1 
2 /* @(#)e_j0.c 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /* j0(x), y0(x)
15  * Bessel function of the first and second kinds of order zero.
16  * Method -- j0(x):
17  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
18  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
19  *	   for x in (0,2)
20  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
21  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
22  *	   for x in (2,inf)
23  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
24  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
25  *	   as follow:
26  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
27  *			= 1/sqrt(2) * (cos(x) + sin(x))
28  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
29  *			= 1/sqrt(2) * (sin(x) - cos(x))
30  * 	   (To avoid cancellation, use
31  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
32  * 	    to compute the worse one.)
33  *
34  *	3 Special cases
35  *		j0(nan)= nan
36  *		j0(0) = 1
37  *		j0(inf) = 0
38  *
39  * Method -- y0(x):
40  *	1. For x<2.
41  *	   Since
42  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
43  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
44  *	   We use the following function to approximate y0,
45  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
46  *	   where
47  *		U(z) = u00 + u01*z + ... + u06*z^6
48  *		V(z) = 1  + v01*z + ... + v04*z^4
49  *	   with absolute approximation error bounded by 2**-72.
50  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
51  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
52  *	2. For x>=2.
53  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
54  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
55  *	   by the method mentioned above.
56  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
57  */
58 
59 #include "fdlibm.h"
60 
61 #ifdef _NEED_FLOAT64
62 
63 static __float64 pzero(__float64);
64 static __float64 qzero(__float64);
65 
66 static const __float64
67     huge = _F_64(1e300), one = _F_64(1.0),
68     invsqrtpi = _F_64(5.64189583547756279280e-01), /* 0x3FE20DD7, 0x50429B6D */
69     tpi = _F_64(6.36619772367581382433e-01), /* 0x3FE45F30, 0x6DC9C883 */
70     /* R0/S0 on [0, 2.00] */
71     R02 = _F_64(1.56249999999999947958e-02), /* 0x3F8FFFFF, 0xFFFFFFFD */
72     R03 = _F_64(-1.89979294238854721751e-04), /* 0xBF28E6A5, 0xB61AC6E9 */
73     R04 = _F_64(1.82954049532700665670e-06), /* 0x3EBEB1D1, 0x0C503919 */
74     R05 = _F_64(-4.61832688532103189199e-09), /* 0xBE33D5E7, 0x73D63FCE */
75     S01 = _F_64(1.56191029464890010492e-02), /* 0x3F8FFCE8, 0x82C8C2A4 */
76     S02 = _F_64(1.16926784663337450260e-04), /* 0x3F1EA6D2, 0xDD57DBF4 */
77     S03 = _F_64(5.13546550207318111446e-07), /* 0x3EA13B54, 0xCE84D5A9 */
78     S04 = _F_64(1.16614003333790000205e-09); /* 0x3E1408BC, 0xF4745D8F */
79 
80 static const __float64 zero = _F_64(0.0);
81 
82 __float64
j064(__float64 x)83 j064(__float64 x)
84 {
85     __float64 z, s, c, ss, cc, r, u, v;
86     __int32_t hx, ix;
87 
88     if (isnan(x))
89         return x + x;
90 
91     if (isinf(x))
92         return _F_64(0.0);
93 
94     GET_HIGH_WORD(hx, x);
95     ix = hx & 0x7fffffff;
96     x = fabs64(x);
97     if (ix >= 0x40000000) { /* |x| >= 2.0 */
98         s = sin64(x);
99         c = cos64(x);
100         ss = s - c;
101         cc = s + c;
102         if (ix < 0x7fe00000) { /* make sure x+x not overflow */
103             z = -cos64(x + x);
104             if ((s * c) < zero)
105                 cc = z / ss;
106             else
107                 ss = z / cc;
108         }
109         /*
