1 
2 /* @(#)e_log.c 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /* log(x)
15  * Return the logrithm of x
16  *
17  * Method :
18  *   1. Argument Reduction: find k and f such that
19  *			x = 2^k * (1+f),
20  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
21  *
22  *   2. Approximation of log(1+f).
23  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
24  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
25  *	     	 = 2s + s*R
26  *      We use a special Reme algorithm on [0,0.1716] to generate
27  * 	a polynomial of degree 14 to approximate R The maximum error
28  *	of this polynomial approximation is bounded by 2**-58.45. In
29  *	other words,
30  *		        2      4      6      8      10      12      14
31  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
32  *  	(the values of Lg1 to Lg7 are listed in the program)
33  *	and
34  *	    |      2          14          |     -58.45
35  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
36  *	    |                             |
37  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
38  *	In order to guarantee error in log below 1ulp, we compute log
39  *	by
40  *		log(1+f) = f - s*(f - R)	(if f is not too large)
41  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
42  *
43  *	3. Finally,  log(x) = k*ln2 + log(1+f).
44  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
45  *	   Here ln2 is split into two floating point number:
46  *			ln2_hi + ln2_lo,
47  *	   where n*ln2_hi is always exact for |n| < 2000.
48  *
49  * Special cases:
50  *	log(x) is NaN with signal if x < 0 (including -INF) ;
51  *	log(+INF) is +INF; log(0) is -INF with signal;
52  *	log(NaN) is that NaN with no signal.
53  *
54  * Accuracy:
55  *	according to an error analysis, the error is always less than
56  *	1 ulp (unit in the last place).
57  *
58  * Constants:
59  * The hexadecimal values are the intended ones for the following
60  * constants. The decimal values may be used, provided that the
61  * compiler will convert from decimal to binary accurately enough
62  * to produce the hexadecimal values shown.
63  */
64 
65 #include "fdlibm.h"
66 #if __OBSOLETE_MATH_DOUBLE
67 
68 #ifdef _NEED_FLOAT64
69 
70 static const __float64 ln2_hi = _F_64(6.93147180369123816490e-01), /* 3fe62e42 fee00000 */
71     ln2_lo = _F_64(1.90821492927058770002e-10), /* 3dea39ef 35793c76 */
72     two54 = _F_64(1.80143985094819840000e+16), /* 43500000 00000000 */
73     Lg1 = _F_64(6.666666666666735130e-01), /* 3FE55555 55555593 */
74     Lg2 = _F_64(3.999999999940941908e-01), /* 3FD99999 9997FA04 */
75     Lg3 = _F_64(2.857142874366239149e-01), /* 3FD24924 94229359 */
76     Lg4 = _F_64(2.222219843214978396e-01), /* 3FCC71C5 1D8E78AF */
77     Lg5 = _F_64(1.818357216161805012e-01), /* 3FC74664 96CB03DE */
78     Lg6 = _F_64(1.531383769920937332e-01), /* 3FC39A09 D078C69F */
79     Lg7 = _F_64(1.479819860511658591e-01); /* 3FC2F112 DF3E5244 */
80 
81 static const __float64 zero = _F_64(0.0);
82 
83 __float64
log64(__float64 x)84 log64(__float64 x)
85 {
86     __float64 hfsq, f, s, z, R, w, t1, t2, dk;
87     __int32_t k, hx, i, j;
88     __uint32_t lx;
89 
90     EXTRACT_WORDS(hx, lx, x);
91 
92     k = 0;
93     if (hx < 0x00100000) { /* x < 2**-1022  */
94         if (((hx & 0x7fffffff) | lx) == 0)
95             return __math_divzero(1); /* log(+-0)=-inf */
96         if (hx < 0)
97             return __math_invalid(x); /* log(-#) = NaN */
98         k -= 54;
99         x *= two54; /* subnormal number, scale up x */
100         GET_HIGH_WORD(hx, x);
101     }
102     if (hx >= 0x7ff00000)
103         return x + x;
104     k += (hx >> 20) - 1023;
105     hx &= 0x000fffff;
106     i = (hx + 0x95f64) & 0x100000;
107     SET_HIGH_WORD(x, hx | (i ^ 0x3ff00000)); /* normalize x or x/2 */
108     k += (i >> 20);
109     f = x - _F_64(1.0);
110     if ((0x000fffff & (2 + hx)) < 3) { /* |f| < 2**-20 */
111         if (f == zero) {
112             if (k == 0)
113                 return zero;
114             else {
115                 dk = (__float64)k;
116                 return dk * ln2_hi + dk * ln2_lo;
117             }
118         }
119         R = f * f * (_F_64(0.5) - _F_64(0.33333333333333333) * f);
120         if (k == 0)
121             return f - R;
122         else {
123             dk = (__float64)k;
124             return dk * ln2_hi - ((R - dk * ln2_lo) - f);
125         }
126     }
127     s = f / (_F_64(2.0) + f);
128     dk = (__float64)k;
129     z = s * s;
130     i = hx - 0x6147a;
131     w = z * z;
132     j = 0x6b851 - hx;
133     t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
134     t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
135     i |= j;
136     R = t2 + t1;
137     if (i > 0) {
138         hfsq = _F_64(0.5) * f * f;
139         if (k == 0)
140             return f - (hfsq - s * (hfsq + R));
141         else
142             return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f);
143     } else {
144         if (k == 0)
145             return f - s * (f - R);
146         else
147             return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
148     }
149 }
150 
151 _MATH_ALIAS_d_d(log)
152 
153 #endif /* _NEED_FLOAT64 */
154 #else
155 #include "../common/log.c"
156 #endif /*__OBSOLETE_MATH_DOUBLE */
157