1 /*
2 (C) Copyright 2001,2006,
3 International Business Machines Corporation,
4 Sony Computer Entertainment, Incorporated,
5 Toshiba Corporation,
6
7 All rights reserved.
8
9 Redistribution and use in source and binary forms, with or without
10 modification, are permitted provided that the following conditions are met:
11
12 * Redistributions of source code must retain the above copyright notice,
13 this list of conditions and the following disclaimer.
14 * Redistributions in binary form must reproduce the above copyright
15 notice, this list of conditions and the following disclaimer in the
16 documentation and/or other materials provided with the distribution.
17 * Neither the names of the copyright holders nor the names of their
18 contributors may be used to endorse or promote products derived from this
19 software without specific prior written permission.
20
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
22 IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
24 PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
25 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
28 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
29 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 #ifndef _REMQUO_H_
34 #define _REMQUO_H_ 1
35
36 #include <spu_intrinsics.h>
37 #include "headers/vec_literal.h"
38
_remquo(double x,double y,int * quo)39 static __inline double _remquo(double x, double y, int *quo)
40 {
41 int n, shift;
42 vec_uchar16 swap_words = VEC_LITERAL(vec_uchar16, 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11);
43 vec_uchar16 propagate = VEC_LITERAL(vec_uchar16, 4,5,6,7, 192,192,192,192, 12,13,14,15, 192,192,192,192);
44 vec_uchar16 splat_hi = VEC_LITERAL(vec_uchar16, 0,1,2,3,0,1,2,3, 8,9,10,11, 8,9,10,11);
45 vec_uchar16 splat_lo = VEC_LITERAL(vec_uchar16, 4,5,6,7,4,5,6,7, 12,13,14,15, 12,13,14,15);
46 vec_int4 quotient;
47 vec_int4 four = { 4, 4, 4, 4 };
48 vec_uint4 vx, vy, z;
49 vec_uint4 x_hi, y_hi, y8_hi, y_lo, y2, y4;
50 vec_uint4 abs_x, abs_y, abs_2x, abs_2y, abs_8y;
51 vec_uint4 exp_x, exp_y;
52 vec_uint4 zero_x, zero_y;
53 vec_uint4 logb_x, logb_y;
54 vec_uint4 mant_x, mant_y;
55 vec_uint4 normal, norm, denorm;
56 vec_uint4 gt, eq, bias;
57 vec_uint4 nan_out, not_ge, quo_pos, overflow;
58 vec_uint4 result, result0, resultx, cnt, sign, borrow;
59 vec_uint4 exp_special = VEC_SPLAT_U32(0x7FF00000);
60 vec_uint4 half_smax = VEC_SPLAT_U32(0x7FEFFFFF);
61 vec_uint4 lsb = (vec_uint4)(VEC_SPLAT_U64(0x0000000000000001ULL));
62 vec_uint4 sign_mask = (vec_uint4)(VEC_SPLAT_U64(0x8000000000000000ULL));
63 vec_uint4 implied_1 = (vec_uint4)(VEC_SPLAT_U64(0x0010000000000000ULL));
64 vec_uint4 mant_mask = (vec_uint4)(VEC_SPLAT_U64(0x000FFFFFFFFFFFFFULL));
65
66 vx = (vec_uint4)spu_promote(x, 0);
67 vy = (vec_uint4)spu_promote(y, 0);
68
69 abs_x = spu_andc(vx, sign_mask);
70 abs_y = spu_andc(vy, sign_mask);
71
72 abs_2y = spu_add(abs_y, implied_1);
73 abs_8y = spu_add(abs_y, VEC_LITERAL(vec_uint4, 0x00300000, 0, 0x00300000, 0));
74
75 sign = spu_and(vx, sign_mask);
76
77 quo_pos = spu_cmpgt((vec_int4)spu_and(spu_xor(vx, vy), sign_mask), -1);
78 quo_pos = spu_shuffle(quo_pos, quo_pos, splat_hi);
79
80 /* Compute abs_x = fmodf(abs_x, 8*abs_y). If y is greater than 0.125*SMAX
81 * (SMAX is the maximum representable float), then return abs_x.