110 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
111 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
112 	 */
113         if (ix > 0x48000000)
114             z = (invsqrtpi * cc) / sqrt64(x);
115         else {
116             u = pzero(x);
117             v = qzero(x);
118             z = invsqrtpi * (u * cc - v * ss) / sqrt64(x);
119         }
120         return z;
121     }
122     if (ix < 0x3f200000) { /* |x| < 2**-13 */
123         if (huge + x > one) { /* raise inexact if x != 0 */
124             if (ix < 0x3e400000)
125                 return one; /* |x|<2**-27 */
126             else
127                 return one - _F_64(0.25) * x * x;
128         }
129     }
130     z = x * x;
131     r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
132     s = one + z * (S01 + z * (S02 + z * (S03 + z * S04)));
133     if (ix < 0x3FF00000) { /* |x| < 1.00 */
134         return one + z * (_F_64(-0.25) + (r / s));
135     } else {
136         u = _F_64(0.5) * x;
137         return ((one + u) * (one - u) + z * (r / s));
138     }
139 }
140 
141 _MATH_ALIAS_d_d(j0)
142 
143 static const __float64 u00 =
144                         _F_64(-7.38042951086872317523e-02), /* 0xBFB2E4D6, 0x99CBD01F */
145     u01 = _F_64(1.76666452509181115538e-01), /* 0x3FC69D01, 0x9DE9E3FC */
146     u02 = _F_64(-1.38185671945596898896e-02), /* 0xBF8C4CE8, 0xB16CFA97 */
147     u03 = _F_64(3.47453432093683650238e-04), /* 0x3F36C54D, 0x20B29B6B */
148     u04 = _F_64(-3.81407053724364161125e-06), /* 0xBECFFEA7, 0x73D25CAD */
149     u05 = _F_64(1.95590137035022920206e-08), /* 0x3E550057, 0x3B4EABD4 */
150     u06 = _F_64(-3.98205194132103398453e-11), /* 0xBDC5E43D, 0x693FB3C8 */
151     v01 = _F_64(1.27304834834123699328e-02), /* 0x3F8A1270, 0x91C9C71A */
152     v02 = _F_64(7.60068627350353253702e-05), /* 0x3F13ECBB, 0xF578C6C1 */
153     v03 = _F_64(2.59150851840457805467e-07), /* 0x3E91642D, 0x7FF202FD */
154     v04 = _F_64(4.41110311332675467403e-10); /* 0x3DFE5018, 0x3BD6D9EF */
155 
156 __float64
y064(__float64 x)157 y064(__float64 x)
158 {
159     __float64 z, s, c, ss, cc, u, v;
160     __int32_t hx, ix, lx;
161 
162     EXTRACT_WORDS(hx, lx, x);
163     ix = 0x7fffffff & hx;
164 
165     if ((ix | lx) == 0)
166         return __math_divzero(1);
167 
168     if (isnan(x))
169         return x + x;
170 
171     if (hx < 0)
172         return __math_invalid(x);
173 
174     if (ix >= 0x7ff00000)
175         return _F_64(0.0);
176 
177     if (ix >= 0x40000000) { /* |x| >= 2.0 */
178         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
179          * where x0 = x-pi/4
180          *      Better formula:
181          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
182          *                      =  1/sqrt(2) * (sin(x) + cos(x))
183          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
184          *                      =  1/sqrt(2) * (sin(x) - cos(x))
185          * To avoid cancellation, use
186          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
187          * to compute the worse one.
188          */
189         s = sin64(x);
190         c = cos64(x);
191         ss = s - c;
192         cc = s + c;
193         /*
194 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
195 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
196 	 */
197         if (ix < 0x7fe00000) { /* make sure x+x not overflow */
198             z = -cos64(x + x);
199             if ((s * c) < zero)
200                 cc = z / ss;
201             else
202                 ss = z / cc;
203         }
204         if (ix > 0x48000000)
