1
2 /* @(#)s_atan.c 5.1 93/09/24 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 *
13 */
14
15 /*
16 FUNCTION
17 <<atan>>, <<atanf>>---arc tangent
18
19 INDEX
20 atan
21 INDEX
22 atanf
23
24 SYNOPSIS
25 #include <math.h>
26 double atan(double <[x]>);
27 float atanf(float <[x]>);
28
29 DESCRIPTION
30
31 <<atan>> computes the inverse tangent (arc tangent) of the input value.
32
33 <<atanf>> is identical to <<atan>>, save that it operates on <<floats>>.
34
35 RETURNS
36 @ifnottex
37 <<atan>> returns a value in radians, in the range of -pi/2 to pi/2.
38 @end ifnottex
39 @tex
40 <<atan>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$.
41 @end tex
42
43 PORTABILITY
44 <<atan>> is ANSI C. <<atanf>> is an extension.
45
46 */
47
48 /* atan(x)
49 * Method
50 * 1. Reduce x to positive by atan(x) = -atan(-x).
51 * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
52 * is further reduced to one of the following intervals and the
53 * arctangent of t is evaluated by the corresponding formula:
54 *
55 * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
56 * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
57 * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
58 * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
59 * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
60 *
61 * Constants:
62 * The hexadecimal values are the intended ones for the following
63 * constants. The decimal values may be used, provided that the
64 * compiler will convert from decimal to binary accurately enough
65 * to produce the hexadecimal values shown.
66 */
67
68 #include "fdlibm.h"
69
70 #ifdef _NEED_FLOAT64
71
72 static const __float64 atanhi[] = {
73 _F_64(4.63647609000806093515e-01), /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
74 _F_64(7.85398163397448278999e-01), /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
75 _F_64(9.82793723247329054082e-01), /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
76 _F_64(1.57079632679489655800e+00), /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
77 };
78
79 static const __float64 atanlo[] = {
80 _F_64(2.26987774529616870924e-17), /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
81 _F_64(3.06161699786838301793e-17), /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
82 _F_64(1.39033110312309984516e-17), /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
83 _F_64(6.12323399573676603587e-17), /* atan(inf)lo 0x3C91A626, 0x33145C07 */
84 };
85
86 static const __float64 aT[] = {
87 _F_64(3.33333333333329318027e-01), /* 0x3FD55555, 0x5555550D */
88 _F_64(-1.99999999998764832476e-01), /* 0xBFC99999, 0x9998EBC4 */
89 _F_64(1.42857142725034663711e-01), /* 0x3FC24924, 0x920083FF */
90 _F_64(-1.11111104054623557880e-01), /* 0xBFBC71C6, 0xFE231671 */
91 _F_64(9.09088713343650656196e-02), /* 0x3FB745CD, 0xC54C206E */
92 _F_64(-7.69187620504482999495e-02), /* 0xBFB3B0F2, 0xAF749A6D */
93 _F_64(6.66107313738753120669e-02), /* 0x3FB10D66, 0xA0D03D51 */
94 _F_64(-5.83357013379057348645e-02), /* 0xBFADDE2D, 0x52DEFD9A */
95 _F_64(4.97687799461593236017e-02), /* 0x3FA97B4B, 0x24760DEB */
96 _F_64(-3.65315727442169155270e-02), /* 0xBFA2B444, 0x2C6A6C2F */
97 _F_64(1.62858201153657823623e-02), /* 0x3F90AD3A, 0xE322DA11 */
98 };
99
100 static const __float64 one = _F_64(1.0), huge = _F_64(1.0e300);
101
102 __float64
atan64(__float64 x)103 atan64(__float64 x)
104 {
105 __float64 w, s1, s2, z;
106 __int32_t ix, hx, id;
107
108 GET_HIGH_WORD(hx, x);
109 ix = hx & 0x7fffffff;
110 if (ix >= 0x44100000) { /* if |x| >= 2^66 */
111 __uint32_t low;
112 GET_LOW_WORD(low, x);
113 if (ix > 0x7ff00000 || (ix == 0x7ff00000 && (low != 0)))
114 return x + x; /* NaN */
115 if (hx > 0)
116 return atanhi[3] + atanlo[3];
117 else
118 return -atanhi[3] - atanlo[3];
119 }
120 if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
121 if (ix < 0x3e200000) { /* |x| < 2^-29 */
122 if (huge + x > one)
123 return x; /* raise inexact */
124 }
125 id = -1;
126 } else {
127 x = fabs64(x);
128 if (ix < 0x3ff30000) { /* |x| < 1.1875 */
129 if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
130 id = 0;
131 x = (_F_64(2.0) * x - one) / (_F_64(2.0) + x);
132 } else { /* 11/16<=|x|< 19/16 */
133 id = 1;
134 x = (x - one) / (x + one);
135 }
136 } else {
137 if (ix < 0x40038000) { /* |x| < 2.4375 */
138 id = 2;
139 x = (x - _F_64(1.5)) / (one + 1.5 * x);
140 } else { /* 2.4375 <= |x| < 2^66 */
141 id = 3;
142 x = _F_64(-1.0) / x;
143 }
144 }
145 }
146 /* end of argument reduction */
147 z = x * x;
148 w = z * z;
149 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
150 s1 = z *
151 (aT[0] +
152 w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10])))));
153 s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9]))));
154 if (id < 0)
155 return x - x * (s1 + s2);
156 else {
157 z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x);
158 return (hx < 0) ? -z : z;
159 }
160 }
161
162 _MATH_ALIAS_d_d(atan)
163
164 #endif /* _NEED_FLOAT64 */
165