1 
2 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /*
15  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
16  * double x[],y[]; int e0,nx,prec; int ipio2[];
17  *
18  * __kernel_rem_pio2 return the last three digits of N with
19  *		y = x - N*pi/2
20  * so that |y| < pi/2.
21  *
22  * The method is to compute the integer (mod 8) and fraction parts of
23  * (2/pi)*x without doing the full multiplication. In general we
24  * skip the part of the product that are known to be a huge integer (
25  * more accurately, = 0 mod 8 ). Thus the number of operations are
26  * independent of the exponent of the input.
27  *
28  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
29  *
30  * Input parameters:
31  * 	x[]	The input value (must be positive) is broken into nx
32  *		pieces of 24-bit integers in double precision format.
33  *		x[i] will be the i-th 24 bit of x. The scaled exponent
34  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
35  *		match x's up to 24 bits.
36  *
37  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
38  *			e0 = ilogb(z)-23
39  *			z  = scalbn(z,-e0)
40  *		for i = 0,1,2
41  *			x[i] = floor(z)
42  *			z    = (z-x[i])*2**24
43  *
44  *
45  *	y[]	ouput result in an array of double precision numbers.
46  *		The dimension of y[] is:
47  *			24-bit  precision	1
48  *			53-bit  precision	2
49  *			64-bit  precision	2
50  *			113-bit precision	3
51  *		The actual value is the sum of them. Thus for 113-bit
52  *		precison, one may have to do something like:
53  *
54  *		long double t,w,r_head, r_tail;
55  *		t = (long double)y[2] + (long double)y[1];
56  *		w = (long double)y[0];
57  *		r_head = t+w;
58  *		r_tail = w - (r_head - t);
59  *
60  *	e0	The exponent of x[0]
61  *
62  *	nx	dimension of x[]
63  *
64  *  	prec	an integer indicating the precision:
65  *			0	24  bits (single)
66  *			1	53  bits (double)
67  *			2	64  bits (extended)
68  *			3	113 bits (quad)
69  *
70  *	ipio2[]
71  *		integer array, contains the (24*i)-th to (24*i+23)-th
72  *		bit of 2/pi after binary point. The corresponding
73  *		floating value is
74  *
75  *			ipio2[i] * 2^(-24(i+1)).
76  *
77  * External function:
78  *	double scalbn(), floor();
79  *
80  *
81  * Here is the description of some local variables:
82  *
83  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
84  *		in the computation. The recommended value is 2,3,4,
85  *		6 for single, double, extended,and quad.
86  *
87  * 	jz	local integer variable indicating the number of
88  *		terms of ipio2[] used.
89  *
90  *	jx	nx - 1
91  *
92  *	jv	index for pointing to the suitable ipio2[] for the
93  *		computation. In general, we want
94  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
95  *		is an integer. Thus
96  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
97  *		Hence jv = max(0,(e0-3)/24).
98  *
99  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
100  *
101  * 	q[]	double array with integral value, representing the
102  *		24-bits chunk of the product of x and 2/pi.
103  *
104  *	q0	the corresponding exponent of q[0]. Note that the
105  *		exponent for q[i] would be q0-24*i.
106  *
107  *	PIo2[]	double precision array, obtained by cutting pi/2
108  *		into 24 bits chunks.
109  *
110  *	f[]	ipio2[] in floating point
111  *
112  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
113  *
114  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
115  *
116  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
117  *		it also indicates the *sign* of the result.
118  *
119  */
120 
121 /*
122  * Constants:
123  * The hexadecimal values are the intended ones for the following
124  * constants. The decimal values may be used, provided that the
125  * compiler will convert from decimal to binary accurately enough
126  * to produce the hexadecimal values shown.