205             z = (invsqrtpi * ss) / sqrt64(x);
206         else {
207             u = pzero(x);
208             v = qzero(x);
209             z = invsqrtpi * (u * ss + v * cc) / sqrt64(x);
210         }
211         return z;
212     }
213     if (ix <= 0x3e400000) { /* x < 2**-27 */
214         return (u00 + tpi * log64(x));
215     }
216     z = x * x;
217     u = u00 +
218         z * (u01 + z * (u02 + z * (u03 + z * (u04 + z * (u05 + z * u06)))));
219     v = one + z * (v01 + z * (v02 + z * (v03 + z * v04)));
220     return (u / v + tpi * (j064(x) * log64(x)));
221 }
222 
223 _MATH_ALIAS_d_d(y0)
224 
225 /* The asymptotic expansions of pzero is
226  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
227  * For x >= 2, We approximate pzero by
228  * 	pzero(x) = 1 + (R/S)
229  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
230  * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
231  * and
232  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
233  */
234 static const __float64 pR8[6] = {
235     /* for x in [inf, 8]=1/[0,0.125] */
236     _F_64(0.00000000000000000000e+00), /* 0x00000000, 0x00000000 */
237     _F_64(-7.03124999999900357484e-02), /* 0xBFB1FFFF, 0xFFFFFD32 */
238     _F_64(-8.08167041275349795626e+00), /* 0xC02029D0, 0xB44FA779 */
239     _F_64(-2.57063105679704847262e+02), /* 0xC0701102, 0x7B19E863 */
240     _F_64(-2.48521641009428822144e+03), /* 0xC0A36A6E, 0xCD4DCAFC */
241     _F_64(-5.25304380490729545272e+03), /* 0xC0B4850B, 0x36CC643D */
242 };
243 static const __float64 pS8[5] = {
244     _F_64(1.16534364619668181717e+02), /* 0x405D2233, 0x07A96751 */
245     _F_64(3.83374475364121826715e+03), /* 0x40ADF37D, 0x50596938 */
246     _F_64(4.05978572648472545552e+04), /* 0x40E3D2BB, 0x6EB6B05F */
247     _F_64(1.16752972564375915681e+05), /* 0x40FC810F, 0x8F9FA9BD */
248     _F_64(4.76277284146730962675e+04), /* 0x40E74177, 0x4F2C49DC */
249 };
250 
251 static const __float64 pR5[6] = {
252     /* for x in [8,4.5454]=1/[0.125,0.22001] */
253     _F_64(-1.14125464691894502584e-11), /* 0xBDA918B1, 0x47E495CC */
254     _F_64(-7.03124940873599280078e-02), /* 0xBFB1FFFF, 0xE69AFBC6 */
255     _F_64(-4.15961064470587782438e+00), /* 0xC010A370, 0xF90C6BBF */
256     _F_64(-6.76747652265167261021e+01), /* 0xC050EB2F, 0x5A7D1783 */
257     _F_64(-3.31231299649172967747e+02), /* 0xC074B3B3, 0x6742CC63 */
258     _F_64(-3.46433388365604912451e+02), /* 0xC075A6EF, 0x28A38BD7 */
259 };
260 static const __float64 pS5[5] = {
261     _F_64(6.07539382692300335975e+01), /* 0x404E6081, 0x0C98C5DE */
262     _F_64(1.05125230595704579173e+03), /* 0x40906D02, 0x5C7E2864 */
263     _F_64(5.97897094333855784498e+03), /* 0x40B75AF8, 0x8FBE1D60 */
264     _F_64(9.62544514357774460223e+03), /* 0x40C2CCB8, 0xFA76FA38 */
265     _F_64(2.40605815922939109441e+03), /* 0x40A2CC1D, 0xC70BE864 */
266 };
267 
268 static const __float64 pR3[6] = {
269     /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
270     _F_64(-2.54704601771951915620e-09), /* 0xBE25E103, 0x6FE1AA86 */
271     _F_64(-7.03119616381481654654e-02), /* 0xBFB1FFF6, 0xF7C0E24B */
272     _F_64(-2.40903221549529611423e+00), /* 0xC00345B2, 0xAEA48074 */
273     _F_64(-2.19659774734883086467e+01), /* 0xC035F74A, 0x4CB94E14 */
274     _F_64(-5.80791704701737572236e+01), /* 0xC04D0A22, 0x420A1A45 */
275     _F_64(-3.14479470594888503854e+01), /* 0xC03F72AC, 0xA892D80F */
276 };
277 static const __float64 pS3[5] = {
278     _F_64(3.58560338055209726349e+01), /* 0x4041ED92, 0x84077DD3 */
279     _F_64(3.61513983050303863820e+02), /* 0x40769839, 0x464A7C0E */
