1 
2 /* @(#)e_sqrt.c 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /* sqrt(x)
15  * Return correctly rounded sqrt.
16  *           ------------------------------------------
17  *	     |  Use the hardware sqrt if you have one |
18  *           ------------------------------------------
19  * Method:
20  *   Bit by bit method using integer arithmetic. (Slow, but portable)
21  *   1. Normalization
22  *	Scale x to y in [1,4) with even powers of 2:
23  *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
24  *		sqrt(x) = 2^k * sqrt(y)
25  *   2. Bit by bit computation
26  *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
27  *	     i							 0
28  *                                     i+1         2
29  *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
30  *	     i      i            i                 i
31  *
32  *	To compute q    from q , one checks whether
33  *		    i+1       i
34  *
35  *			      -(i+1) 2
36  *			(q + 2      ) <= y.			(2)
37  *     			  i
38  *							      -(i+1)
39  *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
40  *		 	       i+1   i             i+1   i
41  *
42  *	With some algebric manipulation, it is not difficult to see
43  *	that (2) is equivalent to
44  *                             -(i+1)
45  *			s  +  2       <= y			(3)
46  *			 i                i
47  *
48  *	The advantage of (3) is that s  and y  can be computed by
49  *				      i      i
50  *	the following recurrence formula:
51  *	    if (3) is false
52  *
53  *	    s     =  s  ,	y    = y   ;			(4)
54  *	     i+1      i		 i+1    i
55  *
56  *	    otherwise,
57  *                         -i                     -(i+1)
58  *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
59  *           i+1      i          i+1    i     i
60  *
61  *	One may easily use induction to prove (4) and (5).
62  *	Note. Since the left hand side of (3) contain only i+2 bits,
63  *	      it does not necessary to do a full (53-bit) comparison
64  *	      in (3).
65  *   3. Final rounding
66  *	After generating the 53 bits result, we compute one more bit.
67  *	Together with the remainder, we can decide whether the
68  *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
69  *	(it will never equal to 1/2ulp).
70  *	The rounding mode can be detected by checking whether
71  *	huge + tiny is equal to huge, and whether huge - tiny is
72  *	equal to huge for some floating point number "huge" and "tiny".
73  *
74  * Special cases:
75  *	sqrt(+-0) = +-0 	... exact
76  *	sqrt(inf) = inf
77  *	sqrt(-ve) = NaN		... with invalid signal
78  *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
79  *
80  * Other methods : see the appended file at the end of the program below.
81  *---------------
82  */
83 
84 #include "fdlibm.h"
85 
86 #ifdef _NEED_FLOAT64
87 
88 __float64
sqrt64(__float64 x)89 sqrt64(__float64 x)
90 {
91     __float64 z;
92     __uint32_t sign = 0x80000000;
93     __uint32_t r, t1, s1, ix1, q1;
94     __int32_t ix0, s0, q, m, t, i;
95 
96     EXTRACT_WORDS(ix0, ix1, x);
97 
98     /* take care of Inf and NaN */
99     if ((ix0 & 0x7ff00000) == 0x7ff00000) {
100         if (ix0 < 0 && !isnan(x))
101             return __math_invalid(x); /* sqrt(-inf)=sNaN */
102         return x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf */
103     }
104     /* take care of zero */
105     if (ix0 <= 0) {
106         if (((ix0 & (~sign)) | ix1) == 0)
107             return x; /* sqrt(+-0) = +-0 */
108         else if (ix0 < 0)