82 */
83 {
84 x_hi = spu_shuffle(abs_x, abs_x, splat_hi);
85 y_lo = spu_shuffle(abs_y, abs_y, splat_lo);
86 y_hi = spu_shuffle(abs_y, abs_y, splat_hi);
87 y8_hi = spu_shuffle(abs_8y, abs_8y, splat_hi);
88
89 /* Force a NaN output if (1) abs_x is infinity or NaN or (2)
90 * abs_y is a NaN.
91 */
92 nan_out = spu_or(spu_cmpgt(x_hi, half_smax),
93 spu_or(spu_cmpgt(y_hi, exp_special),
94 spu_and(spu_cmpeq(y_hi, exp_special),
95 spu_cmpgt(y_lo, 0))));
96
97 /* Determine ilogb of abs_x and abs_8y and
98 * extract the mantissas (mant_x, mant_y)
99 */
100 exp_x = spu_rlmask(x_hi, -20);
101 exp_y = spu_rlmask(y8_hi, -20);
102
103 resultx = spu_or(spu_cmpgt(y8_hi, x_hi), spu_cmpgt(y_hi, half_smax));
104
105 zero_x = spu_cmpeq(exp_x, 0);
106 zero_y = spu_cmpeq(exp_y, 0);
107
108 logb_x = spu_add(exp_x, -1023);
109 logb_y = spu_add(exp_y, -1023);
110
111 mant_x = spu_andc(spu_sel(implied_1, abs_x, mant_mask), zero_x);
112 mant_y = spu_andc(spu_sel(implied_1, abs_8y, mant_mask), zero_y);
113
114 /* Compute fixed point fmod of mant_x and mant_y. Set the flag,
115 * result0, to all ones if we detect that the final result is
116 * ever 0.
117 */
118 result0 = spu_or(zero_x, zero_y);
119
120 n = spu_extract(spu_sub(logb_x, logb_y), 0);
121
122 while (n-- > 0) {
123 borrow = spu_genb(mant_x, mant_y);
124 borrow = spu_shuffle(borrow, borrow, propagate);
125 z = spu_subx(mant_x, mant_y, borrow);
126
127 result0 = spu_or(spu_cmpeq(spu_or(z, spu_shuffle(z, z, swap_words)), 0), result0);
128
129 mant_x = spu_sel(spu_slqw(mant_x, 1), spu_andc(spu_slqw(z, 1), lsb), spu_cmpgt((vec_int4)spu_shuffle(z, z, splat_hi), -1));
130 }
131
132
133 borrow = spu_genb(mant_x, mant_y);
134 borrow = spu_shuffle(borrow, borrow, propagate);
135 z = spu_subx(mant_x, mant_y, borrow);
136
137 mant_x = spu_sel(mant_x, z, spu_cmpgt((vec_int4)spu_shuffle(z, z, splat_hi), -1));
138 mant_x = spu_andc(mant_x, VEC_LITERAL(vec_uint4, 0,0,-1,-1));
139
140 result0 = spu_or(spu_cmpeq(spu_or(mant_x, spu_shuffle(mant_x, mant_x, swap_words)), 0), result0);
141
142 /* Convert the result back to floating point and restore
143 * the sign. If we flagged the result to be zero (result0),
144 * zero it. If we flagged the result to equal its input x,
145 * (resultx) then return x.
146 *
147 * Double precision generates a denorm for an output.
148 */
149 cnt = spu_cntlz(mant_x);
150 cnt = spu_add(cnt, spu_and(spu_rlqwbyte(cnt, 4), spu_cmpeq(cnt, 32)));
151 cnt = spu_add(spu_shuffle(cnt, cnt, splat_hi), -11);
152
153 shift = spu_extract(exp_y, 0) - 1;
154 denorm = spu_slqwbytebc(spu_slqw(mant_x, shift), shift);
155
156 exp_y = spu_sub(exp_y, cnt);
157
158 normal = spu_cmpgt((vec_int4)exp_y, 0);
159
160 /* Normalize normal results, denormalize denorm results.