280     _F_64(1.19360783792111533330e+03), /* 0x4092A66E, 0x6D1061D6 */
281     _F_64(1.12799679856907414432e+03), /* 0x40919FFC, 0xB8C39B7E */
282     _F_64(1.73580930813335754692e+02), /* 0x4065B296, 0xFC379081 */
283 };
284 
285 static const __float64 pR2[6] = {
286     /* for x in [2.8570,2]=1/[0.3499,0.5] */
287     _F_64(-8.87534333032526411254e-08), /* 0xBE77D316, 0xE927026D */
288     _F_64(-7.03030995483624743247e-02), /* 0xBFB1FF62, 0x495E1E42 */
289     _F_64(-1.45073846780952986357e+00), /* 0xBFF73639, 0x8A24A843 */
290     _F_64(-7.63569613823527770791e+00), /* 0xC01E8AF3, 0xEDAFA7F3 */
291     _F_64(-1.11931668860356747786e+01), /* 0xC02662E6, 0xC5246303 */
292     _F_64(-3.23364579351335335033e+00), /* 0xC009DE81, 0xAF8FE70F */
293 };
294 static const __float64 pS2[5] = {
295     _F_64(2.22202997532088808441e+01), /* 0x40363865, 0x908B5959 */
296     _F_64(1.36206794218215208048e+02), /* 0x4061069E, 0x0EE8878F */
297     _F_64(2.70470278658083486789e+02), /* 0x4070E786, 0x42EA079B */
298     _F_64(1.53875394208320329881e+02), /* 0x40633C03, 0x3AB6FAFF */
299     _F_64(1.46576176948256193810e+01), /* 0x402D50B3, 0x44391809 */
300 };
301 
302 static __float64
pzero(__float64 x)303 pzero(__float64 x)
304 {
305     const __float64 *p, *q;
306     __float64 z, r, s;
307     __int32_t ix;
308     GET_HIGH_WORD(ix, x);
309     ix &= 0x7fffffff;
310     if (ix >= 0x41b00000) {
311         return one;
312     } else if (ix >= 0x40200000) {
313         p = pR8;
314         q = pS8;
315     } else if (ix >= 0x40122E8B) {
316         p = pR5;
317         q = pS5;
318     } else if (ix >= 0x4006DB6D) {
319         p = pR3;
320         q = pS3;
321     } else {
322         p = pR2;
323         q = pS2;
324     }
325     z = one / (x * x);
326     r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
327     s = one + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
328     return one + r / s;
329 }
330 
331 /* For x >= 8, the asymptotic expansions of qzero is
332  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
333  * We approximate qzero by
334  * 	qzero(x) = s*(-1.25 + (R/S))
335  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
336  * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
337  * and
338  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
339  */
340 static const __float64 qR8[6] = {
341     /* for x in [inf, 8]=1/[0,0.125] */
342     _F_64(0.00000000000000000000e+00), /* 0x00000000, 0x00000000 */
343     _F_64(7.32421874999935051953e-02), /* 0x3FB2BFFF, 0xFFFFFE2C */
344     _F_64(1.17682064682252693899e+01), /* 0x40278952, 0x5BB334D6 */
345     _F_64(5.57673380256401856059e+02), /* 0x40816D63, 0x15301825 */
346     _F_64(8.85919720756468632317e+03), /* 0x40C14D99, 0x3E18F46D */
347     _F_64(3.70146267776887834771e+04), /* 0x40E212D4, 0x0E901566 */
348 };
349 static const __float64 qS8[6] = {
350     _F_64(1.63776026895689824414e+02), /* 0x406478D5, 0x365B39BC */
351     _F_64(8.09834494656449805916e+03), /* 0x40BFA258, 0x4E6B0563 */
352     _F_64(1.42538291419120476348e+05), /* 0x41016652, 0x54D38C3F */
353     _F_64(8.03309257119514397345e+05), /* 0x412883DA, 0x83A52B43 */
354     _F_64(8.40501579819060512818e+05), /* 0x4129A66B, 0x28DE0B3D */
355     _F_64(-3.43899293537866615225e+05), /* 0xC114FD6D, 0x2C9530C5 */
356 };
357 
358 static const __float64 qR5[6] = {
359     /* for x in [8,4.5454]=1/[0.125,0.22001] */
360     _F_64(1.84085963594515531381e-11), /* 0x3DB43D8F, 0x29CC8CD9 */
361     _F_64(7.32421766612684765896e-02), /* 0x3FB2BFFF, 0xD172B04C */
362     _F_64(5.83563508962056953777e+00), /* 0x401757B0, 0xB9953DD3 */
