
105 
106 float
y0f(float x)107 y0f(float x)
108 {
109     float z, s, c, ss, cc, u, v;
110     __int32_t hx, ix;
111 
112     GET_FLOAT_WORD(hx, x);
113     ix = 0x7fffffff & hx;
114 
115     if (ix == 0)
116         return __math_divzerof(1);
117 
118     if (ix > 0x7f800000)
119         return x + x;
120 
121     if (hx < 0)
122         return __math_invalidf(x);
123 
124     if (ix == 0x7f800000)
125         return zero;
126 
127     if (ix >= 0x40000000) { /* |x| >= 2.0 */
128         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
129          * where x0 = x-pi/4
130          *      Better formula:
131          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
132          *                      =  1/sqrt(2) * (sin(x) + cos(x))
133          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
134          *                      =  1/sqrt(2) * (sin(x) - cos(x))
135          * To avoid cancellation, use
136          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
137          * to compute the worse one.
138          */
139         s = sinf(x);
140         c = cosf(x);
141         ss = s - c;
142         cc = s + c;
143         /*
144 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
145 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
146 	 */
147         if (ix <= FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */
148             z = -cosf(x + x);
149             if ((s * c) < zero)
150                 cc = z / ss;
151             else
152                 ss = z / cc;
153         }
154         if (ix > 0x5c000000)
155             z = (invsqrtpi * ss) / sqrtf(x);
156         else {
157             u = pzerof(x);
158             v = qzerof(x);
159             z = invsqrtpi * (u * ss + v * cc) / sqrtf(x);
160         }
161         return z;
162     }
163     if (ix <= 0x39800000) { /* x < 2**-27 */
164         return (u00 + tpi * logf(x));
165     }
166     z = x * x;
167     u = u00 +
168         z * (u01 + z * (u02 + z * (u03 + z * (u04 + z * (u05 + z * u06)))));
169     v = one + z * (v01 + z * (v02 + z * (v03 + z * v04)));
170     return (u / v + tpi * (j0f(x) * logf(x)));
171 }
172 
173 /* The asymptotic expansions of pzero is
174  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
175  * For x >= 2, We approximate pzero by
176  * 	pzero(x) = 1 + (R/S)
177  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
178  * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
179  * and
180  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
181  */
182 static const float pR8[6] = {
183     /* for x in [inf, 8]=1/[0,0.125] */
184     0.0000000000e+00, /* 0x00000000 */
185     -7.0312500000e-02, /* 0xbd900000 */
186     -8.0816707611e+00, /* 0xc1014e86 */
187     -2.5706311035e+02, /* 0xc3808814 */
188     -2.4852163086e+03, /* 0xc51b5376 */
189     -5.2530439453e+03, /* 0xc5a4285a */
190 };
191 static const float pS8[5] = {
192     1.1653436279e+02, /* 0x42e91198 */
193     3.8337448730e+03, /* 0x456f9beb */
194     4.0597855469e+04, /* 0x471e95db */
195     1.1675296875e+05, /* 0x47e4087c */
196     4.7627726562e+04, /* 0x473a0bba */
197 };
198 static const float pR5[6] = {
199     /* for x in [8,4.5454]=1/[0.125,0.22001] */
200     -1.1412546255e-11, /* 0xad48c58a */
201     -7.0312492549e-02, /* 0xbd8fffff */
202     -4.1596107483e+00, /* 0xc0851b88 */
203     -6.7674766541e+01, /* 0xc287597b */
204     -3.3123129272e+02, /* 0xc3a59d9b */
205     -3.4643338013e+02, /* 0xc3ad3779 */
206 };
207 static const float pS5[5] = {
208     6.0753936768e+01, /* 0x42730408 */
209     1.0512523193e+03, /* 0x44836813 */
210     5.9789707031e+03, /* 0x45bad7c4 */
211     9.6254453125e+03, /* 0x461665c8 */
212     2.4060581055e+03, /* 0x451660ee */
213 };
214 
215 static const float pR3[6] = {
216     /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
217     -2.5470459075e-09, /* 0xb12f081b */
218     -7.0311963558e-02, /* 0xbd8fffb8 */
219     -2.4090321064e+00, /* 0xc01a2d95 */
220     -2.1965976715e+01, /* 0xc1afba52 */
221     -5.8079170227e+01, /* 0xc2685112 */
222     -3.1447946548e+01, /* 0xc1fb9565 */
223 };
224 static const float pS3[5] = {
225     3.5856033325e+01, /* 0x420f6c94 */
226     3.6151397705e+02, /* 0x43b4c1ca */
227     1.1936077881e+03, /* 0x44953373 */
228     1.1279968262e+03, /* 0x448cffe6 */
229     1.7358093262e+02, /* 0x432d94b8 */
230 };
231 
232 static const float pR2[6] = {
233     /* for x in [2.8570,2]=1/[0.3499,0.5] */
234     -8.8753431271e-08, /* 0xb3be98b7 */
235     -7.0303097367e-02, /* 0xbd8ffb12 */
236     -1.4507384300e+00, /* 0xbfb9b1cc */
237     -7.6356959343e+00, /* 0xc0f4579f */
238     -1.1193166733e+01, /* 0xc1331736 */
239     -3.2336456776e+00, /* 0xc04ef40d */
240 };