161 */
162 shift = spu_extract(cnt, 0);
163 norm = spu_slqwbytebc(spu_slqw(spu_andc(mant_x, VEC_LITERAL(vec_uint4, 0x00100000, 0, -1, -1)), shift), shift);
164
165 mant_x = spu_sel(denorm, norm, normal);
166
167 exp_y = spu_and(spu_rl(exp_y, 20), normal);
168
169 result = spu_sel(exp_y, mant_x, mant_mask);
170
171 abs_x = spu_sel(spu_andc(result, spu_rlmask(result0, -1)), abs_x, resultx);
172
173 }
174
175 /* if (x >= 4*y)
176 * x -= 4*y
177 * quotient = 4
178 * else
179 * quotient = 0
180 */
181 y4 = spu_andc(spu_add(abs_y, spu_rl(implied_1, 1)), zero_y);
182
183 overflow = spu_cmpgt(y_hi, VEC_SPLAT_U32(0x7FCFFFFF));
184 gt = spu_cmpgt(y4, abs_x);
185 eq = spu_cmpeq(y4, abs_x);
186 not_ge = spu_or(gt, spu_and(eq, spu_rlqwbyte(gt, 4)));
187 not_ge = spu_shuffle(not_ge, not_ge, splat_hi);
188 not_ge = spu_or(not_ge, overflow);
189
190 abs_x = spu_sel((vec_uint4)spu_sub((vec_double2)abs_x, (vec_double2)y4), abs_x, not_ge);
191 quotient = spu_andc(four, (vec_int4)not_ge);
192
193 /* if (x >= 2*y
194 * x -= 2*y
195 * quotient += 2
196 */
197 y2 = spu_andc(spu_add(abs_y, implied_1), zero_y);
198
199 overflow = spu_cmpgt(y_hi, VEC_SPLAT_U32(0x7FDFFFFF));
200 gt = spu_cmpgt(y2, abs_x);
201 eq = spu_cmpeq(y2, abs_x);
202 not_ge = spu_or(gt, spu_and(eq, spu_rlqwbyte(gt, 4)));
203 not_ge = spu_shuffle(not_ge, not_ge, splat_hi);
204 not_ge = spu_or(not_ge, overflow);
205
206
207 abs_x = spu_sel((vec_uint4)spu_sub((vec_double2)abs_x, (vec_double2)y2), abs_x, not_ge);
208 quotient = spu_sel(spu_add(quotient, 2), quotient, not_ge);
209
210 /* if (2*x > y)
211 * x -= y
212 * if (2*x >= y) x -= y
213 */
214 abs_2x = spu_and(spu_add(abs_x, implied_1), normal);
215
216 gt = spu_cmpgt(abs_2x, abs_y);
217 eq = spu_cmpeq(abs_2x, abs_y);
218 bias = spu_or(gt, spu_and(eq, spu_rlqwbyte(gt, 4)));
219 bias = spu_shuffle(bias, bias, splat_hi);
220 abs_x = spu_sel(abs_x, (vec_uint4)spu_sub((vec_double2)abs_x, (vec_double2)abs_y), bias);
221 quotient = spu_sub(quotient, (vec_int4)bias);
222
223 bias = spu_andc(bias, spu_rlmaska((vec_uint4)spu_msub((vec_double2)abs_x, VEC_SPLAT_F64(2.0), (vec_double2)abs_y), -31));
224 bias = spu_shuffle(bias, bias, splat_hi);
225 abs_x = spu_sel(abs_x, (vec_uint4)spu_sub((vec_double2)abs_x, (vec_double2)abs_y), bias);
226 quotient = spu_sub(quotient, (vec_int4)bias);
227
228 /* Generate a correct final sign
229 */
230 result = spu_sel(spu_xor(abs_x, sign), exp_special, nan_out);
231
232 quotient = spu_and(quotient, 7);
233 quotient = spu_sel(spu_sub(0, quotient), quotient, quo_pos);
234
235 *quo = spu_extract(quotient, 0);
236
237 return (spu_extract((vec_double2)result, 0));
238 }
239 #endif /* _REMQUO_H_ */
240