363     _F_64(1.35111577286449829671e+02), /* 0x4060E392, 0x0A8788E9 */
364     _F_64(1.02724376596164097464e+03), /* 0x40900CF9, 0x9DC8C481 */
365     _F_64(1.98997785864605384631e+03), /* 0x409F17E9, 0x53C6E3A6 */
366 };
367 static const __float64 qS5[6] = {
368     _F_64(8.27766102236537761883e+01), /* 0x4054B1B3, 0xFB5E1543 */
369     _F_64(2.07781416421392987104e+03), /* 0x40A03BA0, 0xDA21C0CE */
370     _F_64(1.88472887785718085070e+04), /* 0x40D267D2, 0x7B591E6D */
371     _F_64(5.67511122894947329769e+04), /* 0x40EBB5E3, 0x97E02372 */
372     _F_64(3.59767538425114471465e+04), /* 0x40E19118, 0x1F7A54A0 */
373     _F_64(-5.35434275601944773371e+03), /* 0xC0B4EA57, 0xBEDBC609 */
374 };
375 
376 static const __float64 qR3[6] = {
377     /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
378     _F_64(4.37741014089738620906e-09), /* 0x3E32CD03, 0x6ADECB82 */
379     _F_64(7.32411180042911447163e-02), /* 0x3FB2BFEE, 0x0E8D0842 */
380     _F_64(3.34423137516170720929e+00), /* 0x400AC0FC, 0x61149CF5 */
381     _F_64(4.26218440745412650017e+01), /* 0x40454F98, 0x962DAEDD */
382     _F_64(1.70808091340565596283e+02), /* 0x406559DB, 0xE25EFD1F */
383     _F_64(1.66733948696651168575e+02), /* 0x4064D77C, 0x81FA21E0 */
384 };
385 static const __float64 qS3[6] = {
386     _F_64(4.87588729724587182091e+01), /* 0x40486122, 0xBFE343A6 */
387     _F_64(7.09689221056606015736e+02), /* 0x40862D83, 0x86544EB3 */
388     _F_64(3.70414822620111362994e+03), /* 0x40ACF04B, 0xE44DFC63 */
389     _F_64(6.46042516752568917582e+03), /* 0x40B93C6C, 0xD7C76A28 */
390     _F_64(2.51633368920368957333e+03), /* 0x40A3A8AA, 0xD94FB1C0 */
391     _F_64(-1.49247451836156386662e+02), /* 0xC062A7EB, 0x201CF40F */
392 };
393 
394 static const __float64 qR2[6] = {
395     /* for x in [2.8570,2]=1/[0.3499,0.5] */
396     _F_64(1.50444444886983272379e-07), /* 0x3E84313B, 0x54F76BDB */
397     _F_64(7.32234265963079278272e-02), /* 0x3FB2BEC5, 0x3E883E34 */
398     _F_64(1.99819174093815998816e+00), /* 0x3FFFF897, 0xE727779C */
399     _F_64(1.44956029347885735348e+01), /* 0x402CFDBF, 0xAAF96FE5 */
400     _F_64(3.16662317504781540833e+01), /* 0x403FAA8E, 0x29FBDC4A */
401     _F_64(1.62527075710929267416e+01), /* 0x403040B1, 0x71814BB4 */
402 };
403 static const __float64 qS2[6] = {
404     _F_64(3.03655848355219184498e+01), /* 0x403E5D96, 0xF7C07AED */
405     _F_64(2.69348118608049844624e+02), /* 0x4070D591, 0xE4D14B40 */
406     _F_64(8.44783757595320139444e+02), /* 0x408A6645, 0x22B3BF22 */
407     _F_64(8.82935845112488550512e+02), /* 0x408B977C, 0x9C5CC214 */
408     _F_64(2.12666388511798828631e+02), /* 0x406A9553, 0x0E001365 */
409     _F_64(-5.31095493882666946917e+00), /* 0xC0153E6A, 0xF8B32931 */
410 };
411 
412 static __float64
qzero(__float64 x)413 qzero(__float64 x)
414 {
415     const __float64 *p, *q;
416     __float64 s, r, z;
417     __int32_t ix;
418     GET_HIGH_WORD(ix, x);
419     ix &= 0x7fffffff;
420     if (ix >= 0x41b00000) {
421         return _F_64(-.125) / x;
422     } else if (ix >= 0x40200000) {
423         p = qR8;
424         q = qS8;
425     } else if (ix >= 0x40122E8B) {
426         p = qR5;
427         q = qS5;
428     } else if (ix >= 0x4006DB6D) {
429         p = qR3;
430         q = qS3;
431     } else {
432         p = qR2;
433         q = qS2;
434     }
435     z = one / (x * x);
436     r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
437     s = one +
438         z * (q[0] +
439              z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
440     return (_F_64(-.125) + r / s) / x;
441 }
442 
443 #endif /* _NEED_FLOAT64 */
444