109             return __math_invalid(x); /* sqrt(-ve) = sNaN */
110     }
111     /* normalize x */
112     m = (ix0 >> 20);
113     if (m == 0) { /* subnormal x */
114         while (ix0 == 0) {
115             m -= 21;
116             ix0 |= (ix1 >> 11);
117             ix1 <<= 21;
118         }
119         for (i = 0; (ix0 & 0x00100000) == 0; i++)
120             ix0 <<= 1;
121         m -= i - 1;
122         if (i)
123             ix0 |= (ix1 >> (32 - i));
124         ix1 <<= i;
125     }
126     m -= 1023; /* unbias exponent */
127     ix0 = (ix0 & 0x000fffff) | 0x00100000;
128     if (m & 1) { /* odd m, double x to make it even */
129         ix0 += ix0 + ((ix1 & sign) >> 31);
130         ix1 += ix1;
131     }
132     m >>= 1; /* m = [m/2] */
133 
134     /* generate sqrt(x) bit by bit */
135     ix0 += ix0 + ((ix1 & sign) >> 31);
136     ix1 += ix1;
137     q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
138     r = 0x00200000; /* r = moving bit from right to left */
139 
140     while (r != 0) {
141         t = s0 + r;
142         if (t <= ix0) {
143             s0 = t + r;
144             ix0 -= t;
145             q += r;
146         }
147         ix0 += ix0 + ((ix1 & sign) >> 31);
148         ix1 += ix1;
149         r >>= 1;
150     }
151 
152     r = sign;
153     while (r != 0) {
154         t1 = s1 + r;
155         t = s0;
156         if ((t < ix0) || ((t == ix0) && (t1 <= ix1))) {
157             s1 = t1 + r;
158             if (((t1 & sign) == sign) && (s1 & sign) == 0)
159                 s0 += 1;
160             ix0 -= t;
161             if (ix1 < t1)
162                 ix0 -= 1;
163             ix1 -= t1;
164             q1 += r;
165         }
166         ix0 += ix0 + ((ix1 & sign) >> 31);
167         ix1 += ix1;
168         r >>= 1;
169     }
170 
171     if ((ix0 | ix1) != 0) {
172         FE_DECL_ROUND(rnd);
173         if (__is_nearest(rnd) || __is_upward(rnd)) {
174             if (q1 == (__uint32_t)0xffffffff) {
175                 q1 = 0;
176                 q += 1;
177             } else if (__is_upward(rnd)) {
178                 if (q1 == (__uint32_t)0xfffffffe)
179                     q += 1;
180                 q1 += 2;
181             } else
182                 q1 += (q1 & 1);
183         }
184     }
185     ix0 = (q >> 1) + 0x3fe00000;
186     ix1 = q1 >> 1;
187     if ((q & 1) == 1)
188         ix1 |= sign;
189     ix0 += (m << 20);
190     INSERT_WORDS(z, ix0, ix1);
191     return z;
192 }
193 
194 _MATH_ALIAS_d_d(sqrt)
195 
196 #endif /* _NEED_FLOAT64 */
197 
198 /*
199 Other methods  (use floating-point arithmetic)
200 -------------
201 (This is a copy of a drafted paper by Prof W. Kahan
202 and K.C. Ng, written in May, 1986)
203 
204 	Two algorithms are given here to implement sqrt(x)
205 	(IEEE double precision arithmetic) in software.
206 	Both supply sqrt(x) correctly rounded. The first algorithm (in
207 	Section A) uses newton iterations and involves four divisions.
208 	The second one uses reciproot iterations to avoid division, but
209 	requires more multiplications. Both algorithms need the ability
210 	to chop results of arithmetic operations instead of round them,
211 	and the INEXACT flag to indicate when an arithmetic operation
212 	is executed exactly with no roundoff error, all part of the
213 	standard (IEEE 754-1985). The ability to perform shift, add,
214 	subtract and logical AND operations upon 32-bit words is needed
215 	too, though not part of the standard.
