1 
2 /* @(#)s_erf.c 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /*
15 FUNCTION
16         <<erf>>, <<erff>>, <<erfc>>, <<erfcf>>---error function
17 INDEX
18 	erf
19 INDEX
20 	erff
21 INDEX
22 	erfc
23 INDEX
24 	erfcf
25 
26 SYNOPSIS
27 	#include <math.h>
28 	double erf(double <[x]>);
29 	float erff(float <[x]>);
30 	double erfc(double <[x]>);
31 	float erfcf(float <[x]>);
32 
33 DESCRIPTION
34 	<<erf>> calculates an approximation to the ``error function'',
35 	which estimates the probability that an observation will fall within
36 	<[x]> standard deviations of the mean (assuming a normal
37 	distribution).
38 	@tex
39 	The error function is defined as
40 	$${2\over\sqrt\pi}\times\int_0^x e^{-t^2}dt$$
41 	 @end tex
42 
43 	<<erfc>> calculates the complementary probability; that is,
44 	<<erfc(<[x]>)>> is <<1 - erf(<[x]>)>>.  <<erfc>> is computed directly,
45 	so that you can use it to avoid the loss of precision that would
46 	result from subtracting large probabilities (on large <[x]>) from 1.
47 
48 	<<erff>> and <<erfcf>> differ from <<erf>> and <<erfc>> only in the
49 	argument and result types.
50 
51 RETURNS
52 	For positive arguments, <<erf>> and all its variants return a
53 	probability---a number between 0 and 1.
54 
55 PORTABILITY
56 	None of the variants of <<erf>> are ANSI C.
57 */
58 
59 /* double erf(double x)
60  * double erfc(double x)
61  *			     x
62  *		      2      |\
63  *     erf(x)  =  ---------  | exp(-t*t)dt
64  *	 	   sqrt(pi) \|
65  *			     0
66  *
67  *     erfc(x) =  1-erf(x)
68  *  Note that
69  *		erf(-x) = -erf(x)
70  *		erfc(-x) = 2 - erfc(x)
71  *
72  * Method:
73  *	1. For |x| in [0, 0.84375]
74  *	    erf(x)  = x + x*R(x^2)
75  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
76  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
77  *	   where R = P/Q where P is an odd poly of degree 8 and
78  *	   Q is an odd poly of degree 10.
79  *						 -57.90
80  *			| R - (erf(x)-x)/x | <= 2
81  *
82  *
83  *	   Remark. The formula is derived by noting
84  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
85  *	   and that
86  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
87  *	   is close to one. The interval is chosen because the fix
88  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
89  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
90  * 	   guarantee the error is less than one ulp for erf.
91  *
92  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
93  *         c = 0.84506291151 rounded to single (24 bits)
94  *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
95  *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
96  *			  1+(c+P1(s)/Q1(s))    if x < 0
97  *         	|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
98  *	   Remark: here we use the taylor series expansion at x=1.
99  *		erf(1+s) = erf(1) + s*Poly(s)
100  *			 = 0.845.. + P1(s)/Q1(s)
101  *	   That is, we use rational approximation to approximate
102  *			erf(1+s) - (c = (single)0.84506291151)
103  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
104  *	   where
105  *		P1(s) = degree 6 poly in s
106  *		Q1(s) = degree 6 poly in s
107  *
108  *      3. For x in [1.25,1/0.35(~2.857143)],
109  *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
110  *         	erf(x)  = 1 - erfc(x)
111  *	   where
112  *		R1(z) = degree 7 poly in z, (z=1/x^2)
113  *		S1(z) = degree 8 poly in z
114  *
115  *      4. For x in [1/0.35,28]
116  *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
117  *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
118  *			= 2.0 - tiny		(if x <= -6)
119  *         	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
120  *         	erf(x)  = sign(x)*(1.0 - tiny)
121  *	   where
122  *		R2(z) = degree 6 poly in z, (z=1/x^2)
123  *		S2(z) = degree 7 poly in z
124  *
125  *      Note1:
126  *	   To compute exp(-x*x-0.5625+R/S), let s be a single