127  */
128 
129 #include "fdlibm.h"
130 
131 #ifdef _NEED_FLOAT64
132 
133 static const int init_jk[] = { 2, 3, 4, 6 }; /* initial value for jk */
134 
135 static const __float64 PIo2[] = {
136     _F_64(1.57079625129699707031e+00), /* 0x3FF921FB, 0x40000000 */
137     _F_64(7.54978941586159635335e-08), /* 0x3E74442D, 0x00000000 */
138     _F_64(5.39030252995776476554e-15), /* 0x3CF84698, 0x80000000 */
139     _F_64(3.28200341580791294123e-22), /* 0x3B78CC51, 0x60000000 */
140     _F_64(1.27065575308067607349e-29), /* 0x39F01B83, 0x80000000 */
141     _F_64(1.22933308981111328932e-36), /* 0x387A2520, 0x40000000 */
142     _F_64(2.73370053816464559624e-44), /* 0x36E38222, 0x80000000 */
143     _F_64(2.16741683877804819444e-51), /* 0x3569F31D, 0x00000000 */
144 };
145 
146 static const __float64
147     zero = _F_64(0.0), one = _F_64(1.0),
148     two24 = _F_64(1.67772160000000000000e+07), /* 0x41700000, 0x00000000 */
149     twon24 = _F_64(5.96046447753906250000e-08); /* 0x3E700000, 0x00000000 */
150 
151 #pragma GCC diagnostic ignored "-Wpragmas"
152 #pragma GCC diagnostic ignored "-Wunknown-warning-option"
153 #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
154 
155 int
__kernel_rem_pio2(__float64 * x,__float64 * y,int e0,int nx,int prec,const __int32_t * ipio2)156 __kernel_rem_pio2(__float64 *x, __float64 *y, int e0, int nx, int prec,
157                   const __int32_t *ipio2)
158 {
159     __int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
160     __float64 z, fw, f[20], fq[20], q[20];
161 
162     /* initialize jk*/
163     jk = init_jk[prec];
164     jp = jk;
165 
166     /* determine jx,jv,q0, note that 3>q0 */
167     jx = nx - 1;
168     jv = (e0 - 3) / 24;
169     if (jv < 0)
170         jv = 0;
171     q0 = e0 - 24 * (jv + 1);
172 
173     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
174     j = jv - jx;
175     m = jx + jk;
176     for (i = 0; i <= m; i++, j++)
177         f[i] = (j < 0) ? zero : (__float64)ipio2[j];
178 
179     /* compute q[0],q[1],...q[jk] */
180     for (i = 0; i <= jk; i++) {
181         for (j = 0, fw = _F_64(0.0); j <= jx; j++)
182             fw += x[j] * f[jx + i - j];
183         q[i] = fw;
184     }
185 
186     jz = jk;
187 recompute:
188     /* distill q[] into iq[] reversingly */
189     for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
190         fw = (__float64)((__int32_t)(twon24 * z));
191         iq[i] = (__int32_t)(z - two24 * fw);
192         z = q[j - 1] + fw;
193     }
194 
195     /* compute n */
196     z = scalbn(z, (int)q0); /* actual value of z */
197     z -= _F_64(8.0) * floor(z * _F_64(0.125)); /* trim off integer >= 8 */
198     n = (__int32_t)z;
199     z -= (__float64)n;
200     ih = 0;
201     if (q0 > 0) { /* need iq[jz-1] to determine n */
202         i = (iq[jz - 1] >> (24 - q0));
203         n += i;
204         iq[jz - 1] -= i << (24 - q0);
205         ih = iq[jz - 1] >> (23 - q0);
206     } else if (q0 == 0)
207         ih = iq[jz - 1] >> 23;
208     else if (z >= _F_64(0.5))
209         ih = 2;
210 
211     if (ih > 0) { /* q > 0.5 */
212         n += 1;
213         carry = 0;
214         for (i = 0; i < jz; i++) { /* compute 1-q */
215             j = iq[i];
216             if (carry == 0) {
217                 if (j != 0) {
218                     carry = 1;
219                     iq[i] = 0x1000000 - j;
220                 }
221             } else
222                 iq[i] = 0xffffff - j;
223         }
224         if (q0 > 0) { /* rare case: chance is 1 in 12 */
