1 /* --------------------------------------------------------------  */
2 /* (C)Copyright 2006,2008,                                         */
3 /* International Business Machines Corporation                     */
4 /* All Rights Reserved.                                            */
5 /*                                                                 */
6 /* Redistribution and use in source and binary forms, with or      */
7 /* without modification, are permitted provided that the           */
8 /* following conditions are met:                                   */
9 /*                                                                 */
10 /* - Redistributions of source code must retain the above copyright*/
11 /*   notice, this list of conditions and the following disclaimer. */
12 /*                                                                 */
13 /* - Redistributions in binary form must reproduce the above       */
14 /*   copyright notice, this list of conditions and the following   */
15 /*   disclaimer in the documentation and/or other materials        */
16 /*   provided with the distribution.                               */
17 /*                                                                 */
18 /* - Neither the name of IBM Corporation nor the names of its      */
19 /*   contributors may be used to endorse or promote products       */
20 /*   derived from this software without specific prior written     */
21 /*   permission.                                                   */
22 /*                                                                 */
23 /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
24 /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
25 /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
26 /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
27 /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
28 /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
29 /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
30 /* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
31 /* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
32 /* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
33 /* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
34 /* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
35 /* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
36 /* --------------------------------------------------------------  */
37 /* PROLOG END TAG zYx                                              */
38 #ifdef __SPU__
39 
40 #ifndef _HYPOTD2_H_
41 #define _HYPOTD2_H_	1
42 
43 #include <spu_intrinsics.h>
44 #include "sqrtd2.h"
45 
46 /*
47  * FUNCTION
48  *       vector double hypotd2(vector double x, vector double y)
49  *
50  * DESCRIPTION
51  *     The function hypotd2 returns a double vector in which each element is
52  *     the square root of the sum of the squares of the corresponding
53  *     elements of x and y.
54  *
55  *     The purpose of this function is to avoid overflow during
56  *     intermediate calculations, and therefore it is slower than
57  *     simply calcualting sqrt(x^2 + y^2).
58  *
59  *     This function is performed by factoring out the larger of the 2
60  *     input exponents and moving this factor outside of the sqrt calculation.
61  *     This will minimize the possibility of over/underflow when the square
62  *     of the values are calculated. Think of it as normalizing the larger
63  *     input to the range [1,2).
64  *
65  *  Special Cases:
66  *	- hypot(x, +/-0)              returns |x|
67  *	- hypot(+/- infinity, y)      returns +infinity
68  *	- hypot(+/- infinity, NaN)    returns +infinity
69  *
70  */
_hypotd2(vector double x,vector double y)71 static __inline vector double _hypotd2(vector double x, vector double y)
72 {
73     vector unsigned long long emask = spu_splats(0x7FF0000000000000ull);
74     vector unsigned long long mmask = spu_splats(0x000FFFFFFFFFFFFFull);
75     vector signed   long long bias  = spu_splats(0x3FF0000000000000ll);
76     vector double oned = spu_splats(1.0);
77     vector double sbit = spu_splats(-0.0);
78     vector double inf  = (vector double)spu_splats(0x7FF0000000000000ull);
79     vector double max, max_e, max_m;
80     vector double min, min_e, min_m;
81     vector unsigned long long xgty;
82     vector double sum;
83     vector double result;
84 
85     /* Only need absolute values for this function */
86     x = spu_andc(x, sbit);
87     y = spu_andc(y, sbit);
88     xgty = spu_cmpgt(x,y);
89 
90     max  = spu_sel(y,x,xgty);
91     min  = spu_sel(x,y,xgty);
92 
93     /* Extract the exponents and mantissas */
94     max_e = (vec_double2)spu_and((vec_ullong2)max, emask);
95     max_m = (vec_double2)spu_and((vec_ullong2)max, mmask);
96     min_e = (vec_double2)spu_and((vec_ullong2)min, emask);
97     min_m = (vec_double2)spu_and((vec_ullong2)min, mmask);
98 
99     /* Factor-out max exponent here by subtracting from min exponent */
100     vec_llong2 min_e_int = (vec_llong2)spu_sub((vec_int4)min_e, (vec_int4)max_e);
101     min_e = (vec_double2)spu_add((vec_int4)min_e_int, (vec_int4)bias);
102 
103     /* If the new min exponent is too small, just set it to 0. It
104      * wouldn't contribute to the final result in either case.
105      */
106     min_e = spu_sel(min_e, sbit, spu_cmpgt(sbit, min_e));
107 
108     /* Combine new exponents with original mantissas */
109     max = spu_or(oned, max_m);
110     min = spu_or(min_e, min_m);
111 
112     sum = _sqrtd2(spu_madd(max, max, spu_mul(min, min)));
113     sum = spu_mul(max_e, sum);
114 
115     /* Special case: x = +/- infinity */
116     result = spu_sel(sum, inf, spu_cmpeq(x, inf));
117 
118     return result;
119 }
120 
121 #endif /* _HYPOTD2_H_ */
122 #endif /* __SPU__ */
123