127  *	   precision number and s := x; then
128  *		-x*x = -s*s + (s-x)*(s+x)
129  *	        exp(-x*x-0.5626+R/S) =
130  *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
131  *      Note2:
132  *	   Here 4 and 5 make use of the asymptotic series
133  *			  exp(-x*x)
134  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
135  *			  x*sqrt(pi)
136  *	   We use rational approximation to approximate
137  *      	g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
138  *	   Here is the error bound for R1/S1 and R2/S2
139  *      	|R1/S1 - f(x)|  < 2**(-62.57)
140  *      	|R2/S2 - f(x)|  < 2**(-61.52)
141  *
142  *      5. For inf > x >= 28
143  *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
144  *         	erfc(x) = tiny*tiny (raise underflow) if x > 0
145  *			= 2 - tiny if x<0
146  *
147  *      7. Special case:
148  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
149  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
150  *	   	erfc/erf(NaN) is NaN
151  */
152 
153 #include "fdlibm.h"
154 
155 #ifdef _NEED_FLOAT64
156 
157 static const __float64
158     tiny = _F_64(1e-300),
159     half = _F_64(5.00000000000000000000e-01), /* 0x3FE00000, 0x00000000 */
160     one = _F_64(1.00000000000000000000e+00), /* 0x3FF00000, 0x00000000 */
161     two = _F_64(2.00000000000000000000e+00), /* 0x40000000, 0x00000000 */
162     /* c = (float)0.84506291151 */
163     erx = _F_64(8.45062911510467529297e-01), /* 0x3FEB0AC1, 0x60000000 */
164     /*
165  * Coefficients for approximation to  erf on [0,0.84375]
166  */
167     efx = _F_64(1.28379167095512586316e-01), /* 0x3FC06EBA, 0x8214DB69 */
168     efx8 = _F_64(1.02703333676410069053e+00), /* 0x3FF06EBA, 0x8214DB69 */
169     pp0 = _F_64(1.28379167095512558561e-01), /* 0x3FC06EBA, 0x8214DB68 */
170     pp1 = _F_64(-3.25042107247001499370e-01), /* 0xBFD4CD7D, 0x691CB913 */
171     pp2 = _F_64(-2.84817495755985104766e-02), /* 0xBF9D2A51, 0xDBD7194F */
172     pp3 = _F_64(-5.77027029648944159157e-03), /* 0xBF77A291, 0x236668E4 */
173     pp4 = _F_64(-2.37630166566501626084e-05), /* 0xBEF8EAD6, 0x120016AC */
174     qq1 = _F_64(3.97917223959155352819e-01), /* 0x3FD97779, 0xCDDADC09 */
175     qq2 = _F_64(6.50222499887672944485e-02), /* 0x3FB0A54C, 0x5536CEBA */
176     qq3 = _F_64(5.08130628187576562776e-03), /* 0x3F74D022, 0xC4D36B0F */
177     qq4 = _F_64(1.32494738004321644526e-04), /* 0x3F215DC9, 0x221C1A10 */
178     qq5 = _F_64(-3.96022827877536812320e-06), /* 0xBED09C43, 0x42A26120 */
179     /*
180  * Coefficients for approximation to  erf  in [0.84375,1.25]
181  */
182     pa0 = _F_64(-2.36211856075265944077e-03), /* 0xBF6359B8, 0xBEF77538 */
183     pa1 = _F_64(4.14856118683748331666e-01), /* 0x3FDA8D00, 0xAD92B34D */
184     pa2 = _F_64(-3.72207876035701323847e-01), /* 0xBFD7D240, 0xFBB8C3F1 */
185     pa3 = _F_64(3.18346619901161753674e-01), /* 0x3FD45FCA, 0x805120E4 */
186     pa4 = _F_64(-1.10894694282396677476e-01), /* 0xBFBC6398, 0x3D3E28EC */
187     pa5 = _F_64(3.54783043256182359371e-02), /* 0x3FA22A36, 0x599795EB */
188     pa6 = _F_64(-2.16637559486879084300e-03), /* 0xBF61BF38, 0x0A96073F */
189     qa1 = _F_64(1.06420880400844228286e-01), /* 0x3FBB3E66, 0x18EEE323 */
190     qa2 = _F_64(5.40397917702171048937e-01), /* 0x3FE14AF0, 0x92EB6F33 */
191     qa3 = _F_64(7.18286544141962662868e-02), /* 0x3FB2635C, 0xD99FE9A7 */
192     qa4 = _F_64(1.26171219808761642112e-01), /* 0x3FC02660, 0xE763351F */
193     qa5 = _F_64(1.36370839120290507362e-02), /* 0x3F8BEDC2, 0x6B51DD1C */
194     qa6 = _F_64(1.19844998467991074170e-02), /* 0x3F888B54, 0x5735151D */
195     /*
196  * Coefficients for approximation to  erfc in [1.25,1/0.35]
197  */
198     ra0 = _F_64(-9.86494403484714822705e-03), /* 0xBF843412, 0x600D6435 */
199     ra1 = _F_64(-6.93858572707181764372e-01), /* 0xBFE63416, 0xE4BA7360 */
200     ra2 = _F_64(-1.05586262253232909814e+01), /* 0xC0251E04, 0x41B0E726 */