216 
217 A.  sqrt(x) by Newton Iteration
218 
219    (1)	Initial approximation
220 
221 	Let x0 and x1 be the leading and the trailing 32-bit words of
222 	a floating point number x (in IEEE double format) respectively
223 
224 	    1    11		     52				  ...widths
225 	   ------------------------------------------------------
226 	x: |s|	  e     |	      f				|
227 	   ------------------------------------------------------
228 	      msb    lsb  msb				      lsb ...order
229 
230 
231 	     ------------------------  	     ------------------------
232 	x0:  |s|   e    |    f1     |	 x1: |          f2           |
233 	     ------------------------  	     ------------------------
234 
235 	By performing shifts and subtracts on x0 and x1 (both regarded
236 	as integers), we obtain an 8-bit approximation of sqrt(x) as
237 	follows.
238 
239 		k  := (x0>>1) + 0x1ff80000;
240 		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
241 	Here k is a 32-bit integer and T1[] is an integer array containing
242 	correction terms. Now magically the floating value of y (y's
243 	leading 32-bit word is y0, the value of its trailing word is 0)
244 	approximates sqrt(x) to almost 8-bit.
245 
246 	Value of T1:
247 	static int T1[32]= {
248 	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
249 	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
250 	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
251 	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
252 
253     (2)	Iterative refinement
254 
255 	Apply Heron's rule three times to y, we have y approximates
256 	sqrt(x) to within 1 ulp (Unit in the Last Place):
257 
258 		y := (y+x/y)/2		... almost 17 sig. bits
259 		y := (y+x/y)/2		... almost 35 sig. bits
260 		y := y-(y-x/y)/2	... within 1 ulp
261 
262 
263 	Remark 1.
264 	    Another way to improve y to within 1 ulp is:
265 
266 		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
267 		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
268 
269 				2
270 			    (x-y )*y
271 		y := y + 2* ----------	...within 1 ulp
272 			       2
273 			     3y  + x
274 
275 
276 	This formula has one division fewer than the one above; however,
277 	it requires more multiplications and additions. Also x must be
278 	scaled in advance to avoid spurious overflow in evaluating the
279 	expression 3y*y+x. Hence it is not recommended uless division
280 	is slow. If division is very slow, then one should use the
281 	reciproot algorithm given in section B.
282 
283     (3) Final adjustment
284 
285 	By twiddling y's last bit it is possible to force y to be
286 	correctly rounded according to the prevailing rounding mode
287 	as follows. Let r and i be copies of the rounding mode and
288 	inexact flag before entering the square root program. Also we
289 	use the expression y+-ulp for the next representable floating
290 	numbers (up and down) of y. Note that y+-ulp = either fixed
291 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
292 	mode.
293 
294 		I := FALSE;	... reset INEXACT flag I
295 		R := RZ;	... set rounding mode to round-toward-zero
296 		z := x/y;	... chopped quotient, possibly inexact
297 		If(not I) then {	... if the quotient is exact
298 		    if(z=y) {
299 		        I := i;	 ... restore inexact flag
300 		        R := r;  ... restore rounded mode
301 		        return sqrt(x):=y.
302 		    } else {
303 			z := z - ulp;	... special rounding
304 		    }
305 		}
306 		i := TRUE;		... sqrt(x) is inexact
307 		If (r=RN) then z=z+ulp	... rounded-to-nearest
308 		If (r=RP) then {	... round-toward-+inf
309 		    y = y+ulp; z=z+ulp;
310 		}
311 		y := y+z;		... chopped sum
312 		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
313 	        I := i;	 		... restore inexact flag
314 	        R := r;  		... restore rounded mode
315 	        return sqrt(x):=y.
316 
317     (4)	Special cases
318 
319 	Square root of +inf, +-0, or NaN is itself;
320 	Square root of a negative number is NaN with invalid signal.
321 
322 
323 B.  sqrt(x) by Reciproot Iteration
324 
325    (1)	Initial approximation
326 
327 	Let x0 and x1 be the leading and the trailing 32-bit words of
328 	a floating point number x (in IEEE double format) respectively
329 	(see section A). By performing shifs and subtracts on x0 and y0,
330 	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
331 
332 	    k := 0x5fe80000 - (x0>>1);
333 	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
334 
335 	Here k is a 32-bit integer and T2[] is an integer array
336 	containing correction terms. Now magically the floating
337 	value of y (y's leading 32-bit word is y0, the value of
338 	its trailing word y1 is set to zero) approximates 1/sqrt(x)
339 	to almost 7.8-bit.
