1 
2 /* @(#)e_exp.c 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /* exp(x)
15  * Returns the exponential of x.
16  *
17  * Method
18  *   1. Argument reduction:
19  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
20  *	Given x, find r and integer k such that
21  *
22  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
23  *
24  *      Here r will be represented as r = hi-lo for better
25  *	accuracy.
26  *
27  *   2. Approximation of exp(r) by a special rational function on
28  *	the interval [0,0.34658]:
29  *	Write
30  *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
31  *      We use a special Reme algorithm on [0,0.34658] to generate
32  * 	a polynomial of degree 5 to approximate R. The maximum error
33  *	of this polynomial approximation is bounded by 2**-59. In
34  *	other words,
35  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
36  *  	(where z=r*r, and the values of P1 to P5 are listed below)
37  *	and
38  *	    |                  5          |     -59
39  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
40  *	    |                             |
41  *	The computation of exp(r) thus becomes
42  *                             2*r
43  *		exp(r) = 1 + -------
44  *		              R - r
45  *                                 r*R1(r)
46  *		       = 1 + r + ----------- (for better accuracy)
47  *		                  2 - R1(r)
48  *	where
49  *			         2       4             10
50  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
51  *
52  *   3. Scale back to obtain exp(x):
53  *	From step 1, we have
54  *	   exp(x) = 2^k * exp(r)
55  *
56  * Special cases:
57  *	exp(INF) is INF, exp(NaN) is NaN;
58  *	exp(-INF) is 0, and
59  *	for finite argument, only exp(0)=1 is exact.
60  *
61  * Accuracy:
62  *	according to an error analysis, the error is always less than
63  *	1 ulp (unit in the last place).
64  *
65  * Misc. info.
66  *	For IEEE double
67  *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
68  *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
69  *
70  * Constants:
71  * The hexadecimal values are the intended ones for the following
72  * constants. The decimal values may be used, provided that the
73  * compiler will convert from decimal to binary accurately enough
74  * to produce the hexadecimal values shown.
75  */
76 
77 #include "fdlibm.h"
78 #include "math_config.h"
79 #if __OBSOLETE_MATH_DOUBLE
80 
81 #ifdef _NEED_FLOAT64
82 
83 static const __float64
84     one         = _F_64(1.0),
85     halF[2]	= {_F_64(0.5),_F_64(-0.5),},
86     huge	= _F_64(1.0e+300),
87     twom1000    = _F_64(9.33263618503218878990e-302),     /* 2**-1000=0x01700000,0*/
88     o_threshold = _F_64(7.09782712893383973096e+02),  /* 0x40862E42, 0xFEFA39EF */
89     u_threshold = _F_64(-7.45133219101941108420e+02),  /* 0xc0874910, 0xD52D3051 */
90     ln2HI[2]    ={ _F_64(6.93147180369123816490e-01),  /* 0x3fe62e42, 0xfee00000 */
91     _F_64(-6.93147180369123816490e-01),},/* 0xbfe62e42, 0xfee00000 */
92     ln2LO[2]    ={ _F_64(1.90821492927058770002e-10),  /* 0x3dea39ef, 0x35793c76 */
93     _F_64(-1.90821492927058770002e-10),},/* 0xbdea39ef, 0x35793c76 */
94     invln2      = _F_64(1.44269504088896338700e+00), /* 0x3ff71547, 0x652b82fe */
95     P1          = _F_64(1.66666666666666019037e-01), /* 0x3FC55555, 0x5555553E */
96     P2          = _F_64(-2.77777777770155933842e-03), /* 0xBF66C16C, 0x16BEBD93 */
97     P3          = _F_64(6.61375632143793436117e-05), /* 0x3F11566A, 0xAF25DE2C */
98     P4          = _F_64(-1.65339022054652515390e-06), /* 0xBEBBBD41, 0xC5D26BF1 */
99     P5          = _F_64(4.13813679705723846039e-08); /* 0x3E663769, 0x72BEA4D0 */
100 
101 __float64
exp64(__float64 x)102 exp64(__float64 x) /* default IEEE double exp */
103 {
104     __float64 y, hi, lo, c, t;
105     __int32_t k = 0, xsb;
106     __uint32_t hx;
107 
108     GET_HIGH_WORD(hx, x);
109     xsb = (hx >> 31) & 1; /* sign bit of x */
110     hx &= 0x7fffffff; /* high word of |x| */
111 
112     /* filter out non-finite argument */
113     if (hx >= 0x40862E42) { /* if |x|>=709.78... */
114         if (hx >= 0x7ff00000) {
115             __uint32_t lx;
116             GET_LOW_WORD(lx, x);
117             if (((hx & 0xfffff) | lx) != 0)
118                 return x + x; /* NaN */
119             else
120                 return (xsb == 0) ? x : _F_64(0.0); /* exp(+-inf)={inf,0} */
121         }
122         if (x > o_threshold)
123             return __math_oflow(0); /* overflow */
124         if (x < u_threshold)
125             return __math_uflow(0); /* underflow */
126     }
127 
128     /* argument reduction */
129     if (hx > 0x3fd62e42) { /* if  |x| > 0.5 ln2 */
130         if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
131             hi = x - ln2HI[xsb];
132             lo = ln2LO[xsb];
133             k = 1 - xsb - xsb;
134         } else {
135             k = invln2 * x + halF[xsb];
136             t = k;
137             hi = x - t * ln2HI[0]; /* t*ln2HI is exact here */
138             lo = t * ln2LO[0];
139         }
140         x = hi - lo;
141     } else if (hx < 0x3df00000) { /* when |x|<2**-32 */
142         if (huge + x > one)
143             return one + x; /* trigger inexact */
144     }
145 
146     /* x is now in primary range */
147     t = x * x;
148     c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
149     if (k == 0)
150         return one - ((x * c) / (c - _F_64(2.0)) - x);
151     else
152         y = one - ((lo - (x * c) / (_F_64(2.0) - c)) - hi);
153     if (k >= -1021) {
154         __uint32_t hy;
155         GET_HIGH_WORD(hy, y);
156         SET_HIGH_WORD(y, hy + (k << 20)); /* add k to y's exponent */
157         return y;
158     } else {
159         __uint32_t hy;
160         GET_HIGH_WORD(hy, y);
161         SET_HIGH_WORD(y, hy + ((k + 1000) << 20)); /* add k to y's exponent */
162         return y * twom1000;
163     }
164 }
165 
166 _MATH_ALIAS_d_d(exp)
167 
168 #endif /* _NEED_FLOAT64 */
169 #else
170 #include "../common/exp.c"
171 #endif /* __OBSOLETE_MATH_DOUBLE */
172