201     ra3 = _F_64(-6.23753324503260060396e+01), /* 0xC04F300A, 0xE4CBA38D */
202     ra4 = _F_64(-1.62396669462573470355e+02), /* 0xC0644CB1, 0x84282266 */
203     ra5 = _F_64(-1.84605092906711035994e+02), /* 0xC067135C, 0xEBCCABB2 */
204     ra6 = _F_64(-8.12874355063065934246e+01), /* 0xC0545265, 0x57E4D2F2 */
205     ra7 = _F_64(-9.81432934416914548592e+00), /* 0xC023A0EF, 0xC69AC25C */
206     sa1 = _F_64(1.96512716674392571292e+01), /* 0x4033A6B9, 0xBD707687 */
207     sa2 = _F_64(1.37657754143519042600e+02), /* 0x4061350C, 0x526AE721 */
208     sa3 = _F_64(4.34565877475229228821e+02), /* 0x407B290D, 0xD58A1A71 */
209     sa4 = _F_64(6.45387271733267880336e+02), /* 0x40842B19, 0x21EC2868 */
210     sa5 = _F_64(4.29008140027567833386e+02), /* 0x407AD021, 0x57700314 */
211     sa6 = _F_64(1.08635005541779435134e+02), /* 0x405B28A3, 0xEE48AE2C */
212     sa7 = _F_64(6.57024977031928170135e+00), /* 0x401A47EF, 0x8E484A93 */
213     sa8 = _F_64(-6.04244152148580987438e-02), /* 0xBFAEEFF2, 0xEE749A62 */
214     /*
215  * Coefficients for approximation to  erfc in [1/.35,28]
216  */
217     rb0 = _F_64(-9.86494292470009928597e-03), /* 0xBF843412, 0x39E86F4A */
218     rb1 = _F_64(-7.99283237680523006574e-01), /* 0xBFE993BA, 0x70C285DE */
219     rb2 = _F_64(-1.77579549177547519889e+01), /* 0xC031C209, 0x555F995A */
220     rb3 = _F_64(-1.60636384855821916062e+02), /* 0xC064145D, 0x43C5ED98 */
221     rb4 = _F_64(-6.37566443368389627722e+02), /* 0xC083EC88, 0x1375F228 */
222     rb5 = _F_64(-1.02509513161107724954e+03), /* 0xC0900461, 0x6A2E5992 */
223     rb6 = _F_64(-4.83519191608651397019e+02), /* 0xC07E384E, 0x9BDC383F */
224     sb1 = _F_64(3.03380607434824582924e+01), /* 0x403E568B, 0x261D5190 */
225     sb2 = _F_64(3.25792512996573918826e+02), /* 0x40745CAE, 0x221B9F0A */
226     sb3 = _F_64(1.53672958608443695994e+03), /* 0x409802EB, 0x189D5118 */
227     sb4 = _F_64(3.19985821950859553908e+03), /* 0x40A8FFB7, 0x688C246A */
228     sb5 = _F_64(2.55305040643316442583e+03), /* 0x40A3F219, 0xCEDF3BE6 */
229     sb6 = _F_64(4.74528541206955367215e+02), /* 0x407DA874, 0xE79FE763 */
230     sb7 = _F_64(-2.24409524465858183362e+01); /* 0xC03670E2, 0x42712D62 */
231 
232 __float64
erf64(__float64 x)233 erf64(__float64 x)
234 {
235     __int32_t hx, ix, i;
236     __float64 R, S, P, Q, s, y, z, r;
237     GET_HIGH_WORD(hx, x);
238     ix = hx & 0x7fffffff;
239     if (ix >= 0x7ff00000) { /* erf(nan)=nan */
240         i = ((__uint32_t)hx >> 31) << 1;
241         return (__float64)(1 - i) + one / x; /* erf(+-inf)=+-1 */
242     }
243 
244     if (ix < 0x3feb0000) { /* |x|<0.84375 */
245         if (ix < 0x3e300000) { /* |x|<2**-28 */
246             if (ix < 0x00800000)
247                 return _F_64(0.125) * (_F_64(8.0) * x + efx8 * x); /*avoid underflow */
248             return x + efx * x;
249         }
250         z = x * x;
251         r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
252         s = one + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
253         y = r / s;
254         return x + x * y;
255     }
256     if (ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
257         s = fabs64(x) - one;
258         P = pa0 +
259             s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6)))));
260         Q = one +
261             s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6)))));
262         if (hx >= 0)
263             return erx + P / Q;
264         else
265             return -erx - P / Q;
266     }
267     if (ix >= 0x40180000) { /* inf>|x|>=6 */
268         if (hx >= 0)
269             return one - tiny;
270         else
271             return tiny - one;
272     }
273     x = fabs64(x);
274     s = one / (x * x);
275     if (ix < 0x4006DB6E) { /* |x| < 1/0.35 */
276         R = ra0 +
277             s * (ra1 +
278                  s * (ra2 +
279                       s * (ra3 + s * (ra4 + s * (ra5 + s * (ra6 + s * ra7))))));