225             switch (q0) {
226             case 1:
227                 iq[jz - 1] &= 0x7fffff;
228                 break;
229             case 2:
230                 iq[jz - 1] &= 0x3fffff;
231                 break;
232             }
233         }
234         if (ih == 2) {
235             z = one - z;
236             if (carry != 0)
237                 z -= scalbn(one, (int)q0);
238         }
239     }
240 
241     /* check if recomputation is needed */
242     if (z == zero) {
243         j = 0;
244         for (i = jz - 1; i >= jk; i--)
245             j |= iq[i];
246         if (j == 0) { /* need recomputation */
247             for (k = 1; iq[jk - k] == 0; k++)
248                 ; /* k = no. of terms needed */
249 
250             for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */
251                 f[jx + i] = (__float64)ipio2[jv + i];
252                 for (j = 0, fw = _F_64(0.0); j <= jx; j++)
253                     fw += x[j] * f[jx + i - j];
254                 q[i] = fw;
255             }
256             jz += k;
257             goto recompute;
258         }
259     }
260 
261     /* chop off zero terms */
262     if (z == _F_64(0.0)) {
263         jz -= 1;
264         q0 -= 24;
265         while (iq[jz] == 0) {
266             jz--;
267             q0 -= 24;
268         }
269     } else { /* break z into 24-bit if necessary */
270         z = scalbn(z, -(int)q0);
271         if (z >= two24) {
272             fw = (__float64)((__int32_t)(twon24 * z));
273             iq[jz] = (__int32_t)(z - two24 * fw);
274             jz += 1;
275             q0 += 24;
276             iq[jz] = (__int32_t)fw;
277         } else
278             iq[jz] = (__int32_t)z;
279     }
280 
281     /* convert integer "bit" chunk to floating-point value */
282     fw = scalbn(one, (int)q0);
283     for (i = jz; i >= 0; i--) {
284         q[i] = fw * (__float64)iq[i];
285         fw *= twon24;
286     }
287 
288     /* compute PIo2[0,...,jp]*q[jz,...,0] */
289     for (i = jz; i >= 0; i--) {
290         for (fw = _F_64(0.0), k = 0; k <= jp && k <= jz - i; k++)
291             fw += PIo2[k] * q[i + k];
292         fq[jz - i] = fw;
293     }
294 
295     /* compress fq[] into y[] */
296     switch (prec) {
297     case 0:
298         fw = _F_64(0.0);
299         for (i = jz; i >= 0; i--)
300             fw += fq[i];
301         y[0] = (ih == 0) ? fw : -fw;
302         break;
303     case 1:
304     case 2:
305         fw = _F_64(0.0);
306         for (i = jz; i >= 0; i--)
307             fw += fq[i];
308         y[0] = (ih == 0) ? fw : -fw;
309         fw = fq[0] - fw;
310         for (i = 1; i <= jz; i++)
311             fw += fq[i];
312         y[1] = (ih == 0) ? fw : -fw;
313         break;
314     case 3: /* painful */
315         for (i = jz; i > 0; i--) {
316             fw = fq[i - 1] + fq[i];
317             fq[i] += fq[i - 1] - fw;
318             fq[i - 1] = fw;
319         }
320         for (i = jz; i > 1; i--) {
321             fw = fq[i - 1] + fq[i];
322             fq[i] += fq[i - 1] - fw;
323             fq[i - 1] = fw;
324         }
325         for (fw = _F_64(0.0), i = jz; i >= 2; i--)
326             fw += fq[i];
327         if (ih == 0) {
328             y[0] = fq[0];
329             y[1] = fq[1];
330             y[2] = fw;
331         } else {
332             y[0] = -fq[0];
333             y[1] = -fq[1];
334             y[2] = -fw;
335         }
336     }
337     return n & 7;
338 }
339 
340 #endif /* _NEED_FLOAT64 */
341