1 /* -------------------------------------------------------------- */
2 /* (C)Copyright 2007,2008, */
3 /* International Business Machines Corporation */
4 /* All Rights Reserved. */
5 /* */
6 /* Redistribution and use in source and binary forms, with or */
7 /* without modification, are permitted provided that the */
8 /* following conditions are met: */
9 /* */
10 /* - Redistributions of source code must retain the above copyright*/
11 /* notice, this list of conditions and the following disclaimer. */
12 /* */
13 /* - Redistributions in binary form must reproduce the above */
14 /* copyright notice, this list of conditions and the following */
15 /* disclaimer in the documentation and/or other materials */
16 /* provided with the distribution. */
17 /* */
18 /* - Neither the name of IBM Corporation nor the names of its */
19 /* contributors may be used to endorse or promote products */
20 /* derived from this software without specific prior written */
21 /* permission. */
22 /* */
23 /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
24 /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
25 /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
26 /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
27 /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
28 /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
29 /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
30 /* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
31 /* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
32 /* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
33 /* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
34 /* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
35 /* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
36 /* -------------------------------------------------------------- */
37 /* PROLOG END TAG zYx */
38 #ifdef __SPU__
39 #ifndef _TGAMMAF4_H_
40 #define _TGAMMAF4_H_ 1
41
42 #include <spu_intrinsics.h>
43 #include "simdmath.h"
44
45 #include "recipf4.h"
46 #include "truncf4.h"
47 #include "expf4.h"
48 #include "logf4.h"
49 #include "divf4.h"
50 #include "sinf4.h"
51 #include "powf4.h"
52 #include "tgammad2.h"
53
54 /*
55 * FUNCTION
56 * vector float _tgammaf4(vector float x)
57 *
58 * DESCRIPTION
59 * The tgammaf4 function returns a vector containing tgamma for each
60 * element of x
61 *
62 * We take a fairly standard approach - break the domain into 5 separate regions:
63 *
64 * 1. [-infinity, 0) - use gamma(x) = pi/(x*gamma(-x)*sin(x*pi))
65 * 2. [0, 1) - push x into [1,2), then adjust the
66 * result.
67 * 3. [1, 2) - use a rational approximation.
68 * 4. [2, 10) - pull back into [1, 2), then adjust
69 * the result.
70 * 5. [10, +infinity] - use Stirling's Approximation.
71 *
72 *
73 * Special Cases:
74 * - tgamma(+/- 0) returns +/- infinity
75 * - tgamma(negative integer) returns NaN
76 * - tgamma(-infinity) returns NaN
77 * - tgamma(infinity) returns infinity
78 *
79 */
80
81 /*
82 * Coefficients for Stirling's Series for Gamma() are defined in
83 * tgammad2.h
84 */
85
86 /*
87 * Rational Approximation Coefficients for the
88 * domain [1, 2) are defined in tgammad2.h
89 */
90
91
_tgammaf4(vector float x)92 static __inline vector float _tgammaf4(vector float x)
93 {
94 vector float signbit = spu_splats(-0.0f);
95 vector float zerof = spu_splats(0.0f);
96 vector float halff = spu_splats(0.5f);
97 vector float onef = spu_splats(1.0f);
98 vector float ninep9f = (vector float)spu_splats(0x411FFFFF); /* Next closest to 10.0 */
99 vector float t38f = spu_splats(38.0f);
100 vector float pi = spu_splats((float)SM_PI);
101 vector float sqrt2pi = spu_splats(2.506628274631000502415765284811f);
102 vector float inf = (vec_float4)spu_splats(0x7F800000);
103 vector float nan = (vec_float4)spu_splats(0x7FFFFFFF);
104
105 vector float xabs;
106 vector float xscaled;
107 vector float xtrunc;
108 vector float xinv;
109 vector float nresult; /* Negative x result */
110 vector float rresult; /* Rational Approx result */
111 vector float sresult; /* Stirling's result */
112 vector float result;
113 vector float pr,qr;
114
115 vector unsigned int gt0 = spu_cmpgt(x, zerof);
116 vector unsigned int gt1 = spu_cmpgt(x, onef);
117 vector unsigned int gt9p9 = spu_cmpgt(x, ninep9f);
118 vector unsigned int gt38 = spu_cmpgt(x, t38f);
119
120 xabs = spu_andc(x, signbit);
121
122 /*
123 * For x in [0, 1], add 1 to x, use rational
124 * approximation, then use:
125 *
126 * gamma(x) = gamma(x+1)/x
127 *
128 */
129 xabs = spu_sel(spu_add(xabs, onef), xabs, gt1);
130 xtrunc = _truncf4(xabs);
131
132
133 /*
134 * For x in [2, 10):
135 */
136 xscaled = spu_add(onef, spu_sub(xabs, xtrunc));
137
138 /*
139 * For x in [1,2), use a rational approximation.