280         S = one +
281             s * (sa1 +
282                  s * (sa2 +
283                       s * (sa3 +
284                            s * (sa4 +
285                                 s * (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
286     } else { /* |x| >= 1/0.35 */
287         R = rb0 +
288             s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6)))));
289         S = one +
290             s * (sb1 +
291                  s * (sb2 +
292                       s * (sb3 + s * (sb4 + s * (sb5 + s * (sb6 + s * sb7))))));
293     }
294     z = x;
295     SET_LOW_WORD(z, 0);
296     r = exp(-z * z - _F_64(0.5625)) * exp((z - x) * (z + x) + R / S);
297     if (hx >= 0)
298         return one - r / x;
299     else
300         return r / x - one;
301 }
302 
_MATH_ALIAS_d_d(erf)303 _MATH_ALIAS_d_d(erf)
304 
305 __float64
306 erfc64(__float64 x)
307 {
308     __int32_t hx, ix;
309     __float64 R, S, P, Q, s, y, z, r;
310     GET_HIGH_WORD(hx, x);
311     ix = hx & 0x7fffffff;
312     if (ix >= 0x7ff00000) { /* erfc(nan)=nan */
313         /* erfc(+-inf)=0,2 */
314         return (__float64)(((__uint32_t)hx >> 31) << 1) + one / x;
315     }
316 
317     if (ix < 0x3feb0000) { /* |x|<0.84375 */
318         if (ix < 0x3c700000) /* |x|<2**-56 */
319             return one - x;
320         z = x * x;
321         r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
322         s = one + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
323         y = r / s;
324         if (hx < 0x3fd00000) { /* x<1/4 */
325             return one - (x + x * y);
326         } else {
327             r = x * y;
328             r += (x - half);
329             return half - r;
330         }
331     }
332     if (ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
333         s = fabs64(x) - one;
334         P = pa0 +
335             s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6)))));
336         Q = one +
337             s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6)))));
338         if (hx >= 0) {
339             z = one - erx;
340             return z - P / Q;
341         } else {
342             z = erx + P / Q;
343             return one + z;
344         }
345     }
346     if (ix < 0x403c0000) { /* |x|<28 */
347         x = fabs64(x);
348         s = one / (x * x);
349         if (ix < 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
350             R = ra0 +
351                 s * (ra1 +
352                      s * (ra2 +
353                           s * (ra3 +
354                                s * (ra4 + s * (ra5 + s * (ra6 + s * ra7))))));
355             S = one +
356                 s * (sa1 +
357                      s * (sa2 +
358                           s * (sa3 +
359                                s * (sa4 +
360                                     s * (sa5 +
361                                          s * (sa6 + s * (sa7 + s * sa8)))))));
362         } else { /* |x| >= 1/.35 ~ 2.857143 */
363             if (hx < 0 && ix >= 0x40180000)
364                 return two - tiny; /* x < -6 */
365             R = rb0 +
366                 s * (rb1 +
367                      s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6)))));
368             S = one +
369                 s * (sb1 +
370                      s * (sb2 +
371                           s * (sb3 +
372                                s * (sb4 + s * (sb5 + s * (sb6 + s * sb7))))));
373         }
374         z = x;
375         SET_LOW_WORD(z, 0);
376         r = exp(-z * z - _F_64(0.5625)) * exp((z - x) * (z + x) + R / S);
377         if (hx > 0)
378             return r / x;
379         else
380             return two - r / x;
381     } else {
382         if (hx > 0)
383             return __math_uflow(0);
384         else
385             return two - tiny;
386     }
387 }
388 
389 _MATH_ALIAS_d_d(erfc)
390 
391 #endif /* _NEED_FLOAT64 */
392