1 /* -------------------------------------------------------------- */
2 /* (C)Copyright 2007,2008, */
3 /* International Business Machines Corporation */
4 /* All Rights Reserved. */
5 /* */
6 /* Redistribution and use in source and binary forms, with or */
7 /* without modification, are permitted provided that the */
8 /* following conditions are met: */
9 /* */
10 /* - Redistributions of source code must retain the above copyright*/
11 /* notice, this list of conditions and the following disclaimer. */
12 /* */
13 /* - Redistributions in binary form must reproduce the above */
14 /* copyright notice, this list of conditions and the following */
15 /* disclaimer in the documentation and/or other materials */
16 /* provided with the distribution. */
17 /* */
18 /* - Neither the name of IBM Corporation nor the names of its */
19 /* contributors may be used to endorse or promote products */
20 /* derived from this software without specific prior written */
21 /* permission. */
22 /* */
23 /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
24 /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
25 /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
26 /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
27 /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
28 /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
29 /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
30 /* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
31 /* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
32 /* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
33 /* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
34 /* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
35 /* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
36 /* -------------------------------------------------------------- */
37 /* PROLOG END TAG zYx */
38 #ifdef __SPU__
39 #ifndef _ATANHD2_H_
40 #define _ATANHD2_H_ 1
41
42 #include <spu_intrinsics.h>
43 #include "logd2.h"
44
45 /*
46 * FUNCTION
47 * vector double _atanhd2(vector double x)
48 *
49 * DESCRIPTION
50 * The atanhd2 function returns a vector containing the hyperbolic
51 * arctangents of the corresponding elements of the input vector.
52 *
53 * We are using the formula:
54 * atanh x = 1/2 * ln((1 + x)/(1 - x)) = 1/2 * [ln(1+x) - ln(1-x)]
55 * and the anti-symmetry of atanh.
56 *
57 * For x near 0, we use the Taylor series:
58 * atanh x = x + x^3/3 + x^5/5 + x^7/7 + x^9/9 + ...
59 *
60 * Special Cases:
61 * - atanh(1) = Infinity
62 * - atanh(-1) = -Infinity
63 * - atanh(x) for |x| > 1 = Undefined
64 *
65 */
66
67 /*
68 * Maclaurin Series Coefficients
69 * for x near 0.
70 */
71 #define SMD_DP_ATANH_MAC01 1.000000000000000000000000000000E0
72 #define SMD_DP_ATANH_MAC03 3.333333333333333333333333333333E-1
73 #define SMD_DP_ATANH_MAC05 2.000000000000000000000000000000E-1
74 #define SMD_DP_ATANH_MAC07 1.428571428571428571428571428571E-1
75 #define SMD_DP_ATANH_MAC09 1.111111111111111111111111111111E-1
76 #define SMD_DP_ATANH_MAC11 9.090909090909090909090909090909E-2
77 #define SMD_DP_ATANH_MAC13 7.692307692307692307692307692308E-2
78 #define SMD_DP_ATANH_MAC15 6.666666666666666666666666666667E-2
79 #define SMD_DP_ATANH_MAC17 5.882352941176470588235294117647E-2
80 #if 0
81 #define SMD_DP_ATANH_MAC19 5.263157894736842105263157894737E-2
82 #define SMD_DP_ATANH_MAC21 4.761904761904761904761904761905E-2
83 #define SMD_DP_ATANH_MAC23 4.347826086956521739130434782609E-2
84 #define SMD_DP_ATANH_MAC25 4.000000000000000000000000000000E-2
85 #define SMD_DP_ATANH_MAC27 3.703703703703703703703703703704E-2
86 #define SMD_DP_ATANH_MAC29 3.448275862068965517241379310345E-2
87 #define SMD_DP_ATANH_MAC31 3.225806451612903225806451612903E-2
88 #define SMD_DP_ATANH_MAC33 3.030303030303030303030303030303E-2
89 #define SMD_DP_ATANH_MAC35 2.857142857142857142857142857143E-2
90 #define SMD_DP_ATANH_MAC37 2.702702702702702702702702702703E-2
91 #define SMD_DP_ATANH_MAC39 2.564102564102564102564102564103E-2
92 #endif
93
94
_atanhd2(vector double x)95 static __inline vector double _atanhd2(vector double x)
96 {
97 vec_uchar16 dup_even = ((vec_uchar16) { 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 });
98 vec_double2 sign_mask = spu_splats(-0.0);
99 vec_double2 oned = spu_splats(1.0);
100 vec_double2 onehalfd = spu_splats(0.5);
101 vec_double2 xabs, xsqu;
102 /* Where we switch from maclaurin to formula */
103 vec_float4 switch_approx = spu_splats(0.125f);
104 vec_uint4 use_form;
105 vec_float4 xf;
106 vec_double2 result, fresult, mresult;;
107
108 xabs = spu_andc(x, sign_mask);
109 xsqu = spu_mul(x, x);
110
111 xf = spu_roundtf(xabs);
112 xf = spu_shuffle(xf, xf, dup_even);
113
114 /*
115 * Formula:
116 * atanh = 1/2 * ln((1 + x)/(1 - x)) = 1/2 * [ln(1+x) - ln(1-x)]
117 */
118 fresult = spu_sub(_logd2(spu_add(oned, xabs)), _logd2(spu_sub(oned, xabs)));
119 fresult = spu_mul(fresult, onehalfd);
120
121
122 /*
123 * Taylor Series
124 */
125 mresult = spu_madd(xsqu, spu_splats(SMD_DP_ATANH_MAC17), spu_splats(SMD_DP_ATANH_MAC15));
126 mresult = spu_madd(xsqu, mresult, spu_splats(SMD_DP_ATANH_MAC13));
127 mresult = spu_madd(xsqu, mresult, spu_splats(SMD_DP_ATANH_MAC11));
128 mresult = spu_madd(xsqu, mresult, spu_splats(SMD_DP_ATANH_MAC09));
129 mresult = spu_madd(xsqu, mresult, spu_splats(SMD_DP_ATANH_MAC07));
130 mresult = spu_madd(xsqu, mresult, spu_splats(SMD_DP_ATANH_MAC05));
131 mresult = spu_madd(xsqu, mresult, spu_splats(SMD_DP_ATANH_MAC03));
132 mresult = spu_madd(xsqu, mresult, spu_splats(SMD_DP_ATANH_MAC01));
133 mresult = spu_mul(xabs, mresult);
134
135
136 /*
137 * Choose between series and formula
138 */
139 use_form = spu_cmpgt(xf, switch_approx);
140 result = spu_sel(mresult, fresult, (vec_ullong2)use_form);
141
142 /*
143 * Spec says results are undefined for |x| > 1, so
144 * no boundary tests needed here.
145 */
146
147 /* Restore sign - atanh is an anti-symmetric */
148 result = spu_sel(result, x, (vec_ullong2)sign_mask);
149
150 return result;
151 }
152
153 #endif /* _ATANHD2_H_ */
154 #endif /* __SPU__ */
155