340 
341 	Value of T2:
342 	static int T2[64]= {
343 	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
344 	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
345 	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
346 	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
347 	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
348 	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
349 	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
350 	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
351 
352     (2)	Iterative refinement
353 
354 	Apply Reciproot iteration three times to y and multiply the
355 	result by x to get an approximation z that matches sqrt(x)
356 	to about 1 ulp. To be exact, we will have
357 		-1ulp < sqrt(x)-z<1.0625ulp.
358 
359 	... set rounding mode to Round-to-nearest
360 	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
361 	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
362 	... special arrangement for better accuracy
363 	   z := x*y			... 29 bits to sqrt(x), with z*y<1
364 	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
365 
366 	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
367 	(a) the term z*y in the final iteration is always less than 1;
368 	(b) the error in the final result is biased upward so that
369 		-1 ulp < sqrt(x) - z < 1.0625 ulp
370 	    instead of |sqrt(x)-z|<1.03125ulp.
371 
372     (3)	Final adjustment
373 
374 	By twiddling y's last bit it is possible to force y to be
375 	correctly rounded according to the prevailing rounding mode
376 	as follows. Let r and i be copies of the rounding mode and
377 	inexact flag before entering the square root program. Also we
378 	use the expression y+-ulp for the next representable floating
379 	numbers (up and down) of y. Note that y+-ulp = either fixed
380 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
381 	mode.
382 
383 	R := RZ;		... set rounding mode to round-toward-zero
384 	switch(r) {
385 	    case RN:		... round-to-nearest
386 	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
387 	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
388 	       break;
389 	    case RZ:case RM:	... round-to-zero or round-to--inf
390 	       R:=RP;		... reset rounding mod to round-to-+inf
391 	       if(x<z*z ... rounded up) z = z - ulp; else
392 	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
393 	       break;
394 	    case RP:		... round-to-+inf
395 	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
396 	       if(x>z*z ...chopped) z = z+ulp;
397 	       break;
398 	}
399 
400 	Remark 3. The above comparisons can be done in fixed point. For
401 	example, to compare x and w=z*z chopped, it suffices to compare
402 	x1 and w1 (the trailing parts of x and w), regarding them as
403 	two's complement integers.
404 
405 	...Is z an exact square root?
406 	To determine whether z is an exact square root of x, let z1 be the
407 	trailing part of z, and also let x0 and x1 be the leading and
408 	trailing parts of x.
409 
410 	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
411 	    I := 1;		... Raise Inexact flag: z is not exact
412 	else {
413 	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
414 	    k := z1 >> 26;		... get z's 25-th and 26-th
415 					    fraction bits
416 	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
417 	}
418 	R:= r		... restore rounded mode
419 	return sqrt(x):=z.
420 
421 	If multiplication is cheaper then the foregoing red tape, the
422 	Inexact flag can be evaluated by
423 
424 	    I := i;
425 	    I := (z*z!=x) or I.
426 
427 	Note that z*z can overwrite I; this value must be sensed if it is
428 	True.
429 
430 	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
431 	zero.
432 
433 		    --------------------
434 		z1: |        f2        |
435 		    --------------------
436 		bit 31		   bit 0
437 
438 	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
439 	or even of logb(x) have the following relations:
440 
441 	-------------------------------------------------
442 	bit 27,26 of z1		bit 1,0 of x1	logb(x)
443 	-------------------------------------------------
444 	00			00		odd and even
445 	01			01		even
446 	10			10		odd
447 	10			00		even
448 	11			01		even
449 	-------------------------------------------------
450 
451     (4)	Special cases (see (4) of Section A).
452 
453  */
454