140 */
141 pr = spu_madd(xscaled, spu_splats((float)TGD2_P07), spu_splats((float)TGD2_P06));
142 pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P05));
143 pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P04));
144 pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P03));
145 pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P02));
146 pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P01));
147 pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P00));
148
149 qr = spu_madd(xscaled, spu_splats((float)TGD2_Q07), spu_splats((float)TGD2_Q06));
150 qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q05));
151 qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q04));
152 qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q03));
153 qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q02));
154 qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q01));
155 qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q00));
156
157 rresult = _divf4(pr, qr);
158 rresult = spu_sel(_divf4(rresult, x), rresult, gt1);
159
160 /*
161 * If x was in [2,10) and we pulled it into [1,2), we need to push
162 * it back out again.
163 */
164 rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [2,3) */
165 xscaled = spu_add(xscaled, onef);
166 rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [3,4) */
167 xscaled = spu_add(xscaled, onef);
168 rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [4,5) */
169 xscaled = spu_add(xscaled, onef);
170 rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [5,6) */
171 xscaled = spu_add(xscaled, onef);
172 rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [6,7) */
173 xscaled = spu_add(xscaled, onef);
174 rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [7,8) */
175 xscaled = spu_add(xscaled, onef);
176 rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [8,9) */
177 xscaled = spu_add(xscaled, onef);
178 rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [9,10) */
179
180
181 /*
182 * For x >= 10, we use Stirling's Approximation
183 */
184 vector float sum;
185 xinv = _recipf4(xabs);
186 sum = spu_madd(xinv, spu_splats((float)STIRLING_16), spu_splats((float)STIRLING_15));
187 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_14));
188 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_13));
189 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_12));
190 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_11));
191 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_10));
192 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_09));
193 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_08));
194 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_07));
195 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_06));
196 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_05));
197 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_04));
198 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_03));
199 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_02));
200 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_01));
201 sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_00));
202
203 sum = spu_mul(sum, sqrt2pi);
204 sum = spu_mul(sum, _powf4(x, spu_sub(x, halff)));
205 sresult = spu_mul(sum, _expf4(spu_or(x, signbit)));
206
207 /*
208 * Choose rational approximation or Stirling's result.
209 */
210 result = spu_sel(rresult, sresult, gt9p9);
211
212 result = spu_sel(result, inf, gt38);
213
214 /* For x < 0, use:
215 * gamma(x) = pi/(x*gamma(-x)*sin(x*pi))
216 */
217 nresult = _divf4(pi, spu_mul(x, spu_mul(result, _sinf4(spu_mul(x, pi)))));
218 result = spu_sel(nresult, result, gt0);
219
220 /*
221 * x = non-positive integer, return NaN.
222 */
223 result = spu_sel(result, nan, spu_andc(spu_cmpeq(x, xtrunc), gt0));
224
225 return result;
226 }
227
228 #endif /* _TGAMMAF4_H_ */
229 #endif /* __SPU__ */
230