241 static const float pS2[5] = {
242     2.2220300674e+01, /* 0x41b1c32d */
243     1.3620678711e+02, /* 0x430834f0 */
244     2.7047027588e+02, /* 0x43873c32 */
245     1.5387539673e+02, /* 0x4319e01a */
246     1.4657617569e+01, /* 0x416a859a */
247 };
248 
249 static float
pzerof(float x)250 pzerof(float x)
251 {
252     const float *p, *q;
253     float z, r, s;
254     __int32_t ix;
255     GET_FLOAT_WORD(ix, x);
256     ix &= 0x7fffffff;
257     if (ix >= 0x41000000) {
258         p = pR8;
259         q = pS8;
260     } else if (ix >= 0x40f71c58) {
261         p = pR5;
262         q = pS5;
263     } else if (ix >= 0x4036db68) {
264         p = pR3;
265         q = pS3;
266     } else {
267         p = pR2;
268         q = pS2;
269     }
270     z = one / (x * x);
271     r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
272     s = one + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
273     return one + r / s;
274 }
275 
276 /* For x >= 8, the asymptotic expansions of qzero is
277  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
278  * We approximate qzero by
279  * 	qzero(x) = s*(-1.25 + (R/S))
280  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
281  * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
282  * and
283  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
284  */
285 static const float qR8[6] = {
286     /* for x in [inf, 8]=1/[0,0.125] */
287     0.0000000000e+00, /* 0x00000000 */
288     7.3242187500e-02, /* 0x3d960000 */
289     1.1768206596e+01, /* 0x413c4a93 */
290     5.5767340088e+02, /* 0x440b6b19 */
291     8.8591972656e+03, /* 0x460a6cca */
292     3.7014625000e+04, /* 0x471096a0 */
293 };
294 static const float qS8[6] = {
295     1.6377603149e+02, /* 0x4323c6aa */
296     8.0983447266e+03, /* 0x45fd12c2 */
297     1.4253829688e+05, /* 0x480b3293 */
298     8.0330925000e+05, /* 0x49441ed4 */
299     8.4050156250e+05, /* 0x494d3359 */
300     -3.4389928125e+05, /* 0xc8a7eb69 */
301 };
302 
303 static const float qR5[6] = {
304     /* for x in [8,4.5454]=1/[0.125,0.22001] */
305     1.8408595828e-11, /* 0x2da1ec79 */
306     7.3242180049e-02, /* 0x3d95ffff */
307     5.8356351852e+00, /* 0x40babd86 */
308     1.3511157227e+02, /* 0x43071c90 */
309     1.0272437744e+03, /* 0x448067cd */
310     1.9899779053e+03, /* 0x44f8bf4b */
311 };
312 static const float qS5[6] = {
313     8.2776611328e+01, /* 0x42a58da0 */
314     2.0778142090e+03, /* 0x4501dd07 */
315     1.8847289062e+04, /* 0x46933e94 */
316     5.6751113281e+04, /* 0x475daf1d */
317     3.5976753906e+04, /* 0x470c88c1 */
318     -5.3543427734e+03, /* 0xc5a752be */
319 };
320 
321 static const float qR3[6] = {
322     /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
323     4.3774099900e-09, /* 0x3196681b */
324     7.3241114616e-02, /* 0x3d95ff70 */
325     3.3442313671e+00, /* 0x405607e3 */
326     4.2621845245e+01, /* 0x422a7cc5 */
327     1.7080809021e+02, /* 0x432acedf */
328     1.6673394775e+02, /* 0x4326bbe4 */
329 };
330 static const float qS3[6] = {
331     4.8758872986e+01, /* 0x42430916 */
332     7.0968920898e+02, /* 0x44316c1c */
333     3.7041481934e+03, /* 0x4567825f */
334     6.4604252930e+03, /* 0x45c9e367 */
335     2.5163337402e+03, /* 0x451d4557 */
336     -1.4924745178e+02, /* 0xc3153f59 */
337 };
338 
339 static const float qR2[6] = {
340     /* for x in [2.8570,2]=1/[0.3499,0.5] */
341     1.5044444979e-07, /* 0x342189db */
342     7.3223426938e-02, /* 0x3d95f62a */
343     1.9981917143e+00, /* 0x3fffc4bf */
344     1.4495602608e+01, /* 0x4167edfd */
345     3.1666231155e+01, /* 0x41fd5471 */
346     1.6252708435e+01, /* 0x4182058c */
347 };
348 static const float qS2[6] = {
349     3.0365585327e+01, /* 0x41f2ecb8 */
350     2.6934811401e+02, /* 0x4386ac8f */
351     8.4478375244e+02, /* 0x44533229 */
352     8.8293585205e+02, /* 0x445cbbe5 */
353     2.1266638184e+02, /* 0x4354aa98 */
354     -5.3109550476e+00, /* 0xc0a9f358 */
355 };
356 
357 static float
qzerof(float x)358 qzerof(float x)
359 {
360     const float *p, *q;
361     float s, r, z;
362     __int32_t ix;
363     GET_FLOAT_WORD(ix, x);
364     ix &= 0x7fffffff;
365     if (ix >= 0x41000000) {
366         p = qR8;
367         q = qS8;
368     } else if (ix >= 0x40f71c58) {
369         p = qR5;
370         q = qS5;
371     } else if (ix >= 0x4036db68) {
372         p = qR3;
373         q = qS3;
374     } else {
375         p = qR2;
376         q = qS2;
377     }
378     z = one / (x * x);
379     r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
380     s = one +
381         z * (q[0] +
382              z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
383     return (-(float).125 + r / s) / x;
384 }
385 
386 _MATH_ALIAS_f_f(j0)
387 
388 _MATH_ALIAS_f_f(y0)
389 
390